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Summary 

I t  is shown  t h a t  for t he  case of a single cy l inder  wh ich  has  a n y  n u m b e r  of 
ax ia l  s lots  of a r b i t r a r y  w i d t h  a n d  inf in i te  length ,  or for t h e  case of coaxial  
cy l inders  where  one of the  cy l indr ica l  b o u n d a r i e s  h a s  such  slots, t h e  Di r i ch le t  
a n d  N e u m a n n  p rob lems  for t he  H e l m h o l t z  e q u a t i o n  (which co r respond  
respec t ive ly  to  E a n d  H waves)  can  be  r educed  to t h a t  of so lv ing a s ingular  
in t eg ra l  equa t ion .  I t  is also shown  t h a t  t h e  resu l t ing  s ingu la r  i n t eg ra l  
e q u a t i o n  is fo rma l ly  t he  same  for b o t h  t he  Di r i ch le t  a n d  N e u m a n n  p rob lems  
for va r ious  k inds  of c i rcular  boundar ies .  The  exac t  so lu t ion  of t h e  i n t eg ra l  
e q u a t i o n  is g iven  a n d  appl ied  to t he  Di r ich le t  an d  N e u m a n n  problems .  The  
fol lowing th r ee  s imple  cases:  (1) a single n a r r o w  slot  in  a cy l inder ;  (2) a single 
n a r r o w  slot  in  a coaxial  cy l inder ;  a n d  (3) n a r r o w  c i rcular  s t r ips  are cons idered  
to i l lu s t r a t e  t he  app l i cab i l i t y  of t he  me thod .  

§ 1. Introduction. A circular cylinder (or a circle) has been a 
favored geometry of boundary value problems, and has been the 
subject of many investigations in acoustic or electromagnetic field 
theory studies. In particular, treatments have been given for fields 
for the case of a slotted cylinder 1) and for the solution of the 
Dirichlet and Neumann problems for the case of a circle with a 
narrow slit in it z). However, in these treatments, it is usual to 
assume that the distribution of the field components in the slot is 
known 1) or that  it can be replaced by  a known distribution of a 
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static field2). On the other hand, L e w i n  a) has shown that  the 
discontinuities in a rectangular waveguide may be analyzed with 
the help of a singular integral equation. 

Recently, the problems of electromagnetic fields in domains 
bounded by a circular cylinder (or coaxial circular cylinders) with 
a finite number of axial slots of arbitrary width and infinite length, 
for given axial linesources, have become of interest in connection 
with some practical applications. Under these circumstances, it is 
necessary to solve for the fields without any particular assumptions 
regarding the distribution of the field in the slots. It  is the purpose 
of this paper to show how to solve these problems rigorously and 
generally. In the following, (i) the solutions of the Dirichlet and 
Neumann problems (that is, z-components of the E- and H-fields 
respectively) are represented by Fourier-Bessel series with unknown 
coefficients; and (ii) dual series equations for these coefficients are 
derived; (iii) the dual series equations are then converted into an 
integral equation; (iv) then the kernel, after the tangential differ- 
entiation, is shown to be a singular one of Cauchy type, (with the 
help of estimation formulas for the Bessel and Hankel functions 
due to the author). It  is also shown that  the singular integral 
equations for the Dirichlet and Neumann problems are formally 
the same, and hence (v) both can be solved simultaneously. This 
process is identical for various kinds of cylindrical boundaries. In 
this paper, the method is illustrated by some examples, the most 
detailed of which is for a single cylinder with slots. In particular, 
the detailed calculation is given for the H-wave case for a narrow 
slot and for the E-wave case for a narrow circular strip. (If two 
or more cylinders have slots in them, the method leads to simultaneous 
singular integral equations. In this paper, for simplicity, we restrict 
attention to the case where only one cylinder has slots in it.) 

The results are valid for all wave numbers k and all values of 
the radii of the cylinders as well as for any number of slots of 
arbitrary widths. It  should be noted that these results cover not 
only the problems of slots, but those of circular strips as well. 

The theory of a singular integral equation which LewinS) 
employed is that of the so-called dominant equation 4) where the 
kernel is simply 1 / ( x  - -  y ) ,  where x and y are points on the path 
of integration. This theory originally arose during an analysis 
of static problems 4) (i.e., of the Laplace equation). L e w i n  applied 
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this theory neglecting higher order modes, and concluded that his 
result would be improved if a constant appearing in his equation 
were replaced by a polynomial. However, in our problem we have 
to take a kernel the form of which is (x -- y)- i  + k(x, y), where 
k(x, y) is a certain rational function, instead of a polynomial. An 
abbreviated theory for such a case is introduced in Appendix 2. 

§ 2. A cylinder with slots. As a typical example, we will consider, 
in detail, the solution for the field when the boundary is a cylinder 
with arbitrary slots in it. 

Suppose that a circular cylinder of perfect conductivity with v 
slots in it is described by cylindrical coordinates (r, $, z) as follows: 

r = a ,  c S< <flS+l, - - o o < z < o o , ( i = 1 , 2  . . . .  

where /7 s < o~ s < /~j+l and flv+l = fl l  (fig. 1). Assume that axial 
(electric and/or magnetic) line sources are located at 

Qi: r = r i ,  d~=~i, 
Qe: r = r e ,  6 = q~e, 

w h e r e  ri, e and $i,e are given arbitrary constants such that 

0 < r i < a < r e  and 0 < ~ i , ~ e _ < 2 m  

,,95=5.----1 95=%\ k ' ~  
\\\ 

95 = a~,/95 =/3 2 X Qe 

/ ,  95 = (X I IIi I 

,".'- ~i 1 
\ \\ 
\\ " , /  

=ell/ 

Fig. I. A circular cylinder with slots. 
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As is well known, when the time dependence e i~ot and the z- 

dependence evz (i = ~ / - -  1, (~ and y are fixed constants) are 
suppressed, the z-components u = Ez and u = Hz of the electric 
and magnetic fields, respectively, satisfy 

d u  -}- k2u = 0, (1) 

where k 2 = o92e#-}-vv2. (e and # are given complex constants,  
representing the complex dielectric constant  and magnetic per- 
meabil i ty respectively.) Fur the r  requirements on u are the radiation 
condition at  infinity,  the boundary  condition on the walls of the 
cylinder, the cont inui ty  condition of u and Su/~r throughout  the 
slots, and the edge conditions at  the edges of the slots. 

