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NOTE ON THE PROPAGATION OF DISTURBANCES
IN A LIQUID CONTAINING GAS BUBBLES

by J. D. MURRAY

Eng. mechs. Dept., University of Michigan, Ann Arbor, Michigan, U.S.A.

Summary

In a liquid containing gas bubbles the speed of sound is less than that in
each phase separately. Using the equations of motion for a homogeneous
liguid containing gas bubbles it is shown that the dominating attenuation
of an infinitesimal disturbance is that due to the second viscosity. In the
propagation of a finite compressive disturbance an expression for the time
required for the disturbance to display shock characteristics is found in
terms of the initial disturbance profile and the liquid-gas ratio.

§ 1. Introduction. Mallock?) evaluated the speed of sound in a
liquid containing gas bubbles assuming Boyle’s law held for the
gas. For a large range of conditions he showed that the speed of
sound was less than that of the liquid or the gas separately. Hsieh
and Plesset?) repeated the evaluation of the speed of sound
but restricted themselves to the region where the ratio of the
masses of gas to liquid was small, and they found the attenuation
of an infinitesimal wave, due to heat conduction. Campbell and
Pitcher3) considered theoretically and experimentally the motion
and collision of fully developed shock waves in such a mixture.

This note uses the equations of motion of the mixture to obtain
for reference Mallock’s results except that, in the following, the
adiabatic, rather than the isothermal, speed of sound in the gas
is the limiting case. The attenuation of an infinitesimal disturbance
due to the bulk or second viscosity of the liquid-gas mixture is
evaluated and it is shown that, unlike the pure gas case, the
attenuation due to heat conduction is negligible in comparison. The
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propagation of finite amplitude waves is considered and an ex-
pression is found for the time required for a compressive wave to
develop shock wave features, as a function of the liquid-gas ratio
and the initial disturbance profile.

§ 2. Equations of motion. The mixture of most interest is that of
liquid-gas components consisting of a liquid, in which gas bubbles
are uniformly distributed which are small enough so that the re-
sulting mixture may be considered homogeneous and isotropic. The
bubble size must be small compared with any disturbance. This
condition implies that the mixture acquires the property of a foam
as the proportion of gas increases.

Denote the liquid and gas components by suffixes 1 and 2 re-
spectively, and the volumes, masses and densities by V1, V3, My,
My and pj, p2. Introduce

E=TVa/V1i, n=Ms/Mi, ps/p1 =n/é= aconstant. (1)
The homogeneous mixture density, p, is given by

1 Vi+4 Ve

p Mi+ M
1 1 1 1 1 1
b)) n ) e
pr \1+17 pe N1 +n/& (14+mn \p1 p2

the coefficient of heat conduction, K, by

K _ K]_V]_ + K2V2 _ Kl + EKZ ) (3)
Vi+ Ve 1 +¢

the specific heat, ¢, by
. i(Mlcl +M202>_ c1 -+ nes
P Vi+ Ve 1+
where cg is the specific heat at constant volume. The second vis-
cosity4) ' is particularly important in liquid-gas mixtures. Taylor5)
and Davies®) have shown that
;4 (L8 &
3 (14 &+ &2’

where 1 is the shear viscosity of the liquid, and y the ratio of the

: (4)
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effective compressibility of the gas to that of the liquid. The
equations of motion for the mixture are

% cop — 0 6
8—t—|—l7p1)— , ; (6)

d
b= Vb=V X W x ) + V) P9, (0)

pc il—f Vv = KP2T 4 [V - (Fv? + 20 X v) —
—20-P)V-v) + 0 + @ (V-v)?,  (8)
p = Fi(p1, T), ©)
p = RopeT, (10)

where v is the velocity, w the vorticity,  the pressure, T the
temperature, Rg the gas constant, F; the equation of state for the
liquid and p, K, ¢ and ' given by equations (2)—(5). The omission
of w1, in comparison with g’ in the last term of (7) is consistent
with the derivation of u’, given by (5).

§ 3. Speed of sound. In the usual way, the equations are line-
arised on putting

p1 = por(l + s1), p2 = poz(l + s2), p =po(l +), (11)
TZT()(I —|—T), ;b:;bo(l —]—7‘6),

where po1, po2, po, 1o, po are the rest values and si, sg, s, 7, 7, ¥
(and @) are small. Second order terms are neglected. Equation (10)
gives
T = S9g + T, (12)
and (9) gives
T = a151 + bi7, (13)
where '

por 9Fi(p1, T) :I To 0F1(p1, T) :|
= , b - — . 14\
a1 o 2p1 T="To L 5o oT rem, + (14)

PL=poL P1=Por
Equation (2) becomes

s _ b m (81+582>:L<81+582> (15)
PO poz (1 =+ 1) 3 pr \ I+ /°
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Equations (12), (13) and (15) now give

7 = as - br, (16)
where
a— al +9§) . b= El—i__“lf_ (17)
(1 + a1 14 aé

The governing equations are now (16), (18), (19) and (20), the last
three being the linearised form of (6), (7) and (8), namely,

