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Abstract. Results of Hörmander on evolution operators together with a character-
ization of the present authors [Ann. Inst. Fourier, Grenoble 40, 619 – 655 (1990)] are
used to prove the following: Let P 2 C�z1; . . . ; zn� and denote by Pm its principal part. If
P ÿ Pm is dominated by Pm then the following assertions for the partial differential
operators P�D� and Pm�D� are equivalent for N 2 Snÿ1:

(1) P�D� and/or Pm�D� admit a continuous linear right inverse on C1
�H��N��.

(2) P�D� admits a continuous linear right inverse on C1
�Rn

� and a fundamental
solution E 2 d

0
�Rn

� satisfying Supp E � Hÿ�N�,

where H��N� :� fx 2 Rn
:�hx;Ni > 0g.

In the early fifties L. Schwartz posed the problem of determining when a linear differential
operator P�D� with constant coefficients admits a (continuous linear) right inverse on e�W�

ord0
�W�, W an open subset ofRn. This problem was solved by the present authors in [6] and

for systems over convex open sets by Palamodov [10]. The solution in [6] is formulated in
terms of a P-convexity condition for general open sets W and for convex sets W in terms of a
Phragmén-Lindelöf condition on the zero variety V�P� � fz 2 Cn

: P�z� � 0g. Though these
conditions are rather involved they could be evaluated further in many examples. For
example, if N 2 Rn is non-characteristic for P then P�D� admits a right inverse on e�H��N��

and/or d0
�H��N��, where H��N� � fx 2 Rn

: �hx;Ni > 0g, if and only if P is hyperbolic
with respect to N (see [6], 3.2). If N is characteristic for P then P�D� may or may not have a
right inverse on e�H��N��. However, no characterization is known in this case. The aim of
the present paper is to prove the following result.

Theorem. Let P be a non-constant complex polynomial in n variables, let Pm denote its
principal part and assume that Pm dominates P ÿ Pm. Then the following assertions are
equivalent for N 2 Snÿ1:

(1) P�D� admits a right inverse on e�H��N��

(2) Pm�D� admits a right inverse on e�H��N��

(3) P�D� admits a right inverse on e�Rn
� and there exists E 2 d

0
�Rn

� satisfying
P�D�E � d and Supp E � Hÿ�N�.
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It was shown in [9], that condition (3) is sufficient without any further assumption on P.
Hence the main point here is to prove the necessity of (3) under the given hypotheses. In
order to achieve this we construct special subharmonic functions (which might be of interest
also in a different context) to evaluate the corresponding Phragmén-Lindelöf condition for
Pm, which also has a right inverse on e�H

�
�N�� by the perturbation result [8], 4.1. Then the

theorem follows from results of Hörmander [3] on evolution operators. Note that the
condition “Pm dominates P ÿ Pm” is necessary and sufficient for perturbations that preserve
hyperbolicity (see Hörmander [4], Thm. 12.4.6) and sufficient for preserving the property of
being an evolution operator (see Hörmander [4], Thm. 12.8.17).

The theorem above can be extended to general convex open sets in Rn as Franken [1]
shows by a different approach which uses (similarly as in Franken and Meise [2]) a
connection between “weak extendability of zero-solutions” and the existence of right
inverses.

1. Preliminaries. In this section we fix the notation and recall some facts which will be used
subsequently.

Def i n i t i on 1 . 1 . Let W be an open subset ofRn. Then e�W� denotes the complex vector
space of all infinitely differentiable functions on W, endowed with the Fréchet-space
topology of uniform convergence of all derivatives on all compact subsets of W. Also, d�W�

denotes the space of all functions in e�W� which have compact support in W. It is endowed
with the standard �LF�-space topology. Its dual space d0

�W� is the space of all distributions
on W.