First  of all, a solution u of (1), which satisfies the radiation 
condition, can be represented as 

o o  

U =~ Ue = E AnHn(kr) e ~n¢ -~-/eHo(kRe), (a < r) 
T b ~  - - o o  

O a  

u =--ui= E BnJn(kr) e i n¢+/ iHo(kR i ) ,  (0 ~ r < a )  (2) 
n =  - - 0 0  

where A n and Bn are unknown coefficients, and where, respectively, 
J n  and Hn are the Bessel function and the Hankel  function of the 
second kind, /i and /e are given constant  amplitudes (including 
zero) of sources at  Qi and Qe, and Ri and Re are distances from 
Qi and Qe. 

Then, the boundary  conditions, together with the cont inui ty  
conditions, are equivalent to 

SUe ~ui 
U e = U i ;  r = a ,  0 < 6 _ < 2 u ;  Sr ~r (3) 

~Ue 
U e = 0 ;  r----a, a ~ < $ < f l j + l ;  - - 0 ,  (4) 

Sr 
SUe Sui 

- ; r = a ~ j < ~ < ~ j ; u e = u ~  (5) 
Sr 3r 

ioI j = 1, 2, ..., v. In the first row, u ---- Ez, and in the third row, 
u ---- Hz. In other words, u = Ez and u =- Hz are solutions of the 
Dirichlet and Neumann problems for (1), respectively. The second 
row shows the ranges of variables for the expressions in the first 
and third rows. 
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On subst i tu t ing (2) into (3) and making use of the or thogonal i ty  
of {ein¢} in (0, 2n), (3) turns  out  to be a linear equat ion in terms 
of An and Bn, which, when u = Ez determines Bnin  terms of An 
as follows : 

BnJn (a )  = A n H n ( a )  47 /enJn(a)Hn(re)  - - / i n J n ( r i ) H n ( a ) ,  ( 6 ) '  *) 

where the abbrev ia ted  notat ions 

Jn(a) = Jn(ka), Jn(r~) = Jn(kr,), Hn(re) = Hn(kre), (7) 

/en = le e-inSo, /in = I i  e-in¢i 

have been employed here as well as in the following. 
Similarly, when u = Hz, we have 

BnJ;(a) = AnH~,(a) 47/enJ;(a)Hn(re) --/inJn(ri)H;(a), (6)" 

where a prime means the derivat ive with respect to the argument,  
e . g . ,  

~Hn(kr) . 
H~(a) -- ~kr Ir=a 

On subst i tu t ing (2) into (4), we obtain 

{AnHn(a) + lenJn(a)Hn(re)}ein¢ O; (~S<4~<f i j÷ l ) ,  (8)' 

for u = Ez, and 

oo  

E {AnH~(a) +/enJn(a) ~(re)}e~n¢ 0 (~j < $ < flj+l), (8)" 
n =  - o o  

for u = Hz. 
From (2), (5) and (6), we have 

--1 
j,~(a~ {A,, - - /~Un(r i )}  e~n~ = 0, (~j < ~ < ~j) (9)' 

for st = Ez, and 
--1 

nZ~ }ant,r"/a~ {A 7t --/inJn(r,)} eeoc = 0, (flj. < q5 < ~s). (9)" 

*) The  express ions  which  spec i f ica l ly  refer to the Di r ich le t  p rob lem (u = Ez) have  
been n u m b e r e d  wi th  a s t roke  ('), and  those for the  N e u m a n n  p rob lem (u = Hz) have  
been n u m b e r e d  wi th  a double  s t roke  ("). 
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These two equat ions (8) and (9) are the dual series equat ions for 
the unknown coefficients A n. 

The left hand side of (9)', which is zero in the slots/3 j < ¢ < ~ ,  
will define an unknown function 2:~-r(¢) on the wall ~j < ¢ </~j+l .  
In fact, T(6) is a quan t i ty  proport ional  to the z-component  
of the surface current  on the wall of the cylinder. Hence,  by  
vir tue of the or thogonal i ty  of {ein¢}, (9)' can be shown to be 
equivalent  to 

A ~ = - J n ( a ) f r ( O )  e .  *n° dO + / i n J n ( r i ) ,  
L 

(10)' 

where L s tands for the cross section of the wall of the cylinder, i.e. 

L: r = a ,  e j < ¢ < f i j + l ,  ( i =  1,2 . . . .  ,v). 

On the other  hand, the left hand  side of (8)" will define an un- 
known function 2sT(~) in the slots, which is a quan t i ty  proport ional  
to the tangential  component  of the electric field. Hence, (8)" is 
equivalent  to 

1 
.i l" J;(a)  Hn(re), (10)" A n -- H;(a) _'r(O) e-,no dO - - /en ~n(~) 

L 

In this case, L stands for the cross section of the slots, i.e. 

L: r = a ,  / ~ i < 6 < e i  ( i =  1,2 . . . . .  v). 

On subst i tu t ing (10)' into (8)', (and similarly, on subst i tu t ing 
(10)" into (9)"), we obtain an integral equat ion with respect to the 
unknown function ~-(¢), which is formally the same for both  the 
Dirichlet and Neumann  problems. 

o o  

y.  snf.(o) einO dO = c / ( 6 ) ,  (11)  
n =  - - o o  L 

where c is a constant  (see (17)), (9 = ¢ --  0, and 

wall; r = a ,  a y < ~ < f l j + l ,  / ' =  1,2 . . . . .  v, 
L = (12) 

slots; r = a, fl~ < ~ < ~j, /'---- 1,2 . . . . .  v, 
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-4(¢) = 

oo  

/e E enJn(a)Hn(re) cos n(¢ -- ~e) -}- 
n = O  

o o  

q-/i  E enYn(ri)Hn(a) cos n(¢ -- ¢i), 
~ = 0  

Hn(re) 
/e Z ~ , , -  c o s  - + 

oo  

q-/ in?0s n Jn(ri) cos n(4 - ¢i), 

(i3) 

where e n =  1 f o r n =  1 a n d e n = 2  f o r n >  1, 

[ --yn(a) 
3n = --I (14) 

The upper lines of (12), (13) and (14) are for the Dirichlet problem 
and the lower lines are for the Neumann problem. Thus these 
problems are mutually transferable by  exchanging dually the 
meaning of L, c, /(~b) and Sn. 

Because of the edge condition at the edges, the unknown function 
w(4) for both the Dirichlet and Neumann problems must have a 
singularity of order 0(p-~) at the edges of the slots, where p is the 
distance from the edge. Hence, we are looking for a solution r(4 ) 
of (11), which has a singularity of O(p-}) at the end points of L. 

