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A b s t r a c t .  The problem of  natural convect ion flow and heat transfer induced by a vertically oriented 
cone with constant surface temperature is treated in this paper. The cone is assumed to have transverse 
wavy configurations. The restflting boundary layer flow is described by two coupled parabolic partial 
differential equations. These  equations are solved numerically using the Kel ler-box method for a 
sinusoidal wavy cone. The effect  o f  sinusoidal waves on the local Nusselt  number  is determined and 
presented on graphs. The local Nusselt  number  is found to be lower  than that o f  the corresponding 
flat cone. 

Nomenclature 

a = ampli tude of  the wavy surface of  the cone Greek symbols 
f = reduced stream function, Eq. (23) p = density 
9 = acceleration due to gravity u = kinematic viscosity 
Gr = Grashof  number  based on l /3 = bulk modulus 
h = reduced temperature function, Eq. (23) 0 = dimensionless  temperature 
k = heat conductivity r / = pseudo-similari ty variable, Eq. (23) 
l = half-wavelength,  or length scale, a -- function associated with the 

of  the wavy surface of  the cone wavy surface of  the cone 
n = unit vector  normal to the wavy (I, = cone half  angle 

surface of  the cone ~b = stream function 
Nu = local Nusselt  number  
p = pressure Subscripts 
Pr = Prandtl number  x = differentiation with respect  to x 
q = heat flux ec  = condit ion at infinity in the y-direct ion 
r = local radius of  the flat cone w = condition at the wall 
T = temperature 
u, v = velocity component  in x-  and y-direct ions Superscripts 
uc = reference velocity - - dimensional  variables 
x, y = rectangular coordinates = transformed variables, Eq. (9), 
Y = boundary layer variable, Eq. (15) or boundary layer variables, Eq. (15) 

' = differentiation with respect  to r / 
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1. Introduction 

Convection problems associated with irregular surfaces have received less atten- 
tion than the cases with regular surfaces. Surfaces are sometimes roughened to 
disturb the flow and alter the rate of heat transfer on such surfaces. Thus, it is clear 
that convection problems associated with wavy surfaces occur frequently in prac- 
tice. Typical applications are flat-plate solar collectors and flat-plate condensers in 
refrigerators. Among the few papers to date which study the effects of roughness 
elements on natural convection of a viscous fluid, we mention those of Yao [1], 
and Moulic and Yao [2], while for a fluid-saturated porous medium we mention 
the recent papers by Rees and Pop [3, 4]. 

In the present paper, we consider the effects of a transverse wavy surface on 
the basic boundary layer flow induced by an isothermal vertical cone for which 
the resulting flow remains two-dimensional. The Grashof number, Gr, is based on 
the wavelength of the surface waves and it is assumed to be large in order that the 
boundary layer approximation may be invoked. It is found that the non-dimensional 
amplitude of the waves, a, must be within O(Gr -U4) range in order to balance 
direct and indirect buoyancy forces. The resulting boundary layer equations cannot 
be transformed to ordinary differential equations by means of a similarity transfor- 
mation. However, the form of the usual similarity transformation can be used to 
transform the partial differential equations into a form which can be conveniently 
solved numerically using the Keller-box method [5]. The analysis is carried out for 
the natural convection along a vertical cone with arbitrary surface waves. Then, a 
numerical solution is presented for a sinusoidal wavy cone in order to show the 
effects of roughness on natural convection. The distribution of the local Nusselt 
number is determined and illustrated in figures. 

2. Analysis 

The physical model is a vertical cone with a transversal wavy surface at a constant 
wall temperature, Tw, which is higher than the ambient temperature, To~. The 
geometry and coordinate system are illustrated in Fig. 1. The wavy surfaces are 
described by 

~ = 6-(~) = ~sin (~r~)  , (1) 

where & is the amplitude of the wavy surface and I is the characteristic length scale 
associated with the waves. Overbars denote dimensional quantities. The flow is 
considered to be steady, laminar, and the Boussinesq approximation is employed. 
Another assumption is that the cone angles under consideration are large so that the 
transverse curvature effects are negligible. This assumption has been extensively 
analyzed in the past, see Hering and Grosh [6], and Kuiken [7]. It means that the 
distance to a point in the boundary layer from the cone axis is approximated by the 
local radius of the flat cone (~ = 0). 
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Fig. 1. Physical model and coordinate system. 

