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Summary

It is shown that for the case of a single cylinder which has any number of
axial slots of arbitrary width and infinite length, or for the case of coaxial
cylinders where one of the cylindrical boundaries has such slots, the Dirichlet
and Neumann problems for the Helmholtz equation (which correspond
respectively to E and H waves) can be reduced to that of solving a singular
integral equation. It is also shown that the resulting singular integral
equation is formally the same for both the Dirichlet and Neumann problems
for various kinds of circular boundaries. The exact solution of the integral
equation is given and applied to the Dirichlet and Neumann problems. The
following three simple cases: (1) a single narrow slot'in a cylinder; (2) a single
narrow slot in a coaxial cylinder; and (3) narrow circular strips are considered
to illustrate the applicability of the method.

§ 1. Introduction. A circular cylinder (or a circle) has been a
favored geometry of boundary value problems, and has been the
subject of many investigations in acoustic or electromagnetic field
theory studies. In particular, treatments have been given for fields
for the case of a slotted cylinderl) and for the solution of the
Dirichlet and Neumann problems for the case of a circle with a
narrow slit in it?2). However, in these treatments, it is usual to
assume that the distribution of the field components in the slot is
knownt) or that it can be replaced by a known distribution of a
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static field2). On the other hand, Lewin3) has shown that the
discontinuities in a rectangular waveguide may be analyzed with
the help of a singular integral equation.

Recently, the problems of electromagnetic fields in domains
bounded by a circular cylinder (or coaxial circular cylinders) with
a finite number of axial slots of arbitrary width and infinite length,
for given axial line sources, have become of interest in connection
with some practical applications. Under these circumstances, it is
necessary to solve for the fields without any particular assumptions
regarding the distribution of the field in the slots. It is the purpose
of this paper to show how to solve these problems rigorously and
generally. In the following, (i) the solutions of the Dirichlet and
Neumann problems (that is, z-components of the E- and H-fields
respectively) are represented by Fourier-Bessel series with unknown
coefficients; and (ii) dual series equations for these coefficients are
derived; (iii) the dual series equations are then converted into an
integral equation; (iv) then the kernel, after the tangential differ-
entiation, is shown to be a singular one of Cauchy type, (with the
help of estimation formulas for the Bessel and Hankel functions
due to the author). It is also shown that the singular integral
equations for the Dirichlet and Neumann problems are formally
the same, and hence (v) both can be solved simultaneously. This
process is identical for various kinds of cylindrical boundaries. In
this paper, the method is illustrated by some examples, the most
detailed of which is for a single cylinder with slots. In particular,
the detailed calculation is given for the H-wave case for a narrow
slot and for the E-wave case for a narrow circular strip. (If two
ormorecylinders have slotsin them, the method leads to simultaneous
singular integral equations. In this paper, for simplicity, we restrict
attention to the case where only one cylinder has slots in it.)

The results are valid for all wave numbers %2 and all values of
the radii of the cylinders as well as for any number of slots of
arbitrary widths. It should be noted that these results cover not
only the problems of slots, but those of circular strips as well.

The theory of a singular integral equation which Lewin3)
employed is that of the so-called dominant equation4) where the
kernel is simply 1/(x — v), where ¥ and y are points on the path
of integration. This theory originally arose during an analysis
of static problems#) (i.e., of the Laplace equation). Lewin applied
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this theory neglecting higher order modes, and concluded that his
result would be improved if a constant appearing in his equation
were replaced by a polynomial. However, in our problem we have
to take a kernel the form of which is (x — y)~! + k(x, v), where
k(x,y) is a certain rational function, instead of a polynomial. An
abbreviated theory for such a case is introduced in Appendix 2.

§ 2. A cylinder with slots. As a typical example, we will consider,
in detail, the solution for the field when the boundary is a cylinder
with arbitrary slots in it.

Suppose that a circular cylinder of perfect conductivity with »
slots in it is described by cylindrical coordinates (7, ¢, 2) as follows:

r=a, o <<¢<<Pir, —oo<<z<oo (j=1,2,..,9),

where f; < oy << fj41 and fya = p1 (fig. 1). Assume that axial
(electric and/or magnetic) line sources are located at

Qi r=r1, ¢ =d,
Qe: v o= 78: ()6 == ¢e:
where 7; , and ¢; , are given arbitrary constants such that

0<r <a<<re and 0 < ¢y, e < 2m.

b=,

| /¢=Bz * Qe

Fig. 1. A circular cylinder with slots.
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As is well known, when the time dependence ef®? and the z-

dependence e (i =V — 1, o and y are fixed constants) are
suppressed, the z-components # = E, and « = H, of the electric
and magnetic fields, respectively, satisfy

Au + k2 = 0, (1)

where k2 = w2eu -+ »¥2. (¢ and u are given complex constants,
representing the complex dielectric constant and magnetic per-
meability respectively.) Further requirements on » are the radiation
condition at infinity, the boundary condition on the walls of the
cylinder, the continuity condition of » and éu/ér throughout the
slots, and the edge conditions at the edges of the slots.