Conversely, if we find a solution r of (11) which satisfies this 
edge condition, and if An is determined by  (10) in terms of r, 
and Bn is determined by (6) in terms of An, and finally, if u is 
determined by  (2) in terms of A n and Bn, then we can prove that 
u = Ez and u = Hz are the desired field components, that  is they 
satisfy (1), the radiation condition, the boundary condition, the 
continuity condition, and the edge condition. (This fact is proved 
by the uniqueness of the Fourier series for u and 7.) 

§ 3. The solution o~ the integral equation. It  has been proved, in 
the preceding section, that  the original problems are equivalent 
to that  of solving the fundamental integral equation (11). Now we 
will proceed to solve it. 

With the help of the well known formulas, 

Jn = ( - 1 ) n J - n ,  Hn = (--1)nil-n, J~ = ( - 1 ) n J '  n, 
H" n = ( - -  1 )nH_,~ ,  



338 Y O S H I O  H A Y A S H I  

it is easy to see tha t  

S -n  = Sn. 

If  we write Sn for any  integer n (=/= 0) as 

(15) 

where 

C 
Sn = ~ {1 ~- sl~,}, (16) 

/ --@z (17) 
c = [ - - i ~ ( k a ) %  

then,  by  vi r tue  of (15) and by  the applicat ion of the formulas in 
Appendix  1, it can be shown tha t  for any  integer n 

sin I = O((ka)S/4n). 

Hence,  if we choose a positive integer  N such tha t  (ka)S/4N is 
sufficiently small, then  the sl~ I are quanti t ies  which are negligibly 
small when n > N * ) .  

By  vir tue  of (15) and (16), (11) can be rewri t ten as 

f { (1 )} 7(0) S o + 2 c  cos n O + - - c o s n O  dO=c/(dp), 
1 n 

L 

which turns  out,  with the help of the formula 

co  1 1 
2 Y. - -  cos nO = log 0 = # 0 ,  

=1 n 2 - -  2cos  O ' 

to be 

where 

f-r(O) N(¢,  O) dO = / ( ¢ )  + e~v, (18) 
L 

N(¢, O) = l og  
1 N 2Sn So 

+ E - -  cos nO + - - ,  
2 - -  2 c o s O  n=l n c 

snf e~ = - -2  =~. r(O) cos nO dO. 
n + 1  n 

L 

*) W e  a s s u m e  t h a t  k a n d  a a r e  s u c h  t h a t  Jn(a) J~(a) H/~(a.) ~ O. O t h e r w i s e ,  a d -  

d i t i o n a l  e o n s i d e r a t i o n  is  n e c e s s a r y  fo r  t h e s e  " r e s o n a n t "  e a s e s  w h e r e  Jn(a) Jn( ) H,~(a)  = 

= 0. S i m i l a r  a s s u m p t i o n s  wi l l  b e  m a d e  fo r  o t h e r  e a s e s  in  s e c t i o n s  4 a n d  5. 
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B2caus~ Sn/n= O(n -2) for n > N + 1, and Y~--1 n-2 is a con- 
vergent  series, it can be shown tha t  ]eN] < e for any given positive 
number  e, if n > N and N is chosen to be sufficiently large. 

Then, on neglecting sly and differentiat ing both  sides of (18) 
with respect to ¢, we have 

f~-(O) N'(¢ ,  O) dO = 1'(¢), (19) 
L 

where N'(¢ ,  0) a n d / ' ( ¢ )  are respectively the derivatives of N(¢,  0) 
and / (¢ )  with respect  to ¢. I t  is easy to see tha t  (19) is equivalent  to 

where 

i sin 0 } 
. ~ - ( ° ) {2  2 - 2 c o s O  k(¢,o) dO 
L 

d (¢), (20) 

i N 
k(¢, O) = ~  {1 --  2 Sn( e~n° -- e-Zn°)} - (21) 

Because of the singulari ty of the kernel at 0 = ¢, the integral 
in (20) is t aken  in the sense of Cauchy's  principal value. Thus (20) 
is a singular integral equat ion derived from (11). 

Suppose that  z = r e ~0 is a point  in a complex plane, then 

E = a e  i°,  ¢o = g e  i¢,  (22) 

are points on L. B y  the t ransformat ion (22), (20) is t ransformed 
into an expression in complex variables as follows: 

where 

and 

1 
k(to, t) = a -  k(¢ ,  o) = 

(,o; 
1 1 - -  Y~ s ~  - -  

2t n=l 

1 f ! , ,)} d, = /(,o/, ~7  ~-(t)|l - to 
L 

~-(t) = i ~ - ( o ) ,  

1 t "  !(lo) = -d (¢), 

IL n = l  • S';'t " " ~ = n= "~-:¥ k n  Xn+l t~O ' (24)  
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where 

k ~  z 

1 S n  , U ~>__0, 
C 

1 ( n )  
- - ~  l @ - - S n  , c  n < O .  

(25) 

The singular integral equation (23) can be solved by the theory 
described in Appendix 2, and the solution of (23), that  is, of (19), 
which satisfies the edge condition mentioned before, is given by 
(5) of Appendix 2. Under the transformation (22), this solution 
is seen to be equivalent to 

- ix(¢)  [ 1 /'(o) ~x(¢) ~+~ 
T ( ¢ )  2z ~ d 1 - - e  I(¢-°) X(O) dO ~ ~=-N~ pnane*n¢, (26) 

L 

where Pn (n = - -N,  - - N  + 1 . . . . .  N q- v) are constants which are 
determined by (12) of Appendix 2. Corresponding to (4) of Appen- 
dix 2, X(¢) is defined as 

V X(¢) = 1/a~ II  (e i¢ -- e%)(e~¢ -- e~e,), (27) 
1"=1 

Although (26) satisfies (23), or (19), it does not necessarily satisfy 
the original integral equation (18), because (19) was derived by 
the differentiation of (18) with respect to ¢. This will be discussed 
next, and the necessary and sufficient conditions for r(¢) defined 
by (26) to satisfy (18) too will b e  given. 

On substituting (26) into (19), one has 

N + v  

~; pnF;~(¢) + G'(¢) = 0, (28) 
n =  - -N  

where 

--ian f F•(¢) -- Y ' (¢ ,  {9) X (O) e in° dO 
7g 

L 

- - i  f Y ' ( ¢ , O )  X (O)dOf  1 /'(W) G'(¢)-  2 ~  1 - - e  ~(°-~ X(w) 
15 L 

- -  @ - / , ( ¢ ) .  
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Suppose that  Fn(¢) and G(¢) are functions defined by 

--ian f N(¢, O) X(O) e in° dO 

L 

f 1 G(¢) -- 2~z2 N(¢, 0) X(O) dO 1 -- e i(°-~') X(~f) 
L L 

d ~ - - l ( ¢ ) ,  

N+v N+v  

X pnFn(¢) + G(¢) = X pnFn(¢O) + G(¢o). 
n =  - - N  n =  - - N  

Because of (28), the right hand side of the last expression is a con- 
stant which is independent ot the choice of ¢0. On the other hand, 
the substitution of (26) into (t3) implies that 

N + v  

2 pnFn(¢)  + = 0. 
n = - - N  

This means that  ~- defined by (26) satisfies (18) if and only if {Pn} 
satisfies the additional condition 

N + v  

X p ,Fn(¢0) + G(¢0) = 0. (29) 

Thus, we conclude that the solution T of (18) is given by (26) when 
{Pn} are determined by  (12) of Appendix 2 and (29). 

