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Right inverses for linear, constant coefficient partial differential
operators on distributions over open half spaces

By

R. MEISE, B. A. TAYLOR and D. VoGT

Abstract. Results of Hormander on evolution operators together with a character-
ization of the present authors [Ann. Inst. Fourier, Grenoble 40, 619-655 (1990)] are
used to prove the following: Let P € C[zy,. .., z,| and denote by Py, its principal part. If
P — P,, is dominated by P,, then the following assertions for the partial differential
operators P(D) and P, (D) are equivalent for N € §"~1:

(1) P(D) and/or P, (D) admit a continuous linear right inverse on C* (H,(N)).
(2) P(D) admits a continuous linear right inverse on C* (R") and a fundamental
solution E € Z'(R") satisfying Supp E C H_(N),

where H. (N) := {x € R" : +(x,N) > 0}.

In the early fifties L. Schwartz posed the problem of determining when a linear differential
operator P(D) with constant coefficients admits a (continuous linear) right inverse on &(R)
or 7'(Q), Q an open subset of R”. This problem was solved by the present authors in [6] and
for systems over convex open sets by Palamodov [10]. The solution in [6] is formulated in
terms of a P-convexity condition for general open sets £ and for convex sets £ in terms of a
Phragmén-Lindelof condition on the zero variety V(P) = {z € C" : P(z) = 0}. Though these
conditions are rather involved they could be evaluated further in many examples. For
example, if N € R”" is non-characteristic for P then P(D) admits a right inverse on &(H, (N))
and/or 2'(H,(N)), where H.(N) = {x € R" : £(x, N) > 0}, if and only if P is hyperbolic
with respect to N (see [6], 3.2). If N is characteristic for P then P(D) may or may not have a
right inverse on & (H(N)). However, no characterization is known in this case. The aim of
the present paper is to prove the following result.

Theorem. Let P be a non-constant complex polynomial in n variables, let P,, denote its
principal part and assume that P,, dominates P — P,,. Then the following assertions are
equivalent for N € S"~1:

(1) P(D) admits a right inverse on &(H(N))

(2) P,.(D) admits a right inverse on &(H.(N))

(3) P(D) admits a right inverse on &(R") and there exists E € 2'(R") satisfying
P(D)E = 6 and Supp E C H_(N).
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It was shown in [9], that condition (3) is sufficient without any further assumption on P.
Hence the main point here is to prove the necessity of (3) under the given hypotheses. In
order to achieve this we construct special subharmonic functions (which might be of interest
also in a different context) to evaluate the corresponding Phragmén-Lindelof condition for
P,,, which also has a right inverse on &(H,(N)) by the perturbation result [8], 4.1. Then the
theorem follows from results of Hormander [3] on evolution operators. Note that the
condition “P,, dominates P — P,,” is necessary and sufficient for perturbations that preserve
hyperbolicity (see Hormander [4], Thm. 12.4.6) and sufficient for preserving the property of
being an evolution operator (see Hormander [4], Thm. 12.8.17).

The theorem above can be extended to general convex open sets in R” as Franken [1]
shows by a different approach which uses (similarly as in Franken and Meise [2]) a
connection between “weak extendability of zero-solutions” and the existence of right
inverses.

1. Preliminaries. In this section we fix the notation and recall some facts which will be used
subsequently.

Definition 1.1. Let 2 be an open subset of R”. Then &(£2) denotes the complex vector
space of all infinitely differentiable functions on £, endowed with the Fréchet-space
topology of uniform convergence of all derivatives on all compact subsets of Q. Also, 2(R)
denotes the space of all functions in &(£2) which have compact support in Q. It is endowed
with the standard (LF)-space topology. Its dual space 2'(R) is the space of all distributions
on £.

1.2. Polynomials and differential operators. By C[zi,...,z,] we denote the ring of all
complex polynomials in n variables, which will be also regarded as functions on C". For
P € (E[Zl', e 7Zl/l]9

P(z)= > auz"

la| =m

with > l|a,| +0, we call P,(z) := > aq.z* the principal part of P. Note that P, is a
homo‘g‘eneous polynomial of degree ‘rrl A vector N € R"\ {0} is called non-characteristic
for P if P, (N) %0, otherwise N is called characteristic.
For P € Clzi,...,z,) and an open set 2 in R" we define the linear partial differential
operator
P(D):7'(Q) - 7'(Q), PD)f:= Y ad“f.

la|=m
Then P(D) is a continuous endomorphism of %'(2) and its restriction to &(R2) is a
continuous endomorphism of &(L).