1.2. Polynomials and differential operators. By C�z1; . . . ; zn� we denote the ring of all
complex polynomials in n variables, which will be also regarded as functions on Cn. For
P 2 C�z1; . . . ; zn�,

P�z� �
X

jaj % m

aaza
;

with
P

jaj�m
jaaj �j 0, we call Pm�z� :�

P

jaj�m
aaza the principal part of P. Note that Pm is a

homogeneous polynomial of degree m. A vector N 2 Rn
n f0g is called non-characteristic

for P if Pm�N� �j 0, otherwise N is called characteristic.
For P 2 C�z1; . . . ; zn� and an open set W in Rn we define the linear partial differential

operator

P�D� : d
0

�W� ! d
0

�W�; P�D�f :�

X

jaj % m

aaiÿjajf �a�:

Then P�D� is a continuous endomorphism of d0

�W� and its restriction to e�W� is a
continuous endomorphism of e�W�.

A distribution E in d0

�Rn
� is called a fundamental solution for P�D� if P�D�E � d, where

d denotes the point evaluation at zero.

1.3. Right inverses. We will say that P�D� admits a right inverse on e�W� (resp. on d0

�W��

if there exists a continuous linear map R : e�W� ! e�W� (resp. R : d
0

�W� ! d
0

�W�� so that
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P�D� � R � ide�W�
(resp. = idd0

�W�

�. By [6], 2.7, P�D� admits a right inverse on d0

�W� if and
only if P�D� admits a right inverse on e�W�. Note that in [6], 3.8, this property is
characterized by various conditions of different type.

2. Auxiliary subharmonic functions. In this section we construct the subharmonic
functions which will be used in the next section to prove one of our main results.

Def i n i t i on 2 . 1 . For a > 1 define wa : R! R by

wa�t� :�

jtj
log a

if jtj % a

a
log a

1 � log
jtj
a

� �

if jtj > a :

8

>
>
<

>
>
:

Remark 2 . 2 . waj
�0;1�

is continuously differentiable, strictly increasing and concave.
Since wa�0� � 0, it follows that wa is subadditive on R. Furthermore t 7!wa�et

� is convex.

Hence z7!wa�jzj� is subharmonic. Obviously,
�
1

ÿ1

wa�t�
1 � t2 dt < 1 for each a ^ 2. Therefore

we can consider the harmonic extension of wa, defined as follows.

Def i n i t i on 2 . 3 . For a ^ 2 define ua : C! R the harmonic extension of wa by
uajR � wa and

ua�x � iy� �
jyj
p

�
�1

ÿ1

wa�t�

�t ÿ x�2
� y2

dt; x 2 R; y 2 R n f0g:

Lemma 2.4. For a ^ 3 the functions ua have the following properties:

(1) ua is continuous on C and harmonic on C nR,
(2) ua�z� ^ wa�jzj� for all z 2 C,
(3) ua�x � iy� % wa�x� � ua�iy�; x 2 R; y 2 R n f0g,

(4) ua�iy� %
y
p

2 �
4

log a
�

log 2
log a

� �

, for y ^ 1,

(5) lim
a!1

ua�x � iy� �
2
p
jyj for x 2 R, y 2 R n f0g,

(6)
@ua

@y
�x � i� ^ 0 for x 2 R,

(7)
@ua

@y
�x � iy�

�

�

�

�

�

�

�

�
%

3
p

for x 2 R; y ^ 1 and all a ^ a0 .

Proof . (1) The continuity of ua can be derived easily, using the subadditivity
of wa. Further, ua is harmonic on C nR, since we may interchange differentiation and
integration.

