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1. Introduction

Let M be a complete oriented connected n-dimensional hyperbolic manifold. We
can write M = Hn/Γ, where Γ is a torsion-free discrete subgroup of Isom+(Hn),
the group of orientation-preserving isometries of the hyperbolic space Hn. The
action of Γ onHn extends to a conformal action on Sn−1

∞ , the sphere at infinity. For
basic notions of hyperbolic geometry, we refer to [2]. Unless otherwise indicated,
we assume that Γ is nonelementary, i.e. does not have an abelian subgroup of
finite index.

A major theme in the study of hyperbolic manifolds is the relationship between
the properties of M and the action of Γ on Sn−1

∞ . For example, let λ0(M) ∈ [0,∞)
be the infimum of the spectrum σ(4) of the Laplacian on M . Let Λ ⊂ Sn−1

∞ be
the limit set of Γ and let D(Γ) be its Hausdorff dimension. Sullivan [15] showed
that if M is geometrically finite then

λ0(M) =
{ (n− 1)2/4 if D(Γ) ≤ n−1

2 ,

D(Γ)(n− 1−D(Γ)) if D(Γ) ≥ n−1
2 .

(1.1)

Thus there is a strong relationship between the spectrum of the Laplacian, acting
on functions on M , and the geometry of the limit set. There is also a Laplacian
4p on p-forms on M (see, for example, [9]). The motivating question of this paper
is : What, if any, is the relationship between the spectrum of4p and the geometry
of the limit set?
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If p > 0, it is clear that the infimum of the spectrum of 4p depends on more
than just the limit set as a set. For example, let M be a closed hyperbolic 3-
manifold. From Hodge theory, 0 ∈ σ(41) if and only if the first Betti number
b1(M) of M is nonzero. There are examples with b1(M) = 0 and examples with
b1(M) 6= 0. However, in either case, Λ = S2

∞.
In this paper, we address the question of whether Ker(4p) 6= 0 for a hyperbolic

manifold M . We show how the answer to the question is related to the existence
of Γ-invariant p-currents on Sn−1

∞ , of a certain regularity. In some sense, these
currents probe the finer geometry of the limit set.

In order to state our results, let us recall the notion of harmonic extension of
p-forms. We use the hyperbolic ball model for Hn, with boundary Sn−1. The
space of p-hyperforms on Sn−1 is the dual space to the space of real-analytic
(n− 1− p)-forms on Sn−1. We think of a p-hyperform on Sn−1 as a p-form whose
coefficient functions are hyperfunctions. A p-current on Sn−1 is a p-hyperform
whose coefficient functions are distributions.

There is a Poisson transform Φp from p-hyperforms on Sn−1 to coclosed har-
monic p-forms on Hn [6]. To describe Φp in terms of visual extension, let ω be a
p-hyperform on Sn−1. Given x ∈ Hn, let Sx be the unit sphere in TxH

n and let
Ax : Sx → Sn−1 be the visual map. Given v ∈ TxHn ∼= T0(TxHn), define a vector
field V on Sx by saying that at y ∈ Sx, V is the translation of v in TxH

n from 0
to y, followed by orthogonal projection onto TySx. Then for v1, . . . vp ∈ TxHn,

〈Φp(ω), v1 ∧ . . . ∧ vp〉 =
1

vol(Sn−1)

∫
Sx

〈A∗xω, V1 ∧ . . . ∧ Vp〉dvol. (1.2)

Equivalently, given x ∈ Hn and v ∈ TxHn, take an upper-half-space model

{(x1, . . . , xn) ∈ Rn : xn > 0} (1.3)

for Hn in which x = (0, . . . , 0, 1) and v = c ∂
∂xn

for some c ∈ R. Consider the
Killing vector field c

∑n
i=1 xi

∂
∂xi

. It restricts to a conformal vector field W on
∂Hn = Sn−1. Then for v1, . . . vp ∈ TxHn,

〈Φp(ω), v1 ∧ . . . ∧ vp〉 =
1

vol(Sn−1)

∫
Sn−1
〈ω,W1 ∧ . . . ∧Wp〉dvol. (1.4)

By a result of Gaillard, for p > 0, Φp is an isomorphism from exact p-hyperforms
on Sn−1 to closed and coclosed p-forms on Hn [6, Théorème 2]. Following [6], we
say that a p-form α on Hn has slow growth if there are constants a, b > 0 such
that for some (or any) m0 ∈ Hn,

|α(m)| ≤ aebd(m0,m) (1.5)

for all m ∈ Hn. Then for p > 0, Φp is also an isomorphism from exact p-currents
on Sn−1 to closed and coclosed p-forms on Hn of slow growth [6, Théorème 3].
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Let π : Hn → Hn/Γ be the quotient map. Let Ω = Sn−1 − Λ be the domain
of discontinuity.

