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S u t n n a a r y  

By use of approximations based on physical reasoning radar cross-section 
results for bodies of revolution are found. In  the Rayleigh region (wavelength 
large with respect to object dimensions) approximate solutions are found. 
Examples given include a finite cone, a lens, an ellipticogive,.a spindle and 
a finite cylinder. In  the physical optics region (wavelength very small with 
respect to all radii of curvature) Kirchhoff theory and also geometric optics 
can be used. When the body dimensions are only moderately large with 
respect to the wavelength, Fock or Franz theory can be applied, and examples 
of the circular and elliptic cylinder are presented. In  the region where some 
dimensions of the body are large with respect to the wavelength and other 
dimensions are small with respect to the wavelength, special techniques are 
used. One example, the finite cone, is solved by  appropriate use of the wedge- 
like fields locally at  the base. Another example is the use of traveling wave 
theory for obtaining approximate solutions for the prolate spheroid and the 
ogive. Other results are obtained for cones the base perimeter of which is of 
the order of a wavelength by using known results for rings ot the same 
perimeter. 

w 1. Introd,tction. It is the intent in this paper to use different 
mathematical techniques to obtain alJproximate results for the far 
zone scattering o5 plane electromagnetic waves by perfectly con- 
ducting bodies of revolution for all ratios of body dimension to 
wavelength. In many places speculation based on physical reasoning 
has replaced mathematicalrigour. We shall first discuss the Rayleigh 
region, then the physical optics region and then the resonance region. 

w 2. Rayleigh cross-section o/ bodies o/ revolution. Rayleigh 

*) This paper with minor revision is as the author presented it  at the URS~[ Xllth 
General Assembly in Boulder, Colorado August 22-Sept~ember 5, 1957. 
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scattering 1) describes the scattering of electromagnetic radiation 
by a body whose dimensions are much smaller than the wavelength 
of the radiation. Thus the Rayleigh limit describes the scattered 
field, due to an incident plane wave, approximated at a large 
distance from the body by the field of radiating electric and magnetic 
dipoles located at the scatterer (the magnetic dipole contribution 
is comparable to that of the electric dipole only for a perfect 
conductor). To evaluate the electric (magnetic) dipole moment, the 
static electric (magnetic) field induced on the body by an applied 
constant field must be known. In other words, the electrodynamic 
boundary-value problem has been reduced to a corresponding static 
problem. 

Although the solution of the Laplace equation is in principle 
simpler than the solution of the Maxwell equations, there are very 
few geometrical cases for which even the former is manageable. The 
question, therefore, arises whether any approximate information 
can be obtained as to the R'~yleigh cross-section when a solution 
of the Laplace equation is not available. That this should be possible 
is heuristically plausible. When the wavelength is much longer than 
the dimensions of a body, one cannot discern details of the structure 
of the body: the observed effect depends more on the size of the 
body than on its shape. Thus, ~knowledge of the size of the body, 
modified by a rough indication of shape, should suffice for a 
description of the" body in finding the Rayleigh cross-section. It  
is the purpose of the present discussion to explore this possibility. 

As background, it might be helpful to bear in mind a couple of 
features of the Rayleigh approximation itself. The solution to an 
electromagnetic scattering problem can be expressed as a multipole 
expansion. The relative importance of terms in the expansion 
depends upon the distance of the observer from the scatterer (as 
well as on the dimensions of the body relative to the wavelength), 
so that a small error in describing the field in one region can result 
in completely misrepresenting the corresponding field elsewhere. 
For a scatterer much smaller than the wavelength, retaining only 
the dipole terms gives a good approximation to the far zone, though 
the field Jn the near zone may be entirely wrong. Specifying the 
dipole moments of the body does not determine the body uniquely 
(i.e. different bodies may have the same dipole moments). Thus the 
Rayleigh cross-section alone cannot identify the body fully. On the 
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other hand, the finer details of the structure of the body, which 
would be exhibited by the higher moments (and seriously affect t he  
cross-section at small wavelengths), do not affect the Rayleigh 
cross-section. 

For simplicity, consider the scatterer to be a body of revolution, 
make it a perfect conductor (this is a rather trivial limitation) and 
examine back-scattering of a plane wave incident along the axis 
of symmetry (there is then no polarization dependence). Thus, the 
direction of incidence will be denoted by z, the incident electric 
vector direction by x, the .incident magnetic vector direction'by y 
and the length of the body along the symmetry axis by I. The electric 
dipole moment p is given by 

p = f o u r  dS (2-1) 
s 

where co is the charge density, r the position vector and S the surface 
of the body. The boundary condition yields. 

a~ = eg"  n = eE, (2-2) 

where e----dielectric constant, n =-uni t  outward normal to the 
surface and E =  electric field strength. :Using cylindrical coordinates, 

dS = pV1 + (dp/dz) 2 dr dz, (2.3) 

where p is a funct ion of z but  not of ~, so tha t  
l ~Tr 

p = e dz p ~- dr Er. (2-4) 

0 o 

From .uniqueness and symmetry considerations we can write 

E = Z a.(z)cos he. (2-5) 
n = 0  

Then py  = O, Pz = 0 and 
1 "2rr 

o O  

cos r [Z a.(z) cos he] 
~ = 0  

o o 
l 

0 0 

(2-6) 
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Apart  from the factor al'(Z), the integral is just the volume V of t h e  
body. In  fact, the wh01edetermination.of .the electric dipole moment  
resolves itself into f:l~e determination of the 'factor  al(z) in 

E = al(Z) cos r (2-7) 

since the other terms in the series do not contribute. If the body is 
elongated along the axis of symmet ry  (i.e., if l >~ p), al'(Z) will be 
a slowly varying function of z and can be removed from the integral 
and replaced by  a mean  value (or actually by  an estimate of its 
value). To estimate a(z), we resort to an analogy with reflection 
from a plane. In the latter ease the kmplitude of the total field is 
twice that  of the incident field. T h u s  we choose a = 2E0 (phase 
differences in the incident field at various points on the body can 
be neglected) to obtain 

p = #,2~EoV. (2-8) 

The far-zone electric field at a p6int on the z-axis due to the electric 
dipole is 2) 

k2 e t~kr -~ t  

E = - -~r  ~x(~ • p) R (2-9) 

The form of the magnetic dipole far-zone field is the same as that  
for the electric dipole if the electric and magnetic fields are inter- 
6hanged 2). The symmetry  of the' problem insures that  the magnetic 
dipole is along the y-axis, just as the electric dipole is along the 
x-axis. Consequently, the far-zone fields due to the two dipoles have 
the same orientation and phase. If we again resort to a cylinder-like 
model for approximation (with the amplitude of the total field at the 
surface twice that  of the incident field), it is obvious from the 
complete symmetry  of occurrence of the electric and magnetic 
interactions that  the two contributions are equal. 