A distribution E in 2'(IR") is called a fundamental solution for P(D) if P(D)E = 6, where
0 denotes the point evaluation at zero.

1.3. Right inverses. We will say that P(D) admits a right inverse on &(2) (resp. on Z'(Q))
if there exists a continuous linear map R : §(2) — &(2) (resp. R: 2'(2) — Z'(RQ)) so that
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P(D) o R = idgg) (resp. = idg(q)). By [6], 2.7, P(D) admits a right inverse on 2'(£) if and
only if P(D) admits a right inverse on &(£). Note that in [6], 3.8, this property is
characterized by various conditions of different type.

2. Auxiliary subharmonic functions. In this section we construct the subharmonic
functions which will be used in the next section to prove one of our main results.

Definition 2.1. For a > 1 define w, : R — R by

4
loga

log (1+log‘ ‘) if [t| >a.

Remark 2.2. wqly | is continuously differentiable, strictly increasing and concave.
Since w,(0) =0, it follows that w, is subadditive on R. Furthermore ¢+— w,(e') is convex.
% wa1)

P I
we can consider the harmonic extension of w,, defmed as follows.

iflff=a
wu(1) ==

Hence z—w,(|z|) is subharmonic. Obviously, 5dt < oo for each a = 2. Therefore

Definition 2.3. For a =2 define u,: C — R the harmonic extension of w, by
Uglg = w, and
‘Y| +JOO wa(t)

dt, x e R, y e R\ {0}.
y

Uq(x +iy) = PR PRI

Lemma 2.4. For a = 3 the functions u, have the following properties:

(1) u, is continuous on € and harmonic on C\ R,
(2) uq(z) = wy(|z]) for all z € C,
(3) alx +iy) = 0,(x) + uy(iy), x € R, y € R\ {0},

N 4 | log =
@) ufiy) = [“mgaﬂoga} foryz1,

(5) Jim uale+ i) = 2| for x € R, y € R\ {0},

©) 6”“

( +i) =0 forx € R,

')‘é%forxe]l{,yzlandallazao.

Proof. (1) The continuity of u, can be derived easily, using the subadditivity
of w,. Further, u, is harmonic on C\ IR, since we may interchange differentiation and
integration.

(2) The function g,(z) := w.(|z|) — ua(z), defined for Im z = 0 is continuous there and
subharmonic in the interior by (1). Further g,|g =0 and g,(z) = o(|z]). Hence the
Phragmén-Lindelof principle for the upper half plane implies g, = 0. This implies (2)
because of the symmetry properties of w, and u,.
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(3) Since w, ist subadditive, an obvious change of variables gives

uq(x +iy) = ‘y|+[ Mdr< MTCM

=7 ) 21y dr = wa(x) + u,(iy).

T TE+)? T

(4) The definition of w, implies fora =2 and y = 1:

. 2ay *© 1 % logi
dt —Ldt

ta (i) Jrlogaft2 nloga (J 2+ y? * [J; 2+ y?

y 4 log?2

= 21 log2+2+2 24—+ —=
Jtl [ oga+log2+2+2] = { +logoz+loga}7

as standard estimates show.
(5) Because of u,(x+iy) =u,(—x+ily|) it suffices to prove (5) for x =0 and
y > 0. Assume that x and y € R have this property and fix a > x. Then the definition of

w, implies y
1+1o < >
_ aLdtﬁ»ﬂ [ id,

* U, (x + 1y
(%) al )= l0ga % (1 —x)? + 42 loga 2, (t—x)*+2

A direct computation shows that the first integral on the right hand side of (x) converges to
2y as a tends to infinity and that the second one tends to zero, which proves (5).

(6) Define 0 : IR — IR by 0,(x) := u,(x +i). Then it is easily seen that o, is an even
continuous function which has the same properties as w, and that the harmonic extension
of 0, equals u,(x +i(1 + y)) in the upper half plane. Hence it follows as in the proof of (2)
that

o+ i+ iy) Z 0413+ iy]) Z 04(Ix]) = a(x + ).