Under these assumptions, the equations describing the complete description of 
the convective flow over the wavy cone can be written in non-dimensional form 
as 

o(,-,~) a(,-v) 
- -  + - -  - o ,  (2)  

Ox cOy 

Ou cOu Op 1 
U~Z q- Vgy - -  cOX -'/- ~ r r  v 2 ~  -Jr- {9, (3)  

Ov Ov cOp 1 
u--~z + V~-y - cOy + ~ V2v - tan ¢0, (4) 

O0 c90 1 1 
U-~77_ - -F V _--~_ - -  V 2 0 .  (5)  

Pr uy  
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Here the dimensionless variables are related to their dimensional variables by 

~ ~ ~(~) 
X ~ -- 7 l '  Y=  ' r = l '  or= l ' 

~ ~ T - T o ~  
u = - - ,  v = - - ,  p =  Pu 2 ,  O -  Uc Uc Tw - To~ ' 

where f is the local radius of the flat cone (g = 0) and 

~2 02 02 gfl(Tw - Tec)l 3 cos ¢ 
- -  + - -  G r  = 

OX 2 Oy 2 '  u2 

u¢ = I g f l ( T ~  - T ~ ) l  cos ¢ .  

It should be remarked that for the present problem we used the operator V 2 
instead of 

0 2 1 0 0 2 

Oy2 + -  + - - .  - -  r - ~ y  Ox 2 

The neglect of the second term does not seriously affect solution, apart from a 
small region near the vertex of the cone. 

The boundary conditions are 

y = c r ( x )  : u = v = O ;  0 = 1 ;  (6) 

y = o c  • u = v = O = O ;  p = p ~ .  (7) 

Next, defining the stream function, ~, such that 

1 0 ~  1 & b  
u - v - (8 )  

r Oy ' r Ox ' 

where r (x )  = x sin ¢ and a transformation of the independent variables given 
by 

~ = x ,  9 = y -  ~ ( x ) .  

Equations (3)-(5) become 

1 f 0 ¢  02¢ 0¢ 02¢ 
r 2~09 Ox09 Ox 092 

(9) 

rx ( & b )  2 ] Op Op 1 1 

r \09; ~ =-Ox+~XN+~rr ; 
03 ~ 03~, 

× (1 + ~ ) - 5 j  + o~o~ 

r 09 Ox09 

03 ~ 02~ 
(7" x - -  Ox09 ~ o'x~ 092 

o%) } 
- -  + o ,  (10) 
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1 {O~ 02~ (O~)a 0~ 02~ 
r "2 0~10X 2 0.xx ~ 02C 02C0~1 

{ 0~ 02~b 
+ 0.5 Oz 092 o~)o~o~)]  T ~ o ~ )  0 . ~ \ o ~ ) ; j  

Op 1 1[ 03~ 03 ~ 03~ 
0.:c 0 - ~ ]  "}- 30.2 0270~12 

,, 02~ 0~ 02~ 

( o,) 0.2~03~ 03~ 2r~ O~ cr~-O--~ -0.5(1+ ~,~+OzOf/---- ~ +  r2 ~ -  

(o2v; 
- 2r=~ \ 0~2 - 20.5 oxo--~ - 

0¢ 0.202~) 0.zx-~y + z-~y2 j ] +tan¢O, (II) 

1{0~ o0 0~a0} 
r &) Ox Ox &) 

1 1 ~(1 + 2- 020 020 
Pr ~ [ 0.z)-~ + Oz---5 - 2az OxO-----~ 

The boundary conditions, equations (6) and (7), become 

(12) 

o~ 
~0=o-  ~=o; -o; o=1; (13) &) 

o~ o~ 
9 = o o  " - -  =0;  - - = 0 ;  0 = 0 ;  p = p ~ .  (14) 