Altogether we have in the far zone on the z-axis 

k2 e~(kR-"$) 
E = $ E o V  - -  (2-10) 

~r R 

The back-scattering cross-section is given by 

IE "=4 
a=4zrR2 ~ o  -~ k4V~" (2-11) 
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This, then,  is the value of the cross-section to  b e , e ~ e d  for an 
elongated body of revolution*). As t h e  flatness of the scatterer 
increases, the approximation is expected to get worse; in fact an 
infinitely flat body (i.e. a disc) has zero  volume, bu t  a non-zero 
cross-section. To anticipate the discussion below, for prolate 
spheroids the error incurred in the cross:section varies from zero 
for extreme elongation to 13% for the sphere. 

Let  us now compare this pseudo-derivation in detail with the 
exact answer for the special case we do know, the spheroid 1). Let 
us define for convenience the quant i ty  

IEI 
F = kg--~0--#-. (2-12) 

F = I yields the magni tude of E given by (2-10). Modifying 
Rayleigh's notat ion slightly, 

~__ (__~_ 1 ) 
F =  + ,2 - L = 2: (2  - L )  ' 

where for a prolate spheroid 1) 

1 1 - - e  2 1 + e  
L =  l n - ~  

e z 2ea 1 - -  e 

(2-13) 

(2-14) 

with e = eccentricity; i.e. the semi-axes are a, a,  a ] ~ / 1  - -  e 9". For 
an elongated spheroid (e -+ 1), L -+ I and F -+ 1, checking the 
approximation.  

Next, let us inquire into the shape correction by  first examining 
its form for the spheroid. We already know the result for the prolate 
case; for the oblate spheroid 1) 

e* sin -1 e ~ , (2-15) 

where the semi-axes are now. a, a, a~/1 --  eZ. As these expressions 
are quite comphcated,  it is profitable to examine their  l imiting 

*) It  should be noted that for the acoustic case the treatme.nt would be .e.q~valent 
except that instead of the two compone.nts (electric and magnetic) there woulc! be ouly 
one, and thus the cross-section would be 

I- 
= _ _  k4Va. 

Appl. sol Res. B 7 
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values. Consider a sphere (e = 0): From (2-14) 

( !  ~ e ~ = 2 ( e + � 8 9  3 +  . . . ) ,  (2-16) 
l n \ l  - - e l  

1 
L = ~ [ 1 - - ( 1 - - e  ~ ) ( l + � 8 9  z +  . . . .  ) ] =  

1 
---- e--~-Il - -  1 + e " - -  � 8 9  + . . . . . .  ] - + ] ,  (2-17) 

s = [~ (2 - ~)3-~ = [ ~ .  ~]-~ = -~. (2-18) 

I t  is easily demonstrated that  F is monotonically decreasing as we 
progress from a sphere to an elongated prolate spheroid. Hence, it 
ranges from { to 1, being very nearly constant, of the form 1 + 
+ decaying term. 

Examine the disc limit (e -+ 1 for the oblate spheroid). Let 

e"= sin x. 

Then 

Let 

Then 

L = cos x csc 2 x (x csc x--cos x). 

y =  �89 x. 

L =.s in  y sec 2 y [(�89 --  y)sec y- -s in  y]. 

Expand near y = 0 (equivalent to e -+ 1) : 

L ~ y  - - y  - - y  = ~ 2 y 2 = - f y  1 ~ y , 

(2-19) 

(2-20) 

(2-21) 

(2-22) 

(2-23) 

1 1 
L(2 -- r )  (~/2) y(1 -- (4/~) y)(2 --  (~/2) y) 

1 (1 + 4 z~ y )  (2-24) ~ ,  - ~ y + ~  �9 

For small y, y m ~/1 - - # ;  if we call the semi-axes a, a, b, then y ~ b/a. 
Combine the irfformation about F .  In  the oblate case, F is again 

monotonically increasing toward the disc limit.The discussion for the 
prolate spheroid indicates that  we should split off from F a term 
unity, and that  the remaining term should decay as b/a --+ oo. Thus, 
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we w r i t e  

)] ~Y ~ - - - ~  y ~ l + - - ( 1 - - y ) ~ l + - - e - V . ( 2 - 2 S )  
~y ~y 

We now postulate that  for all spheroids (with semi-axes a, a, b) the 
shape correction factor is approximately 

1 
F = 1 + e-V, (2-25) 

:~y 

where y = b/a. Numerical comparison indicates that the approxi- 
mation is valid to within one percent. The Rayleigh cross-section of 
a spheroid for back-scattering along the axis of symmet ry  is 

~ = ~ k 4 w  1 + -~y  e - y  . (2-26) 

The cross-section of the spheroid depends on its volume and on a 
correction factor involving y = b/a." Except  for very flat oblate 
spheroids the shape correction factor can .be neglected. Where it is 
not neglected, the shape correction factor is a simple function of y, 
which is a measure of the elongation. 

The natural  extension of the discussion is to postulate that  for all 
bodies of revolution the Rayleigb cross-section for back-scattering 
along the axis of symmet ry  can be expressed as 

4 k4V9 " 1 + e-V (2-26) 

where y is a measure of the elongation (characteristic dimension 
along the axis of symmetry)/(characteristic dimension in the 
perpendicular direction). For elongated bodies the term in y drops 
out and there is no ambiguity. For flattened bodies the answer is 
sensitive to the choice of charcteristic dimensions, but  a good 
approximation should still be attainable. The ambiguity can be 
eliminated in a number oI cases by  imposing a restriction on the 
choice of characteristic dimensions: in the limit of extreme flatten- 
ing the cross-section must  tend to ' the value for the appropriate disc. 

I l l u s t r a t i o n  I: F i n i t e  cone .  Consider a right circular cone 
of altitude h and radius of base r. As h -+ 0, the  cross-section of the 
cone must go into the cross-section of a disc of radius r,  i.e., we 



FIG. 17. X ray micrograph of gold shadowed bull sperms. Total 
magnification appr. 2000 x. Exposure conditions as fig. 14. 
a. heavily shadowed, b. slightly shadowed, c. X-ray micrograph 
of untreated bull sperms. Total magnification appr. 2000 x. 



FIG. 18. X-ray micrograph of a transverse section of ashwood. 
50 ~ thick. Au target  6 kV, total  magnification appr. 400 x. 



FIG. 16. X-ray micrograph of 1500 mesh silvergrid mounted on 
200 mesh copper grid. Cu target 12 kV, ~otal magnification appr. 