Obviously this implies (6), since u, is differentiable at x + i.

(7) From Meise and Taylor [5], 2.3, and (4) we get the existence of ay =2 such
that
+ 00 C!)a(l)
2 + y2

)
‘ u”(x+iy)’§

8%

1 3
dt:;ua(iy) = E<1 forallx e Rjy=1,a = ay.

Definition 2.5. For a = 2 define v, : C — R by

v(z) =ug(z+i) for Imz=0 and v,(z) =u,(z—1i) for Imz=0.

Proposition 2.6. For a = 2 the functions v, have the following properties:

(1) v, is continuous and subharmonic on C,

(2) v4(2) Z wa(|z]) forall z € C,

(3) va(x +iy) = wa(x) + v,(iy) for all x,y € R,

(4) there exists C > 0 satisfying v,(iy) = C(ly| + 1) foralla= 3, y € R,
2

(5) lim v,(x +iy) = £(|y| +1) forall x e R, y e R\ {0},

(6) there exists ag = 2 such that for all a Z ay the function z—|Im z| — v,(z) is subharmonic
on C.
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Proof. (1) and (6): The continuity of v, follows from the symmetry properties of u,. To
see that v, is subharmonic, note first that v, is harmonic on € \ IR. Next observe that Green’s
formula implies that for each ¢ € 2(C) satisfying ¢ = 0 we have

ou
v Apdi(z) =2 4
(cf PaA2) nJ;('?y

(x+i)px)dx =0

because of Lemma 2.4 (6). By the same argument, 2.4 (7) implies (6).

(2)—(5): These statements are easy consequences of the definition of v, and the
corresponding assertions for u,.

From [7], 2.9, we recall the following lemma.

Lemma 2.7. For n € N let B, :={z € C": |z| = 1}. There exists H € C(B,) NPSH(B,,)
having the following properties:

(1) H(z) = |Imz| for |z|]=1 (3) Hx)=0 for xeR" |x|=1
(2) H(z) =[Imz| -1 for |z|=1 (4) H(iy)=0 for yeR" |y|=1.

3. Right inverses in half spaces. In [9], 3.5, we proved a sufficient condition for an operator
P(D) to admit a right inverse on &(H), H an open half space in IR". In this section we show
that this condition is necessary, whenever the polynomial P is dominated by its principal
part P,,. The proof is based on the characterization of the existence of right inverses in terms
of Phragmén-Lindelof conditions on the zero variety of V(P) and on the results of
Hormander [3] on the characteristic Cauchy problem. To formulate the Phragmén-Lindelof
condition, we recall the following definitions.

Definition 3.1. (a) For P € Clz1,...,z,] \ € and a convex compact set K in R" we let
V(P):={ze€C":P(z) =0} and hg:x+— sup(x,y).
yek

(b) Let V be an algebraic variety in €". A function u:V — [—o00, oo is called
plurisubharmonic on V if it is locally bounded above and plurisubharmonic at the regular
points Vi, C V. Further we assume that

u(z) = lim sup u(§) for z € Vig,.
2,66V

By PSH(V) we denote all functions that are plurisubharmonic on V in this sense.

Theorem 3.2. Let P € Clzy, ..., z4] \ € be homogeneous and let  be a convex open subset
of R". Then the following conditions are equivalent:

(1) P(D) : 6(R2) — &(R) admits a continuous linear right inverse,

(2) P(D) : 2'(Q) — 2'(Q) admits a continuous linear right inverse,

(3) V(P) satisfies the following Phragmen-Lindelof condition PL(8): For each convex
compact K C Q there exists K C £ convex and compact such that each
u € PSH(V(P)) satisfying (a) and (B) also satisfies (y):
(a) u(z) = hg(Im z) +o(|z|), z € V(P),
B) u(z) =0, ze V(P)NIR",
(y) u(z) = hg(Im z), z € V(P).
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Proof. (1) and (2) are equivalent by [6], 2.7. Since R is convex, it follows from Definition
2.8 in [6] and [6], 4.5, that (1) is equivalent to the Phragmén-Lindel6f condition stated in
Definition 4.1 in [6] (which unfortunately contains misprints: read 4, in (b) and 4, in (c)
instead of 4.). Since P is homogeneous, it follows from [8], 3.3, that this Phragmén-Lindelof
condition is equivalent to PL(L) in (3).