First of all, a solution # of (1), which satisfies the radiation
condition, can be represented as

w=1tte =3 AnHn(kr)eind + jHo(kRe), (a<7)

= —o00

w=ui= Y BpJalkr)en L {HokR), O <7r<a) (2
n=-—oo
where A, and By, are unknown coefficients, and where, respectively,
Jn and H,, are the Bessel function and the Hankel function of the
second kind, f; and fe are given constant amplitudes (including
zero) of sources at Q5 and (e, and R; and R, are distances from
@i and Q..
Then, the boundary conditions, together with the continuity
conditions, are equivalent to

ou onq
e =mi; ¥ =a, 0 < ¢ < 2nm; a:: 3;, 3)
6%@
%eIO;VZ“,OCj<<]5</3j+1;a—r=O: (4)
Ot ou;
o 371;7’=a,,8y‘<¢'<°€j;%e:%i (5)

for j = 1,2, ..., ». In the first row, v = E,, and in the third row,
u = H,. In other words, v = E, and # = H, are solutions of the
Dirichlet and Neumann problems for (1), respectively. The second
row shows the ranges of variables for the expressions in the first
and third rows.
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On substituting (2) into (3) and making use of the orthogonality
of {eén#} in (0, 277), (3) turns out to be a linear equation in terms
of A, and By, which, when v = E, determines B, in terms of 4,
as follows:

BuJnla) = AnHu(a) + fen n(@)Hu(re) — finJ n(ri)Hula), (6) *)

where the abbreviated notations

Jal@) = Ju(ka), Julrs) = Julkrs), Hulre) = Halkre),  (7)
fen = fe 7P%e,  fip = f1eind,

have been employed here as well as in the following.
Similarly, when « = H,, we have

BuJn(a) = AnH(a) + fenJ a(@)Hu(re) — fin] n(ri)Ha(a),  (6)"
where a prime means the derivative with respect to the argument,
e.g.,

OH ,(kr)

Hyla) = Ty

lr=a
On substituting (2) into (4), we obtain

S {(AHala) + fenT @ Halr} 7 = 0 (o < $ < 1) (6]

for u = E,, and

3 {AuHila) + fonJ M@ HAlre)} 67 = 05 g < $ < fua), (8)'

for w = H,.
From (2), (5) and (6), we have

1
S g n— fuab} e =0, (f<g <o) O

for w = E,, and

% ];—w) {An - fin]n(?’i)} eind — Q, (B < b < o). (9)"

*) The expressions which specifically refer to the Dirichlet problem (# = E,) have
been numbered with a stroke (), and those for the Neumann problem (# = H,) have
been numbered with a double stroke ().
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These two equations (8) and (9) are the dual series equations for
the unknown coefficients A,,.

The left hand side of (9)’, which is zero in the slots g; < ¢ < oy,
will define an unknown function 2z7(¢) on the wall a; < ¢ < fj11.
In fact, 7(¢) is a quantity proportional to the z-component
of the surface current on the wall of the cylinder. Hence, by
virtue of the orthogonality of {ein#}, (9) can be shown to be
equivalent to

Ap = —Jn(a) [(0) €770 dO + finJn(r1), (10)

L

where L stands for the cross section of the wall of the cylinder, i.e.
Liv=a, oy < <Pps1, (1=12,...,9).

On the other hand, the left hand side of (8)" will define an un-
known function 277(¢) in the slots, which is a quantity proportional
to the tangential component of the electric field. Hence, (8)" is
equivalent to '

L f ; J (@)
Ay = ) e=in0 46 — fop ———F— H , 10)”
n Hi@) J”'( )e fen Hia) n(7e) (10)
L

In this case, L stands for the cross section of the slots, i.e.
Lirv=a fi<éd<o (=12 ..9).

On substituting (10)" into (8)’, (and similarly, on substituting
(10)” into (9)"), we obtain an integral equation with respect to the
unknown function 7($), which is formally the same for both the
Dirichlet and Neumann problems.

S, S, /() €m0 db = cf(g), (11)

n=—00 L

where ¢ is a constant (see (17)), ® = ¢ — 6, and

wall; r=a, ;< <Pjs1, 1=1,2,...,%,
L= ’ ' (12)
slots; r=2a, B <¢ <, i=12..»
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fe ggenfn@wffno@>cosn<¢-—-¢e>+—

B S endnlr)Hala) cos n(g — ),

n=0

—cf(¢) = oo H (7o) (13)
fen§0 & Hi@) cos n(d — de) +
iy Jalri)
-+ fingoan ]{@(a) Cos 7”’(96 - ¢i),

where ¢, = 1 for w = 1 and ¢, = 2 for n > 1,

—Jula) Hy(a),

Sp = -1 (14)
Jala) Hyla)

The upper lines of (12), (13) and (14} are for the Dirichlet problem
and the lower lines are for the Neumann problem. Thus these
problems are mutually transferable by exchanging dually the
meaning of L, ¢, f(¢)} and S,.

Because of the edge condition at the edges, the unknown function
7(¢) for both the Dirichlet and Neumann problems must have a
singularity of order O(p—?) at the edges of the slots, where p is the
distance from the edge. Hence, we are looking for a solution 7(¢)
of (11), which has a singularity of O(p~*) at the end points of L.