900 x. 
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must have 

( ' ~ r ' h - - , r S .  (2-27) VF=�89 1 +  1' e-V -~ --  
: ~ry / 3y 

Thus the appropriate ratio of characteristic dimensions to be used 
in (2-26) is 

y = h/4r. (2-28) 

Hence, the cone has the same cross-section as a spheroid of equal 
volume whose semi-axis are (r, r, hi4). 

I l l u s t r a t i o n  II :  Lens .  Consider a symmetrical convex lens of 
radius of curvature R (the body of revolution obtained b y  rotating 
the shaded area in fig. 2.1 about  the ~]-axis). In the disc hmit 
(d constant, c --> 0) 

v F  v/ y = # .  (2-29) 

Hence we take for the lens 

3V 3V 
Y = 4~d a = 4~R 8 sins 0 (2-30) 

The volume of the lens is 

V = ~r Rs(1 --  cos 0)(1 --  cos 0 + sin~0). (2-31) 

As 0 -+ ~/2 (limit of sphere), we reproduce the previous result for 
the spheroid, as expected. 

,7 

I R 

V 
Fig. 2. ! The lens. 

I l l u s t r a t i o n  I I I :  E l l i p t i c  og ive .  Inasmuch as the circular 
ogive is more elongated than a sphere, the argument from the disc 
hrnit cannot be apphed to it directly. Instead, we consider the 
elliptic ogive obt'ained b y  rotating the shaded area of fig. 2:2 (a 
portion of an ellipse) about  the T-axis (which is taken parallel to the 
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minor axis). For  this body,  in the disc limit (d constant, c--~ 0) 

VF -->- Vl~Y = 48-d8. (2-32) 

I 

- 

Fig. 2..2 The elliptic ogive. 

The equation for the ellipse is 

c21,~ + (b - d )~ lb  ~ = 1, 

which suggests use of the parameter  O: 

sin 0 = c/a. 

Then 

(2-33) 

(2-34) 

3V 3V 
y = ~ = (2-35) 

4~d 8 4~b8(1 - -  cos 0) 8 

The volume of the elliptic ogive is 

V = 2_~ab 2 (sin 0 --  O cos O --  ~ sin3 0). (2-36) 

As 0 --~ �89 we reproduce the previous result for the spheroid, as 
expected. 

S p e c i a l  c a se :  C i r c u l a r  og ive .  To obtain the cross-section of 
the circular ogive, we now merely take the special case of the 
elliptic ogive wifh a = b. From geometry 0 can  then be identified 
with the ogive half-angle. Now 

sin 0 --  0 cos e - -  �89 sin8 e 
Y = { (1 - -  cos 0) 8 (2-37) 

I l l u s t r a t i o n  IV :  Sp ind le .  Consider the body of revolution 
obtained by rotating the shaded area of fig. 2.3 (bounded by a 
parabola and a straight line perpendicular to the axis of the para- 
bola) about the W-axis. Using the disc l imit  just as before, we have 

3V 
y = 4~d8 , (2-38) 
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where the volume is 

so that 

V = } 8 a c d  ~, 

y = } y .  

I 
Fig. 2.3. The', spindle. 

(2-39) 

(2-40) 

I l l u s t r a t i o n  V: F i n i t e  c y l i n d e r .  Consider a cylinder of 
radius r and heigth h. From the disc limit 

3V 3h 
= ( 2 - 4 1 )  

Y = 4~rr 8 4r 

We can go on to obtain by further ,exploitation of this approach 
the Rayleigh cross-section of # body of revolution for arbitrary 
separation between transmitter and receiver and for all aspects and 

polarizations. The most direct extension is to replace the body 
by an equivalent spheroid and take over the spheroid results. The 
equivalent spheroid is a spheroid with the same volume and the 
same elongation factor as the. body. The simplified expression found 
for back-scattering along the symmetry axis provides a reasonable 
way to arrive at an elongation factor for many bodies. The logical 
ultimate extension in the spirit of this approach is to formulate 
the Rayleigh scattering of a body of revolution at all aspect combi- 
nations and polarizations in terms of the following parameters only: 
the volume, the elongation factor, and the aspect and polarization 
angles. 

w 3. The optics region. By the optics region we mean, generally, 
that region in wavelength, wherein the techniques of geometric and 
physical optics yield good approximations to the radar cross-section 
of a body. The. extent of the optics region thus depends on the patti- 
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cular body being studied. By the geometric ,optics cross-section 
we mean ~R1R~, R1 and R2 being the principal radii of c u ~ t u r e  of  
the body at the point where a ray is reflected toward the receiver. 
We use physical optics (Kirchhoff) theory to denote the  scattered 
far field, and the cross-section thus defined, given by the expression 

4•f e~P" 
.H, = (n X H )  X [7--~ds, 

,illuminated 
a r e a  

where H = twice the tangential component of the incident magnetic 
field, R = the distance from the integration point to the field point, 
n = the unit outward normal to the surface at the integration point 
and in which the far field approximations for V(e~R/R) are used. 
That is, with the receiver at a very great distance from the body 
and if the body is finite, we have 

i• 
V ( - ~ ) ~  R, (e'l~R)no, 

where R = R ' +  n0"r, R ' =  the distance from the origin to the 
field point (receiver), r = the distance from the origin to the 
integration point on the scatterer (r = the corresponding vector) 
and n0 -~ the unit vector directed from the receiver to the origin. 

When the wavelength is small with respect to all of the dimensions 
of the scatterer, the geometric optics cross-section is an excelient 
approximation to the exact result..When a body is infinite in extent, 
then geometric optics can be the exact solution. Examplesof  such 
exact solutions are the paraboloid of revolution, when we are 
considering plane wave illumination along the axis of symmetry, 
and the wedge for particular wedge angles and for particular angles 
of-incidence and polarization. 

Let us now consider a body which has one radius of curvature 
which is small with respect to the wavelength. In three dimensions 
we can consider the infinite cone and in two "dimensions we can 
consider the wedge. By purely dimensional analysis we find that  
the tip far field behaves like 1 [k and the edge in t~vo dimensions 
behaves like (1]k)~. We find that  physical optics not only predi"cts 
these types of k-dependence, but also (for, large a~d small cone 
angles) that  it predicts the leading term of a rapidly convergent 
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expansion in the angle parameter  as long as the t ransmit ter  or 
receiver is on the axis of symmetry.  

Kirchhoff theory will predict poor  results for problems in which 
the major contribution to' the cross-section comes from an edge. 
For  example, consider the case in which the transmitter  and re- 
ceiver are located at a point along the face of a wedge, but  far from 
the edge, with P o y n t i ng ' s  vector  P parallel to the face of the 
wedge and normal to the edge (see fig. 3.1). For  the E-vecto; 
perpendicular to the surface the exact result is 

= = _ 2 r  ' 

where the cross-section, in two dimensions, is given by  

while the Kirchhoff answer is zero., 

. Fig, 3.1. The wedge for incidence along one face of the wedge and normal 
~. to the edge. 