B o pw—o 18
Po
—+—V +X=0 (19)
ot
1 or o
2 - -
Ve — T Tk, V0 (20)

poc

and X, the viscous term by
1
X = — [l o WV )L (22)

From (16), (17), (18), (19), the v-equation is

1 ¢ o2y o X
Ja Ll T a

e ],
0
2
—r| 2 B %“— ] @
where
pobd  (bifar + Elya— 1)y (bifar + &) po
aKTy (n -+ cifee) & (1 + canjer) porciTo

where yg is the ratio of specific heats of the gas. If the liquid acts
as a constant temperature reservoir, (9) may be taken as

P — po = lp — po)/po,

o =
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which, from (13), gives
l

T = — S]_,
Po
where [ is the elasticity of volume. In the above expression for o,
b1/ay is zero*) and

n(ys — 1) 3 < Po >
_ale= 1) 8 . 24
> % + cifce c1+ canp \ porTo (24)

If we neglect the viscous term for the present (it is discussed
in §4) then the isothermal limit gives the right hand side of (23)
zero: that is

o2y pa
_ 2 ) = 0. 25
o2 Jdi v (25)
The isothermal limit occurs when [(1/d) o+/ot| < |(po/KTo) V-v] in
(20). From (25) the isothermal speed of sound ¢; is given by

¢i = palpo. (26)

The adiabatic limit is obtained on putting |V2r| < [(po/KTo) V -v|,
which gives the left hand side of (23) zero, namely
o2y pa

T o AP =0

from which the adiabatic speed of sound ¢, is given by

2 — P, (27)

)
Over a large range of interest n <€ 1 and ¢1/ca is O(1) and from (24)
o« <€ 1. Thus in the range where the mixture is distinctly that of

a liquid with a distribution of bubbles (rather than a foam)
Ca = G4

and the speed of sound is effectively the isothermal speed of sound.
However, if # — co, (27), (24) and (17) give ¢4 = pap/pos which is
the adiabatic speed of sound in the gas. In fact, as we see below
in § 4 the speed of sound is strictly the adiabatic speed of sound,
but as shown above over a wide range this differs negligibly from

*) In most liquids over a wide range of interest if b1 == 0, bs < a1.
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the isothermal speed of sound. Fig. 1 shows ¢, as a function of &,
the units for ¢, being cm/sec.

£, cmjsec

8
143

&
\ 20”g,]c,
/‘3‘7“7
4
7
207 g )&'\_
, .
\ p 10.30‘7
2 J |

0 5 0 . 5
i 5 1 2

Fig. 1. Adiabatic velocity of sound and attenuation factors versus
gas/liquid volume ratio.

That ¢, in (27) is less than the speed of sound in either the liquid
or gas alone is easily shown, since 41 > 1 and for & of O(1), say,

poa(l + «)  ( poas (I + )2 nly2—1) 7 _
PO _<vP01 ) (1 + aé)(1 +n) [1 7N+ cife2 :| ’

) (?oh) I (1 +§2 [7/277 + C1/Cz:l <;150ﬂ1)
= Ll—)=
por / mé& (1+1n) L n4cifes pot
== (speed of sound in the liquid)2.
On the other hand, for £ 1, 5> 1, we have /£ = poz/po1r < 1, and
poa(l +«)  po  a(l + &2 i[yzn + Cl/cz] _

po poe (I +m&(1+9) &L q4cifes
. <7/2¢>0> (1 4 1/&)2 [: 1+ 01/)/20277] _=
“Nopoz / (14 1/p) L 14 cifean '

=)l (F-) 25

< (speed of sound in the gas)?,
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since (2/& — 1fn) = (2njé — 1). 1/n <0, and (I — y2) < 0. As an
example, in a water-air mixture at N.T.P. with £ = 0.2, pg =
= 0.834¢g/em3, a=25 and ¢; = 2.5 X 103 cm/s, Cpper = 1.4 X
X 105 cm/s, ¢y, = 3.3 X 104 cm/s.

§ 4. Attenuation of sound waves. Consider an advancing plane
wave in the positive x-direction given by

v = exp i(kx — wil) = exp ik(x — ct), ¢ = w/k. (28)
The x-component of (23) gives

_zg_ (w2 - k2 — c2(1 + «) k2] = k2[w? + k2w — c2k2],

where v = u'/pp and the u; contribution in (22) has been neglected
compared with the g’ contribution, consistent with the derivation
of (5)5). Since ¢ = w/k (the speed of the wave}, the last equation
becomes

3 + k(v -+ d) c® — [c}(1 + o) + kWd] ¢ — thdc? = 0. (29)
Since v, d, vd are, to a first approximation, negligible compared
with ¢2, (29) gives

02 =c}(l + o) =

over a wide range (since « <€ 1). Thus, for « not negligible, the
speed of sound in the mixture is the abiabatic speed of sound. In
cases of interest, however, « < 1.