Conversely, if we find a solution 7 of (11) which satisfies this
edge condition, and if 4, is determined by (10) in terms of =,
and B, is determined by (6) in terms of A,, and finally, if # is
determined by (2) in terms of 4, and By, then we can prove that
u = E, and u = H, are the desired field components, that is they
satisfy (1), the radiation condition, the boundary condition, the
continuity condition, and the edge condition. (This fact is proved
by the uniqueness of the Fourier series for # and 7.)

§ 3. The solution of the integral equation. It has been proved, in
the preceding section, that the original problems are equivalent
to that of solving the fundamental integral equation (11). Now we
will proceed to solve it.

With the help of the well known formulas,

Jn=(=0)"]wp, Hy = (=1)"H_y, Jo = (—1"]_,,
Hj = (-1)=H,
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it is easy to see that
S—n = Sa. (15)

If we write S, for any integer # (# 0) as

S":fﬁ{l + s, (16)
where
B J —ilz
| —in(ka)?, (17)

then, by virtue of (15) and by the application of the formulas in
Appendix 1, it can be shown that for any integer »

S = O((ka)?[4n).
Hence, if we choose a positive integer N such that (ka)2/4N is
sufficiently small, then the s, are quantities which are negligibly

small when #» > N *).
By virtue of (15) and (16), (11) can be rewritten as

f +(6) {so L2y (i c0s 76 + ™ cos n@)l 0 — c(),
n=1\% 7 J
L

which turns out, with the help of the formula

= ]
2y — =log ———M—— 0
751%005%@ 8 2c0s@’ @70
to be
LfT(G) N(g, 0) db = [(¢) + &n, (18)
where
1 N ZSn So
N =log ———— M8 e+ —,
(#,0) = log 2 —2cos® T nz::l cos n6 + c

eNn=—2 3 —sifq-(ﬂ) cos n& db.
n=N+1 ¥

*) We assume that k and & are such that J,(a) Jnla) Hj(a) # 0. Otherwise, ad-
ditional consideration is necessary for these “resonant’’ cases where J,(a) Ja(a) Hyla) =
= 0. Similar assumptious will be made for other cases in sections 4 and 5.



ELECTROMAGNETIC FIELDS FOR BOUNDARIES WITH SLOTS 339

Because sp/m = On=2) for » >N + 1, and X;> ,#n~2 is a con-
vergent series, it can be shown that |ey| << & for any given positive
number &, if # > N and N is chosen to be sufficiently large.
Then, on neglecting ey and differentiating both sides of (18)
with respect to ¢, we have
{T(Q) N'(¢,0)do = f'(¢), (19)

where N'(¢, 0) and f'(¢) are respectively the derivatives of N(¢, 0)
and f(¢) with respect to ¢. It is easy to see that (19) is equivalent to

f 0o 2l ks = i@, (o)

2—2cos6
where
N
k(¢, 0) —{1 - Z Sp(ein0 — e7in®)}. (21)

Because of the singularity of the kernel at § = ¢, the integral
in (20) is taken in the sense of Cauchy’s principal value. Thus (20)
is a singular integral equation derived from ({11).

Suppose that z = 7 e is a point in a complex plane, then

t = aeld ty=qgeld, (22)

are points on L. By the transformation (22}, (20) is transformed
into an expression in complex variables as follows:

1
R e Y| LI ) 3
L
where
T(t) = inT(G),
f(to) = /'(¢),
and

k(ty, t) = %tk(qb, 0) =

1 J N o \* N ¢ nl N tr
215 11 - 2 Sn <7> + 2 Sa () J:nZ ka , (24




340 YOSHIO HAYASHI

where

1 )
——<1+——Sn>, n < 0.
¢

The singular integral equation (23) can be solved by the theory
describad in Appendix 2, and the solution of (23), that is, of (19),
which satisfies the edge condition mentioned before, is given by
(5) of Appendix 2. Under the transformation (22), this solution
is seen to be equivalent to

iX(4) Niv

_z'X(qs)J‘l 1 1(0) a6 — Y paaneind,  (26)

272 —e!*=9 X(9) T opm—N

($) =

L

where py, (# = —N, —N + 1, ..., N 4 ») are constants which are
determined by (12) of Appendix 2. Corresponding to (4) of Appen-
dix 2, X(¢) is defined as

X(¢) =1 /av]/ '1i11 (ei® — ein)(cib — eify), (27)

Although (26) satisfies (23), or (19), it does not necessarily satisfy
the original integral equation (18), because (19) was derived by
the differentiation of (18) with respect to ¢. This will be discussed
next, and the necessary and sufficient conditions for =(¢) defined
by (26) to satisfy (18) too will be given.

On substituting (26) into (19), one has

N+»

T paFald) + G'¢) =0, (28)

n=—N
where

1an

Fag) = fN'(sb, ) X(0) et o

6g) = —= [ N0 X0 d@f - — 18]



ELECTROMAGNETIC FIELDS FOR BOUNDARIES WITH SLOTS 341

Suppose that Fy(¢) and G(¢) are functions defined by

Foig) = % f N(p, 6) X(6) cin? dg

=t [ Fly)
- [Ng.oxe def — g 0~ 1)

then, on integrating (28) with respect to ¢ from ¢ = ¢ to ¢ = ¢,
where ¢g is an arbitrary fixed value in L, we have,

N-4» N+

Y paFa(d) + G(¢) = X paFaldo) + Gldo).
n=—N n=—N
Because of (28), the right hand side of the last expression is a con-
stant which is independent ot the choice of ¢o. On the other hand,
the substitution of (26) into (18) implies that
N+»

n=-N
This means that r defined by (26) satisfies (18) if and only if {p,}
satisfies the additional condition

N+»

:Z_NPnFn(dm) + G(o) = 0. (29)

Thus, we conclude that the solution 7 of (18) is given by (26) when
{pn} are determined by (12) of Appendix 2 and (29).