This leads one to the realization of why Kirchhoff theory would 
give poor results for a finite thin cone. The major contribution to 
the cross-section in the non-specular directions for small wavelengths 
comes from the rear circular edge. The field, locally, would be like 
that  for a wedge. Thus, we need to use an improvement to Kirch- 
hoff theory to obtain good answers for the cone. We will show this 
improvement and also how we obtain approximate results for thin 
cones in the resonance region. Thus we will show how to obtain, 
approximately; a complete cone cross-section curve. 

Kirchhoff theory gives excellent first order approximations for 
bodies with dimensions large with respect to the wavelength, and 
these results are too well-known to warrant their discussion here. 
In the region to which we must give the vague characterization as 



SCATTERING FROM BODIBS OF REVOLUTION 305 

lying somewhere between the resonance region and the  op t i~  regior~ 
there has been a rapid and fruitf~, development of fm~v i d e a s d ~ u ~ g  
the past ten  years. 

We begin with the  remarkable paper of V. A. F o c k 8) in which he 
presented a method which we will describe as a local order analysis 
of the field near the shadow boundary. He succeeds in giving t h e  
fields on the diffracting surface near the  shadow boundary in terms 
of one or the other of two "universal" functions according as the  
incident polarization direction lies parallel or perpendicular to the 
shadow curve. Strictly, these are solutions of the two-dimensional 
(scalar) problems and depend on the radius of curvature at the 
shadow boundary and the wavelength of the radiation. These 
functions are of the form 

1 I" e~g~ 

2" (3-2) 

1 |" e ~ 
{(~') = V---~2 -~-~dt,  

F 

where 

w(t) = ~ e:t-++ dz (3-3) 
2" 

with the contours shown in fig. 3.2. The arguments used are certain 

Fig.  3.2. Contours .  

z 

z 

Fig. 3.3. Geometry. 
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reduced distances measured from the geometrical shadow boundary;  
i.e., near the origin as indicated ill fig. 3.3 we have 

where R is the radius of curvature and k = 2~/~. 
These same functions appear in the approximate solutions of 

specific problems. There are t~wo which we particularly wish to note. 
The fields induced on a '-parabolic cylinder 4) and on a circular 
cylinder s) are given, in a sense, b y  these same functions. These are 
not remarkably similar surfaces. 

In these examples for the solution continued into the shadow we 
need to modify the arguments of the universal functions as follows. 
The motivation for this stems from the "generalized ray optics" 
of K e l l e r  s). In place of (3-4) we write 

= R(s )  ' 
o 

where S is the path length measured along the surface of the obstacle 
from the shadow boundary into the shadow, ds is the element of 
path length and R(s )  is the radius of curvature at the position s. 

F r a n z and D e p p e r m a n n 7), however, have given the connection 
between the two, in the concept of "creeping waves".  We can 
meaningfully speak of the continuation of the penumbra solution 
into the shadow of the parabolic cylinder, but  in the case of the 
circular cylinder we find that  we are wrapping our solution around 
the cylinder if we allow the argument of the universal functions to 
continue increasing. This lat ter  concept is made meaningful if we 
understand the field in the shadow as arising from waves "launched" 
at the shadow boundary  and "creeping" around the rear and eventu- 
ally back to the front, etc. The physical interpretation has been 
justified by  F r i e d l a n d e r  s) while the underlying mathematical  
structure has been illuminated b y  W u  9) with his concept of a 
universal covering space. 

In the following is given an account of the general procedure. Let  
a convex closed surface S , / ( x ,  y, z) = 0 be illuminated b y  a plane 
wave incident in the direction of the x-axis. The geometrical shadow 
is then given b y  the two equations/(x,  y, z) = 0, 0//&z = 0. Let the 
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origin be located at a point on the shadow boundary with the z-axis 
the outward normal  to S and the y~axis chosen to form a rigkt- 
handed system. Using the geometric assumption that  the surface 
can be approximated by  a paraboloid at any point, i.e., 

z + {(ax z + 2bxy + cy 2) = 0, (3-6) 

so tha t  ~]/Ox = ax + by, and the physical assumption that  the 
variation of this field in the z direction is much larger than that  
in either the x- or y- direction for sufficiently small 4, F o c k  obtains 
an approximation to M a x we U's equations which lead to the solutions 

n v = Hv0G(~), H~ = (2a/k)~ iH~O e*k~ F(~), H~ = 0 (3-7) 

on the surface. The incident field is given by  

Ito = (0, HvO, Hz~ (3-8) 

while the functions G and F have the asymptotic bahaviour 

G(~) = {2, hm F(r = ~2~, (3-9) lim 

where ~ is a reduced distance from the shadow boundary given by  

~ = (2-~)~(ax + by). (3-10) 

In fig. 3.4 we compare the result using the Fock-Franz method 
with the sum of the harmonic series for a circular cylinder (e.g., 
B a i l i n ' s  work in 10)) with ka = 12. In fig. 3.5 we compare the 
method with the experimental measurements of W e t z e l  and 
B r i c k  11) on an elliptic cylinder of ka = 12 and kb = 7.5. 

In the case of the three-dimensional problem of scattering by  
finite obstacles we have an additional comphcation which appears 
in both the scalar and vector problems. Since there is a caustic at 
the rear of the obstacle, we must  take account of the fact that  the 
energy converges on the caustic and, in fact, the "creeping waves" 
lose their identify in this region. 

This behaviour is apparent from the work of Focl{ 19.), F r a n z  5) 
and, more recently, B e l k i n a  and W e i n s t e i n "  la) and N.. L o g a n  14) 
who have given a thorough t rea tment  of thi~ approach for the sphere. 
However, Fock theory can be used to  determine a partial creeping 
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wave type field, and if we can find another way tohandle  the partial 
field due to the small radii  of c a r ~ t u r e ,  we can again obtain good 
far-field apprb:~Sma~i0n's" f o ~ o d e r a t e  values of ka. The value of 
Fock theory is twofold: (.I);When the wavelength is very small in 
respect to the characteristic dimensions of the body, it yields an 
approximation to the true field in the shadow region where the 
Kirchhoff result would predict a zero field, and (2) it is a procedure 
which is easily applied to sphere and cylinder problems for moderate 
values of ka (ka > 5). One finds upon applying this process to 
spheroids that  the values of ka required in order to obtain good 
results may  be very large. 

Fig. 3.4. 
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(t .  de~eu )  

Comparison of amplitudes from exact series and Fock's current 
distribution for a circular cylinder with ka = 12. 

