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Summary 

In a liquid containing gas bubbles the speed of sound is less tham that in 
each phase separately. Using the equations of motion for a hõmogeneous 
liquid containing gas bubbles it is shown that the dominating attenuation 
of an infinitesimal disturbance is that due to the second viscosity. In the 
propagation of a finite compressive disturbance an expression for the time 
required for the disturbance to displaty shock characteristics is found in 
terms of the initial disturbanee profile and the liquid-gas ratio. 

§ 1. Introduction.  M a l l o c k  1) evalua ted  the speed of sound in a 
l iquid containing gas bubbles assuming Boyle 's  law held for the 
gas. For  a ]arge range of conditions he showed tha t  the speed of 
sound was less t han  tha t  of the liquid or the gas separately.  H s i e h  
and P l e s s e t  2) repea ted  the evaluat ion of the speed of sound 
hu t  res t r ic ted themselves to the region where the rat io  of the 
masses of gas to liquid was Small, and they  found the a t t enua t ion  
of an inIini/esimal ware ,  due to heat  conduction.  C a m p b e l l  and 
P i t  c h e r ~) considered the0ret ical ly and exper imenta l ly  the mot ion  
and collision of fu]ly developed shock waves in such a mixture.  

This note  uses the equat ions of mot ion  of the mix tu re  to obtain 
for reference M a l l  o ck ' s  results except  tha t ,  in the following, the 
adiabatic,  ra ther  t han  the  isothermal,  speed of sound in the gas 
is the  limiting case. The a t tenua t ion  of an infinitesimal dis turbance 
due to the bulk or second viscosity of the  liquid-gas mix ture  is 
eva lua ted  and it is shown tha t ,  unlike the pure gas case, the 
a t t enua t ion  due to  heat  conduct ion is negligible in comparison. The  
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propagation of finite amplitude waves is considered and an ex- 
pression is found for the time required for a compressive wave to 
develop shock ware  features, as a function of the liquid-gas ratio 
and the initial disturbance profile. 

§ 2. Equations o/moHon. The mixture of most interest is that of 
liquid-gas components consisting of a liquid, in which gas bnbbles 
are uniformly distributed which are small enough so that the re- 
sulting mixture may be considered homogeneous and isotropic. The 
bubble size taust be small compared with any disturbance. This 
condition implies that  the mixture acquires the property of a foam 
as the proportion of gas increases. 

Denote the liquid and gas components by suffixes 1 and 2 re- 
spectively, and the volumes, masses and densities by V1, V2, M1, 
M2 and pl, p2. Introduce 

= V2/V1, ~ = M2/M1, p2/pl = ~ ] / ~  = a constant. (1) 

The homogeneous mixture density, p, is given by 

1 Vt + V2 

p M1 + M2 

_ 1 (1 + ~ )  1 (1 d - $ ~ ,  _ 1 (p_~_ 9 )  
pl 1 d - ~  =-~-2 \ 1 ~ ~ /  ~ (1 -4-~~ d- p2 , (2) 

the coefficient of heat conduction, K, by 

K1V1 + K2V2 K1 + ~K2 
K =  V I + V 2  - -  1 + ~  ' (3) 

the specific heat, c, by 

I ( M l c l  + M 2 c 2 )  Cl + ~c2 (4) 
C = V1 -~ V2 - -  1 -~ W ' 

where c2 is the specific heat at constant volume. The second vis- 
cosity a) #, is particularly important in liquid-gas mixtures. T a y 10 r a) 
and D a v i e s  6) have shown that  

4 ~1(1 ~- ~) ~:y2 

# ' - -  3 (1-4-~+~y)2' (5) 
where #l  is the shear viscosity of the liquid, and y the ratio of the 
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effective compressibility of the gas to that  of the liquid. The 
equations of motion for the mixture are 

d'v 

dt 

~p 
- -  + V.pv = o ,  (6)  

V P  --  V X (V X #1 v) -}- V[(#') V 'v] ,  (7) 

dT 
pc ~ -  - / p V ' v  = K V 2 T  + f l l [ V ' ( V v  2 -~- 2o, i x V) - -  

- 2(v.V)(V.v) + ,~2] + j ( V . v ) 2 ,  (8) 

/5 = F l (p l ,  T), (9) 

p = R2p2T, (10) 

where v is the veloeity, o the vortieity, p the pressure, T the 
temperature, R2 the gas constant, F1 the equation of state for the 
liquid and p, K,  c and #' given by equations (2)-(5). The omission 
of #1, in comparison with #' in the last term of (7) is consistent 
with the derivation of #', given by (5). 

