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Abstract. The non self-similar boundary value problem of ground water movement due 
to arbitrary changes in water level is solved. The non self-similar solutions are generated 
from known similarity solutions using numerical methods. 

Nomenclature 

K permeability of the aquifer 
h height of  water level above the impermeable surface 
V void ratio 
x space coordinate 
t time 

} non-dimensional variables 

L characteristic length 
f dependent variable, defined in equation (5) 
q flow through a unit width, defined in equation (23a) 

Greek letters 

~" similarity variable 
r time coordinate in non self-similar description 

Subscripts 

n refers to the value of the function at time ~- 

Superscripts 

u is the number of the iteration 

Introduction 

The problem of ground water movement due to an arbitrary change in water 
level is considered in this paper. The boundary-value problem that results is 
non self-similar [3], and therefore numerical methods must be applied to 
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Figure 1. Ground water flow 

obtain the solution. A scheme that has been successfully applied to boundary 
layer theory [4], is used here. 

The equation governing the ground water movement which uses the 
Dupuit-Forchheimer idealization [ 1 ] can be written as: 

K ~ x  b-~-' (1) 

where K is the permeability of the homogeneous and isotropic aquifer, V is 
the void ratio, h is the height of the water table above the impermeable 
surface, x is the space coordinate and t is time. It is assumed that all the flow 
takes place below the water table and that the aquifer rests upon an imper- 
meable horizontal bed (Figure 1). The auxiliary conditions for the prob- 
lem can be written as: 

h(x, O) = ho, 

h ( x ~ ° ° , 0  = ho, 
and 

h(0, t) = H(t),  t > 0 

where H(t)  is an arbitrary variation of the water level at x = 0. 

(2a) 

(2b) 

(2c) 

Transformation of the differential equations 

The governing differential equation derived in the preceding section can be 
written in a non-dimensional form as follows, by introducing: 

x Khot  H( t ) .  h (£ , t )  - h ( x , t )  
Y~ = - ~ ;  -{= L---5-; (J(t) = ho ' ho ' 



where L is the characteristic length. 
Equations (1) and (2) then become: 

o(,o,) o, 

h(E, O) = 1, 
h-(~,7) = 1, 

and 
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(3) 

(4a) 

(4b) 

(8a) 

(8b) 
Equations transformed into the form of equation (7) have been widely used 
in the boundary layer theory [4]. There are three advantages over other 
possible forms. The primary advantage is that the starting process is very 
simple. At r = 0 all r-dependency is removed, leaving only an ordinary 
differential equation to be solved. The second important advantage is that 

subject to the boundary conditions: 

;(O, r) = ~(r), 

1"(oo, r)  = f ( %  o) = 1. 

h(0,7) = /3(7). (4c) 

Equation (4c) prevents invariance under a one-parameter transformation 
group that would have led to a similarity solution [3]. However, it will be 
shown that equations (3) and (4) can be transformed to a special form which 
is very convenient for solution by the finite difference method. The necessary 
transformation has to be derived by a procedure similar to the derivation of a 
similarity transformation. The key step is to ignore the source of the non- 
similarity which, for this example, is equation (4c). A similarity analysis can 
then be applied to the problem which excludes the non-similar term. For the 
remaining problem description under consideration, such an analysis would 
result in the similarity transformation: 

= ~ ;  f(~) = ~(~, 7). (5) 

The transformation needed for the complete problem (including the source of 
non-similarity) can then be written as follows: 

r = T, ~" = ~ ,  f(~',z) = h(E,t). (6) 

In other words, the number of independent variables is not decreased. 
Equations (3) and (4) are now transformed to the following form: 

fOzf+ [ O f ~ z -  1--1 +1  0f Of 
o~ ~ ~o~]  ~ - =  ~o-7' (7) 
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most of the variation of the penetration depth has been removed. This 
property greatly simplifies the problem of solving the ordinary differential 
equations, as will be seen later. The third advantage of this equation is that 
the r-term is expressed explicitly in a sense that it represents a 'correction 
factor' to the similar solution. 

Numerical solutions 

Equations (7) and (8) will now be solved by the finite difference method. As 
a first step, derivatives in the r-direction are replaced by finite differences. 
For example, 

~ f  = f . - f ~ - I  
~r Ar (9) 

The function,y, and its ~ are replaced by averages in the following manner: 

½ [{f.~' + (f~)~ + ½ ~(f~)} 

+ {fn-1 fn'-I "]- ( f ~ - l )  2 "~ ~ ( f n - l ) } ]  

( o-ro q, 
= m - i n "  Ar ] (10) 

where fn refers to f a t  time r, andfn-1 to time t - -At .  
Rewriting equation (11) after some rearrangement, we obtain: 

f n f  ; '+  (fn) = + ½[f" -- a n - l n f n  = R n - i ,  (1 la) 

where 

and 

2rn -112 Tn -'}" Tn - 1 
an-l/2 - Ar Ar (1 lb) 

R.-i = -~.-lnf.-i -f.-If~'-~ 
- (f~-,)~ - ½ f (f'-l). (i ic) 

The right-hand side of equation ( l l a )  is known in the recursion scheme 
above. By letting n = 0, 1 , 2 , . . . ,  etc., in equation ( l la ) ,  a sequence of 
equations for the solution offo , f l  ,f2 , f 3 , .  • • ,  etc., and their derivatives can 
be obtained. 