This is our principal result. I t  can be used to determine the fields 
for any number of arbitrary axial slots (as well as circular strips) 
and for arbitrary axial line sources. The results are valid for all 
values of the wave number k and cylinder radius a. 

In particular, we have obtained the axial component of the surface 
electric current on the wall of the cylinder for the case of the E- 
wave, and for the H-wave case we have obtained the tangential 
component of the electric field in the slots. Although the two solu- 
tions are formally the same, the different interpretation to be given 
to L, c/(¢), and {Pn} serves to distinguish them in the two cases. It 
should also be noted that the determination of {Pn} given by (12) 
of Appendix 2 involves kn (see (25)), where kn depends on Sn whose 

then, on integrating (28) with respect to ¢ from ¢ = ¢0 to ¢ = ¢, 
where ¢0 is an arbitrary fixed value in L, we have, 
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def ini t ion itself depends  on whether  E - w a v e s  or H - w a v e s  are being 

considered.  
W e  n o w  consider some  s imple  examples  of the  theory .  

§ 4. Examples. A. A s i n g l e  s l o t  in  a c y l i n d e r .  Suppose  

that  there is one slot in a cyl inder (fig. 2 and 3), that  is, v = 1, 
/31 = - - a  and ~1 = c~ (0 < ~ < ~).  In  fig. 3, it m a y  be a circular 

( x Qe / / 
/ 

14 , :  a qS:a~. / x a  T 

xQ e 

\ 

X \ 
\ 

I 
I 

! 
/ 

/ 
J 

Fig. 2. A slot in a cylinder. Fig. 3. A circular strip. 

strip. Also,  for the  sake of s impl ic i ty ,  suppose  that  ]ka] < 1. 
Consequent ly ,  we  can as sume  that  N = 1 since for n > N = 1, 
Sn = 0(1/4n) - -  0. T h e n  for the  Dirichlet  problem,  i.e. for E - w a v e ,  

(26) and (27) can be reduced to 

2n--~x 
--iX(C) ( 1 /'(0) iX(C) 2 

'7(¢) - 2~ ~ , J  1 - - e  i(¢-°) X(O) dO ~ n=-lZ anein¢, 
o; 

x ( ¢ )  = 1 / a V ( e ~  - e ~ ) ( e ~  - -  e - ~ ) ,  (30) 

where Pn (n = - - 1 ,  O, 1, 2) are de termined  b y  

i 
C~--2p-1 -~- ~x--lP0 ~- c~0Pl -[- (~1 -~- fl--1/kl)P2 = - -  (~'0/-1 @ ~'110)" Y~ 

i 
~- - lP - -1  ~ -  0~0P0 @- (~1 @- / ~ - - l / k 0 ) P l  @ (~2 -~  f l - -2 /k0 )P2  = - -  ~3010' 

2~ 

(so + ~o/k-1) P-1 + ~lpo + ~2Pl + ~3p2 = O. 
2 

X pnFn(¢o) + G(¢o) = 0. (31) 

where ¢o is an arbitrary va lue  such that  c~ < ¢o < 2 x -  a, s ay  
~o = ~. For  the  N e u m a n n  problem,  i.e., for H - w a v e ,  the  results  
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are the same as those ment ioned above bu t  the integral in (30) 
should be taken from 0 = --c~ to 0 = ~, and ¢o is - -~ < ¢o < ~, 
say ¢o = 0. 

(1) A narrow slot/or H-wave. Suppose that  the slot --c~ < ¢ < 
is narrow in the sense that  (fig. 2) 

(2c~) 2 < 1 (32) 

then, for the Neumann  problem (H-wave),  the integral over ( --e ,  c~) 
in (30) can be simplified. In fact, when eeL;  --c~ < ¢ < c~, then 

IO - ~1, I¢ - Ol _< 2 ~  < 1, 

so if X(O) and 1 - - e  ~(~-°) are expanded  in series, then we can 
neglect those terms of 0(c~2). Consequently,  we have 

1 - e !  ( ~ - ° )  - - / ( ¢  - 0) 
and 

Hence,  we have 

X(¢)  # e-i¢/a@c~ 2 --  02. (33) 

f' i 1 1 i I ' ( 0 ) ~  2 - -  02 d 0 - -  
~-(¢)  = 2 ~ £ ~ 2 -  ¢ 2  / ¢ - o 

- - 5  

i l 
E pn(a e~¢)n-*. (34) 

In this case, (31), which will determine {fin} in (34), will be more 
precise if we calculate ~m (m = --2,  --1,  0, 1, 2, 3), tim (m --  - -2 ,  
- - 1 ) ,  ym ( m = 0 , 1 ) ,  km ( m = - - l , O ,  1) and /m ( m = - - l , 0 ) ,  as 
follows : 

To begin with, b y  its definition (see Appendix  2, (4) and (7)), 

X(z)  is 1 / ~ / ( z -  el)(Z- c2) in this case, where cl = a e t~ and 
c2 = a e -i~, respectively.  Hence,  

X(z)  = 1 --  \ T ] [  , = n= ~ - ~  flnZn, 

when [z I > a, and 

1 { ( c ~ ) } - ~  { ( z , ]  - ~ < , °  X ( z ) - - - -  1 - -  1 - -  v'c,e  =  -0x r=zn, 
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when z < a. B y  the comparison of the coefficients in the last two 
expressions, we have fi-1 = 1, /~-2 = a cos~,  70 = 1/a, yl = 

COS ~/a 2. 
According to their definitions (Appendix 2, (7)), 

0 ~ m  m 

o: 

gm--i j" ei(m - 1 )o 

V/c~ 2 __ 02 dO, 

am+l 
| ~ / ~ _  o21'(o) e ~(m+')° dO. l m -  2~ ,1 

Similarly, kl = ½{1 --  (Sl/C)}, kO = 1 and k-1 = --½{1 --  (S1/c)}, and 

N(¢,  O) = log {½ -- 2 cos (¢ --  0)} + 2 ( Sic - 1 ) c o s ( e - 0 ) +  S0 
c 

where So/c = 1/i~(ka) 2 Jl(a) Hi(a)  and S1/c = 1/i~(ka) 2 Ji(a) Hi(a), 
respectively (see (25), (14), (16), (17) and (18)). Hence,  (see (29)), 