§ 3. Speed o/ sound. In the usual way, the equations are line- 
arised on putting 

p l=pOl(1  + s l ) ,  p2=po2(1 +s2 ) ,  p = p o ( 1  + s ) ,  (11) 

T = To(t + r), p = po(1 - /~ ) ,  

where pol, po2, po, To, Po are the rest values and sl, s2, s, r, ~, v 
(and ~o) are small. Second order terms are neglected. Equation (10) 
gives 

Yg ---- S 2 @ T, 
and (9) gives 

where 

a l - -  

Y~ ~ alS 1 ~- blr ,  

p01 ~FI(p1, T) ] To 
T= To ' bi ~ - -  

Po ~P1 ]oi=~o~ Po 

Equation (2) becomes 

po 

i ~ (~~+~~~) 
po2 (1 -/~1) 

(12) 

(13) 

C3Fl(p1, T) 
l . (14) 

1 ( s l i p s 2 )  /15, 
= - -  ° 

pol I ~ 
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Equat ions  (12), (13) and (15) now give 

= as + b-r, 

where 

(16) 

a1(1 @ ~) bi @ al~ 
a = . b = -  (17) 

(1 d- al~) ' 1 @ al~ 

The governing equations are now (16), (18), (19) and (20), the  last 
three being the  linearised form of (6), (7) and (8), namely,  

as 
- -  -1- V ' v  = 0, (18) 
ôt 

av Po 
- - - b  V ~  d- X = 0, (19) 
at po 

1 ~ .  P o  
V2~ V . v  = o, (20) 

d ôt K T o  

where d, the effective thermal  conduct iv i ty  is given by 

K 
d - , ( 2 1 )  

poc 

and X,  the  viscous t e rm by 

X _ 
po 

[/AIV2V -1- ~'V(V.v)]. (22) 

From (16), (17), (18), (19), the  v-equation is 

1 # F ~2v ~X Poß (1 + ~) V ( V ' v ) ]  , 
d ~t L ~t 2 nu ~t po 

= v~ L ~ ~2vôt2 + ~x~t pO~Æo V(V.v)], 
where 

(23} 

pobd (bl/al -k 8)(y2 --  1) ~ (bl/al + ~) ~bo 
aKTo  (~ + cl/c2) ~ (1 -k c2~/c~) polclTo ' 

where V2 is the rat io of specific heats  of the gas. If the liquid acts  
as a constant  t empera tu re  reservoir, (9) m a y  be taken  as 

p - Po = l(p - po)/po, 
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which, from (13), gives 
l 

7~ ~--- - -  S1, 
Po 

where l is the elasticity of volume. In the above expression for «, 
bi~a1 is zero*) and 

a - - W ( 7 2 - -  1) 8 ( Pp0BTö)' (24) 
B _t_ 61/62 61 2 r_ C2~] 

If we neglect the viscous term for the present (it is discussed 
in § 4) then the isothermal limit gives the right hand side of (23) 
zero: that  is 

~2v pa 
a~2 po V(V.v) = o. (26) 

The isothermal limit occurs when [(I/d) ô'r/~tl ~ I(po/KTo) V'vl in 
(20). From (25) the isothermal speed of sound c, is given by 

c~ = p~lpo. (26) 

The adiabatic limit is obtained on putting I V2~[ ~ ] ( p o / K T o )  V ' v  I, 
which gives the left hand side of (23) zero, namely 

õ2v pa 
(1 + ~) v ( v . v )  : o, 

ôt 2 po 

from which the adiabatic speed of sound ca is given b W 

2 pa (1 + a). (27) 
p0 

Over a large range of interest ~ ~ 1 and ci/c2 is O(1) and from (24) 
~ 1. Thus in the range where the mixture is distinctly that  of 

a liquid with a distribution of bubbles (rather than a foam) 

Ca -- c~ 

and the speed of sound is effectively the isothermal speed of sound. 
However, if ~1 -+ c~, (27), (24) and (17) give Cc, = 72P/po2 which is 
the adiabatic speed of sound in the gas. In iact, as we see below 
in § 4 the speed of sound is strictly the adiabatic speed of sound, 
but as shown above over a wide range this differs negligibly from 

*) I n  m o s t  i iqu ids  over  a wide  r a n g e  of i n t e r e s t  if bi ~ 0, bi  ~ a t .  
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the isothermal speed of sound. Fig. 1 shows c« as a function of 2, 
the units for c« being cm/sec. 

ca cù#oo 

#43 

<, 
\ 

ù .~12 «d c,. 

