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§ 1. In t roduc t ion  

The stability of a fluid layer heated from below and rotated was 
considered by  Chandrasekhar [11 and Chandrasekhar and Elbert  
E21. It is assumed that the basic state whose stability is being in- 
vestigated is solid body rotation with a temperature which is inde- 
pendent of horizontal position and which varies linearly in the 
vertical. The critical Rayleigh number and the corresponding wave 
number are determined as functions of the Taylor number. For 
sufficiently large Prandtl  number the onset of convection is station- 
ary [3, 4] and the critical Rayleigh number can be predicted by  
linear theory [5, 6]. It  can be shown by  means of a linear stability 
analysis that  for stationary onset at large Taylor numbers the criti- 
cal Rayleigh number is given by  

R-->P'r~ as z-->oo (1) 

where R = god Tda/vK, the Taylor number T is given by  z ~ 4~o2d4/ 
v 2, and P is a constant; g is the acceleration of gravity, ~ the coef- 
ficient of thermal expansion, AT the imposed temperature differ- 
ence, d the fluid depth, v the kinematic viscosity, and K the thermal 
diffusivity. To lowest order the constant P is equal to 3(~:~ ) = 
: 8.6956 regardless of the boundary conditions on the horizontal 
surfaces [71 ; furthermore, the dimensionless horizontal wave number 
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is 1.305,~ as ~- ~ oo. The mechanism of instability to lowest order 
is associated with energy conversions entirely within the intërior 
region and the Ekman layers produee higher-order corrections to 
the limiting critical Rayleigh number [8] ; the latter is unaffected by 
the presenee of side walls. 

In all the above studies it is assumed that  the fluid is in solid 
body rotation before gravitational instabilities set in. However, 
solid body rotation cannot occur when a rotating fluid is heated 
from below regardless of how small the imposed vertical tempera- 
ture difference may be since motion relative to solid body rotation 
is produced by the coupling of the vertical density gradient and 
the centrifugal acceleration. This is analogous to the convection 
which occurs when a density gradient is imposed normal to the 
acceleration of gravity in a nonrotating system. Convection in a 
right circular cylinder which is heated differentially in the vertical 
and which rotates rapidly about its vertical axis has been analyzed 
by Barcilon and Pedlosky [9] and by Homsy and Hudson [10, 1 !]. 
It  is assumed that  the flow is laminar and axisymmetric and, except 
for a part of the work in [11] which is discussed further below, 
gravitational instabilities are not considered. The dimensionless 
temperature and velocities depend on five parameters: « -~  v/K 
(Prandtl number), s = v/2(oh 2 (Ekman number), y = a/h (aspect 
ratio), A =-g/o)2a (acceleration ratio or inverse Froude number), 
and fl = aA T / 8  (thermal Rossby number), h and a are the cylinder 
half-height and radius respectively. The notation corresponds to 
that  used in [10] and [11]. A grouping of the parameters, viz., 
B = affe-½, is the ratio of thermal convection to conduction in the 
interior of the cylinder. Thus for ~ small, heat is transferred be- 
tween the horizontal surfaces primarily by conduction; for ~ = 0, 
the fluid is in solid body rotation. When 2 is large, convection is 
important. The region of parameter space /5 ~ 1, s ~ 1, A ~ 1, 

< 0(1) was considered in [10] with 1 ~< ~ ~< 0(s-~) for conducting 
side walls and ), = 0(1) for insulated side walls. In [I 1], further 
results are presented for fl ~ 1, s ~ 1, A ~ (2y)-l, ~ >~ 1, X T ~< 0(1), 
i.e., for large aspect ratios but small 4. 