Gt 

Fn(O) -- log. + 
2 --  2 cos 0 

+ 2  1 _ 1  c o s 0 +  c %/_~__o~dO, 

5 

1 
G(0) = - -  log  + 

2~ 2 2 --  2 cos 0 
- - 5  

- ] - 2 (  $1 - 1 ) c o s 0 - ] -  S o ]  dO 
c c ~ / ~  - 02 

f [  1 i}V'~--~oeJ'(~o) d ~ - -  ](O), 
x 0 _  9 

where we have assumed that  ¢0 = 0. Wi th  the help of these values 
of era, tim, 7m, kin, Ira, Fro(O) and G(O), the detailed expressions for 
{Pn}, (n = --1,  0, 1, 2) are obtained from (31). 

If  there is a source in the ,,interior" of the cylinder at  r = ri, 
¢ = ¢i (ri < a) and no source in the , ,exterior" (r > a), (i, e, 
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/e = 0), then  from the lower line of (13) and a formula in Appen- 
dix 1, we have 

/'(0) -- / i ] ~  sin n(¢ -- ¢i), 

which is approximate ly  

2 i  /i r i  sin ( ¢ - -  ¢i), (35) 
~ka a 

if ri < a. If  ri = 0 ,  t ha t  is, if the source is located at  the center 
of the cylinder, then, 

+ i  
/(0) -- /i = constant ,  

u(ka) s J l (a)  

/'(0) = O. (36) 

Hence, (34) along with (35) and (36) giye the field for each case. 

(2) A narrow circular strip /or E-wave. In a way dual to tha t  
of the previous example, simple expressions are possible for the 
E-wave for the case of a narrow strip (fig. 3). The strip, which is 
represented by r = a, c~ < ¢ < 2a -- e, is assumed to be narrow 
in the sense t ha t  

- 1 ,  

then, in the integral in (30) which is taken over (~, 2~z -- c~), we 
have 

'~0--~1, I¢ - -0 [  < 1. 

Hence (33) is again true for this case, and the field distr ibution 
~(¢) is given by  (34), where the integral, however, is over (c~, 2x -- c~). 
These values c~m, tim, Ym, km a n d / m  are the same as those in A. (1) 
if all integrals involved in them are taken over (~, 2~ -- c~) and if 
Sn and /(¢) take the values for E-wave. 

If there is a source at  Qe(r = re, ¢ = Ce) and if there is no source 
in the , , interior", r < a (i.e., /i = 0), then, from the upper line of 
(13) and formula in Appendix 1, we have 

/'(0) = ~ika/e{Hl(re) sin (0 -- Ce) + ½ka H2(re) sin 2(0 -- ¢e) + - . - }  = 

= ~ika/e HI(re) sin (0 - -  ¢e)- 



346 Y O S H I 0  HAYASHI  

The subst i tut ion of the last expression in (34), where the integral 
is taken over (~, 2~ -- c~) gives the distribution of electric current 
on the circular str;p. 

B. T w o  or  m o r e  s l o t s .  If there are two slots in a cylinder 
(fig. 4), tha t  is, v = 2, we m a y  assume tha t  fil = --~ and ~1 = ~, 
then [26) and (27) give the field, where 

_ ,  ( 3 7 )  
a2@(el¢ -- J~)(ei¢ -- e-i~)(ei¢ -- e/&)(ei¢ -- ei~,) 

\ 

~ \ \  / 
\ \  / /  

% /  
"N  

xQ i ~ 

~ / / " \ , o _ ~  

x Qe 

Fig .  4. T w o  s l o t s  in  a cy l i nde r .  

For  this case, the integral in (26) should read: 

f d O = / d O q -  f dO (38! 
i ~ oc~ 

for the E-wave, and 

for the H-wave. 

f dO = ] dO + .f dO (39) 
L --c~ fl~ 

(1) Two narrow slots/or H-wave. If the slots are narrow in the 
sense tha t  

(2~) 2 ~ 1  and {2(~2--fi2)} 2~1,  

then, the approximation (33) is applicable to (39). In fact, when the 
point of observation ¢ is in the slot (-- e < ¢ < c~), (26) will be 
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1 1 
~-(¢) = × 

o; 

x ¢ - o  

O;2 

f e-~(¢-°)/'(O) ~/(c~2 --  0)(0 --  fl2)(e i° -- e*~)(e *° --  e -i~) dO - -  
- -  i 1 - -  e i ( ¢ - ° )  

2~ 3 } 
-- i X pn(a ei¢)n-1 . (40) 

a n = - i  

The comparison of (40) and (34) gives us the effect of the existence 
of the second slot (fie < ¢ < c~2) on the first slot (--c~ < ¢ < c~). 

(2) Symmetric strips/or E-wave. A similar result can be obtained 
for two arb i t rary  circular strips (fig. 4). However ,  we will consider 
the more part icular  case of a symmetr ic  pair of circular strips 
(fig. 5). 

xQ e 

~ = T r - a  I _,~. \ i @ ~ a  

" ~  / "~" -IX J ,  I / *- 

Fig. 5. Symmetric pair of circular strips. 

Suppose that  two strips are located symmetr ica l ly  with respect 
to the y-axis, tha t  is, 

v = 2 ,  f l i = - - ~ ,  ~ 1 = ~ ,  / 7 o = ~ - - ~  and ~ s = ~ + ~ .  

(This involves no restriction regarding the sources.) Then (27) 
becomes 

1 

X ( ¢ )  = a 2 V ( e 2 i  ¢ _ e - 2 ~ ) ( e U ¢  - e2~)  
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and (26) becomes 

.(¢) -,x(¢)f{2~2 
1 1 " ( 0 )  

1 - e i ( * - ° )  X ( O )  
+ 

3 
1 1'(~ + 0) / dO iX(e)  Y~ Pn ane*n¢" (41) 

-}- 1 + e (¢-°) X ( ~  -}- 0 ) [  z n = - i  

(3) Symmetric narrow strips/or E-wave. If the strips ment ioned 
above are narrow, i.e., if (2~)2 ~ 1, then 

e-2t¢ 1 

and (41) reduces to 

ce 

"(¢) = 2 ~ V  ¢ - o 

i e -2i(¢-°) } 
×/'(o)  2 + ~(¢ - o) V~2 - (~ + o)2/,(= + o) dO -- 

3 ] 
- -  in E pn(aei¢) n-2 • (42) 

n=--i 

The comparison of (42) and (34) shows what  effect the existence 
of the second strip has on the first strip. 