This is our principal result. It can be used to determine the fields
for any number of arbitrary axial slots (as well as circular strips)
and for arbitrary axial line sources. The results are valid for all
values of the wave number % and cylinder radius a.

In particular, we have obtained the axial component of the surface
electric current on the wall of the cylinder for the case of the E-
wave, and for the H-wave case we have obtained the tangential
component of the electric field in the slots. Although the two solu-
tions are formally the same, the different interpretation to be given
to L, cf(¢), and {p,} serves to distinguish them in the two cases. It
should also be noted that the determination of {p,} given by (12)
of Appendix 2 involves &, (see (25)), where %k, depends on S, whose
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definition itself depends on whether E-waves or H-waves are being
considered.
We now consider some simple examples of the theory.

§4. Examples. A. A single slot in a cylinder. Suppose
that there is one slot in a cylinder (fig. 2 and 3), that is, » = 1,

f1= —aand g = « (0 < « < &). In fig. 3, it may be a circular
‘xQe U x Qg

7 \\\

xQ; —~¢=a p=a /\xQ| \\
. - T ~ i
— —+— - !

~ ¢ k// /

~d=-a ,

~N

\j b \\\ ///
Fig. 2. A slot in a cylinder. Fig. 3. A circular strip.

strip. Also, for the sake of simplicity, suppose that |ka| < 1.
Consequently, we can assume that N = 1 since for n > N = |,
sp = 0(1/4n) == 0. Then for the Dirichlet problem, i.e. for E-wave,
(26) and (27) can be reduced to

2n—o
—iX(4) ! 1) iX(4) 2 in
mi¢) = 272 f 1 — =9 X () 4= 7 nzz_l aneins,
X(¢) = 1/aV/ (ef® — eio)(ei$ — e~iv), (30)
where p, (n = —1,0, 1, 2) are determined by

a—gp-1+ a_1po + aop1 +(oca + f-1/k1)pe = % (vof-1 + y1fo)-
a—1p—1 + aopo + (21 + f-1/ko)p1 + (a2 + P—z/Ro)p2 = ;E— vofo.
(a0 + yofh-1) p—1 + a1p0 + wgp1 + aspe = 0.

S puFaldo) + Gldo) = 0. (1)

n=—1

where ¢p is an arbitrary value such that o < ¢o < 27 — a, say
o = . For the Neumann problem, i.e., for H-wave, the results
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are the same as those mentioned above but the integral in (30)
should be taken from 6 = —a to 0 = «, and ¢o is —a < g < «,

say ¢o = 0.

(1) A narrow slot for H-wave. Suppose that the slot —a < ¢ < o
is narrow in the sense that (fig. 2)

(242 <1 (32)

then, for the Neumann problem (H-wave), the integral over (—e«, «)
in (30) can be simplified. In fact, when ¢el; —ax << ¢ < o, then

6 — al, |¢ — 0] < 2a <1,

so if X(0) and 1 — e'®™" are expanded in series, then we can
neglect those terms of 0(«?). Consequently, we have

1 — =0 = _j($ — )

and

X(¢) = e—i¢/av/ o2 — 62. (33)
Hence, we have
() = 2n2v:2 5 f{¢1_0 — z‘}f’(@)\/mw—

7 1 2 ,
RERZ I

In this case, (31), which will determine {p,} in (34), will be more
precise if we calculate oy (= —2, —1,0, 1,2, 3), i (m = —2,

—1), ym m=0,1), kp im = —1,0,1) and f, (m = —1,0), as
follows:

To begin with, by its definition (see Appendix 2, (4) and (7)),
X(z) is l/\/m in this case, where ¢; = a e and
ca == a e, respectively. Hence,

o= (- = e

when |z2] > a, and

X(e) = \/2162 {1 B (;1‘>

(=

Ca n=10
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when z < a. By the comparison of the coefficients in the last two
expressions, we have f4 =1, fo=acosa yo=1/a, y1=
= cos afa?.

According to their definitions (Appendix 2, (7)),

[+
am—1 ei(m~1)@
oty = 0,
7 Vol — 02
—a

am+l

fm

= - f Va2 — 62 (0) el 4,
2n

Similarly, k1 = {1 — (S1/c)}, ko = % and k_y = — {1 — (S1/c)}, and

S
N($,0) — log {3 — 2cos (6 — 0)} + 220 — 1) cos (¢ — 0) + 2,

where Sofc = 1/[in(ka)? J1(a) H1{(a) and Sijc = 1/in(ka)? Ji(a) Hi(a),
respectively (see (25), (14), (16), (17) and (18)). Hence, (see (29)),

Fpn(0 —ian! f[l : I+
=S 0]
2(0) 7 g 2—2cosl

S S i(n—1)0
+ 2<~—1—— 1) cos 0 + —O:I—i—_dO,
c c da/n2_p2

S1 So de
—|—2(7—1)0056—|~ :‘

¢ Va2 — 62

1 .
<[t — v rw ap—ro,
b—y

where we have assumed that ¢o = 0. With the help of these values
of oum, Pm> Ym» km,> fm» Fm(0) and G(0), the detailed expressions for
{pn}, (n = —1,0, 1, 2) are obtained from (31).