In [11], we made an initial s tudy of gravitational instabilities in 
a rotating cylinder heated from below including the effect of the 
centrifugal accelerati0n. A linear stability analysis was made about 
a basic state in which convection occurs relative to solid body ro- 
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tation and in which the temperature field is a function Of both 
vertical and horizontal positions. Boundary layer methods were 
used which are valid in the limit of small Ekman number (or 
equivalently, large Taylor number). Since in this limit the hori- 
zontal length scale of the disturbance fields is very small relative 
to that  of the basic state (large wave number), an approximate so- 
lution was obtained by  solving the stability equations at each radial 
position taking into account vertical, but  not horizontal, vari- 
ations in the basic state. A "local" critical Rayleigh number was 
determined at each radial position, calculated as for a radially infi- 
nite medium. In the present study, this approximation is not made; 
i.e., the linearized equations governing the stability of a basic state 
which varies in both radial and vertical directions are solved by  
means of the Galerkin method. In order to relate these stability 
analyses to previous studies, parameters somewhat different from 
those defined above are used. Thus, as in E83 and E1 11 we use 
ro = a/d = ½y (aspect ratio), E = v/2o~d~ = ¼e (Ekman number), 
R = gaATda/w:  = 16fiAy«/e 2 (Rayleigh number), aS ---- vgŒAT/ 
4«o)2d = R E 2  (stratifieation parameter). 

§ 2. Mathematical analysis 

Consider a right circular cylinder of height d and radius a which 
rotates around its vertical axis at angular velocity co. The Taylor 
number is large. The temperatures of the top and bot tom surfaces 
are Ta and Tb respectively where Tb > Ta. When Tb -- ir'a is less 
than the value required to produce gravitational instabilities, the 
resulting centrifugally driven flow field is that  discussed in [10] 
and [11]. It  is assumed that the flow is laminar and axisymmetric. 
The velocity (denoted by  Q') and the temperature (denoted by  0 ' )  

depend on both vertical and radial position; this situation will be 
referred to as the basic stare. As the temperature difference Th--Ta 
is increased, a point is reached at which gravitational instabilities 
set in. In order to determine this value of Tb -- Ta, the governing 
equations are linearized about Q' and 0 ' ,  and the eritical Rayleigh 
number found. It  is assumed that the Prandtl  number is greater 
than about ~/2 so that  the onset is stationary and adequately pre- 
dicted by  linear theory. Furthermore, in making the Galerkin ex- 
pansion below it is assumed that the disturbance fields are also 
axisymmetric. This assumption ean be justified by  noting that the 
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difference between critical Rayleigh numbers for various azimuthal 
waves numbers decreases as the Taylor number is increased [8] and 
also by noting Koschmieder's experimental observation that  at the 
onset of instability in a cylindrical container the initial disturbances 
take the form of axisymmetric roll cells [12, 13, 14]. It  is assumed 
that the fluid is incompressible except in the gravitational and 
centrifugal terms where it is 

p = Pol1 -- a(T -- To)]. 

Linearizing about the basie stare O'(r', z') and O'(r', z') where r' 
and z' are dimensional positions, the equations governing the dis- 
turbance velocity q' and temperature T' become 

F'q '  --~0, (2) 

0'" Vq' + q'" VQ' + 2co(k × q') + r'oo2o~T'i + 

--g«T'k = - p ö l V p  ' + W2q ', (3) 

Q" VT' + q" V6)' = ~V2T ', (4) 

where k is the unit vector in the vertical, and i is the unit vector 
in the radial direction. 

Employing a basic state valid as E--> 0, we shall accordingly 
treat only the asymptotic stability problem. It  is shown in [8] that  
in this case the gravitational instability is associated only with in- 
terior energy conversions in which the release of potential energy 
due to the stratification is balanced by intefior horizontal dissi- 
pation. Thus, since vertical diffusion and its effect on disturbances 
is confined to the Ekman layers it is not associated with the insta- 
bility and we can represent the total basic state (interior with many 
boundary layer corrections) by its interior term alone. 