(2) The function ga�z� :� wa�jzj� ÿ ua�z�, defined for Im z ^ 0 is continuous there and
subharmonic in the interior by (1). Further gajR � 0 and ga�z� � o�jzj�. Hence the
Phragmén-Lindelöf principle for the upper half plane implies ga % 0. This implies (2)
because of the symmetry properties of wa and ua.
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(3) Since wa ist subadditive, an obvious change of variables gives

ua�x � iy� �
jyj
p

��1

ÿ1

wa�x � t�

t2
� y2 dt %

jyj
p

��1

ÿ1

wa�x� � wa�t�

t2
� y2 dt � wa�x� � ua�iy�:

(4) The definition of wa implies for a ^ 2 and y ^ 1:

ua�iy� �
y

p log a

�a

0

2t
t2
� y2 dt �

2ay
p log a

�1

a

1
t2
� y2 dt �

�1

a

log t
a

t2
� y2 dt

� �

%
y

p log a
�2log a � log 2 � 2 � 2� �

y
p

2 �
4

log a
�

log 2
log a

� �

;

as standard estimates show.
(5) Because of ua�x � iy� � ua�ÿx � ijyj� it suffices to prove (5) for x ^ 0 and

y > 0. Assume that x and y 2 R have this property and fix a > x. Then the definition of
wa implies

pua�x � iy� �
1

log a

�a

ÿa

yjtj

�t ÿ x�2
� y2

dt �
ay

log a

�

jtj ^ a

1 � log
jtj
a

� �

�t ÿ x�2
� y2

dt :���

A direct computation shows that the first integral on the right hand side of (�) converges to
2y as a tends to infinity and that the second one tends to zero, which proves (5).

(6) Define s : R! R by sa�x� :� ua�x � i�. Then it is easily seen that sa is an even
continuous function which has the same properties as wa and that the harmonic extension
of sa equals ua�x � i�1 � y�� in the upper half plane. Hence it follows as in the proof of (2)
that

ua�x � i � iy� ^ sa�jx � iyj� ^ sa�jxj� � ua�x � i�:

Obviously this implies (6), since ua is differentiable at x � i.
(7) From Meise and Taylor [5], 2.3, and (4) we get the existence of a0 ^ 2 such

that
�
�
�
�

@ua

@y
�x � iy�

�
�
�
�

%
1
p

��1

ÿ1

wa�t�
t2
� y2 dt �

1
y

ua�iy� %
3
p
<1 for all x 2 R; y ^ 1; a ^ a0:

Def i n i t i on 2 . 5 . For a ^ 2 define va : C! R by

va�z� � ua�z � i� for Im z ^ 0 and va�z� � ua�z ÿ i� for Im z % 0:

Proposition 2.6. For a ^ 2 the functions va have the following properties:

(1) va is continuous and subharmonic on C;
(2) va�z� ^ wa�jzj� for all z 2 C,
(3) va�x � iy� % wa�x� � va�iy� for all x; y 2 R,
(4) there exists C > 0 satisfying va�iy� % C�jyj � 1� for all a ^ 3; y 2 R,

(5) lim
a!1

va�x � iy� �
2
p
�jyj � 1� for all x 2 R; y 2 R n f0g,

(6) there exists a0 ^ 2 such that for all a ^ a0 the function z7!jIm zj ÿ va�z� is subharmonic
on C.
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Proof . (1) and (6): The continuity of va follows from the symmetry properties of ua. To
see that va is subharmonic, note first that va is harmonic onC nR. Next observe that Green’s
formula implies that for each f 2 d�C� satisfying f ^ 0 we have

�

C

vaDfdl�z� � 2
�

R

@ua

@y
�x � i�f�x�dx ^ 0

because of Lemma 2.4 (6). By the same argument, 2.4 (7) implies (6).
(2) – (5): These statements are easy consequences of the definition of va and the

corresponding assertions for ua.
From [7], 2.9, we recall the following lemma.

Lemma 2.7. For n 2 N let Bn :� fz 2 Cn
: jzj % 1g. There exists H 2 C�Bn� \ PSH�Bn�

having the following properties:

�1� H�z� % jIm zj for jzj % 1 �3� H�x� % 0 for x 2 Rn
; jxj % 1

�2� H�z� % jIm zj ÿ 1
2 for jzj � 1 �4� H�iy� ^ 0 for y 2 Rn

; jyj % 1:

3. Right inverses in half spaces. In [9], 3.5, we proved a sufficient condition for an operator
P�D� to admit a right inverse on e�H�; H an open half space in Rn. In this section we show
that this condition is necessary, whenever the polynomial P is dominated by its principal
part Pm. The proof is based on the characterization of the existence of right inverses in terms
of Phragmén-Lindelöf conditions on the zero variety of V�P� and on the results of
Hörmander [3] on the characteristic Cauchy problem. To formulate the Phragmén-Lindelöf
condition, we recall the following definitions.