09 Ox 

If we now introduce the boundary layer variables, 

~ =  11 ~; Y=GrU4~), (15) 
Gra 

and taking the limit as Gr approaches to infinity, i.e., we apply the boundary layer 
approximation, equations (10)-(12) become 

~ ~oxo---~-o-7oY~ ~ b-~ 

1 / . 0 2 ;  1 0.2, 03~ - oxOP+Gr/"ax~-~+ (1+ x,Oy3+O, (16) 
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Op 
= Gr /4  x(1 + OY - ~ + tan ¢0, (17) 

1{0@ 00 0@ O0} 1 (1+o.~)020 (18) 
r OY Ox Ox - ~  =Prr OY 2" 

Strictly speaking, this asymptotic analysis is valid only within the framework 
of the boundary layer scalings, r = O(Gr -I/4) and a = O(Gr -1/4) as Gr + ec, 
which resulted from (9) and (15). 

In order to eliminate the term Grl/4crxOp/OY, we multiply equation (17) by 
-crx and we add the resulting equation to equation (16), which gives 

r 2 OY OxOY Ox OY 2 

Op + 1 (1 + _2,203@ 
= -0---x r °x) ~ + (1 - crxtan¢)0. 

The lowest-order pressure gradient along the x-direction is determined from the 
inviscid solution and can be seen to give Op/Ox = 0. Thus, we finally get 

r 2~ OY OxOY Ox OY 2 + l+a-------~x \ O Y ]  - r  \ O Y ]  J 

1 (1 + _2, 03@ 1 - a~ tan ¢ 
= r ° x ) ~  -5 + 1 + cr~ 0, (19) 

1 { 0@ 00 0@ 00 } 1 (1 +o-2) 020 (20) 
r ~ Ox Ox OY = ~  OY 2 '  

with the boundary conditions 

o¢ 
Y = 0  • ~ = 0 ;  o y - O ;  0 = 1 ;  (21) 

Y = oo • OY = 0 ;  0 = 0 .  (22) 

It is important to notice that we have restricted our attention in this paper to 
values of x, which take O (1) values as Gr approaches infinity. For this range of 
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values of x, the boundary layer thickness is O(Gr-1/4), which is much smaller 
than the O(1 ) length scale associated with the transverse waves placed on the flat 
surface of the cone. 

To reduce the equations to a form suitable for numerical solution, let us introduce 
the transformation 

Y 
7 - x l /4 ,  ~ =  xU4rf(z ,7) ,  O= h(x,7), r(x) = xsin95. (23) 

Equations (19) and (20) then become 

7 1 f a  1 - ~rx tan 95 h ( l + ~ ) y " + ~ f f ' - ~  + ~+~; 

X ~xO-xx } 

1 ( l + c r Z ) h , + 7  ~ftOh ~ z }  
Pr -~ fh '  = x ( ox - h' , (25) 

and the boundary conditions, equations (21) and (22), now reduce to 

7 = 0  " f = 0 ;  f ' = 0 ;  h = l ;  

7 = o c  • f ' = 0 ;  h = 0 .  

The physical quantity of interest is the local Nusselt number defined as 

Nu - 2qw 
k(Tw -To~) ' 

(26) 

(27) 

(28) 

where 

q~ = - k n .  V T  

and the vector 

n ~ 

v/1 +4  
is the unit vector normal to the wavy surface of the cone. Thus, we have 

q~o 
_ ~rx OT 1 OT } 

= - ~  f l  + ~ o---i + ~ ~ ~ = ~  

k(Tw - T~) [ ~x 00 
= 1 '[ v / l + ~  ox + 

1 oo} 
(29) 
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Since 

0 
Ox 

one gets 

qw 

0 0 
- 02  ax~--~, 

k(Tw - T~) { ax O0 00}  
1 i l + a  ~ 0:5+ 1 ~ - - ~ 2 0 - ~  9=o 

l ~ 9=0'  

where 00/0:? = 0 at ~) = O. Using boundary layer variables, we get 

qw = l ~ n=o " 

Then, the local Nusselt number defined by equation (28) becomes 

Nu _X3/4 ~ Oh 
- 

Grl /4  
(32) 