We introduce dimensionless variables (unprimed) 

q ' = q \  2~o / 

p' = ppogadAT (5) 

T' = T(AT) 

o '  = ~ ( ~ T )  
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( od Tcoa ) 
O ' = O  4 

z p ~ z d  

Y'  ~--- Yd 

where A T  = Tb --  Ta and utilize an order of magnitude analysis 
analogous to that  of [11] valid for ~ = 0(1),/3 < E~, a/3 < E~ and 
E~ ~ A ~ (~~)-1. It  is shown in [11] that  the inertial and centrifu- 
gal terms in (3) and the first term in (4) can be neglected and the 
dimensionless stability equations reduce to 

V ' q  = 0 (6) 

le × q = - V P  + EV2q -l- k T  (7) 

aS(q .  VO) --= EV2T,  (8) 

with boundary conditions 

T = 0 }  
q = 0  at z = 0 a n d l  (9) 

q = 0 ,  at r = r 0  (10) 

and either 

o r  

T = 0 at r = ro (conducting wall) (11) 

OT 
- -  0 at r = ro (insulated wall) (12) 

ôr 

where ro = a/d = ~/2, r and z are defined in (5), «, S, and E are 
defined in the introduction. Using the fact from (1) that for very 
small Ekman number 

or equivalently 

R = B E  -~ (13) 

aS -= PE-~ (I 4) 

where P is a constant, the set of eqs. (6-8) with boundary con- 
ditions (9-12) constitutes an eigenvalue problem for the cfitical 
Rayleigh number R or equivalently for the constant P since P and 
R a r e  related as in (1) or (13). 
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The dependent variables in (6-8) are expanded in a series in the 
small parameter E~. Introducing the new dimensionless coordinate 

x = rE-~(O <~ r <~ r0; 0 <~ x <~ roE-~) (15) 

the zeroth order eigenvalue problem for the interior fields becomes 
[11] 

aw 
a z  = -- v~p (16) 

~p ôp 
v _ a x  ' u = - x - 1  ~ ~  (17) 

~p 
= V~w -{- T (18) 

az 

where 

( 0 6 )  O0 ) V~T (19) 
P u-g-r+W-£z-  z 

0 a a 2 
V~ = x-1 × + x - ~ - -  

az ~ a¢2 

B is the aximuthal coordinate, and u, v, w are the lowest order 
nonzero radial, tangential, and vertieal components of the velocity. 
The boundary conditions at the horizontal surfaces are 

T =  at z = 0 a n d l .  (20) 

Having assumed an E-~ horizontal  variation (dimensionlessly 
õ/ar ~-~ E-~) the interior problem is of sufficiently high order to 
satisfy the side wall boundary conditions, 

and either 

u = v = w - - - - 0  at x = r 0 E - ~  (21) 

o r  

T ~ 0  at x = roE -~ (conducting wall) (22) 

ôT 
- -  0 at x = roE-~ (insulated wall). (23) 

Vr 
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Assuming that  the disturbances are axisymmetric, equations 
(16-19) become 

~W 

~z - -  - -xö~L2(P)  (24) 

~P = xö ~L(w) + T (2S) 
öz 

öO 
- -  = x ö 2 L ( T )  (26) P w  Oz 

where the radial position r(0 ~< r ~< 1) has been reintroduced, 

and 
xo = roE -~ (27) 

L = r -1 - -  r - -  (28) 
~r ~r 

Eqs. (24-26) are now to be solved for the eigenvalue P in terms 
of the parameter x0. It is noted that x0 ----- roE- i  >~ I, since ro ---- 0(1) 
and E is small. The basic state temperature field O is known from 
[10J and V1 II and depends primarily on the parameter 2 = «fie-} 

and the aspect ratio r0. Since O is a function of both vertical and 
radial positions, an analytical solution is not possible and the Galer- 
kin method is used. Furthermore, since the horizontal length scale 
of the disturbances is small (O(E})) and since it was shown in [81 
that  in the case of solid body rotation the side wall does not influ- 
ence the critical Rayleigh number, a side slip wall boundary con- 
dition is used. 

B C 

P = 2 E p~,jJo(d~r) cos(jr:z), 
i = A  1 : 1  

B C 

T = X ~ TLjJo(dir)  sin(]'xz), (29) 
i = A  ] = 1  

and 
B C 

w = E E w,,j]o(~ir) sin(i=z). 
i = A  i = 1  

Recognizing that  the radial trial functions describing only a few 
cells should be relatively unimportant when actually many radial 
cells exist, the r-expansions were initiated with some integer value 
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B,  rather than one. Computation time was thus diminished and 
satisfactory results were obtained. The value taken for A is de- 
pendent on x0 and was estimated from the solid body rotation 
solution [8]. 