By Gaillard’s theorem, if p > 0 then Φ−1
p ◦π∗ induces an isomorphism between

closed and coclosed p-forms on Hn/Γ, and Γ-invariant exact p-hyperforms on Sn−1.
Let α be an L2-harmonic p-form on Hn/Γ. By Hodge theory, α is closed and
coclosed. Thus we can use results about the L2-cohomology of Hn/Γ to construct
Γ-invariant exact p-hyperforms on Sn−1, and vice versa. The questions that we
address are :
1. What can we say about the regularity of these hyperforms?
2. Are they supported on the limit set?

Under Hodge duality, the space of L2-harmonic p-forms on Hn/Γ is isomorphic
to the space of L2-harmonic (n − p)-forms. Without loss of generality, hereafter
we assume that p ∈ [1, n2 ].

Theorem 1. If n is even then up to a constant, Φn
2

is an isometric isomorphism

between exact n
2 -forms on Sn−1 which are Sobolev H−

1
2 -regular, and L2-harmonic

n
2 -forms on Hn.

From Theorem 1, we obtain that the n
2 -hyperforms that we construct on Sn−1

cannot be too regular.

Corollary 1. Suppose that α is a nonzero L2-harmonic n
2 -form on Hn/Γ. If Γ

is infinite then Φ−1
n
2

(π∗α) is not Sobolev H−
1
2 -regular.

We now give some positive regularity results. Let us recall that Γ is said to
be cocompact if Hn/Γ is compact. It is said to be convex-cocompact if there is a
compact subset K of Hn/Γ such that all nontrivial closed geodesics in Hn/Γ lie in
K. If Γ is convex-cocompact then Hn/Γ consists of K along with a finite number
of flaring ends attached to K.

Theorem 2. A. If Γ is cocompact then for any p ∈ [1, n2 ], there are isomorphisms
between the following vector spaces :
V1 ={Harmonic p-forms on Hn/Γ}.
V2 ={Γ-invariant exact p-hyperforms on Sn−1}.
V3 ={Γ-invariant exact p-currents on Sn−1 which are Sobolev H−p−ε-regular

for all ε > 0}.
V4 =Hp(Hn/Γ,R), the p-dimensional real cohomology group of Hn/Γ.
B. If Γ is convex-cocompact then for any p ∈ [1, n−1

2 ), there are isomorphisms
between the following vector spaces :
V1 ={L2-harmonic p-forms on Hn/Γ}.
V2 ={Γ-invariant exact p-hyperforms on Sn−1 which are supported on the limit

set}.
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V3 ={Γ-invariant exact p-currents on Sn−1 which are supported on the limit set
and which are Sobolev H−p−ε-regular for all ε > 0}.

V4 =Hp
c(H

n/Γ,R), the p-dimensional real compactly-supported cohomology group
of Hn/Γ.

In Theorem 2, we show that the injection V3 → V2 is surjective and that Φp

induces an isomorphism from V2 to V1. In case A, there is an isomorphism between
V4 and V1 from standard Hodge theory. By [12], this is also true in case B.

There are extensions of Theorem 2 to hyperbolic manifolds with vanishing
injectivity radius. We state one such extension here.

Theorem 3. If n = 3, suppose that there is a positive lower bound to the lengths
of the nontrivial closed geodesics on H3/Γ. Let α be an L2-harmonic 1-form on
H3/Γ. Then for all ε > 0, the hyperform Φ−1

1 (π∗α) is Sobolev H−1−ε-regular.

We show that the regularity estimate in Theorem 2 is sharp in some cases. We
find an interesting distinction between cocompact groups, and convex-cocompact
groups which are not cocompact.

Theorem 4. A. Suppose that Γ is cocompact. Let α be a nonzero harmonic 1-
form on Hn/Γ. Then Φ−1

1 (π∗α) is not Sobolev H−1-regular.
B. Let Γ be a convex-cocompact group which is not cocompact. Let α be an L2-
harmonic 1-form on Hn/Γ. Then Φ−1

1 (π∗α) is Sobolev H−1-regular.

We look at what our general results become in the case of surfaces and 3-
manifolds. In the case of surfaces, we obtain results about the actions of Fuchsian
groups on certain function spaces on S1. Let A′(S1) denote the hyperfunctions on
S1 and let A′0(S1) denote those which vanish on constant functions. Let D′(S1)
denote the distributions on S1 and let D′0(S1) denote those which vanish on con-
stant functions. Recall that a Zygmund function on S1 is a function f : S1 → C
such that

sup
x∈S1,h∈R+

|f(x+ h) + f(x− h)− 2f(x)|
h

<∞. (1.6)

A Zygmund function is continuous and lies in the Sobolev space H1−ε(S1) for
all ε > 0. Let DZ(S1) denote the generalized functions on S1 which are deriva-
tives of Zygmund functions, plus constants. If Γ is a subgroup of PSL(2,R), let(
A′0(S1)

)Γ
denote the Γ-invariant subspace ofA′0(S1), and similarly for

(
D′0(S1)

)Γ
and

(
DZ(S1)/C

)Γ
.