If there is a source in the ,,interior’” of the cylinder at » = #;,
é = ¢i (ri < a) and no source in the ,exterior” (r > a), (s ¢,
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fe = 0), then from the lower line of (13) and a formula in Appen-
dix 1, we have

21 e 7i \"? .
j0)= i 5 (1) sinnig— )
which is approximately
21 7i .
i — — i), 35
S s — ¢ (39)

if #; < a. If r; = O, that is, if the source is located at the center
of the cylinder, then,

— + g
0= ki

76 =o. (36)

/i = constant,

Hence, (34) along with (35) and (36) give the field for each case.

(2) A narrow civcular strip for E-wave. In a way dual to that
of the previous example, simple expressions are possible for the
E-wave for the case of a narrow strip (fig. 3). The strip, which is
represented by ¥ = a, « << ¢ << 2m — «, is assumed to be narrow
in the sense that

2 — P <1,

then, in the integral in (30) which is taken over («, 27 — «), we
have

0 — of, b —0] < 1.

Hence (33) is again true for this case, and the field distribution
7(¢) is given by (34), where the integral, however, is over («, 2z — «).
These values o, fm, Ym,» #m and fp, are the same as those in A. (1)
if all integrals involved in them are taken over («, 2z — «) and if
Sn and f(¢$) take the values for E-wave,

If there is a source at Qe(r = 7¢, ¢ = ¢¢) and if there is no source
in the ,,interior”, » < a (i.e., fi = 0), then, from the upper line of
(13) and formula in Appendix 1, we have

1(0) = wikafe{H1(re) sin (0 — de) + tka Ha(re) sin 2(0 — de) + ...} =
== qikafe H1(re) sin (0 — ¢e).
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The substitution of the last expression in (34), where the integral
is taken over («, 27 — «) gives the distribution of electric current
on the circular strip.

B. Two or more slots. If there are two slots in a cylinder
{fig. 4), that is, » = 2, we may assume that 1 = —« and o1 = «,
then (26) and (27) give the ficld, where

1

X(Pp) = , 87
¢ a2V (e — (1o (eid — ei0)(cld — eiBy) (cib — einy) @)

#-5s ‘o,
NS
NN s
~ e
XQi \\
_/]\\¢_ ¢

Fig. 4. Two slots in a cylinder.

For this case, the integral in (26) should read:

/32 2n—ao
fd@:fd6+fd6 (38!
L o oy
for the E-wave, and
[d6 = [0+ [db (39)
L —o Be

for the H-wave.

(1) Two narrow slots for H-wave. If the slots are narrow in the
sense that

(20)2 € 1 and {2(xz — B2)}2 L 1,

then, the approximation (33) is applicable to (39). In fact, when the
point of observation ¢ is in the slot (— o < ¢ < «), (26) will be
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1 1
T{p) = — X
¢l 2n2V a2 — $2 AV (el — eiBy)(el$ — eity)

X {_f<¢ 1_ ;o z> Va2 — 021/ (el0 — eib;)(el0 — einy) f/(6) df —

_’L(¢ 6)]1 . .
o j _ ie- e> V(g — 0)(0 — Ba) (et — ein)(e?0 — e~ix) df —

2

_iF s pula ew)n—l}. (40)
a p=—1

The comparison of (40) and (34) gives us the effect of the existence

of the second slot (f2 < ¢ << «g) on the first slot (—a < ¢ < «).

(2) Symmetric strips for E-wave. A similar result can be obtained
for two arbitrary circular strips (fig. 4). However, we will consider
the more particular case of a symmetric pair of circular strips

(fig. 5).

~
¢=mwra AN 7’

Fig. 5. Symmetric pair of circular strips.

Suppose that two strips are located symmetrically with respect
to the y-axis, that is,
v=2, 1= —0a, a1 =0a, fa=xm—a and a2 =7 + a.

(This involves no restriction regarding the sources.) Then (27)
becomes '
1

a2/ (e2i$ — e—2ix)(e2id — e2ia)

X(¢) =
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and (26) becomes

= —X@) “1_1. 1o

272 e’ X(0)

; 3
1 'z + 0) 1d0 zX(¢) S puancind.  (41)

T 1w ">Xn+0I s

(3) Symmetric narrow strips for E-wave. If the strips mentioned
above are narrow, i.e., if (2«)2 < 1, then
e-2ib 1

X($) = 202 /g2 _ 42 $2

and (41) reduces to

T(qs):mg{(qsie ) Vel 5 x

: i g~ 2U(¢—0) ,
—in 3 palactrr] )
n=-1

The comparison of (42) and (34) shows what effect the existence
of the second strip has on the first strip.

In a way similar co this, three or more slots or strips can be
analysed.

§5. A coaxial circular cylinder with slots. In this section, an
analysis very similar to that in § 2 for a single cylinder with slots
will be given for a coaxial cylinder with a finite number of arbitrary
slots in the outer cylinder.