In the three-dimensional problems we see that  the solution for 
the sphere with the interpretation of creeping waves and behaviour 
of the caustic serves as a prototype from which we infer the solution 
for other shapes provided the characteristic parameters are suffi- 
ciently large with respect to the wavelength. For example, a symme- 
trically illuminated spheroid of large enough dimeusions should be 
an easy generalization. 

Suppose we consider a prolate spheroid in  somewhat more detail. 
Let the semi-major and semi-minor axes be denoted by  a and b 
respectively. The condition that  we ,require to be met  for the 
application of the Fock-Franz theory is that  kRmja be large where 
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k = 2~/~t and R~t .  is the minimum radi~s of curvature, Rmin = b2/a. 
As an example of this lim~tatio.n we note tha t  for a prolate spheroid 
of a/b = l0 the requirement kRmin ~ 5  Would impl~r ka > 500. 
This was pointed out b y  B e l k i n a - a n d  W e i n s t e i n  13). 

If  we let kRmin decrease while we keep ka, kb large, we approach 
a body  which is "large" bu t  which has "sharp" ends. We illuminate 
this object along the symmetry  axis and consider a limited applica- 

[1i 
X~ 

. ~ , "  Datat 

F ~ k  f 

0 9 
d.tmt~Loe ~ 'm Ipec~.~ refXeotlm ~ . n t  ( in q:a ) 

Fig. 3.5. Comparison of amplitudes from experimental data and Fock's 
current distribution for an elliptic cylinder of eccentricity 0.780 with ka ---- 12 

and kb = 7 . 5 .  

tion of our "creeping wave" theory. Certainly for kRnnn < 1 the 
forward tip will scatter more like an infinite cone than like a sphere 
of radius b; hence, olir theory is not applicable. In -the penumbra 
region all requirements are met and we feel justified in making a 
creeping wave analysis. Granted this, we have launched a wave.which 
is creeping toward this effective discontinuity, the  rear tip. I-Ie~e we 
must  again have recourse to another description and c o n s i d e r ~ e  



310 K.M. SIEGEL 

wave to be reflected from the rear tip and again launched along the 
surface. 

An example of this would..be the thin cone radiation problem when 
the source is far from the! tip (a = distance from tip to source). 
The Green's function for this case is approximated b y  that  for a 
cylinder and thus Fock theory should give excellent results. If the 
infinitesimal slot is along a generatrix of the cone, the Fock answer 
should be excellent for all ka. If one can obtain an tip answer to 
add to the Fock result, then one could handle all kinds of slots on 
cones. We postpone our discussion of the ogive, finite cone and the 
spheroid approximations (for moderate values of ka) until we reach 
the discussion of the resonance region in w 4. 

In addition to the Fock theory, small wavelength approximations 
can be improved b y  making u s e  of known results. Jus t  as Ar t -  
mannlS) ,  in his solution for the thick half plane, replaced the 
cylindrical edge b y  a polygon, we can obtain an approximation 
for the thin finite cone b y  replacing the cone b y  a regular prism. 
The base, locally, will be a wedge, and to calculate the field scatter- 
ed b y  the cone base we will add up the fields scattered b y  all the 
wedge-like segments into which the cone base has been decomposed. 
We shall consider the cone in some detail; hence, it might be valua- 
ble to first present the physical ,optics approximation. 

(t.rcusL4.t~ g o L a . . . .  
- re*eilmr) 

Fig. 3.6. Cone geometry. 

Fig. 3.7. Polar variables. 

The problem we shall consider is that  of  determining the radar 
cross-section of a thin finite cone when both transmitter  and re- 
ceiver are si tuated on the axis of symmet ry  of the cone in the far 
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zone. We will t rea t  the  case where the  wavelength-of  t he  incident  
radia t ion  is much  smaller t h a n  the  a l t i tude  z0 and  the  base radius a 
of the  cone. The geomet ry  of the problem is as shown in fig. 3.6~ 
We shall also utilize polar variables in the  x-y plane as shown in fig. 
3.7. 

The following definitions of the  radar  cross-section (of perfect 
conductors) will be used:  

a = h m  4~rr~ = l im 4~rr 2 (3-11) 

The Kirchhoff  (physical optics) expression for the scat tered magnet ic  
field is 16) 

ik  e -4kr 
Us = [ ( n o - p ) f - -  (no'/)p], (3-12)  

2~.  r 

where 
= f n  e -~''("~ ds 

s 
S = i l luminated area  of scat terer  
n = u n i t ' o u t w a r d  normal  to S 
r = position vector  of point  on S 
p = direction of incident  magnet ic  field 
n o  = receiver to origin direction 
k = traiasmitter  to or ig in  di.rection. 

N o t e .  we assume IH*I ---- [E* I ---- 1. In  this  case, the  following 
relations hold. 

n = sin ~ ,  + cos ~(~  cos fl + $v sin #), r = x~= + Y~v + z$,, 

z t a n  
P = ~ v ,  n 0 = - - ~ z ,  k = - - ~ z ,  d s = - - d z d f l .  

COS 

Hence 

and  

which becomes 

rlo'p = - - * z ' Z y  = O, (3-13) 

no" f = f no" n e--ikr'C"o+k) ds, (3.14) 
S 

2~r - -Zo  

= - -  t an  9' a f  f z  e 9"*k" c~ aft. (3715) 
0 0 
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The integrat ion wi th  respect  to fl yields 

--H 0 

no "[ = --4,~ tang, o, f z  e 9,~kz dz. (3-16) 
0 

This integrat ion can also be performed yielding 

( .--e 9'kz z eg,'kz ) I;~~ 
n o ' f  = - -  2~ tang,~ \ (2ik)9 ' + 2i---ff- ' 

(e-9"kzo Zo e-'~Zo 1 ) (3-17) 
n o ' [  = - -2~  tan2~ 4k9, 2 i k  4k9, " 

Hence 

H 8  = - -  
i e  ~ r  ( e-9,**o zo e-2*kzo 1 ) 

t an  9' ak {v " (3-18) 
r 4k9, 2 i k  4k9, ' 

which can be wr i t ten  

e2~kZo ) 
H* = i e-i/ar+9,Zo ~ 2 k r  tan2~{v �89 + i k zo  2 . (3-19) 

Since Ikzol > 1 (small wavelength  approximation) 

i e-/k(r+9,Zo } e-tk(r+9,zo } 
9, ~ �9 Zo tan2x {v. (3-20) 1t8 ~ 2 k r  t an  o**v(,kzo ) = 2r  

Now using the definition of radar  cross-section we have  

i H s 9,_= 
a = hm 4z~rg, - ~ -  ~z09, tan 4 o~ 

~-r 

o r  

a = ~ag, tang,~. (3-2 I) 

We will now approximate the cone by a prism and determine the 
field scattered by the wedge segments that constitute the base. 