In a way  similar co th~s, three or more slots or strips can be 
analysed. 

§ 5. A coaxial circular cylinder with slots. In this section, an 
analysis very  similar to tha t  in § 2 for a single cylinder with slots 
will be given for a coaxial cylinder with a finite number  of arbi t rary  
slots in the outer  cylinder. 

Suppose tha t  a coaxial circular cylinder of outer  radius a and 
inner radius b with slots is described as: 

r = b ,  0 < ¢ _< 2:~, - - o o < z < o o ,  

r = a ,  ~ j<¢<f l j+ l ,  - - o o < z < o o ,  (~'= 1,2 . . . .  ,v), 
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where 0 < b < a, fl~ < ej < fij+l and ~v+l = ~1 (fig. 6). This 
implies tha t  there are v slots: 

r - . a ,  fij. < $ < ,~, - - o o < z < o o ,  (j = 1, 2 . . . .  , v). 

4 ° % \ /4 4?, 

¢=%-. / \ \ / / \ 

1 [ - ~ d  / I f 

/ -  

/ ~  \ /  
- , / / x , , / /  / ~ \  

" ' - .  _ / / / X  X~=B~ 

/ 

Fig. 6. A coaxial circular cylinder with slots. 

xQ e 

Let us assume tha t  there are axial (electric and/or magnetic) line 
sources at Qi(r=r i ,  6 = $ i )  and Qe(r=re ,  Q = Q e )  where 
b < r i < a  and a < r e .  

Then  the solution is represented as 

U = U i =  

o o  

u = ue = ~ AnHn(kr) e *he + /eHo(kRe) ;  (a < r), 

{BnJn(kr) + CnHn(kr)} e *he + / iHo(kRi ) ;  
J ' b =  - - o o  

(b < r < a), (43) 

where the notations are the same as those in § 2. Corresponding 
to (3) to (5), we have, 

u i = O ;  r = b ,  0 < 6  < 2 ~ ;  - - - -  - o ,  ( 4 4 a )  
8r 

~Ue ~ui 
Ue=-Ui ;  r = a ,  0 < 6 < _ 2 ~ ;  & & , (45a) 
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CqUe 
U e = 0 ;  r = a ,  a j < q ~ < f l j + ] ,  ~r - - 0 '  (46a) 

~Ue (9¢¢i 
- -  ; r = a ,  f i < ~ b < ~ ;  U e = U i ,  (47a)  

Or ~r 

where /" = 1,2 . . . . .  v. 
By  the subst i tut ion of (43)into (44a) and (45a), we obtain simul- 

taneous equations in terms of An, Bn, and Ca. Hence, Bn and Ca 
are determined in terms of A n, as follows: 

--Hn(a) { Hn(b) } 
Bn -- Dn(a, b) Hn(b)An +/inDn(b, ri) + /en  -H~(~ Jn(a) Hn(re) ; 

Jn(b) 
Cn = "Dn(a, b) {Hn(a)An -t-/inDn(a, ri) +/eaJn(a) Hn(re)}, (44b) 

where 

Dn(r, •) = Jn(kp) Ha(kr) -- Jn(kr) Hn(kp) 

for the E-wave, while for the H-wave 

H !  
Bn = -  n(a) X 

Ta(a, b) 

__ t a - -  Or}, × g ~ ( b ) A a  /iaZn(ri, b) + / e n J a (  ) Halro) g;~(b) 

J;~(b) 
Ca--  × 

Ta(a, b) 

, _ J ~ ( ~ ) /  × H~(a)An --/inLn(ri, a) +/enJn(a) Hn(re) -- ~ ~ , (45b) 
ja(b) I 

where 

i 
--~ ~ - ~  /in when ri = b 

[ 0 when ri > b 

Tn(r, p) = J~(kp) H~(kr) -- J~(kr) H~(kp), 

P ~ t Ln(r, p) = Ja(kp) nn(k  ) Jn(kr) Hn(kO). 
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By a m e t h o d  similar to tha t  in § 2, we have,  from (43), (46a) 
and  (47a), the  dual  series equat ions  for An" 

{AnHn(a) +/enJn(a) Hn(re)} e ~n4 = 0 (~j < q5 < fij+l) (46b) 
n 

ein¢ 
,~2 On(a, b) {A,~H~(b) -- knD.(r~, b) +/enJn(b) H,#e)} = 

[ o, (~j < ¢ < ~j), 
(47b) 

= / 2 ~ ( ¢ ) ,  (~j < ¢ < fl;+~), 
for the  E-wave,  and  

0, (~J < ¢ < flJ+])' (48) Y'n {A nH,'a(a) +/enJ;z(a) Hn(re)} e in¢ = { 2~r(¢), (fij < ¢ < ~a), 

ein¢ 
.~ r~(~, b~ {A,~H;(b) - - / inL,~(~,  b) + / e ~ y ; ( b )  H~(~e) - -  4 = 0, 

(flJ % ¢ < c@, (49) 
for the H-wave.  

F r o m  (47b) and  (49) respectively,  we have 

Dn(a, b) f An--  Hn(b) r(O) e-in°dO+ 
L 

1 
+ Hn(b~ {/inDn(r,, b) --/enJn(b) Hr,(re)} 

for the E-wave,  and  

(5o) 

1 fr(O) e -*no dO J;(a) An -- H;(a) H;(a~ Hn(re)/en 
L 

(51) 

for the  H-wave.  The  subs t i tu t ion  of (50) and (51) into (46b) and (48) 
respect ively then  leads to 

where 

Y~ Sn f r(O) e *n° dO = c1(6), (52) 
n L 

Hn(4 ,~ , 

H;~(b) 
H~(a) Tn(a, b) ' 

(53) 
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c l ( ~ )  = 

, ~ Hn(re) 
re 2 .  *n H ~ - 2 ~  O n ( ~ ,  b) c o s  ~ ( ~  - -  4 ° )  - -  

n = 0  n \  / 

o o  

--/i ~oen gn(a) D ~ ( , i ,  b) cos  ~ ( ¢  - -  4~), 

°° { Ln(ri, b) ~- ib(ri) } 
/i n=oen Tn(a, b) ~rkb Tn(a, b) COS n ( ~  - -  ~ i )  - -  

oo Hn(re )  
- -  /e E ~n - -  COSn(,/,-- ~e), 

H '  ~=0 ~(~) 

where s o =  1; e n = 2 ,  n > 0 ,  and d ( r i )=  1 
d(ri) = 0 when ri > b. 