Suppose that a coaxial circular cylinder of outer radius @ and
inner radius b with slots is described as:

r=0>0 0<¢<2rn, —oo<z<<oo,

r=a, g <¢ <Py, —0<r<oo, ((=12..9),
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where 0 <b <a, B <oj < fyy1 and foy1 = p1 (fig. 6). This
implies that there are » slots:

r=a, fi<d<a, —o0o<z<oo, (=12 ..7.

4):&2\ I¢=’82

L xQ
] / ¢ °
4"33\\/\\ /\/

\\

// Sg=a,

s

AN
/ \\\_IL/\\(# =B,

Fig. 6. A coaxial circular cylinder with slots.

7/

Let us assume that there are axial (electric and/or magnetic) line
sources at Qi(r =7i, ¢ =) and Qe(r = 7o, Q = Jo) where
b <ri<aand a <7e.

Then the solution is represented as

u=1e= 3 AuHplkr)en® 1 fHo(kRe); (a<7),

w—ti= 5 (BuJulkr) + Cola(kr)} eind -+ fiHo(kR);
T b<r<a), (43)

where the notations are the same as those in § 2. Corresponding
o (3) to (5), we have,

Oty
w=0;7r="50<d¢ < 2, 3120’ (44a)
2
ou ouy
e = uy; ¥ =a, 0 < ¢ < 2m; ¢ = Ml, (45a)

o7 o7
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Olte

ue =0;7=a, 05 <¢ <fjr1, —==0, (46a)
Ot ouy
= T =0, f < <oy Ue =, (472)

where j=1,2,...,».

By the substitution of (43) into (44a) and (45a), we obtain simul-
taneous equations in terms of 4,, B,, and C,. Hence, B, and C,
are determined in terms of 4,, as follows:

_— —Hy(a) I ' y H,(b) ]
B, = mlHn(b)An - men(b; ri) + fen Hn(tl) ]n(a) Hn("e)J’;
C Z—JJ@—{H (@)An A finDn(a,71) + fenJ n(a) Hulr )} (44b)

n Dala, b) n n inl/nl@, 7i ent nl nl¥e)s, v
where

D, p) = Julkp) Hu(kr) — Ju(kr) Hylkp)

for the E-wave, while for the H-wave

_ —Hy(a) .
Bu=—an
H (b
X IH,’L(b)An — fiuLlr B) + fon (@) Hutre) 2L _ )
l (@) I
Jn(0)
= Towh
X {Hﬁ(a)An — finLa(ri, @) + fenJn(@) Hu(re) — o ;ZEZ)) } (45b)
where
"= :'T:’j)_fm when 7i =5
| 0 when 7; > b

Tulr, p) = Jilko) Hilkr) — Ja(kr) Halkp),
Lulr, p) = Julho) Halkr) — Ji(kr) Hulhp).
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By a method similar to that in § 2, we have, from (43), (46a)
and (47a), the dual series equations for 4,:

E {AnHn(a) + fenS n(@) Hu(re)} ein$ =0 (o5 < ¢ < Bj11) (46Db)

elng

5 5oy At al) = nDalrss ) + fen] al0) Halro)} =

- o, Br < ¢ <oy),

“2neld), w<d<p) O

for the E-wave, and

AnHy(a enJn(a) Hy(re W¢~[O (g <¢ < fyr1),
E{ i) Halrel} e | 2nr(g), (Br < <),

{AnH 7 (0) — finLa(r1, ) + fen] 7n(0) Hp(re) — o} = 0,
By <o <oy), (49)

(48)

elng

21w

for the H-wave.
From (47b) and (49) respectively, we have

Dy(a, b)

7.0 f 7(0) e=in0 49 -

L

An:

1
+ m {inDa(r, b) — JenS n(b) Hy(re)}  (50)

for the E-wave, and

Jula)
Hj\(a)

1 )
JT(G) e~ind df — Hyre)fen 619

A, =
" Hya)
L

for the H-wave. The substitution of (50) and (51) into (46b) and (48)
respectively then leads to

E Sn f (6) et"® df = c¢f(4), (52)
where
Hy(a)
T0) Dyla, ),
Sp= (53)
H;, (b)
[ H}(a) Tyla,b)’
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fo 3. ey 0o Do) cos i — ) —
2 Hy(a)
— A n§0 En ") D (71, b) cos n(¢p — ¢1),
= [ La(r1, ) i) | (&4
B Z e\ T t) kb Tafa, by | 6 — 4 —
- Hp(re)
— fe n§=]0 en Hi@ cos n(d — o),

where g0 =1; ¢, =2, >0, and 6(r;) = | when »; = b, and
d(r;) = O when 7; > b.

The upper lines are for the E-wave, and the lower lines are for
the H-wave. L and ¢ are the same as those defined by (12) and (17)
respectively.