=::: 

f7 
Fig. 3.8. Wedge geometry. 



SCATTERING FROM BODIES OF R E V O L U T I O N  313 

To illustrate the technique we will first use the physical optics ap- 
proximation for the field scattered b y  the wedges. We use the 
Kirchhoff expressions for the scattered field previously presented 
where in this case (incidence perpendicular to the back face of the 
wedge, see fig. 3.8) we have 

n = sin ~ - cos r~ ,  r = ~ + ~ ,  + r 
p ~ p(no ~ component i.e., p.r = 0), no ---- $$, k = $$, (3-22) 

d~ de 
ds = -  

sin 7 

Hence n o ' p  = $ 'p  ---- 0, and 
L - - o o  

COS 
t l  

Y 
j j e -9'~' d~ d~. (3-23) 

t I  

n o ' f  = sin y 
0 o 

Integrating with respect to ~ and letting ~ ~ --  ~, we obtain 

e L eU~ i L 9~k~ d~ --  ta~ ~-k (3-24) n o ' f =  ta~lV 7 
0 o 

Associating the edge contribution with the value at the lower limit 
(just as in the case of the infinite cone we obtain the " t ip"  contri- 
bution) we find 

L 
(3-25) 

no "[ = 2ik tan 7 

Hence 
L e -~r  

w = p .  (3-26) 
4~ tan y r 

Now letting L = a dfl, where a = radius of base, and integrating 
around the base ~ = constant vector), we have 

f P e-~r aPe-~kr (3-27) //8 
4~r tan Y a dfl = 2r tan 7 

o 

a = ---- 4~r2 2r.~an ? tan2 7 (3-~2~8) 

Appl. sci. Res. B 7 
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But  7 = {~ --  ~ (see fig.. 3.9), where cr is half the cone angle; thus, 
tan  ~ = tan (�89 --  7) = cot 7 and finally 

= ~a  s tang'~, (3-29) 

which is precisely the nose-on result obtained for the cone directly 
by  physical Optics. 

V 
Fig. 3.9. Definitions of 7 and a. 

Now we are in a position to employ this technique to obtain a 
new result for the finite cone. We make use 17) of the following 
expression for the electric field scattered by an infinite wedge : 

E , =  V'~lkr 
2(2~ - -  7 )  

e"r+{~'~ sin ( 2~ --7)L A- E(a)~ + E(b)l~ ~ (3-30) 
B 

where incidence is in a direction perpendicular to the edge of the 
~Wedge and 

E(a) = E~• = component of the incident field perpendicular to 
the edge of the wedge, 

E(b) = E~I" I = component of the incident field parallel to the edge 
of the wedge, 

( ) = c o s  2 a  0 + c o s  . , A 
- ~ .  2=--), 

�9 I B~--- 1 - - c o s  2 ~ - - 7 .  

0 = angle of incidence measured from wedge angle bisector and 
~ and ~ are unit vectors perpendicular and parallel, respectively, 
to the edge of the wedge. 

This expression is val id  tor a i l inf ini te  wedge. In  order to obtain 
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an expression for a wedge of finite edge length,  we again look a t  the  
current  d is t r ibut ion integrals. Not ing  first t ha t  we now h~.ve an 
e +~r phase  term,  we know tha t  the  integral  over  the  edge length 
will be  in the  two-dimensional  case 

CO 

fe*~ ~r2+~:~ d~ ~ ~ / ~  e *c~r+~'r'~ (3-31) 
- - 0 0  

and in the  three-dimensional  case 

L 
f e*~/~--~-~ d~ ~ L e *~r. (3-32) 
0 

This is the-_' only difference be tween  the  two-  and  three-dimensional  
p roblems so tha t  the  three-dimensional  fields can be ob ta ined  f rom 
the  two-dimensional  fields b y  mul t ip lying b y  

L e - t ~  
~/~." 

Thus  we obtain,  for linear polarization,  the  following expression 
for the  sca t te red  field for a wedge of length L:  

L e *tcr 

2r(2ar - -  7) 

( sin 
�9 \ 2 ~ r  - -  ? A B " 

Again we are real ly considering the  base of a cone and hence 

= - -  ~x cos fl - -  Sv sin fl, /~ = + ix sin fl - -  *v cos ft. 

~ ,  we recall, is equal  to --$x, l~ut $~ = - -  ~ cos fl + / ~  sin ft. Hence  

E_L* = cos fl, Ell* = - -  sin ft. (3-34) 

Thus,  using these  relat ions for E• Ell*, "~ and/~, 

E .*~  - -  E,I* p = ~ cos/~ + / ~  sin/~ ~ cos 2/~ " ~" = - -  ,v sin 2fl (3-35) 

in rectangular un i t  vectors and simi lar ly 

E •  + Ell~# = ~ cos # - -  # sin # = - -  ~ .  (3-~6) 
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Substituting in Ks we obtain 

Le '~r  ( ~2 ) 
s  2 r ( 2 a - - y )  sin 2 = - - y "  " 

~ cos 2/~ + Sv sin 2B 

�9 ( 2=0 
cos - 2= _ Y - - )  § cos (2~-~ 

As before, we set L = a d/~ and integrate over/~ from 0 to 2~, 
obtaining for the scattered field from the cone 

E'c~ r ( 2 ~ -  7) sin (3-38) 
1 cos ( ~ )  

we obtain 

Hence 

~2 

~ 

E (~'")]" a ( 2 = _ ~ , ) 2  1 - - c o s  2 = - - y  

Using the familiar half-angle formulae we can simplify r as follows: 

sin"( "' ) 
2=- - -  y ~2 = co,,[2,~- ~] 

a = ( 2 a - -  y)~ cots 2 (2~- -  9') " (3-41) 
4n3a2 

In  terms of the cone angle ~ we have, since ? = �89 --  ~, 

~sa2 ( ~2 ) 
�9 t = ( t  z~ + �89 cot2 3z~ + 2~ (3-4:2) 

(3-40) 

Now, using the definition 

a = lira 4~r ~ --~- 
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This result is compared with the physical optics result in fig. 3.10. 
Our method can be applied to any body with a ring singularity. 
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Fig. 3.10. Nose-on finite cross-sections as computed by physical optics and 
circular wedge approximations. 
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2a  ~ o f  
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Fig. 3.11. Cone-cylinder combination. 