J 

10 L~ " '15 20 

Fig. 1. Adiabatic velocity of sound and attenuation factors versus 
gas/liquid volume ratio. 

That  ca in (27) is less than the speed of sound in either the liquid 
or gas alone is easily shown, since al ~ 1 and for ~ of O(1), say, 

p0a(1 + «) _ ( P ° a l ~  (1 + ~)2 [1 + ~(y2--  1) 

( ib0al~ 1 (1 @fr)2 [y2rl4_Cl/C21~(!bO~l) = 
- -  \ p01 / alf f  (1 -@ ~) ~] @ C1/C2 k p01 / 

(speed of sound in the liquid)2 

On the other hand, for ~ >~ 1, ~] >~ l, we have ~/~ = po2/pol < 1, and 

po po2 (1 +al~)(m +~7) ~ ~ + c l / c 2  - 

~(~~~o~[1 +(~_~)+ 
< (speed of sound in the gas)2, 

< 
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since (2/~ -- 1/~) = (2~/~ -- 1). 1/~ < 0, and (1 -- 72) < 0. As an 
example, in a water-air mixture  at N.T.P. with ~ = 0.2, O 0 -  
- 0 .834g/cm a, a -  5 and c i -  2.5 x 103 cm/s, cw~te ~ , -  1.4 X 
X 105 cm/s, c~i ~ - 3.3 X 104 cm/s. 

§ 4. A t t enua t ion  o~ s o u n d  waves.  Consider an advancing plane 
ware  in the positive x-direction given by 

v ---- exp i ( k x  --  0)t) = exp i k ( x  - -  ct), c = 0)/k. (28) 

The x-component of (23) gives 

i0) 
~d- [0)2 @ @kz - -  c~(i -¢- ~) k 2] = kz[co 2 + @k20) - -  c~k2], 

where ~ = #'~po and the #1 contribution in (22) has been neglected 
compared with  the #' contribution, conslstent with the derivation 
of (5)a). Since c = o)/k (the speed of the wave), the last equation 
becomes 

c 3 q- iß(v q- d) c 2 -- [c~(1 q- c~) q- k2vdl c - -  ikdc~ = O. (29) 

Since v, d, ~,d are, to a first approximation,  negligible compared 
with c~, (29) gives 

c 2 =  c~(1 + c) -- c~ 

over a wide range (since « ~ 1). Thus, for « not  negligible, the 
speed of sound in the mixture  is the abiabatic speed of sound. In 
cases of interest, however, « ~ 1. 

In the pure gas case the second order effects due to the viscosity 
and heat  conduction are comparable. To consider these effects, put  

(g k2 = (1 + ~)2, (3o) 

where s is a small correction. Equat ion (29) gives 

8 - -  

l q -  ~ l q -  l q -  
\ c i  / \ C i /  \ C t / ....a 

= sl  + i0)(~» + e,), 

, ( 3 1 )  

*) I t  appears  as a correct ion because  we a s sumed  in (30), « ~ 1. 

where 0)81/Ci, 0)äæh/Ci, 0)2ev/C i are defined by  (31) and represent re- 
spectively, the correction to the velocity of propagation due to «*), 
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the a t t enua t ion  due to heat  conduct ion  and viscosity. Unlike the 
pure gas case 

æh ~ ev. 

Fig. 1 gives these a t t enua t ion  factors for vary ing  ~, and it is seen 
tha t  the heat  conduct ion  correct ion is a th i rd  order  effect and in 
general  is less t han  for the  corresponding pure gas case. 

As an example,  if ~ = 0.2, 

l / p o - -  1.2cma/g, ~ - - 2 . 5  × 10 -4, c i - - 2 . 5  × 10 acm/sec .  

« -- 1.75 × 10 -5, d -- (Kl  @ ~K2)/cl --  1.42 × 10 .3 cmZ/sec. 

# '  -- 1.43 × 10 -1 dyne/cmZ/uni t  veloci ty  grad. 

and the  a t t enua t ion  factors for a w a r e  of the form in (28) are 
f rom (30) and (31), 

0)2 0)2 
e h  - -  0)23.2 × 10 -19 s ec  2, - - e r  ~ 0)26.5 × 10 -12 s ec  2, 

Ci Ci 

where o,  the  f requency,  m a y  v a r y  from 1/sec to 105/sec. 