Equation (1 la) is nonlinear. However, it can be linearized by the method 
of quasi-linearization [5], and can therefore be written as 

F ( f n , f n , f n ' , f  ) = 0. (12) 

For the vth iteration, we can write equation (12) as 

F(f~, (f~)~, (f;,)c~, ~) = 0. (13) 



For the (v + 1)th iteration, we have 

F{f<. ~+ 1), (f')(~+ , ,  (f")(~ + ,>, ~-} 
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/OFI(~> 
+ W ' /  {(f'~)("*')--(f')(~>} 

(OF~ "> 
+ [of . /  { ( f " ) ( ~ + ' ) - ( f " ) ( ~ ) } + "  = 0. (14) 

Substituting equation (1 la) into (14), the following can be obtained: 

(v) (v+ 1) " ( f . ' ) { ( f . '  ) -(.f(.~))"} 

+ (f~))"((f.(~÷'> -;.%} 
+ 2 (f(nV)) ' {(fn (v+'))'  --  (f~v)),} 

+ (~')  {( f .~+ ' ) '  _ ( f .% '}  

- -  (an_l /a  ){(f(n v+ ' ))  - -  (fn(v))} = 0. (15) 

Rearranging equation (15), 

Ag){ f (nv+*)}  " + A ( V ) { f ( v + ' > }  ' + A g ) { f  (v+' )}  = s (v), (16) 
where 

A i  v) = 2(f(v)) '  + ½~', 

Ag> = ( f . % "  - ~._,/= 

Rn-1 - -  [ ( f ( V ) ) ' ]  2 --½~-(fn(V))~' ={_ O~fn(V)- 0/ ._112 

and 
s(V) = 2 R n - 1  - -  ½~(f(v)) ,  + ^, r(v) 

~.- 112 J n • 

The superscript 'v' represents the number of iterations. By assuming a first 
approximation, equation (I 6) along with the boundary conditions 

fn (v+l) (r ,O)  = 3(r);  f (nv+l)(r ,  °°) = 1 (17) 

can be solved, and the next iteration determined. This process would con- 
tinue until the solution converges. The solution at time r is first approxi- 
mated by  the solution at time r -- Ar. 

Equation (16), subject to the boundary conditions (17), form a two-point 
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boundary value problem. The method of superposition [5] used to solve the 
problem is described in Appendix A. 

Numerical examples 

Case (1} 

Consider the variation of/~(z), (Figure 2), 

~ ( r )  = 1 + b ,  

for  T ~ TO, 

for r > to. 
(18) 

For this case, it can be expected that the nonsimilar solution will approach 
the similarity solution at large times r. 

Case I 

C~se 2 

1.0 

4 r  6 r  81r IOr 

Figure 2. Variation of • (r) versus r 

At ~" = 0, equation (17) becomes 

i f , , +  (f,)2 + ½~f, = 0. (19) 

An inspection of the initial conditions shows that the solution is 

fo (0, ~') = 1, (20) 

which satisfies equation (19). Also, 

f ;  = f ; '  = O. (21) 

Putting n = 1 in equation (16) and using equations (20) the 're cursion scheme' 
can be initiated. 

For the numerical solution, ro = 0.5; b = 0.5, --f '(r,  0) is plotted against 
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-o.s 

Figure 3. Plot of --f ' (r ,  0) versus r 

r (Figure 3). It canbe seen that the asymptotic limit is reached when r "~ 1100 
with 

! 
- - f  ( r , 0 )  = 0.2154. For ro = 0.5, b = 1.0 

~'nm "~ 1100 and - - f ' ( r , 0 )  = 0.3597. 

Case 2 

As a second example consider the variation 

For b = 0.1 and ro = 5, the results for the non-similar problem are plotted in 
Figure 3. 

The flow of ground water through a unit width at a distance x from the 
origin can be expressed as 

Oh 
q(x,  t) = Kh(x,  t) -~x" (23a) 

Evaluating the flow at x = 0 and rewriting equation (23a) in a dimensionless 
form, 

q(0,  r) _ ~ r ) f , ( 0  ' r). (23b) 
~o/7 

The flow can now be evaluated by using the expressions for/3(r), as defined 
in equations (18) or (22), in conjunction with Figure 3. 
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Conclusions 

Non-similar solutions have been generated for the non-invariant  boundary  

value p rob lem using known  self-similar solutions.  The non-similar solutions 

asymptot ica l ly  approach similar solutions for large values o f  t ime.  

F r o m  an engineering v iewpoint ,  the  ground water  f low for arbi t rary 

changes in the water  level has been determined.  
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Appendix A 

Consider an equation of the form 

Aof" + A l f '  + A 2 f  --- 0, (A.1) 

where Ao, A 1 and A 2 are known coefficients. The two-point boundary conditions 
a r e  

f(0) = b; f(oo) = 1. (A.2) 

To transform the two-point boundary value problem to an initial value problem, assume 

f = f ,  + t~f2, (A.3) 

where ~ is a constant to be determined. 
Substituting equation (A.3) into (A.1) two equations are obtained. 

(1) A o f ; ' + A l f ;  +A2fl  = 0 (A.4) 

with 

f l  (0) = b 

and initial slope 

f ;(0)  = 0. (A.5) 

(2) Aof  ~' + A,f~ + A2 f  2 = 0 (A.6) 

with 

A (0) = 0 



and slope 

f~ (0) = 1 

Therefore 

f ' (O) = f~(O) + urn(O) = u. 

To determine tt, the boundary condition at ~ is utilized: 

L (~) + ~L (~) = 1, 

1 - f l  (~) 

f~ (~) and f2 (~) can be obtained by solving equation (A.4) through (A.7). 
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(A.7) 

(A.8) 

(A.9) 

(A.10) 