Consider, for example, a cone-cylinder conbination viewed nose-on 
(see fig. 3.11). The expression derived for the cross-section 

~'  ( ~ ) (3-43) ~ - -  ( z ~ - - 7 )  2c~ 4 ~ ' - 2 7 '  
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still applies. In terms of the half cone angle x we have, since 

ygg2 
~s. cot s [ 2 - ( ~  cr ]" (3-44) 

Similarly, for the contribution from any ring singularity (3-43) holds, 
where y is the included wedge angle (fig. 3.12). Equations (3-42), 
(3-43) and (3-44) are plotted in' fig. 3.13. 

1 ~  
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Fig. 3.12. Definition of wedge angle. 
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Fig. 3.13. Nose-on cross-section of circular wedge. 

A similar technique of decomposition into straight segments was 
employed by A r t m a n n  15) in his solution of the problem of 
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diffraction by a thick half-plane. He considered a half-plane Of 
thickness 2a capped by a half-cylinder of radius a, as in fig. 3.14. 
For ka >> 1 and incidence as indicated he decomposed the cylindrical 
portion into a regular N-gon of length L >> JL Then by considering 
the conditions under which the rays striking near the apex S are 

Fig. 3.,14. Thick half plane. 

diffracted on to the next side of the N-gon he determined the size 
of the penumbra region and hence the shift in the diffraction pattern 
as compared with the diffraction pattern of a completely black 

B~tt 

Fig. 3.15. N-gon geometry. 

screen of like form. In order for rays diffracted from one polygonal 
face to have any effect on the next face, the following inequality 
must hold: 

kL Icos fl(n) __ cos/~(~'l < 2~. (3-45) 

The quantities involved are shown in figure 3.15. To measure the 
penumbra width, or in this approximation the number and length 
of the polygonal sides that have any effect on succeeding sides, 
A r t m a n n  proceeds as follows. First he restricts the sides so that 
t h e  only ones that affect the next one are the last and next last, 
where the last side contains the apex and-naturally the next to last 
side immediately precedes it on the lit side (see-fig. 3.15). In ~ d e r  
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tha t  this be  t rue  

kL ]cos fl~U-l~__ cos fluv-l~[ ~ 2~. (3~46) 

F r o m  fig. 3.15 we see tha t  

fl~N-l~ = 7. (3-47) 

Since the next  to last  face (n = N --  I) is not  affected b y  rays  f rom 
the preceding face (n = N --  2), 

f l t N - l )  = 0. 

Subst i tu t ing  these values in (3-46) y ie lds ,  

kL [cos 7 - -  1] ~ 2z~; 

bu t  
cos 7 ~ 1 - -  �89 

hence 

(3-48) 

(3-49) 

(3-50) �89 79" ~ 2zc. 

Again referring to fig. 3.15 we see tha t  

sin�89 = L/2a; (3-5 l) 
bu t  

sin �89 ~ �89 (3-52) 
hence 

L ~ 7a (3-53) 
and 

ka73 m 4~ (3-54) 
or  

( (3-55/ 
7 ~ \  k a /  " 

Once more referring to fig. 3.15 we see tha t  

yo ---- L sin 7, (3-56) 

or employing the above  results  

yo  72a ) a" (3-57) 

Hence,  according to A r t m a n n ,  the  diffract ion pa t t e rn  of the  th ick  
screen is displaced b y  this distance (4zqka)! a perpendicular  to the  
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direction of incidence as compared with the d.iff~.aetion pat tern of 
a completely black screen. 

The above small wavelength approximations assist us in obtaining 
approximate far zone cross sections for m a n y  bodies of revolution. 
We must now describe what can be done' to obtain results in the 
resonance region. 

w 4. The resonance region. To obtain answers for prolate spheroids 
when the radius of curvature at the tip (39/a) is small with respect 
to the wavelength and simultaneously when the wavelength is small 
with respect to the broadside radii of curvature b and a2/b, we must 
use another type of approximation. A point in electromagnetics is 
physically a region where all radii of curvature are small with 
respect to the wavelength. Thus the thin prolate spheroid looks very 
much like an ogive. 

The approximate theory used by  B e l k i n a  for t.hin spheroids, 
which she compares with her exact answers 18), and that  used by  
P e t e r s  19) for thin ogives, as one might expect, are for the problem 
under consideration almost equivalent. B e l k i n a ' s  approximate 
theory is a special case of P e t e r s '  more general considerations. 
However, she obtains physical information from exact theory, not 
obtained by  P e t e r s  as to when the approximation is valid for 
spheroids. 

For axially symmetric  transmission, scattering from infinite 
cones is extremely small in all directions except the specular 
direction. Local analysis near the front tip and in the penumbra 
region for thin prolate spheroids or ogives (since the reradiation is 
tangent to the path) provides no big scattering effect except in the 
forward direction. A good por t ionof  energy is guided towards  the 
rear point and again there occurs, primarily~ a reflection-back: 
The back flow of energy coming from the rear tip is again primarily 
in the forward direction (flow towards the front tip), Which is in 
the direction back towards where it originally came from-. Thus ~he 
back-scattering near nose-on cross-section of an 0gi,ve looks as if 
it is primarily due to the tip in the rear~ This has been experimentally 
checked by  P e t e r s  19), 

This suggested to P e t e r s  and B e l k i n a  that.-t-he--thin body 
should act like a travelling wave .antenna. P e t  er  s derives the results 
for certain ogives And.-finds the cross-section .for such an ante-xitla 
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(both monostatic and bistatic) for aspects out to 40 ~ off nose-on. 
The theory would fail exactly nose-on, but  provides excellent 
results for near nose-on aspects. 

To illustrate the theory we shall concentrate on a specific example, 
the thin prolate spheroid with E polarized field incident. The radar  
cross-section of a long thin body is given by 

a - -  ~Qz l - - p c o s O  sin ( 1 - - p c o s O )  = ~-~'~(0)]  z 

where Q is given by 

Cin [(kL/p)(l + p)] --  Cin [(kL/p)(m - -  p)] 
Q = -(2/p2) + + 

ps 

+ - ~  (p --  1) cos [ (kL /p ) ( l+  p)] + (p +1)  cos [(kL/p)(1 - - p ) ] +  

kL } 
+ (pz --  1) ~ (Si [(kL/p)(1 + #)] -- Si [(kL/p)(1 - -  p)]) 

with Cin (x) being the modified cosine integral o5 argument x and 
Si = the sine integral. We see that  there are three parameters 
besides the wavelength, which serve to describe the body. They are 
the voltage reflection coefficient ~, the relative phase velocity p 
and the length L. 