Theorem 5. A. Let Γ be a torsion-free uniform lattice in Isom+(H2), with H2/Γ
a closed surface of genus g. Then
1. dim

(
A′0(S1)

)Γ
= 2g.
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2. dim
(
D′0(S1)

)Γ
= 2g.

3. dim
(
DZ(S1)/C

)Γ
= 2g.

4. dim
(
L2(S1)/C

)Γ
= 0.

B. Let Γ be a torsion-free nonuniform lattice in Isom+(H2), with H2/Γ the com-
plement of k points in a closed surface S of genus g. Then
1. dim

(
A′0(S1)

)Γ
=∞.

2. dim
(
D′0(S1)

)Γ
= max(2g, 2g + 2k − 2).

3. dim
(
H−

1
2 (S1)/C

)Γ
= 2g.

4. dim
(
DZ(S1)/C

)Γ
= 2g.

5. dim
(
L2(S1)/C

)Γ
= 0.

Parts A.2 and B.2 of Theorem 5 are due to Haefliger and Banghe [8].
Next, we look at the case of quasi-Fuchsian 3-manifolds. We follow the philos-

ophy of Connes and Sullivan [5, Section IV.3.γ]. Let S be a closed oriented surface
of genus g > 1. Let Γ be a quasi-Fuchsian subgroup of Isom+(H3) which is iso-
morphic to π1(S). Then H3/Γ is diffeomorphic to R × S and H1

c (H3/Γ;C) = C.
Thus there is a nonzero L2-harmonic 1-form α on H3/Γ.

We show that Φ−1
1 (π∗α) is a Γ-invariant exact 1-current supported on the limit

set Λ ⊂ S2. The domain of discontinuity Ω ⊂ S2 is the union of two 2-disks D+
and D−, with D+/Γ and D−/Γ homeomorphic to S. Let χD+ ∈ L2(S2) be the
characteristic function of D+. We show that Φ−1

1 (π∗α) is proportionate to the
exact 1-current dχD+ on S2.

Let Z : D2 → D+ be a uniformization of D+. By Carathéodory’s theorem, Z
extends to a continuous homeomorphism Z : D2 → D+. The restriction of Z to
∂D2 gives a homeomorphism ∂Z : S1 → Λ.

The 1-current dχD+ defines a cyclic 1-cocycle τ on the algebra C1(S2) by

τ(F 0, F 1) =
∫
S2
dχD+ ∧ F 0dF 1. (1.7)

Lemma 1. The function space H
1
2 (S1) ∩ L∞(S1) is a Banach algebra with the

norm

||f || =
(∫

R+

∫
S1

|f(θ + h)− f(θ)|2
h2 dθdh

) 1
2

+ ||f ||∞. (1.8)

Given f0, f1 ∈ H
1
2 (S1) ∩ L∞(S1), let

f i(θ) =
∑
j∈Z

cije
√
−1jθ (1.9)
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be the Fourier expansion. Define a bilinear function

τ :
(

H
1
2 (S1) ∩ L∞(S1)

)
×
(

H
1
2 (S1) ∩ L∞(S1)

)
→ C (1.10)

by
τ(f0, f1) = −2πi

∑
j∈Z

jc0j c
1
−j . (1.11)

Then τ is a continuous cyclic 1-cocycle on H
1
2 (S1) ∩ L∞(S1).

We relate the function-theoretic 1-cocycle τ to the 1-cocycle τ .

Theorem 6. Given F 0, F 1 ∈ C1(S2), put f i = (∂Z)∗F i, i ∈ {1, 2}. Then
f i ∈ H

1
2 (S1) ∩ L∞(S1) and

τ(F 0, F 1) = −τ(f0, f1). (1.12)

In Subsection 5.2 we give examples of discrete subgroups Γ of Isom+(H3) with
limit set S2 such that for all ε > 0, the Γ-invariant subspace of H−ε(S2)/C is
infinite-dimensional. This constrasts with the fact that from ergodicity, the Γ-
invariant subspace of L2(S2)/C vanishes.

Let us remark that our results could be extended to eigenfunctions of 4p with
nonzero eigenvalue. In this paper we only deal with L2-harmonic forms since the
dimension of the space of such forms can often be computed in terms of topological
data, such as when M is a geometrically-finite hyperbolic manifold [12].