Def i n i t i on 3 .1 . (a) For P 2 C�z1; . . . ; zn� nC and a convex compact set K in Rn we let

V�P� :� fz 2 Cn
: P�z� � 0g and hK : x 7! sup

y2K
hx; yi:

(b) Let V be an algebraic variety in Cn. A function u : V ! �ÿ1 ; 1� is called
plurisubharmonic on V if it is locally bounded above and plurisubharmonic at the regular
points Vreg � V. Further we assume that

u�z� � lim sup
x!z; x2Vreg

u�x� for z 2 Vsing:

By PSH(V) we denote all functions that are plurisubharmonic on V in this sense.

Theorem 3.2. Let P 2 C�z1; . . . ; zn� nC be homogeneous and let W be a convex open subset
of Rn. Then the following conditions are equivalent:

(1) P�D� : e�W� ! e�W� admits a continuous linear right inverse,
(2) P�D� : d

0

�W� ! d
0

�W� admits a continuous linear right inverse,
(3) V�P� satisfies the following Phragmén-Lindelöf condition PL�W�: For each convex

compact K � W there exists K0

� W convex and compact such that each
u 2 PSH�V�P�� satisfying (a) and (b) also satisfies (g):

(a) u�z� % hK�Im z� � o�jzj�; z 2 V�P�,
(b) u�z� % 0; z 2 V�P� \Rn,
(g) u�z� % hK0 �Im z�; z 2 V�P�.
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Proof . (1) and (2) are equivalent by [6], 2.7. Since W is convex, it follows from Definition
2.8 in [6] and [6], 4.5, that (1) is equivalent to the Phragmén-Lindelöf condition stated in
Definition 4.1 in [6] (which unfortunately contains misprints: read hh in (b) and hd in (c)
instead of h"). Since P is homogeneous, it follows from [8], 3.3, that this Phragmén-Lindelöf
condition is equivalent to PL�W� in (3).

Next we want to derive from Theorem 3.2 that for each N 2 Snÿ1 and each homo-
geneous polynomial P 2 C�z1; . . . ; zn� nC for which P�D� admits a continuous linear
right inverse on e�H

�
�N��; P�D� is an evolution operator with respect to H

�
�N�

in the sense of Hörmander [4], Def. 12.8.16. To do so we use that by Hörmander [3],
Thm. 4.2, for homogeneous polynomials this property is equivalent to the fact that
for each x 2 Rn the complex polynomial t 7!P�x � tN� is either identically zero or has
only real zeros. Further we apply the functions va defined in 2.5 to construct
plurisubharmonic functions on V�P� that are needed to use the condition PL�W� from
Theorem 3.2.

Lemma 3.3. Let P 2 C�z1; . . . ; zn� be homogeneous and irreducible. If V�P� satisfies
PL�H

�
�N�� for some N 2 Rn

n f0g then for each x 2 Rn the complex polynomial
t 7!P�x � tN� is either identically zero or has only real zeros.