3. Results  and discussion 

Equations (24) and (25), subject to the boundary conditions (26) and (27), have 
been solved numerically using an implicit finite-difference scheme developed by 
Keller and Cebeci [5]. Since a good description of this method and its application to 
boundary layer flow problems are given in [8-10], it will not be presented here. For 
the problem under consideration, i.e., a(x) = a sin 7rx, the differential equations 
for the solution of the starting computation at x = 0 can be obtained by putting 
x = 0 in equations (24) and (25), which become 

7 f f,, 1 f,2 (1 + a27r2)f ''' + -~ - ~ + 1 - aTr tan ¢5 
1 + a27r 2 

h = O, (33) 

7 1 (1 + a27r2)h '' + fh' = 0 (34)  

subject to the boundary conditions 

f ( 0 ) = f ' ( 0 ) = 0 ;  h ( O ) = l ,  (35) 

f'(cxz) = h ( ~ )  = O, (36) 

where primes denote differentiation with respect to 7. 
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Solutions are generated with a variable step-size in the rl-direction 

AT10 = 0.01; r/j : ?]j-1 * m ;  m = 1.01. 

The edge of the boundary layer is reached when both values of f~ and h approach 
to zero asymptotically (i.e., not only their values but also their derivatives approach 
zero). For other values of x,  a constant step-size Ax  of 0.05 is used. 

The variation of the local Nusselt number, Nu, with x is presented in Figs 2 to 
5 for the values of the Prandtl number Pr = 0.72 (air) and 6.7 (water), cone apex 
half-angle ~5 = 10 °, 20 ° and 40 ° and the amplitude of the sinusoidal wave surfaces 
a --- 0 (flat cone), 0.15 and 0.20, respectively. The solutions are presented for x 
values from 0 to 4, which correspond to two complete cycles of the sinusoidal 
wave surfaces, as is illustrated in Fig. 1. 

Figures 2 and 3 show the effect of the amplitude e on the local Nusselt number 
for two values of the Prandtl number Pr = 0.72 and 6.7, respectively. It is seen 
that in general the value of the local Nusselt number is lower for a wavy cone 
(a ¢ 0) than that of the corresponding flat cone (a = 0); this may be explained as 
follows. When the heated surface of the cone is not plane, the component of the 
buoyancy force along the cone is reduced by a factor (1 - ~7~ tan ~) / (1  + cry), as 
shown in equation (24), from its maximum value of the flat cone. Consequently, the 
boundary layer thickness is locally thicker, and hence local rates of heat transfer at 
the cone surface are reduced. It is also seen that the variation of the local Nusselt 
number is periodic in the direction of x and increases with x. Further, we notice 
that the change in the local Nusselt number is more pronounced for larger values 
of the amplitude a. 

The effect of the cone half-angle ~5 is shown in Figs 4 and 5 for a = 0.15 and 
for the same values of Pr. Inspection of these figures shows that the effect of ~5 
on the local Nusselt number distribution alternates in the direction of x. Also, as 
expected the values of the local Nusselt number are higher for larger values of Pr, 
as is seen from Figs 2-5. 

4. Conclusions 

The non-similar boundary layer analysis of steady laminar free convection along a 
vertical wavy cone is studied numerically. Numerical results have been obtained for 
a sinusoidal wavy surface of the cone. This is a model problem for the investigation 
of heat transfer from a roughened surface in order to understand heat transfer 
enhancement. 

Based on this investigation of the laminar boundary layer behavior, the follow- 
ing conclusions can be drawn: 

- The local Nusselt number varies periodically in the direction of x and increases 
with x. 
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- The  local  Nusse l t  n u m b e r  is smaller  for  a w a v y  cone  (a ~ O) than that 

co r r e spond ing  to a flat cone  (a = 0). 

- The  changes  o f  the local  Nusse l t  n u m b e r  are m o r e  p r o n o u n c e d  for  larger 

values  o f  the ampl i tude  o f  the w a v y  surfaces  o f  the cone.  

- The  values  o f  the local  Nusse l t  n u m b e r  are h igher  for  larger values  o f  the 

Prandtl  number .  
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