Next we want to derive from Theorem 3.2 that for each N € ! and each homo-
geneous polynomial P € C[zy,...,z,]\ C for which P(D) admits a continuous linear
right inverse on &(H,(N)), P(D) is an evolution operator with respect to Hy(N)
in the sense of Hormander [4], Def. 12.8.16. To do so we use that by Hormander [3],
Thm. 4.2, for homogeneous polynomials this property is equivalent to the fact that
for each x € R" the complex polynomial #—P(x +¢N) is either identically zero or has
only real zeros. Further we apply the functions v, defined in 2.5 to construct
plurisubharmonic functions on V(P) that are needed to use the condition PL(L) from
Theorem 3.2.

Lemma 3.3. Let P <€ Clzy,...,2,] be homogeneous and irreducible. If V(P) satisfies
PL(H;(N)) for some N €IR"\ {0} then for each x € R" the complex polynomial
t—P(x +tN) is either identically zero or has only real zeros.

Proof. Without restriction we may assume N = e¢,. Arguing by contradiction, we assume
that there exist xop € R"” and #y € C\ R such that P(x( + fye,) = 0 and P(xo + te,) 0. Then
there exists also a regular point (&,7(£')) € V(P) N (R"' x €) which satisfies & +0 and
Im 7(&') £ 0. Without restriction we may assume

(1) Im7()<0 and |g|=1.
Then we choose 0<0 <1 so small that the component of V(P) which con-

tains (&,7(¢)) is the graph of a holomorphic function 7:Bs(§)— C, where
Bs(&)={we @' :|w—&| =06}, and such that

(2) Im t(w) < %Im () <0 forall we By(&).
Let
(3) Cy:= max{l—i—‘@‘ :WGBO(E')}.

Next let C denote the constant from Proposition 2.6 (4) and choose 5, > 0 so small
that

) ﬁcc1(1+a)<§ and g<%.

Further, let ay denote the number from Proposition 2.6 (6) and define for a = ay the
functions ¢, : €' — R by

n—1
(5) Pal21,- - 2n) =P [va(zn) +G (Z Im z;| — MZJ))

=1

+¢eIm z, — C,

where v, denotes the function defined in 2.5. By Proposition 2.6 (1) and (6), ¢, is
plurisubharmonic on C".
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To estimate @, in (w,7(w)), where w € Bsr(RE') for R =1, we first note that the
subadditivity of the function w,, defined in 1.1, 2.6 (2) and the definition of C; in (3) imply
forr=1

wa([(rw)]) = (rlf( ) = wa(Crrw]) = Craa(riw))

-1
= Zwa rlwi]) = Z (rwy).
=1

Using 2.6 (3) and (4) we obtain from this for w € Bsg(RE') = RBs(&)
n—1
va(z(w)) + C1 Y (ITm wy| — va(w;))

j=1
n—1

= wq(|7(w)]) + vali Im 7(w)) + C1 Y (1T wj| — va(wy))
n-1 " n—1
= C1 Y va(wp) + C(1+ [Imz(w)]) + C1 Y ([Tm wy| — va(w)))
. n—1 .
= ClImz(w)| + C+ Cy Y _ [Im w|
and hence = )
(6) @,(w,T(w)) = BIC|Im t(w)| + C4 ni [Im w;|] + ¢ Im ©(w).
=1
Next consider the compact subset K of H, (N), defined as
K={xeR":x,=¢, [x| =pC forl=j=n-1}.

Its support function kg is given by

H

n—

hg(Im z) = e Im z,, 4 (BCy +1) Tm z;].

-
Il
_

Then note that for w € Bsg(RE') we get from (3)
w w
_ Y\ < s
(7) Im t(w)| = R ‘Im ‘L’<R>’ _RCl}R‘ < Ci(1+9)R.