In the pure gas case the second order effects due to the viscosity
and heat conduction are comparable. To consider these effects, put

R = (03)2 (1 + 22, (30)

where ¢ 1s a small correction. Equation (29) gives

- ) ) ad p
c= T wd 2+170_2 wd2+ wd \?
Cq Cq Cq
= &1 + 10(ep + &),

where we1fc;, wepfc;, wle/cy are defined by (31) and represent re-
spectively, the correction to the velocity of propagation due to «*),

*) It appears as a correction because we assumed in (30), ¢ < 1.



288 J. D. MURRAY

the attenuation due to heat conduction and viscosity. Unlike the
pure gas case
en < &
Fig. 1 gives these attenuation factors for varying &, and it is seen
that the heat conduction correction is a third order effect and in
general is less than for the corresponding pure gas case.
As an example, if £ = 0.2,

I/po = 1.2cm3/g, 5 =25 x 1074, ¢; = 2.5 X 103 cm/sec.
o == 1.75 X 1075, d = (K1 + £K3)fe1 = 1.42 x 1073 cm2/sec.
u' = 1.43 x 101 dyne/cm2/unit velocity grad.
and the attenuation factors for a wave of the form in (28) are
from (30) and (31),

w? w?
——ep = w28.2 X 10719 gec?, — g = 25.6 X 10712 gec?,
Cq Ci

where o, the frequency, may vary from 1/sec to 103/sec.

§ 5. Propagation of finite disturbances. The method used is that
of Riemann#*). The analysis requires a pressure-density law and
we formally write for ¢, the speed of sound,

A pellte 1P (32)
dp p - p
where I' = a(l + «) with a and o from (17) and (24). From (32)
on integrating,
pjp’" = constant.

Following the method of Riemann, if v = f(x) is the wave form
at £ = O, then the advancing wave at ¢ = £ is given by

(v, 8) = flx — [co + HI + 1) v] ), (34)
where in this case ¢p = ¢4 from (27). Campbell and Pitcher3)
state that a compressive wave should steepen and become a shock
wave. From (34) we see that if f(x) is a decreasing function of x
then the wave will steepen since, if v = v;, v are the valuesat{ =0
when x = x3, %2, the values at ¢ = ¢ are obtained by adding to the
%1, %2 terms [co + (" + 1) v1] tand [co + ${I" + 1) vz] frespective-
ly. The latter is smaller than the former in the compressive case and

*) See, for example, S. Goldstein, Lectures in Fluid Dynamics, Acad. Pres., 1960.
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the wave therefore steepens. A shock wave or discontinuity, first
appears when dv/éx is infinite, after which time the solution (34)
would become triply valued over a range, which is physically un-
realistic. If ¢ = #; when @v/ox becomes infinite, differentiating (34)
and solving for #s gives

e = 20T + D{1 = (O mact (35)

where { = [cq + 3(I"+ 1) v] £. For ¢ > {5 the position of the shock
is obtained in the usual way from conservation arguments. In a
similar way an expansion wave flattens as it progresses. From (17),
(24)

o <I'<ye
and from (35) it is clear that a shock wave appears in a mixture

in a shorter time than if the same wave were propagated in the
pure gas.
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334107 GAS 3.3x10” 99.10°  @AS 99410°
Fig. 2. Wave profile in air (----) and water-air mixture & = 2 (——)

at times £ = 0, 0.1 and 0.3.

Campbell and Pitcher3) show experimentally that an ex-
pansive wave of Heaviside form does flatten. Thus to illustrate
the effect on a wave, fig. 2 shows the form at various times of a
wave initially given by

v(x,0) =0 for x <

N
=1 for 0 <y <1,
Jr
:cosz(x—l) for 1 <x <2,

=0 for 2 <«
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when & = 0.2. The form if the wave were propagated in the gas
alone is given for reference.

In the above, the mixture, for small values of £, may be thought
of as a fluid containing a uniform distribution of voids or regions
of small density. The case where the fluid contains a uniform
distribution of regions of high density (with the equivalent of a
small &) has recently been studied by Saffman?) from a stability
point of view. In view of the comparatively large second viscosity
in the liquid-gas mixture a stability study in this case would also
be of interest. The problem with a shock wave in a dusty gas con-
sidered by Carrier8) has analogy with the Campbell ‘and
Pitcher work.

Received 28th February, 1963.

REFERENCES

Mallock, A., Proc. Roy. Soc. A84 (1910) 391.

2) Hsieh, D., and M. S. Plesset, Cal. Inst. Tech. Eng. Div. Rep. 85-17, 1960.
3) Campbell, L. J. and A. S. Pitcher, Proc. Roy. Soc. 243 (1958) 534.
4) Symposium, Proc. Roy. Soc. A226 (1954) 1.

Davies, R. O., Proc. Roy. Soc. A226 (1954) 39.
Saffman, P. G., J. Fluid Mech. 13 (1962} 120.

)
)
)
)
5) Taylor, G. I., Proc. Roy. Soc. A226 (1954) 34.
)
)
} Carrier, G. F., J. Fluid Mech. 4 (1958) 376.