Voltage reflection coefficients of thick ogives and thin rods have 
been experimentally determined by  P e t e r s ,  who found that  for 
a fairly thick ogive the reflection coefficient is about 0.7. For thin 
rods P e t e r s  found that  the voltage reflection coefficient is about 9- 
Physical reasoning indicates that  the thin prolate spheroid, near 
nose-on, should be compared with a thin rod rather than an ogive, 
and hence for a thin prolate spheroid we use a voltage reflection 
coefficient of 9- However, as 0 increases from zero (the nose-on 
aspect), the point at which the travelling wave is reflected m a y  be 
expected to move around the body and in this case will cause it to 
enter a region of larger radius of curvature. Thus, we would expect 
the voltage reflection coefficient to increase to 1 as the aspect goes 
to broadside. The actual values used in the graph (fig. 4.1) are as 
given in the following table: 

I . O t 0~176 I 40~176 I 6o~176 I 
I I 
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The relative phase velocity p is defined as the ratio of the length 
of the body to that  of the current path on the body. For  this case 
it turns out that  p = 0.985. 

As the angle of incidence is increased from zero, a point is ulti- 
mately  reached at which the travelling wave theory breaks down 
and the analogy with a thin wire is no longer possible. To deal with 
such values of 0 (i.e., near broadside incidence) an alternative model 
is required. In this case the body  is likened to a thick cylinder; the 
thick cylinder results are displayed for aspects in the range 0 = 6 0  ~ 
to 0 = 90 ~ in fig. 4.1. The thick cylinder results are obtained from 2o). 
The excellent, but  as yet  unpublished, experimental results of 
J.  L o t s o f  of the Cornell Aeronautical Labora to ry  are included in 
fig. 4.1 for the purpose of comparison. Indeed, it was the existence 
of these experimental data  which dictated,  the choice of the di- 
mensions of the spheroid to be used in this illustrative example. 

Before terminating this discussion of travelling wave theory, a 
few words about  the H polarization case for the same prolate 
spheroid are in order. At near nose-on incidence we should expect 
the same current to be induced, and thus the same cross-section. 
However,  with increasing 0, the spir~l]iug of the current may  be 
expected to lead to an appreciable reduction in the cross-section; 
this has been confirmed b y  the above-mentioned experiments. 

Now we shall turn out attention to the problem of estimating 
the nose-on scattering cross-section of thin finite cones for all values 
of ka *). We need the approximate behaviour in the resonance 
region as we have already presented small and large wavelength 
approximations. This is obtained b y  assuming that  the base is still 
the dominant feature as the resonance region is entered from the 
small wavelength side. The resonance maximum of the ring singulari- 
t y  would approximate, in both  position and amplitude, the last 
large maximum of the cone. Since in any physically realizable 
situation the edge of the base of a cone will have a non-zero radius 
of curvature b (b ~ 2), the only difference between it and a wire loop 
(wire radius ~ 2) relative to incident electromagnetic energy is that  
currents can exist "inside" the loop, but  not "inside" the base of 
the cone. 

When one looks at the axially symmetric cross-section of a ring 

*) The quan t i t y  a d e n ote s  th e  radius  of  the  b a s e  of  the  cone  as usua l  k = 2~-z/~.. 
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as a f~nction of wavelength, one finds that  there are no minima. 
This, thela, ailov~s lone to predict that  the contribution of the inner 
edge is negligible in comparison to the outer edgewhen the wavelength 
is equal to the order of the loop radius but greater then the wire 
radius. (If there were non-neghgible contributions from both the 
outer and inner edges, then at some wavelengths they  would add 
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F i g .  4 .1 .  M o n o s t a t i c  r a d a r  c r o s s - s e c t i o n  of  a 10 : 1 p r o l a t e  s p h e r o i d  w h i c h  

i s  4 3  c m  = 4A i n  l e n g t h .  

in phase and at some wavelengths they would add out of phase. But 
there are no noticeable minima in this region!) Thus the cross- 
section of a loop here looks like a Rayleigh side-type answer, 
depending only on the loop radius, but not on the wire radius. This, 
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then, gives added justification for using an analogy between the 
conical base and the wire loop. K o u y o u m j i a n ' s  variational 
results 9.1) and W e s t o n ' s  exact results 22) for wire loops in the 
resonance region can then be utilized. Their results (as a function 
of wire radius and loop radius) indicate that  the resonant peak is 
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Fig. 4.2. Nose-on cross-section of thin finite cones (~ = 7.5~ 

fairly insensitive to changes in wire radius, but  that  as the wavelength 
decreases the wire radius becomes important.  However, when the 
wavelength decreases, we use the Wedge approximation. There may  
be a region on the small wavelength side of the loop maximum 
where other maxima, smaller in amphtude,  can occur. These lesser 
extrema are essentially averaged in this approximation. 

On the Rayleigh side we find that  the Rayleigh hne, which is an 
upper bound on the cross-section, lies so close to the ring maximum 
(in fact may  intersect the ring curve before the maximum) that~the 
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existence of any maxima greater than the ring maxima on the Ray-  
leigh side is precluded. This is illustrated in fig. 4.2, where the 
experimental results of S. S i l v e r  of the Universi ty of California, 
R. K e l l  of the CorneU Aeronautical Laboratory  and M. E h r H c h  
of the Microwave Radiation Company have been included for the 
purpose of comparison. 

In order to obtain off axis finite cone results and to check our 
assumptions concerning the different reflection coefficients at the 
two ends, we have compared the off axis results for the cone with 
the travelling wave antenna result. We have added the Kirchhoff 
disc contribution to the back-scattering.near rear-on answers. These 
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Fig. 4.3. Radar cross-section of a finite cone. A comparison between theory 
and experiment I. 

theoretical estimates are compared with the corresponding experi- 
mental data obtained by  E h r l i c h  in figs. 4.3 and 4.4. We note that  
the null near the rear-on aspect is theoretically predicted to be too 
near to the 0 = 180 ~ aspect. This could have been anticipated since 
we know from the resonance discussion of the importance of the 
disc contribution. 

B y  using approximations based on a creeping wave type  picture 
we supplement the above theory for nose-on results where ](0) = O. 
For  ogives of half angle ~, ~ < 20 ~ and ka ~> 15 (a = half maximum 
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minor obtain result o f  mmenszon) we a nose on 

~z tan  4 

a(0) = 16~r +- �89 

When the creeping wave contribution is neligible, the �89 
augmentation disappears. This occurs for th ick  ogives. The above 
formula holds for all ogive experiments analyzed to date within 
a factor of two. A feeling for when to drop out the term taJl can be 
obtained from known results for spheres. 
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Fig .  4.4.  R a d a r  c r o s s - s e c t i o n  o f  a f i n i t e  c o n e .  A c o m p a r i s o n  b e t w e e n  t h e o r y  

a n d  e x p e r i m e n t  I I .  

The reader is now in a position to fill in roughly the complete 
cross-section curves for ogives, and spheroids. 
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