An estimation Of ôm is 

6m = (ra + 0.25) = = 1.305x0. 

The integer C is dependent on the value of 2 and was taken as 3 or 4. 
More will be said about this later. The $~ in the arguments of (29) 
are the roots of J1, that  is 

Jl(ô~) = O, i = 1, 2 . . . . .  

Substituting the disturbance expansions into (24-26) noting that 

- -  - -  r - -  J o ( O ¢ )  = - - O ~ J o ( d ~ r ) ,  
r dr dr 

and requiring the error to be örthogonal to each expansion pair we 
obtain the Galerkin equations, 

- (  ~' ]~p,,,, (~o) 
(i~:) we, j • \ xo / 

. wLj + T~,j (31) 
\ x o /  

P 5; Z w~,~T(i,i,k,Z)=-- T~,j (32) 
k=21 1=1 \ XO ] ' 

where 

T( i ,  i ,  k, l) = 

4föf'ô° = 2 ~Z Jo(õ~) o 

Eqs. (30-32) can be reduced to the single expression 

P Y,, ~, wk, l T ( i , i , k ,  1 )=  _ + (ire) 2 
k=~ Z=l L \  x0  / 

We now let 
o = - z  - ½ ¢ ( r ,  z * ) ,  

- -  sin(iT:z) sin(b:z) Jo(bir) Jo(b»r) r dr dz (33) 

wi,;.  (34) 

(3s) 
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where 
z * = 2 z - -  1, --1 ~ < z * ~  1. (36) 

Since the analyt ical  expression for O (or q~), which is known from 
[101 or [11], is too complicated to allow the evaluat ion of the inte- 
gral (33), the function ~b is expanded  in a Chebyshev polynominal  

D E 

q~(r,z*)= Y~ £ Cm, nTm(r*) T~~(z*) (37) 
~J'~,=O ~ ~ 0  

where r* is the radial coordinate  ( ~  1 ~< r* ~ 1) related to r = r'/a 
b y  

r* : 2r --  1 

and the coefficients are given b y  

f l  f~ ¢P(r,z*) Tm(r*) Tm(z*) dr* dz* 
Cm, n = q(m, n) (I --  r'z) ~ (1 Z'z) ~ 

- - 1  1 

with 

q(O, O)= 1/~ z 

q(m, O) ---- q(O, n) = 2 / r e  2 for ra, n > 0  

q(m,n) =4/7 :2  for ra, n > 0 .  

(38) 

The double integral (38) is evaluated  numerical ly utilizing the 
analyt ical  representat ion for q5 [8] and a two dimensional Chebyshev- 
Gaussian quadrature .  The coefficients b e c o m e  

C m ,  7~ - -  

where 

N2 i=l~a j=lF" ~b - - 2  , aj Tm(ad Tn(aj) (39) 

((2k - 1) 7:) 
ak = cos 2N 

N is the order of the Gaussian quadrature ,  and 

~ (m ,  n )  = 

] 1 2 . . .  2 
2 4 . . .  4 

i " 
, . ,  

2 (4)  . . .  , 4  

m-=O, 1 . . . .  D 
n = 0 , 1  . . . .  E 
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A 30th order Gaussian quadrature was employed. The accuracy of 
the 4-term Chebyshev expansion rapidly decreased with increasing 
aspect ratio. For although the relative error in the Chebyshev coef- 
ficients cm, n is -t-5.0 × 10-ó, the temperature profile error is up to 
approximately 4-1% for ~ = 1, up to 4-5% for y = 5, and up to 
4-30% for y = 10. The use of larger Chebyshev polynomial ex- 
pansions was prohibited by the inordinately difficult R(i, l, n) and 
S(i, k, m) integrals that  resulted. 