2. Regularity

Let p be an integer in
[
1, n2

]
Take coordinates (r, θ) ∈ (0, 1)× Sn−1 for Hn −{0},

with metric

ds2 =
4(dr2 + r2dθ2)

(1− r2)2 . (2.1)

For k ≥ 0, consider the hypergeometric function

Fp,k(z) = F (1 + p− n

2
, 1 + p+ k; 1 +

n

2
+ k; z). (2.2)

Put

cp,k =
2p+1

n

Γ(n− p+ k)Γ(n2 + 1)
Γ(n− p)Γ(n2 + k + 1)

=
2p+1

n

(n− p)(n− p+ 1) . . . (n− p+ k − 1)
(n2 + 1)(n2 + 2) . . . (n2 + k)

.

(2.3)
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Let {αi}∞i=1 be a sequence of coclosed (p− 1)-forms on Sn−1 such that
1. αi is an eigenvector for the Laplacian with eigenvalue (ki + p)(ki + n − p),
ki ∈ Z ∩ [0,∞).

2. {dαi}∞i=1 is an orthonormal basis of the exact p-forms on Sn−1.
Then

‖ αi ‖2L2=
1

(ki + p)(ki + n− p) . (2.4)

Given an exact p-hyperform ω on Sn−1, let

ω =
∞∑
i=1

cidαi (2.5)

be its Fourier expansion. Gaillard [6, p. 599] showed that the Poisson transform
of ω is

Φp(ω) =
∞∑
i=1

ci
(ki + p)(ki + n− p)

2
cp,kir

p−1+ki (2.6)[
r

ki + p
Fp−1,ki(r

2)dαi + (1− r2)Fp,ki(r
2)dr ∧ αi

]
.

Put Sn−1(r) = {(r, θ) : θ ∈ Sn−1} ⊂ Hn. Given η ∈ Ωp−1(Sn−1), we can think
of dη and dr ∧ η as p-forms on Hn − {0}. Their pointwise norms on Sn−1(r) are

|dη|Sn−1(r) =
(

1− r2

2r

)p
|dη|Sn−1 (2.7)

and

|dr ∧ η|Sn−1(r) =
1− r2

2

(
1− r2

2r

)p−1

|η|Sn−1 . (2.8)

Theorem 1. If n is even then up to a constant, Φn
2

is an isometric isomorphism

between exact n
2 -forms on Sn−1 which are Sobolev H−

1
2 -regular, and L2-harmonic

n
2 -forms on Hn.

Proof. We have

Fn
2 ,k

(z) = F (1, 1 +
n

2
+ k; 1 +

n

2
+ k; z) = (1− z)−1, (2.9)

Fn
2−1,k(z) = F (0,

n

2
+ k; 1 +

n

2
+ k; z) = 1 (2.10)

and

cn
2 ,k

=
2
n
2

k + n
2
. (2.11)
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Then

Φn
2

(ω) =
∞∑
i=1

ci2
n
2−1

[
r
n
2 +kidαi + (ki +

n

2
)r

n
2 +ki−1dr ∧ αi

]
. (2.12)

Thus∫
Hn
|Φn

2
(ω)|2dvol =

∞∑
i=1

|ci|22n−2vol(Sn−1)
∫ 1

0

[
rn+2ki

(
1− r2

2r

)n
+

(2.13)

rn+2ki−2
(

1− r2

2

)2(
1− r2

2r

)n−2](
2r

1− r2

)n−1 2
1− r2 dr

(2.14)

=
∞∑
i=1

|ci|22n−1vol(Sn−1)
∫ 1

0
r2ki+n−1dr

=2n−2vol(Sn−1)
∞∑
i=1

1
ki + n

2
|ci|2.

The theorem follows. �

Corollary 1. Suppose that α is a nonzero L2-harmonic n
2 -form on Hn/Γ. If Γ

is infinite then Φ−1
n
2

(π∗α) is not Sobolev H−
1
2 -regular.

Proof. If Φ−1
n
2

(π∗α) were Sobolev H−
1
2 -regular then Theorem 1 would imply that

π∗α is L2, contradicting the assumption that Γ is infinite. �

The following is the main technical result of the paper.

Theorem 7. If ω is an exact p-hyperform on Sn−1 and if Φp(ω) is L∞-bounded
on Hn then ω is Sobolev H−p−ε-regular for all ε > 0.

Proof. By the assumptions, 1
vol(Sn−1(r))

∫
Sn−1(r) |Φp(ω)|2dvol is uniformly bounded

in r ∈ (0, 1). Thus for ε > 0,∫ 1

0
r(1− r2)−1+2ε 1

vol(Sn−1(r))

∫
Sn−1(r)

|Φp(ω)|2dvoldr <∞. (2.15)

In particular, just looking at the dr ∧ α component of Φp(ω) in (2.6) gives

∞∑
i=1

(ki + p)2(ki + n− p)2c2p,ki |ci|
2 (2.16)
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0
r(1− r2)−1+2εr2p−2+2ki (1− r2)2F 2

p,ki(r
2)
(

1− r2

2

)2(
1− r2

2r

)2p−2

(2.17)
1

(ki + p)(ki + n− p)dr <∞,

or

∞∑
i=1

(ki + p)(ki + n− p)c2p,ki |ci|
2
∫ 1

0
zki(1− z)2p+1+2εF 2

p,ki(z)dz <∞. (2.18)

For the regularity question, it is the regime of large ki and z near 1 which is
relevant. Thus our main problem is to derive uniform estimates for F 2

p,ki
(z), for

large ki and z near 1.
Substituting z = w−1

w+1 gives

∞∑
i=1

(ki+p)(ki+n−p)c2p,ki|ci|
2
∫ ∞

1
(w−1)ki(w+1)−2p−ki−3−2εF 2

p,ki(
w − 1
w + 1

)dw <∞.