(s4) 

when ri = b, and 

The upper lines are for the E-wave, and the lower lines are for 
the H-wave. L and c are the same as those defined by  (12) and (17) 
respectively. 

Equation (52) is our fundamental integral equation for ~. We 
can prove that if a solution T of (52) which satisfies the edge con- 
dition (i.e. a solution which has singularity of 0(p-~) at every edge 
point of L.) is found, and if An is determined by  (50) ((51)) in terms 
of T, and if Bn and Cn are determined by  (44b) ((45b)) in terms of 
An, and finally, if u is determined by (43), in terms of An, Bn and 
Cn, then u = Ez (u = Hz) is the desired solution of the original 
Dirichlet (Neumann) problem for (1), which satisfies the boundary 
condition, the continuity condition, the radiation condition and 
the edge condition. Note that  (52) is formally the same as (11) 
which is the fundamental integral equation for the case of a single 
cylinder with slots. Furthermore, Sn given by  (53) is shown, with 
the help of Appendix 1, to be 

s n  = {1 + s~n~}, (16) 

where sn = O((ka)2/4n). Also, it is easy to see that (15) S-n = Sn. 
Hence, (53) is essentially the same as (11). Therefore, (52) is solved 
by  the method mentioned in § 3 and the solution of it which satisfies 
the edge condition is given by  (26), if Sn and/(~)  are understood 
to be given by  (53) and (54), respectively. Thus, we have solved the 
problems for a coaxial cylinder completely. 

It  is apparent that the solution T is applicable in the case of a 
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single cylinder in § 2 as well as of coaxial cylinders in § 5. The 
solution represents the distribution of the axial component Jz of 
surface current on the wall of cylinder for the case of E-wave and 
the tangential component E o of electric field in the slots for the 
case of H-wave and Sn, 1(~) and kn (see (25)) must be determined 
appropriately for each case. Therefore the results obtained in § 4 
are true for the case of a coaxial cylinder case, too. 

§ 6. Conclusion. In this paper, the Dirichlet and Neumann pro- 
blems for the Helmholtz equation (E- and H-waves, respectively, 
in the electromagnetic case) and for a circular cylinder and coaxial 
circular cylinder with arbitrary number of arbitrary slots in them, 
have been shown to be equivalent to that of a singular integral 
equation. The integral equation has been solved exactly and the 
solution of it gives the distributions of the field components on the 
walls of the cylinder or in the slots. Thanks to the estimation 
formulas for the Bessel and Hankel functions, the results are true 
for any wave number and for any radius of cylinder. Detailed 
calculation has been given especially for the H-wave case when a 
cylinder has a narrow slot in it. We have restricted ourselves to 
the cases where only one cylinder has slots in it. If more than two 
cylinders have slots in them, we will have simultaneous singular 
integral equations, which will be solved by  the way similar to that  
employed in this paper. The method may be extended to other 
boundaries, e.g. a plane boundary with slots. 

A P P E N D I X  1 

Estimation/ormulas /or the Bessel and Hankel /unctions. In the 
text, the following formulas played an essential role, especially 
when we picked up the singularity of the kernel Y, Sne  *n° of the 
fundamental integral equation (11). 

Theorem. For any positive integer n and any complex number p, 
we have, 

± + JnO,) = ,~! , , 2 /  

(1-1) 
1 

J ~ ' ( P ) -  2 ( n - - 1 ) !  ( 2 )  n-l{1 q- J;(P)}' 
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Hn(p) -- i ( n -  1)! {1 + hn(p)}, 
2"~ 

(1-1) 
(--i)n! ( 2 )  n+l , 

g;(p) --  ~ \ P "  {1 @ hn(p)}, 

where ]'n, In, hn, and h '  " n are es t imated as follows: 

li.(p)l < exp{lp[2/4( n -k 1)} - 1, 

Ii;dp)[ < exp{Ipl2/4n} - -  1 ~- (Ipl/2n) 2 exp{]pl2/4(n @ 2)}, 

Ih~(p) l  < {Ep[2 /4 (n  - -  1)}[1  - -  {Ipl2/4(n - 1 ) } ~ - 1 ]  × 

• 1 

× E1 - -  {[Ple/4(n - -  1)}1-1 q- I (n - -  1)1 × (1-2) 

IhA(p)l < hn+l(p) -- ~ {1 -t- hn-l(p)},  

where ~ is the Euler  constant.  Equat ion  (1-2) can be replaced by 
more rough est imation as follows: 

in(p)l, Ifidp)l, [h.(p)l,  Ih;dp)l = O([pl~/en), (1-3) 

This theorem is proved with the help of the series expansions of 
Jn(p) and Hn(p). The details are supposed to be published in another  
mathemat ica l  periodical and are not  described here. 

To the best knowledge of the author,  these results have not been 
published yet ,  except 5) 

1 p[n 
[Jn(p)] < ~ .  ~ exp(lp]~/4), (1-4) 

1 p n 
< n--T exp (Ip] 2 (1-5) 

and 

where 

1 (1 + o ) ,  tJn(p)l < 7 .  

0 ~ {exp(p2/4) --  1}/(n @ 1). (1%) 



ELECTROMAGNETIC F I E L D S  FOR B O U N D A R I E S  W I T H  SLOTS 3 5 5  

However,  the first formula in (1-1), together with the first one in 
(1-2), is bet ter  than  formulas (1-4), (1-5) and (1-6). 

In some cases, formulas such as 

C) n, Jn(p) n! Hn(p) ~ -  

are employed. However, (1-7) for any  n implies [p[ < 1, or in our 
case, [ka] < 1. Therefore, results obtained with the help of (1-7) 
are valid only for this restricted case. On the other hand,  thanks  
to the formulas (1-1) and (1-2), our results are valid for all values 
of ka. 

A P P E N D I X  2 

On the solution o~ a singular integral equation. In this appendix, 
it is shown briefly how to solve a singular integral equation 

I f{  1 te(to, t)}7(t) 
~zi t -- to 

L 

dt = / ( to ) ,  (2-1) 

defined on L in the complex z-plane, k(to, t) is defined by the 
function 

N2 
k(z, t) = ~ knznt -(n+l) (2-2) 

n =  - -  N I  

when z = to on L, where k~ (n = --N1 . . . .  , N2) are arbi t rary  given 
complex constants.  (In the text ,  N1 = N2 = N.) 

In this appendix, L is taken to be a union of a finite number  of 
arbi t rary  smooth, non-intersecting, open arcs Ls" (] = 1, 2 . . . . .  u) 
in z-plane; L = ~]~=1 L~. (In the text ,  L~ was restricted to be a 
circular arc.) 