Proof . Without restriction we may assume N � en. Arguing by contradiction, we assume
that there exist x0 2 R

n and t0 2 C nR such that P�x0 � t0en� � 0 and P�x0 � ten� �j 0. Then
there exists also a regular point �x0; t�x0�� 2 V�P� \ �Rnÿ1

�C� which satisfies x0 �j 0 and
Im t�x0� �j 0. Without restriction we may assume

Im t�x0� < 0 and jx0j � 1:�1�

Then we choose 0 < d < 1 so small that the component of V�P� which con-
tains �x0; t�x0�� is the graph of a holomorphic function t : Bd�x

0

� ! C, where
Bd�x

0

� � fw 2 Cnÿ1
: jw ÿ x0j % dg, and such that

Im t�w� <
1
2

Im t�x0� < 0 for all w 2 Bd�x
0

�:�2�

Let

C1 :� max 1 �
t�w�

w

�
�
�
�

�
�
�
�

: w 2 Bd�x
0

�

� �

:�3�

Next let C denote the constant from Proposition 2.6 (4) and choose b; " > 0 so small
that

bCC1�1 � d� <
d

2
and " <

2b

p
:�4�

Further, let a0 denote the number from Proposition 2.6 (6) and define for a ^ a0 the
functions fa : Cn

! R by

fa�z1; . . . ; zn� :� b va�zn� � C1

Xnÿ1

j�1

jIm zjj ÿ va�zj�

 !" #

� " Im zn ÿ bC;�5�

where va denotes the function defined in 2.5. By Proposition 2.6 (1) and (6), fa is
plurisubharmonic on Cn.
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To estimate fa in �w; t�w��, where w 2 BdR�Rx0� for R ^ 1, we first note that the
subadditivity of the function wa, defined in 1.1, 2.6 (2) and the definition of C1 in (3) imply
for r ^ 1

wa�jt�rw�j� � wa�rjt�w�j� % wa�C1rjwj� % C1wa�rjwj�

% C1

Xnÿ1

j�1

wa�rjwjj� % C1

Xnÿ1

j�1

va�rwj�:

Using 2.6 (3) and (4) we obtain from this for w 2 BdR�Rx0� � RBd�x
0

�

va�t�w�� � C1

Xnÿ1

j�1

jIm wjj ÿ va�wj�
ÿ �

% wa�jt�w�j� � va�i Im t�w�� � C1

Xnÿ1

j�1

jIm wjj ÿ va�wj�
ÿ �

% C1

Xnÿ1

j�1

va�wj� � C�1 � jIm t�w�j� � C1

Xnÿ1

j�1

jIm wjj ÿ va�wj�
ÿ �

� CjIm t�w�j � C � C1

Xnÿ1

j�1

jIm wjj

and hence

fa�w; t�w�� % b�CjIm t�w�j � C1

Xnÿ1

j�1

jIm wjj� � " Im t�w�:�6�

Next consider the compact subset K of H
�
�N�, defined as

K :� fx 2 Rn
: xn � "; jxjj % bC1 for 1 % j % n ÿ 1g:

Its support function hK is given by

hK�Im z� � " Im zn � �bC1 � 1�
Xnÿ1

j�1

jIm zjj:

Then note that for w 2 BdR�Rx0� we get from (3)

jIm t�w�j � R Im t
w
R

� ��
�
�

�
�
� % RC1

w
R

�
�
�

�
�
� < C1�1 � d�R:�7�

Now let H denote the function from Lemma 2.7. Using (6), (7), 2.7 (2) and (4) we get for
each w 2 Cnÿ1 satisfying jw ÿ Rx0j � dR:

fa�w; t�w�� � dRH
w ÿ Rx0

dR

� �

% bCC1�1 � d�R � bC1

Xnÿ1

j�1

jIm wjj � "Im t�w� � jIm wj ÿ dR=2

� hK�Im �w; t�w�� � bCC1�1 � d� ÿ
d

2

� �

R < hK�Im �w; t�w��:

Consequently, we can define Ua : V�P� ! R by

max fa�w; t�w�� � dRH
w ÿ Rx0

dR

� �

; hK�Im �w; t�w���

� �
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for f�w; t�w�� : w 2 BdR�Rx0�g and by hK � Im otherwise. Then Ua satisfies �a� of
PL�H��N�� for the given set K, since it equals hK�Im z� outside a compact subset of
V�P�. From (6) and 2.7 (3) it follows that for w 2 BdR�Rx0� satisfying �w; t�w�� 2 Rn, we
have

fa�w; t�w�� � dRH
w ÿ Rx0

dR

� �

% 0:

Hence Ua satisfies the conditions �a� and �b� of PL�H��N��. Since V�P� satisfies PL�H��N��

by hypothesis, there exists a convex compact set K0
� H��N� such that

Ua�z� % hK0 �Im z� for all z 2 V�P�:�8�

To apply (8) at �Rx0; t�Rx0�� � R�x0; t�x0�� note that x0 2 Rnÿ1 and Im �t�Rx0�� �
R Im t�x0� < 0 by our choice of x0. This implies hK0 Im �Rx0; t�Rx0��

ÿ �

% 0 since
K � H��N�. Using this, and 2.7 (4) we get

b va�t�Rx0�� ÿ C1

Xnÿ1

j�1

va�Rx0j�

" #

� " Im t�Rx0� ÿ bC�9�

% Ua�Rx0; t�Rx0�� % hK0 �Im �Rx0; t�Rx0��� % 0:

If we now let a tend to infinity in (9), then 2.6 (5) implies

b
2
p

�jIm t�Rx0�j � 1� ÿ C1�n ÿ 1�
� �

� "R Im t�x0� ÿ bC % 0:�10�

Dividing (10) by R and then passing to the limit R ! 1 we get

0 ^
2b

p
jIm t�x0�j � "Im t�x0� �

2b

p
ÿ "

� �

j Im t�x0�j:

Since
2b

p
ÿ " is positive by (4) and since Im t�x0� �j 0, this is a contradiction. Hence our

assumption was false and the proof is complete.
To apply Lemma 3.3, we recall the following definitions from Hörmander [4], 10.4.1 and

10.4.4.

Def i n i t i on 3 . 4 . For P 2 C�z1; . . . ; zn� let

eP�x; t� :�

X

a2Nn
0

jP�a�
�x�j2 t2jaj

0

@

1

A

1=2

; x 2 Rn
; t > 0:

P is said to dominate Q 2 C�z1; . . . ; zn� if lim
t!1

sup
x2Rn

eQ�x; t�
eP�x; t�

� 0.

Theorem 3.5. For P 2 C�z1; . . . ; zn� nC let Pm denote the principal part of P and assume
that Pm dominates P ÿ Pm. Then the following assertions are equivalent for N 2 Snÿ1:

(1) P�D� admits a right inverse on e�H��N��;

(2) Pm�D� admits a right inverse on e�H��N��;

(3) P�D� admits a right inverse on e�Rn
� and there exists a fundamental solution E for

P�D� satisfying Supp E � Hÿ�N�.
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Proof . (1) ) (2): This follows from [6], 2.10 and 4.5, in connection with [8], 4.1.
(2) ) (3): By Theorem 3.2 the variety V�Pm� satisfies PL�H��N��. Hence Lemma 3.3 and

Hörmander [3], Thm. 4.2 (resp. Hörmander [4], Def. 12.8.16), imply that Pm�D� is an
evolution operator with respect to H��N�, in the sense of [4], Def. 12.8.16. By hypothesis, Pm

dominates P ÿ Pm. Hence it follows from [3], Thm. 4.1 (resp. [4], Thm. 12.8.17), that P�D� is
an evolution operator with respect to H��N�. In particular P�D� admits a fundamental
solution E 2 d

0
�Rn

� that satisfies E � Hÿ�N�.
(3) ) (1): This holds by [9], Prop. 4.

The following example shows that Theorem 3.5 may hold or as well fail if the principal
part of P does not dominate the lower order terms in P.

Example 3 . 6 . For l 2 C satisfying jlj � 1, define

Pl�z1; z2; z3� :� z2
1 ÿ z2

2 � lz3:

Then it follows from [9], 2.8, that Pl�D� admits a right inverse on e�H�; H :�

fx 2 R3
: x3 > 0g, if and only if l � �1. Obviously, z2

1 ÿ z2
2 does not dominate lz3.
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