(2.19)
Restricting the summation to ki > 0, the further substitution w = kix gives∑

i

(ki + p)(ki + n− p)c2p,ki |ci|
2k−2p−2−2ε
i (2.20)∫ ∞

k−1
i

x−2p−3−2ε(1− 1
kix

)ki(1 +
1
kix

)−2p−ki−3−2εF 2
p,ki(

kix− 1
kix+ 1

)dx <∞.

In order to estimate Fp,ki , we use the transformation [1, 15.3.4]

Fp,k(z) = F (1 + p− n

2
, 1 + p+ k; 1 +

n

2
+ k; z) (2.21)

= (1− z)
n
2−p−1F (1 + p− n

2
,
n

2
− p; 1 +

n

2
+ k;

z

z − 1
).

Then

Fp,k(
w − 1
w + 1

) =
(

2
w + 1

)n
2−p−1

F (1 + p− n

2
,
n

2
− p; 1 +

n

2
+ k;

1
2
− w

2
). (2.22)

From [11, (4) p. 246 and (15) p. 248],

P
−n2−k
n
2−p−1(w) =

1
Γ(1 + n

2 + k)

(
w + 1
w − 1

)−n4− k2
F (1 + p− n

2
,
n

2
− p; 1 +

n

2
+ k;

1
2
− w

2
)

(2.23)
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and∫ ∞
0

e−wtt
n
2 +k− 1

2Kn
2−p−

1
2
(t)dt =

(π
2

) 1
2 Γ(k + p+ 1)Γ(n+ k − p)

(w2 − 1)
n
4 + k

2
P
−n2−k
n
2−p−1(w).

(2.24)
We obtain

Fp,k(
w − 1
w + 1

) =
(

2
π

) 1
2

2
n
2−p−1 Γ(1 + n

2 + k)
Γ(k + p+ 1)Γ(n+ k − p)(w + 1)k+p+1

(2.25)∫ ∞
0

e−wtt
n
2 +k− 1

2Kn
2−p−

1
2
(t)dt,

so

Fp,ki(
kix− 1
kix+ 1

) =
(

2
π

) 1
2

2
n
2−p−1 kki+p+1

i Γ(1 + n
2 + ki)

Γ(ki + p+ 1)Γ(n+ ki − p)
xki+p+1

(2.26)

(1 +
1
kix

)ki+p+1
∫ ∞

0
e−kixtt

n
2 +ki− 1

2Kn
2−p−

1
2
(t)dt.

(Recall that for large t [1, 9.7.2 and 10.2.17],

Kn
2−p−

1
2
(t) ∼

√
π

2t
e−t.) (2.27)

Then from (2.20),

∑
i

(ki + p)(ki + n− p)c2p,ki |ci|
2 k2ki−2ε

i Γ2(1 + n
2 + ki)

Γ2(ki + p+ 1)Γ2(n+ ki − p)
(2.28)∫ ∞

k−1
i

x2ki−1−2ε
∫ ∞

0

∫ ∞
0

(1− 1
kix

)ki(1 +
1
kix

)ki−1−2εe−kix(t+t′)(tt′)
n
2 +ki− 1

2

Kn
2−p−

1
2
(t)Kn

2−p−
1
2
(t′)dtdt′dx <∞,

or

∑
i

(ki + p)(ki + n− p)c2p,ki |ci|
2 k2ki−2ε

i Γ2(1 + n
2 + ki)

Γ2(ki + p+ 1)Γ2(n+ ki − p)
(2.29)∫ ∞

k−1
i

x2ki−1−2ε
∫ ∞

0

∫ ∞
0

(1− 1
k2
i x

2 )ki(1 +
1
kix

)−1−2εe−kix(t+t′)(tt′)
n
2 +ki− 1

2

Kn
2−p−

1
2
(t)Kn

2−p−
1
2
(t′)dtdt′dx <∞.
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Formally taking ki large, we obtain

∑
i

(ki + p)(ki + n− p)c2p,ki |ci|
2 k2ki−2ε

i Γ2(1 + n
2 + ki)

Γ2(ki + p+ 1)Γ2(n+ ki − p) (2.30)∫ ∞
0

∫ ∞
0

∫ ∞
0

x2ki−1−2εe−kix(t+t′)(tt′)
n
2 +ki− 1

2

Kn
2−p−

1
2
(t)Kn

2−p−
1
2
(t′)dxdtdt′ <∞,

or ∑
i

(ki + p)(ki + n− p)c2p,ki |ci|
2 Γ(2ki − 2ε)Γ2(1 + n

2 + ki)
Γ2(ki + p+ 1)Γ2(n+ ki − p)

(2.31)∫ ∞
0

∫ ∞
0

(t+ t′)−2ki+2ε(tt′)
n
2 +ki− 1

2Kn
2−p−

1
2
(t)Kn

2−p−
1
2
(t′)dtdt′ <∞.