Suppose tha t  z(t) is a solution of (2-1) which has singularities of 
o(p-~) at every end point el (1 = 1, 2 . . . . .  2v) of L = E L j ,  where 
p is the distance from el, then the function 

a (z) =  -lf{ lt_z 
L 

dt 
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is easily proved to have the following properties6); 

(i) ~(z) is holomorphic everywhere  except  on L, z = 0 and z = oo, 

(ii) ~(0) = 0(z-2V:), 

(iii) q)(oo) = o(z2V,), 

(iv) lira (b(z) = o (1 /~ /z - -  cl), (l = 1,2 . . . . .  2v). 
z---~e! 

On the other hand, with the help of the Plemelj theorem, we have 

l f { :  k(to, t )Ir( t )dt ,  = :L ½.(to) + t -- to 
L 

where ¢+(to) (C-fro)) is the limiting value of #(z) when z tends to a 
point  to on L (@ c~) from the left (right) with respect to the positive 
direction of L in which L is measured.  Hence we have 

1 t to (v) ~+(to) + ~-(to) = _ _  k(to, t) ~(t) dt = / ( to ) ,  

L 

and 

(vi) O+(to) --  #-(to) = ~(to). 

Conversely, we can see, from (vi), tha t  if we find a function T(z) 
which satisfies (i) to (v), then the solution ~- of (2-1) will be found 
among these functions obta ined b y  T + -- T - .  

I t  is not  difficult to see tha t  the general expression for T(z) is 
given b y  

X(z) f I /(t) ~v,+, 
T(z) 27d d t -- z X ( t )  dt + X(z) ~=W~-N~ Pnzn' (2-3) 

L 

where 
2v 

X(z) : 1/{[[ (z --  cj)}'~ (2-4) 
j = l  

and Pn (n = - - N 1 , - - N :  + 1  . . . . .  N~) are complex constants  
which are not determined yet.  Hence ¢(t) should be expressed as 

r(t0) = T+(to) - -  U-(to) = 

X(to) ~ I /(t) x~+, 
-- : j - - d t  + X(to) • pnt~. (2-5) 

m t to X(t) - -  n ~  - - X i  

L 
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However, since 7(t) obtained by (2-5) does not necessarily satisfy 
(2-1), we have to give pert inent  values to {Pn} so tha t  (2-5) satis- 
fies (2-1). 

On subst i tu t ing (2-5) into (2-1), we can see, with the help of the 
Poinca%-Bert rand theorem, tha t  the necessary and sufficient 
condition for 7(t0) defined by  (2-5) to be the solution of (2-1) is 

--i ( / (~ )  dO ( X ( t )  I 1 k(to, t ) ]d t+ 

L L 

+ X Pn k(to, t x(t) 
n = - X ~  ~0 

L 

tn dt = 0. (2-6) 

In order to reduce (2-6) to simultaneous linear equations with 
respect to {Pn}, the following definitions and lemmas are introduced. 

Definitions. 
1 ( X(t)tn 

Hn(~) = ~ ( j  y T ~  
L 

- -  dr, 

Ot n 1 fx(t)t.-1 dt, 
L 

1 f / ( t ) t  n-1 
/n = ~i X ( t ~  dr, 

L 

! 1, N > v  
61v, = i O, N < 

E oo ;~nzn, 

i 0 y n Z n '  

[z I > max  [cl], 

Izl < min [cli, 

(i.e., fin and Yn are defined as the coefficients of the Lauren t  
(Taylor) expansions of X(z) with respect to z = co and z = 0, 
respectively). Then we can prove 
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Lemma 
- 1  

- -  ~_a ~ 'm-n~ m, 
~ n  

Hn(~) = 0, 

- X t i m - ~  m, 
I m = 0 

where ~ is a point on L. 

n=< - -1  

O ~ n _ < v - -  1, 

v ~ n  

(2-8) 

1 f, X(t) t n 
¢ ° ( z ) -  J - -  dr, 2:~i t - -  z 

Izl = ~  

1 ( X(t)t n 

¢ 7 @ -  2~¢ J t - z  
dt 

Izl=R 

and s and R are arbitrary constants such that  e < min Icl[ and 
R > max ]ct[, respectively. On applying the Plemelj theorem to 
(2-9), one has 

Hn(~) ¢o(~) 4~, ( ) .  (2-10) 

On the other hand, (2-9) tells us that  the right hand side of (2-9) is 
a quanti ty of o(z -1) when /zl --> oo and of o(1) when Iz[ -+ 0. Thus, 
the Laurent coefficients of ¢°(z) and ¢~°(z) are determined by the 
comparisons of them with those of X(z)z n in (2-9), and then (2-10) 
gives (2-8). 

Now in terms of these notations, (2-6) is reduced, with the help of 
(2-8), to 
N~ n v--1  --v 

knt~ • y m / m - - n ~ - c } N , v  X knt~ ~ t i m / m - n +  
n = O  m = O  n=--N1 m = n + l  

- - N I  - - N I  

+ i ~ E  E t~ E ~/n-,@m+ 
n = - - I  m = n  

N= N~+v N2 N~+v 
+ ~, t~ X fin-mPm+ X knt~ X O~m-n~mJ ~-0. (2-11) 

where 

Proo/o~ lemma. By virtue of Cauchy's integral theorem, we have 

1 ( X(t)tn dt = X(z)z n - /¢°(z)  -- ¢~(z), (2-9) 
:,i J t - - z  

L 
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Because (2-11) must be true for any to on L, it is equivalent to the 
following simultaneous linear equations with respect to {Pn}; 

N~+v 

E 
m= --N~ 

N2+v 

E 
m-- -N~ 

N2+v 

E 
m -  - N I  

1 N~+v i n 

1 --NI 
~-nP~+~2  E 7 ~ p ~ = 0 ,  (--~--<n~<--l) (2-12) 

n m=7~ 

1 - N I  i -" 

n m = n  g'~ m = n + l  

( - - N l < n < - - v - - 1 ) .  

If N1 ~ v, then the third expression of (2-12) is reduced to the 
second, where, in this case, the range of n is --N~_< n ~<--1 
instead of --v_< n_< --1. 

Equation (2-12) is the necessary and sufficient conditions for 
Pn with which (2-5) is a solution of (2-1). Thus, we have solved 
(2-1) completely. Note that  ~(t0) defined by  (2-5) has singularities 

of o(1/~/z  - -  cl) at every edge point cz because of the factor X(to).  

Received 9th September, 1965. 
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