A polynomial representation for O is now available from (35) and 
(37). This is substituted into (33) to obtain T(i, j, k, l) in the form 

T(i, i, k, l) = --~i~(3:~ + Y, Z Cm, nS(i, k, m) R(j, l, n) (40) 
m 

where 
S(i, k, ra) = ~ò Tm(r*) J0(ô,r) Jo(~~r) r dr (41) 

R(i, l, n) = il Tn(z*){(j + l) sin(i + l) ~z -- (i -- l) s in( / - -  l) 7:z} dz. 

The R(~', l, n) integrals are evaluated analytically by means of re- 
peated integration by patts. In order to do the S(i, k, m) integrals, 
use is also made of integration formulae and recurrence relations 
from Luke /15] and Watson [16] and asymptotic representations 
for Bessel functions of large argument. Details are given in [17]. 

Since the T(i, j, k,  t) are known, (34) i s a  matrix equation for the 
eigenvalue P and ' the  eigenvectors w. Thirty horizontal and three 
or four vertical terms were used in the expansions. The resulting 
unsymmetric matrices were solved for the eigenvalues by Parlett 's 
method [18] and the eigenvectors w were then obtained by inverse 
iteration [ 19]. Increasing the number of lateral terms from 30 to 40 
resulted in a +0.001 (:-ù0.01%) deviation in P for ~, = 0(1). The 
relative difference in P for increasing the number of axial terms 
from 3 to 4 increased with increasing ~ from essentially zero at 
B ---= 1.0 to about 3.5% at ~ = 10.0 (for 0~ = 1.0). 

§ 3. Basic state 

The flow pattern in a cross section of a right circular cylinder heated 
from below and rotated about its vertical axis is shown in Fig. 1 
[10]. Boundary layers form on all surfaces when the Ekman number 
E is small (large Taylor number). Temperature profiles computed 
from (35) and (37) for ;t = affe -~ = 1.0 and aspect ratio ~ = 1.0 are 
shown in Fig. 2. As noted in § 2, the stability of the fluid was in- 
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Fig. I. Basic stare radial and axial velocities in a cross section of the cylin- 
der. The Ekman number is small. 
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Fig. 2. Temperature profiles for the basic stare. Conducting side wall, 
= ~ßs-} = 1.0; aspect ratio y = 1.0. 

vestigated by linearizing the governing equations about the con- 
ditions shown in Figs. 1 and 2. The parameter A is the ratio of con- 
vective to conductive hea t  transfer in the interior region of the 
cylinder. Thus for 2 = 0.0, the fluid is in solid body rotation and 
as 2 is increased, convection becomes important. The temperature 
depends on both radial and axial positions because of the effect of 
centrifugally driven circulations. For larger aspect ratio the temper- 
atures expressed by the Chebyshev polynomials oscillate slightly with 
radial position since only fourth order polynomials were used. As 
the aspect ratio is increased the radial gradients in O are increasing- 
ly confined to the regions near the side wall. The accuracy of the 
polynomial fit diminishes with increasing aspect ratio, the maxi- 
m u m e r r o r b e i n g u p t o  1% f o r y =  l, up to5% f o r y = 5 ,  a n d u p  
to 30% for y = I0. 
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§ 4. Critical Ray le igh  numbers  

The above calculations determine the eigenvalue P from which the 
critical Rayleigh number for large rotational rates is known through 
(13). In Fig. 3 is shown the results for P for the case 2 = ? = 1.0 
and a conducting side wall. The abscissa is Xo = roE-~. Since our 
results are valid only for small Ekman numbers (large Taylor 
numbers), We will restrict the discussion to values of E such that P 
is independent of xo, i.e., for this case xo > 3000. 

S0me results for 2 < 1 and various aspect ratios 7 are presented 
in Table 1 for a conducting side wall. P increases with both in- 
creasing 2 and 7, although in every case except 2~ = 1.0, 7 = 10.0 
the results are within l°B of the result predicted from a solid body 
rotation analysis (P = 8 . 6 9 5 ) .  It is noted that for ~ = 0, there is 
no basic state convection and the solid body rotation results are 

8 . 8 8  I I I t l l l l  i I I I l t l l l  I t ~ I I l t l l  I t I ~ l l l l J  

8.84 

p 8.8o 

8.76 

8.72 
I I 1111111 I I I t1111j I I llTllll I i titlll 

i0 i00 i000 IO, O(X) 100,0(30 

Xo =roE' l l3  

F i g .  3 .  The  c o n s t a n t  P = RE~ verses  the  parameter  xo = roE-~. Conduct-  
ing s ide w a l l .  )t = oße-½ = 1 . 0 ;  aspect  ratio ~, = 1 .0 .  