That is,∑
i

(ki + p)(ki + n− p)c2p,ki |ci|
2 Γ(2ki − 2ε)Γ2(1 + n

2 + ki)
Γ2(ki + p+ 1)Γ2(n+ ki − p)

4−ki (2.32)

∫ ∞
0

∫ ∞
0

(
t+ t′

2
√
tt′

)−2ki
(tt′)

n
2−

1
2 (t+ t′)2εKn

2−p−
1
2
(t)Kn

2−p−
1
2
(t′)dtdt′ <∞.

Making the change of variables t = euv and t′ = e−uv, we have∑
i

(ki + p)(ki + n− p)c2p,ki |ci|
2 Γ(2ki − 2ε)Γ2(1 + n

2 + ki)
Γ2(ki + p+ 1)Γ2(n+ ki − p)

4−ki (2.33)∫ ∞
−∞

(coshu)−2ki(coshu)2ε
∫ ∞

0
vn+2εKn

2−p−
1
2
(euv)Kn

2−p−
1
2
(e−uv)dvdu <∞.

From [11, (8) p. 325],∫ ∞
0
vn+2εKn

2−p−
1
2
(euv)Kn

2−p−
1
2
(e−uv)dv = (2.34)

2n+2ε+1e−(2n−2p+2ε)uΓ(n− p+ ε)Γ2(1+n+2ε
2 )Γ(1 + p+ ε)

8Γ(1 + n+ 2ε)

F (n− p+ ε,
1 + n+ 2ε

2
; 1 + n+ 2ε; 1− e−4u).

Using the asymptotics of the hypergeometric function from [1, 15.3.6], one finds
that for large u,

(coshu)2ε
∫ ∞

0
vn+2εKn

2−p−
1
2
(euv)Kn

2−p−
1
2
(e−uv)dv = O

(
e−2|u|

)
. (2.35)
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Thus we can apply steepest descent methods to (2.33) to obtain

∑
i

(ki + p)(ki + n− p)c2p,ki |ci|
2 Γ(2ki − 2ε)Γ2(1 + n

2 + ki)
Γ2(ki + p+ 1)Γ2(n+ ki − p)

4−ki
(2.36)

k
− 1

2
i

∫ ∞
0

vn+2εK2
n
2−p−

1
2
(v)dv <∞.

Using the asymptotics of the gamma function [1, 6.1.39], we find∑
i

k−2p−2ε
i |ci|2 <∞. (2.37)

Recalling (2.5), this is equivalent to saying that ω is Sobolev H−p−ε-regular.
To justify passing from (2.29) to (2.30), it is enough to note that if x ≥ k−1

i

then
(1− 1

k2
i x

2 )ki(1 +
1
kix

)−1−2ε < 1. (2.38)

Thus we have uniform bounds in the preceding arguments. �

Corollary 2. Suppose that Hn/Γ has positive injectivity radius. Suppose that
α is an L2-harmonic p-form on Hn/Γ, p ∈ [1, n2 ]. Then Φ−1

p (π∗α) is Sobolev
H−p−ε-regular for all ε > 0.

Proof. By elliptic theory [4, Prop. 1.3], there is a constant r > 0 such that
for all m ∈ Hn/Γ, |α(m)| is bounded in terms of the L2-norm of α on the ball
Br(m) ⊂ Hn/Γ. Then π∗α is uniformly bounded on Hn. The corollary follows
from Theorem 7. �

Theorem 2.A. If Γ is cocompact then for any p ∈ [1, n2 ], there are isomorphisms
between the following vector spaces :
V1 ={Harmonic p-forms on Hn/Γ}.
V2 ={Γ-invariant exact p-hyperforms on Sn−1}.
V3 ={Γ-invariant exact p-currents on Sn−1 which are Sobolev H−p−ε-regular

for all ε > 0}.
V4 =Hp(Hn/Γ,R), the p-dimensional real cohomology group of Hn/Γ.