§ 5. Propagation o / / i n i t e  disturbances. The  m e th o d  used is tha t  
of R i e m a n n * ) .  The  analysis requires a pressure-densi ty  law and 
we formal ly  wri te  for c, the  speed of sound, 

dp _ c 2 -  pa(1 + « )  _ Fp , (32) 
(Ip p p 

where F--~ a(1 + «) with a and « from (17) and (24). F ro m  (32) 
on integrating,  

p l p r =  constant .  

Following the me thod  of Riemann,  if v = / ( x )  is the wave form 
at t = 0, then  the advancing wave at t = t is given b y  

v(x, t) = / ( x  - Eco + ½(r + 1) v] t), (34) 
where in this case co = ca f rom (27). C a m p b e l l  and P i t c h e r 3 )  
s ta te  t ha t  a compressive wave should s teepen and become a shock 
wave. F rom (34) we see tha t  if /(x) is a decreasing funct ion of x 
then  the wave will s teepen since, if v = vl, v2 are the values at t = 0 
when x = Xl, x2, the  values at t = t a r e  ob ta ined  b y  adding to the 
Xl, x2 t e rms [co + } (F  + 1) vl] t and [co + ½(F + 1) v2~ t respect ive-  
ly. The la t te r  is smaller t han  the former  in the  compressive case and 

*) See, for example, S. Go lds t e in ,  Lectures in Fluid Dynamics, Acad. Pres., 1960. 
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t he  w a r e  t he re fo re  s teepens .  A shock  w a v e  or d i scon t inu i ty ,  f irst  
a p p e a r s  w h e n  ~v/~x is inf ini te ,  a f t e r  wh ich  t i m e  the  so lu t ion  (34) 
w o u l d  b e c o m e  t r i p l y  v a l u e d  ove r  a range ,  wh ich  is p h y s i c a l l y  un-  
real is t ic .  I f  t = ts w h e n  ~v/~x b e c o m e s  infini te ,  d i I f e r en t i a t i ng  (34) 

a n d  so lv ing  for  ts gives  

I («)mo,x.}]-, (35) t« = 2 [ ( F - l -  1){1 - -  ) 1 

w h e r e  ~ ~ [ca + ½ ( F +  1) v] t. F o r  t > t8 the  pos i t ion  of the  shock  
is o b t a i n e d  in t he  usua l  w a y  f r o m  c o n s e r v a t i o n  a r g u m e n t s .  I n  a 
s imi la r  w a y  an  e x p a n s i o n  w a v e  f l a t t ens  as it progresses .  F r o m  (17), 

(24) 
a l  ~ < F  <~;ùs 

a n d  f r o m  (35) it is c lear  t h a t  a shock  w a r e  a p p e a r s  in a m i x t u r e  
in a shor t e r  t i m e  t h a n  if t he  s a m e  w a v e  were  p r o p a g a t e d  in t he  

p u r e  gas.  

t=O i / ,o, ", 
2.5 " 2 ~ "  

3 .3x i0  3 GAS 3.3x~0 "~ 9~q~lõ "~ GAS ~9~10 3 

Fig. 2. Ware  profile in air ( . . . .  ) and water-air mixture $ = 2 ( 
at  times t = 0, 0.1 and 0.3. 

C a m p b e l l  a n d  P i t c h e r  a) show e x p e r i m e n t a l l y  t h a t  an  ex-  
p a n s i v e  w a v e  of H e a v i s i d e  f o r m  does f l a t t en .  T h u s  to  i l l u s t r a t e  
the  effect  on a wave ,  fig. 2 shows the  f o r m  a t  v a r i o u s  t i m e s  of a 
w a v e  in i t ia l ly  g iven  b y  

v ( x , O ) = O  for  x ~<0, 

= 1 for  0 <~x ~< 1, 

7C 
= c o s - -  ( x - -  1) for  1 <~x ~<2, 

2 

= 0 for  2 ~< x, 
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when ~ = 0.2. The form if the wave were propagated in the gas 
alone is given for reference. 

In the above, the mixture, for small values of ~, may be thought 
of as a Iluid containing a uniform distribution of voids or regiÓns 
of small density. The case where the Iluid contains a uniform 
distribution of regions of high density (with the equivalent of a 
small ~) has recently been studied by  S a I f m a n  7) Irom a stability 
point of view. In view of the comparatively large second viscosity 
in the liquid-gas mixture a stability s tudy in this case would also 
be of interest. The problem with a shock ware  in a dusty gas con- 
sidered by  C a r r i e r  s) has analogy with the C a m p b e l l  and 
P i t c h e r  work. 

Received 28th February,  1963. 
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