Equation (52) is our fundamental integral equation for r. We
can prove that if a solution = of (52) which satisfies the edge con-
dition (i.e. a solution which has singularity of O(p~*) at every edge
point of L.) is found, and if 4, is determined by (50) ((51)) in terms
of 7, and if By, and C,, are determined by (44b) ((45b)) in terms of
A4, and finally, if # is determined by (43), in terms of 4,, B, and
Cyu, then uw = E, (u = H,) is the desired solution of the original
Dirichlet (Neumann) problem for (1), which satisfies the boundary
condition, the continuity condition, the radiation condition and
the edge condition. Note that (52) is formally the same as (11)
which is the fundamental integral equation for the case of a single
cylinder with slots. Furthermore, S, given by (53) is shown, with
the help of Appendix 1, to be

Sn :(ﬁ) (14 s, (16)

where s, = O((ka)2/4n). Also, it is easy to see that (15) S—p = Sj.
Hence, (53) is essentially the same as (11). Therefore, (52) is solved
by the method mentioned in § 3 and the solution of it which satisfies
the edge condition is given by (26), if S, and f(¢) are understood
to be given by (53) and (54), respectively. Thus, we have solved the
problems for a coaxial cylinder completely.

It is apparent that the solution  is applicable in the case of a
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single cylinder in § 2 as well as of coaxial cylinders in § 5. The
solution represents the distribution of the axial component J, of
surface current on the wall of cylinder for the case of E-wave and
the tangential component E4 of electric field in the slots for the
case of H-wave and S, f(¢) and &, (see (25)) must be determined
appropriately for each case. Therefore the results obtained in § 4
are true for the case of a coaxial cylinder case, too.

§ 6. Conclusion. In this paper, the Dirichlet and Neumann pro-
blems for the Helmholtz equation (E- and H-waves, respectively,
in the electromagnetic case) and for a circular cylinder and coaxial
circular cylinder with arbitrary number of arbitrary slots in them,
have been shown to be equivalent to that of a singular integral
equation. The integral equation has been solved exactly and the
solution of it gives the distributions of the field components on the
walls of the cylinder or in the slots. Thanks to the estimation
formulas for the Bessel and Hankel functions, the results are true
for any wave number and for any radius of cylinder. Detailed
calculation has been given especially for the H-wave case when a
cylinder has a narrow slot in it. We have restricted ourselves to
the cases where only one cylinder has slots in it. If more than two
cylinders have slots in them, we will have simultaneous singular
integral equations, which will be solved by the way similar to that
employed in this paper. The method may be extended to other
boundaries, e.g. a plane boundary with slots.

APPENDIX 1

Estimation formulas for the Bessel and Hankel functions. In the
text, the following formulas played an essential role, especially
when we picked up the singularity of the kernel 3 S, €7@ of the
fundamental integral equation (11).

Theorem. For any positive integer #» and any complex number p,
we have,

Te) = (2)" 1+t

1 n—1
Jalp) = m(%) {1 +12(0)},
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i(n — 1)!

Hatp) = () 0 o

4

—\n! n+1
Hitp) = S (2) 04 mie

where 7y, 77, #n, and Ay are estimated as follows:
nlp)| = exp{lpl?/4(n + 1)} — 1,
7n(p)| =< exp{lp[2[4n} — 1 + (Ip|/2n)? exp{|p|?/4(n + 2)},
in(p)| = {lpl2/4(n — D1 — {lp|2/4(n — 1)}#~1] X

x 0= o — 0+ [ () 0

[m + 210g< lp') + eXp{!pP/‘W}]

Bie) 5 Inealp) — (L) 0+ ol

where A is the Euler constant. Equation (1-2) can be replaced by
more rough estimation as follows:

inle)ls [7ale)ls 1Bnlp)l, ha(p)l = O(lp|?/4n). (1-3)

This theorem is proved with the help of the series expansions of
Ja(p) and H y(p). The details are supposed to be published in another
mathematical periodical and are not described here.

To the best knowledge of the author, these results have not been
published yet, except?)

TATE %} xp (p12/4), (1-4)
|
%H% p(pl? (1-5)
and
I [p\"
Tael=(2) v,
where

0 < {exp(p?/4) — 1}/(n + 1). (1-6)
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However, the first formula in (1-1), together with the first one in
(1-2), is better than formulas (1-4), (1-5) and (1-6).
In some cases, formulas such as

Jale) o (2)" #at) ~ R (2) )

n! \2 7 p

are employed. However, (1-7) for any » implies |p| < 1, or in our
case, |ka| < 1. Therefore, results obtained with the help of (1-7)
are valid only for this restricted case. On the other hand, thanks
to the formulas (I-1) and (1-2), our results are valid for all values
of ka.

APPENDIX 2

On the solution of a singular integral equation. In this appendix,
it is shown briefly how to solve a singular integral equation

f“_to — k(to, t )} 7(?) dt = f{lo), (2-1)

defined on L in the complex z-plane. k(fo, f) is defined by the
function
N
Rz, t) = 3 hkpem— D (2-2)

n=-—N1

when z = fp on L, where &, (# = —N73, ..., Ny) are arbitrary given
complex constants. (In the text, Ny = Nz N

In this appendix, L is taken to be a union of a finite number of
arbitrary smooth, non-intersecting, open arcs L; (j = 1,2, ..., %)
in z-plane; L = ¥%_; L;. (In the text, L; was restricted to be a
circular arc.)

Suppose that () is a solution of (2-1) which has singularities of
o(p~*) at every end point ¢; ({ = 1,2, ..., 2») of L = 3 L;, where
p is the distance from ¢;, then the function

Olz) = —— { —kzt}T

271
L

t— 2z
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is easily proved to have the following properties®);

(i) @(z) is holomorphic everywhere except on L, 2z = 0 and z = oo,
(i) @(0) = o(=),

(iti) B(oo) = o(e),

(iv) Im @) =o(1/Vz—c), (=1,2,..., ).