Proof. By standard Hodge theory, V1 ∼= V4. In particular, V1 is finite-dimensional.
By Corollary 2, there is an injection V1 → V3. There is an evident injection
V3 → V2. By Gaillard’s theorem [6, Théorème 2], if ω ∈ V2 then Φp(ω) is a Γ-
invariant closed and coclosed p-form on Hn. Hence Φp(ω) = π∗α for some closed
and coclosed p-form α on Hn/Γ. Hence there is an injection V2 → V1. The
theorem follows. �
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Corollary 3. Suppose that there is a positive lower bound to the lengths of the
nontrivial closed geodesics on Hn/Γ. Suppose that all of the cusps of Hn/Γ have
rank n − 1. If α is an L2-harmonic p-form on Hn/Γ, p ∈ {n−1

2 , n2 }, then for all
ε > 0, the hyperform Φ−1

p (π∗α) is Sobolev H−p−ε-regular.

Proof. For some µ > 0 less than the Margulis constant of Hn, the µ-thin part of
Hn/Γ has a finite number of compact components. By the proof of Corollary 2, α
is bounded on the µ-thick part of Hn/Γ. It follows from [12, Theorem 4.12] that
α is bounded on the cusps of Hn/Γ. The corollary follows from Theorem 7. �

Theorem 3. In the case n = 3, suppose that there is a positive lower bound to
the lengths of the nontrivial closed geodesics on H3/Γ. Let α be an L2-harmonic
1-form on H3/Γ. Then for all ε > 0, the hyperform Φ−1

1 (π∗α) is Sobolev H−1−ε-
regular.

Proof. Following the line of proof of Corollary 3, it suffices to analyze the asymp-
totics of an L2-harmonic 1-form ω on a rank-1 cusp. We can take a neighborhood
of such a cusp to be the quotient of

{(x, y, z) : y2 + z2 ≥ R, z ≥ 0} (2.39)

by the group generated by x→ x+ 2π, for some R > 0. We follow the analysis of
[12, Section 4], with care for constants. Make a change of coordinates to y = r cos θ,
z = r sin θ, with r ∈ [R,∞), θ ∈ (−π2 ,

π
2 ). The Riemannian metric in these

coordinates is

ds2 =
dx2

r2 cos2 θ
+

dr2

r2 cos2 θ
+

dθ2

cos2 θ
, (2.40)

with volume form dvol = dxdrdθ
r2 cos3 θ

.
Let

ω = α0dθ + α1dx+ β0dr (2.41)

be an L2-harmonic 1-form on the cusp. Then

∫ (
r−2|α0|2 + |α1|2 + |β0|2

) dxdrdθ
cos θ

<∞. (2.42)

The equations dω = d∗ω = 0 become

0 = ∂xα0 − ∂θα1 = ∂rα0 − ∂θβ0 = ∂rα1 − ∂xβ0 (2.43)

= cos θ∂θ
( α0

cos θ

)
+ r2∂xα1 + r2∂rβ0.
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From these equations, one obtains the Laplacian-type equations

−∂2
rα0 − ∂2

xα0 −
1
r2 ∂θ

(
cos θ∂θ

( α0
cos θ

))
= 0, (2.44)

−∂2
rα1 − ∂2

xα1 −
1
r2 cos θ∂θ

(
1

cos θ
∂θα1

)
= 0,

−∂2
rβ0 − ∂2

xβ0 −
1
r2 cos θ∂θ

(
1

cos θ
∂θβ0

)
= − 2

r3 cos θ∂θ
( α0

cos θ

)
.

We first analyze the second equation in (2.44). Given a function f ∈ C∞
(
−π2 ,

π
2
)
,

put

Lf = − cos θ∂θ

(
1

cos θ
∂θf

)
(2.45)

Then L is the self-adjoint operator coming from the Dirichlet form on L2
(

(−π2 ,
π
2 ),

1
cos θdθ

)
. Making the change of variable u = sin θ, the eigenfunction equation

Lf = λf becomes
−(1− u2)f ′′(u) = λf. (2.46)

The square-integrable solutions to this have λ = (q+ 1)(q+ 2) with q ∈ Z∩ [0,∞).
The corresponding eigenfunction is given in terms of ultraspherical polynomials
[1, 22.6.6] by

fq(u) = (1− u2)C3/2
q (u). (2.47)

Explicitly, fq(u) is proportionate to dq

duq

(
(1− u2)q+1).

Performing separation of variables on the second equation in (2.44), suppose
that

α1(x, r, θ) = eimxg(r)fq(θ), (2.48)

with m ∈ Z. Then

−g′′ +m2g +
(q + 1)(q + 2)

r2 g = 0. (2.49)

If m 6= 0 then g decreases exponentially fast in r. Suppose that m = 0. One
finds that for large r, g(r) ∼ rq+2 or g(r) ∼ r−q−1. For ω to be square-integrable,
one must have g(r) ∼ r−q−1. If q > 0 then |α1dx| = r cos θ|g(r)||fq(θ)| decays
polynomially fast in r. In the critical case q = 0, |α1dx| remains bounded in r.