T A B L E  I 

~ =  a/h 

1.0 2.0 3 .0  10.0 

0.0 8 .6959 8 .6959 8 .6959 8 .6959 
0.1 8 .625 8.627 8.629 8 .632 

0.25 8.637 8.651 8.655 8.658 
0.50 8.670 8.707 8.717 8.758 
t .00 8.710 8.744 8.767 8.950 

The constant P for a conducting side wall; x0 = 2.0  x 105 
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obtained. The eigenvalue calculations are accurate to :h0.00! as 
shown in [17], although this does not include the fact that  errors 
are introduced in approximating the basic state by a polynomial 
expansion. 

The parameter A is the ratio of convective to conductive heat 
transfer in the interior regions of the basic state. As A increases 
from 0.1 to 1.0, the value of P also increases. However, the effect is 
very small. It  is noted that  the critical Rayleigh number can be 
less for ~ small but nonzero than it is for A -- 0. Consider for ex- 
ample an aspect ratio y = 1.0. For no basic state convection 
(2 = 0.0) the value of P is 8.6959 at all aspect ratlos. We in- 
vestigated the range 0 ~< A ~< 0.1 to determine the minimum value 
of P and at what value of A it would occur. For all values of ~ be- 
tween 10 -2 and 10 -6, P ---- 8.624 and this was the minimum value. 
The constant P does not start rising back to its value at ~ ---- 0 
until 2 = 10 -7 at which point ~ = 8.642. From the remarks and 
from Table 1 it is seen that  there is little effect of basie state con- 
vection on the critical Rayleigh number for A ~< 1.0. The very slight 
depression in P for A =# 0 compared to A = 0 may be caused by 
the approximation to the basic state; even if the depression is real, 
it would be difficult to observe experimentally. For ~l > 1.0, the 
effect of basic state convection is to stabilize the layer compared to 
,~ = 0 (solid body rotation basic state). This can be seen in Fig. 4 
where P is shown as a funetion of ~l for a eondueting side wall and 
various aspect ratios. This can be explained in the following manner. 

1 4 , 0  , 

lò.0 1 
t 12.o 

P 11o 

lo.o 

9D 

8D 
00 

i t i i a i J i i L 

¥ =õ.0 
. . . . .  ~':ao / 
_ m  Y=l.O / t  

I I I I f [ I [ I I 

1D 2D 5.0 4.0 5.0 6.0 7.0 8D 90 10.0 
X: o-/~E -1/2 

Fig .  4. T h e  c o n s t a n t  P = RE* v e r s e s  t h e  p a r a m e t e r  ~ = aß«-~ a t  v a r i o u s  

a s p e c t  r a t i o s  y. C o n d u c f i n g  s ide  wal l .  
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In the basic state the fluid spitals radially outward near the top 
horizontal surface, down near the side wall, radially inward near 
the bottom surface, and up through the interior of the cylinder as 
shown in Fig. 1. This latter flow moves warm fluid upward and 
decreases the vertical distance over which a substantial vertical 
temperature gradient exists. An indication of this is given in Fig. 2. 
The result of decreasing the characteristic vertical distance is to 
stabilize the fluid to gravitational ~nstabilities. 