Now let H denote the function from Lemma 2.7. Using (6), (7), 2.7 (2) and (4) we get for
each w € €' satisfying |w — RE| = OR:

w — RE
)

@,(w,T(w)) + (5RH(

n—1
= BCCi (14 6)R+BCy > [Im wy| + eIm 7(w) + |Im w| — OR/2
j=1

= hg(Im (w, 7(w)) + (ﬁCCl(l +0)— §>R < hg(Im (w, 7(w)).

Consequently, we can define U, : V(P) — R by

max{qoa(w7 (w)) + ORH (W glfgl), hg(Im (w, T(W)))}
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for {(w,t(w)):w € Bsr(RE)} and by hgxolm otherwise. Then U, satisfies (a) of
PL(H,(N)) for the given set K, since it equals /g(Im z) outside a compact subset of
V(P). From (6) and 2.7 (3) it follows that for w € Byg(RE') satistying (w,7(w)) € R", we
have

@.(w,T(w)) + ORH (ngRRg/) =0.

Hence U, satisfies the conditions (a) and () of PL(H..(N)). Since V(P) satisfies PL(H,(N))
by hypothesis, there exists a convex compact set K’ C H, (N) such that

(8) Uy(z) =hg(Imz) forall ze V(P).

To apply (8) at (RE,r(RE))=R(E,7(§)) note that & ¢ R™' and Im (r(RE)) =
RImt(§) <0 by our choice of &. This implies hg (Im (RE 7(RE))) =0 since
K C H(N). Using this, and 2.7 (4) we get

n—1
(9) Blva(z(RE)) = C1 > va(RE)| + ¢ Im 7(RE) — BC
j=1

= U,(RE, 7(RE)) = ho(Im (RE, 7(RE))) = 0
If we now let a tend to infinity in (9), then 2.6 (5) implies

(10) ﬁ% [(Im (RE)| + 1) — Cy(n — 1)] + 2R Im (&) — BC = 0.

Dividing (10) by R and then passing to the limit R — oo we get

2 2p

0= —|Im7(£)| +elm 7(§) = (;,5>\1m (&)]-

Since ;ﬁf ¢ is positive by (4) and since Im 7(&') +0, this is a contradiction. Hence our

assumption was false and the proof is complete.

To apply Lemma 3.3, we recall the following definitions from Hormander [4], 10.4.1 and
10.4.4.

Definition 3.4. For P € Clzi,...,z,] let

12
STPO@P A xeR" >0
a€Ng

Q(x,1)

P is said to dominate Q € Clzy,...,2,] if lim sup = =0.
1= rerr P(x,1)

Theorem 3.5. For P € Clz1,...,2,4] \ C let P,, denote the principal part of P and assume
that P,, dominates P — P,,. Then the following assertions are equivalent for N € §"~':

(1) P(D) admits a right inverse on &(H.(N)),

(2) Pw(D) admits a right inverse on §(H,(N)),

(3) P(D) admits a right inverse on &(R") and there exists a fundamental solution E for
P(D) satisfying Supp E C H_(N).
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Proof. (1) = (2): This follows from [6], 2.10 and 4.5, in connection with [8], 4.1.

(2) = (3): By Theorem 3.2 the variety V(P,,) satisfies PL(H, (N)). Hence Lemma 3.3 and
Hormander [3], Thm. 4.2 (resp. Hormander [4], Def. 12.8.16), imply that P,,(D) is an
evolution operator with respect to H.(N), in the sense of [4], Def. 12.8.16. By hypothesis, Py,
dominates P — P,,. Hence it follows from [3], Thm. 4.1 (resp. [4], Thm. 12.8.17), that P(D) is
an evolution operator with respect to H, (N). In particular P(D) admits a fundamental
solution E € Z'(IR") that satisties E C H_(N).

(3) = (1): This holds by [9], Prop. 4.

The following example shows that Theorem 3.5 may hold or as well fail if the principal
part of P does not dominate the lower order terms in P.

Example 3.6. For 4 € C satistying |A| = 1, define
Pi(z1,22,23) i= 21 — 23 + AZ3.

Then it follows from [9], 2.8, that P;(D) admits a right inverse on &(H), H:=
{x € R® : x5 > 0}, if and only if A = +1. Obviously, z? — z} does not dominate Az.
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