2—>C1

On the other hand, with the help of the Plemelj theorem, we have

DE(to) = + $r(ho) +—_f1 — ko, )} (2) df,

t—ty

where @7 (ty) (@ (fo)) is the limiting value of @(z) when z tends to a
point Zg on L (7 ¢;) from the left (right) with respect to the positive
direction of L in which L is measured. Hence we have

(v)  DH(to) + D (to) = %,Ht S k(to, t)} 7(¢) At = f(to),
and -
(vi) DH(to) — D (t) = =(to).

Conversely, we can see, from (vi), that if we find a function ¥(2)
which satisfies (i) to (v), then the solution = of (2-1) will be found
among these functions obtained by ¥+ — ¥-.

It is not difficult to see that the general expression for ¥(2) is
given by

X6 [ 1 v
PO = i f e x@ Y TXE I e 29)

L

where
2

X(z) = 1{I1 (z — e}t (2-4)

=1

and $, (w= —Nj, —-N1+1,...,Ng) are complex constants
which are not determined yet. Hence =(f) should be expressed as

7(to) = P (to) — P=(to) =

= X(to) ! f(t) Natv . ]
- M-L—mxm“+X%hEM“% (2-5)
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However, since 7(f) obtained by (2-5) does not necessarily satisfy
(2-1), we have to give pertinent values to {p,} so that (2-5) satis-
fies (2-1).

On substituting (2-5) into (2-1), we can see, with the help of the
Poincaré-Bertrand theorem, that the necessary and sufficient
condition for r(fp) defined by (2-5) to be the solution of (2-1) is

—i [ (0 X[ 1 |
TLI X() dcjc—tltwo R, fpdt

Y ?nfj L ke, t)}X(t) ndt=0. (2-6)

n=-—Ni

In order to reduce (2-6) to simultaneous linear equations with
respect to {p,}, the following definitions and lemmas are introduced.

Defnitions.

1
an = — | X(t)n-1 dt,

o142

L

1 [ /()
= | 524y
n m’fX(t)

L
5 _Il, N>y
Nw'«lO, N<vy

> Bz, |z] > max [cg],

n=—oo

co
[ X yast, 2| < min [eg],
n=

(i.e., fn and y, are defined as the coefficients of the Laurent
(Taylor) expansions of X(z) with respect to 2z = co and z = 0,
respectively). Then we can prove
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Lemma
-1
— 2 Ym—né™ n=—1

m="mn

Hy(8) =10, 0Osn=v—1, (2-8)

A
3

n—v
— X ﬁm—né‘m; v
m=0

where £ is a point on L.

Proof of lemma. By virtue of Cauchy’s integral theorem, we have

1 [X(tin 0
— dt = X(z)z" + ¢,(z) — 67 (2), (2-9)
mJ T —z
L
where
1 X(t)n
07\
Pale) = 271 t—z d,
2l =¢
oy 1 X(t)yn
wWO=gg ) Y
lgl=R

and & and R are arbitrary constants such that ¢ < min |¢;| and
R > max |cj|, respectively. On applying the Plemelj theorem to
(2-9), one has
Hu(&) = ¢n(8) — ¢ (8)- (2-10)

On the other hand, (2-9) tells us that the right hand side of (2-9) is
a quantity of o(z-1) when |2| — co and of o(1) when |2| — O. Thus,
the Laurent coefficients of $2(2) and ¢:°(z) are determined by the
comparisons of them with those of X ()2 in (2-9), and then (2-10)
gives (2-8).

Now in terms of these notations, (2-6) is reduced, with the help of
(2-8), to

N2 n y—1 —y
Y katy T ymlmn + Oxp X Raly X Bmim—n -+
n=0 m=0 n=—N1 m=n+1
. —N1 —Ni
Fim[ X 0 X Va-mbm +
n=—1 m=n
N2 Na+tv Na Natv

n=0 m=n+tr n=—N1 m=—N1
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Because (2-11) must be true for any # on L, it is equivalent to the
following simultaneous linear equations with respect to {$,};

Na+v 1 Na+v ’l/ n
by “m—nfbm +—-— 2 ﬁn—mi’m = — ')/mfmén,: (O =n< Nz)
m=—N1 kn m=n+v T m=0
Nao+» 1 —Ni

> m—uPm +— X Va-mpPm =0, (—r=n= —1) (2-12)

m=—N1 n m=n

Na+v 1 ~ N1 7 —y
> am—n?1n+_ Z Vn—m?ngan 2 ﬁmfm—n

m=—N1 n m=n m=n+1

(~—N1§%§—1}— 1).

It Ni=v, then the third expression of (2-12) is reduced to the
second, where, in this case, the range of #n is —N;=n< —1
instead of —v < n < —1.

Equation (2-12) is the necessary and sufficient conditions for
pn with which (2-5) is a solution of (2-1). Thus, we have solved
(2-1) completely. Note that =(f) defined by (2-5) has singularities

of o(1/Vz — ¢;) at every edge point ¢; because of the factor X(f).
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