T A B L E  I I  

7 = a [h  

1.0 2 .0  3.0 101 

O. 1 8 .625 8 .630 8 .636 8.55 
0.25 8 .637 8 .664 8.661 8.28 

0.50 8 .682 8 .750 8 .684 8.77 
1.00 8 .820 9.0182 8 .860 8.32 

T h e  c o n s t a n t  P fo r  a n  i n s u l a t e d  s ide  wa l l ;  xo = 2.0 × 10 5 

1 Resu l t s  fo r  (Ay) > 1.0 a re  of q u e s t i o n a b l e  va lue .  

2 A p p a r e n t l y  p i c k e d  u p  s e c o n d  e igenva lue .  

Results for an insulated side wall are presented in Table 2 for 
~ 1.0 and aspect ratio 7 = I, 2, 3 and 10. Several of these values, 

particularly the last column, are of questionable quantitative sig- 
nificance since they violate the restriction 2y <~ 0(1) which must be 
satisfied in order to ensure reasonable accuracy for the basic state 
temperature profile represented by the polynomial expansion. For  

~< 3.0, the results predicted for an insulated side wall do not differ 
greatly from those predicted for a conducting side wall. Although 
the results for a larger aspect ratio (y = 10.0) are less accurate, 
they indicate that  the basic state convection may have a desta- 
bilizing effect, that is the critical Rayleigh number is less than that  
which is predicted by an analysis of solid body rotation in a radially 
infinite container (P = 8.6959). This destabilization could occur 
through a distortion of the basic state temperatüre profile near the 
cylinder side wall. However, it should be noted that  the difference 
between the calculated values of P and the value obtained when 
basic state convection is neglected (iP = 8.6959) is much less than 
the 30% observed by Rossby E20]. Thus eren though the range of 
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parameters treated in this paper does not include the conditions at 
which Rossby worked, it would seem that the lowering of the critical 
Rayleigh number observed by  Rossby eannot be explained by  a 
distortion of the basic state temperature profile via conveetion. 

§ 5. Dis turbance velocity profiles 
The values of the expansion coefficients w~,j were determined to 
within 0.01% using the ealculated P and inverse iteration. The dis- 
turbance velocities at the point of ineeption are thus known from 
(29). The disturbance flow pattern is a very large number of axially 
symmetric ring cells, the widths of which are approximately the 
same as those found for instabilities in solid body rotation. The 
ring eells are superimposed on the basic stare conveetion pattern. 
The eharaeteristies of these ring cells can be described by  consider- 
ing only the vertical disturbance veloeity w. The maximum value 
for each cell oceurs on a horizontal plane midway between the top 
and bot tom of the cylinder, i.e., z = 0.5 and at the boundary be- 
tween adjacent eells. These maxima are plotted verses radial po- 
sition for a conducting side wall in Fig. 5 and an insulated side 
wall in Fig. 6. In both cases the parameter 2 = 0.1 and the aspect 
ratio y = 1.0. The seale on the ordinate is arbitrary since the 
problem is linear. The important feature is that  the disturbance 
velocity at the point of instability is much greater near the outer 
edge of the cylindrical container than near the eenter. This should 
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Fig. 5. M a x i m u m  axial  veloci ty  in a cell verses radial  posit ion.  Conduct ing  
side wall. 2 = aße-~ = 0.1 ; aspec t  rat io ~ = 1.0 
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Fig .  6. M a x i m u m  a x i a l  v e l o c i t y  in  a cell  v e r s e s  r a d i a l  p o s i t i o n .  I n s u l a t e d  

s ide  wal l .  ~ = aße-~ = 0.1 ; a s p e c t  r a t i o  y ---- 1.0. 

be contrasted with an analysis of stability of a fluid in solid body 
rotation where it is predicted that the magnitude of the disturbance 
veloeity is the same in  each cell. If these disturbance velocities are 
taken to be an adequate indication of what would be observed in a 
rotating cylinder at or slightly above the critical Rayleigh number, 
the instability should set in at the outer edge of the container. 
This seems to be in agreement with the observations of Kosch- 
mieder [12, 13, 14]. 

§ 6. Conclusions 

When 2 < 1.0, the critical Rayleigh number differs little from that 
predicted assuming that  the fluid is in solid body rotation. For 

> 1.0, the fluid is stabilized by the basic state convection. The 
disturbance velocities are significantly influenced by the basic state 
convection in all cases. The magnitude of the disturbance velocity 
is rauch greater near the outer edge of the cylinder than near the 
center. 
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