Next, put

L′f = −∂θ
(

cos θ∂θ

(
f

cos θ

))
. (2.50)

and L̂ = 1
cos θ ◦ L′ ◦ cos θ. Then L̂ is the self-adjoint operator coming from the

Dirichlet form on L2 ((−π2 , π2 ), cos θdθ
)
. It has a nonnegative discrete spectrum

starting at 0, and hence so does L′. Suppose that f(θ) is an eigenfunction of L′
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with eigenvalue λ ≥ 0. Performing separation of variables on the first equation in
(2.44), suppose that

α0(x, r, θ) = eimxg(r)f(θ), (2.51)

with m ∈ Z. Then
−g′′ +m2g +

λ

r2 g = 0. (2.52)

If m 6= 0 then g decreases exponentially fast in r. Suppose that m = 0. One finds

that for large r, g(r) ∼ r
1±
√

1+4λ
2 . For ω to be square-integrable, one must have

g(r) ∼ r
1−
√

1+4λ
2 . If λ > 0 then |α0dθ| = cos θ|g(r)||f(θ)| decays like a power in r.

In the critical case λ = 0, |α0dθ| remains bounded in r.
Finally, one can analyze the third equation in (2.44), an inhomogeneous equa-

tion, by similar methods. The upshot is that |ω| is bounded on the rank-1 cusp.
�

Proposition 1. Suppose that there is a positive lower bound to the lengths of the
nontrivial closed geodesics on Hn/Γ. Let α be an L2-harmonic p-form on Hn/Γ,
p ∈ [1, n2 ]. Then Φ−1

p (π∗α) is a current.

Proof. For some µ > 0 less than the Margulis constant of Hn, the µ-thin part of
Hn/Γ has a finite number of compact components. As in the proof of Corollary
2, there is a uniform upper bound for |α| on the µ-thick part of Hn/Γ. On each
cuspidal component of the µ-thin part, |α| has at most exponential growth, with a
uniform exponential constant [12, Section 4]. The result follows from [6, Théorème
3]. �

Proposition 2. For r ∈ (0, 1), let ir : Sn−1 → Sn−1(r) be the embedding of Sn−1

as the r-sphere around 0 in the ball model of Hn. As in [6, p. 586], put

Cp =
2p

n

Γ(n− 2p+ 1)Γ(n2 + 1)
Γ(n− p)Γ(n2 − p+ 1)

. (2.53)

Let ω be an exact p-current on Sn−1. Then as r → 1, the forms i∗rΦp(ω) converge
to Cpω in the sense of convergence of currents.

Proof. From (2.6),

i∗rΦp(ω) =
∞∑
i=1

ci
(ki + p)(ki + n− p)

2
cp,kir

p−1+ki r

ki + p
Fp−1,ki(r

2)dαi. (2.54)

Given a smooth form η ∈ Ωp(Sn−1), let Π(η) be the projection of η onto the
square-integrable exact p-forms on Sn−1. Then Π(η) is also smooth and has a
Fourier expansion

Π(η) =
∞∑
i=1

aidαi, (2.55)
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with
∑∞
i=1 k

N
i |ai|2 <∞ for all N ∈ Z+. The pairing

〈i∗rΦp(ω), η〉 =
∫
Sn−1

i∗rΦp(ω) ∧ ∗η (2.56)

is given by

〈i∗rΦp(ω), η〉 =
∞∑
i=1

aici
(ki + p)(ki + n− p)

2
cp,kir

p−1+ki r

ki + p
Fp−1,ki(r

2). (2.57)

Then

〈i∗1Φp(ω), η〉 =
∞∑
i=1

aici
(ki + p)(ki + n− p)

2
cp,ki

1
ki + p

(2.58)

Γ(1 + n
2 + ki)Γ(1− 2p+ n)

Γ(1− p+ n+ ki)Γ(1− p+ n
2 )

=Cp
∞∑
i=1

aici

=Cp 〈ω, η〉 .

As ω is a current,
∑∞
i=1 k

N
i |ai||ci| <∞ for all N ∈ Z+.

Lemma 2. As r increases from 0 to 1, the expression rp−1+ki r
ki+pFp−1,ki(r

2)

increases monotonically from 0 to 1
ki+p

Γ(1+n
2 +ki)Γ(1−2p+n)

Γ(1−p+n+ki)Γ(1−p+n
2 ) .

Proof. The fact that the right-hand-side of (2.6) is closed implies that

d

dr

(
rp−1+ki r

ki + p
Fp−1,ki(r

2)
)

= rp−1+ki (1− r2)Fp,ki (r
2). (2.59)

(Of course, this can be checked directly.) From [1, 15.3.3],

Fp,ki(r
2) =F (1 + p− n

2
, 1 + p+ ki; 1 +

n

2
+ ki; r2) (2.20)

=(1− r2)n−1−2pF (n+ ki − p,
n

2
− p; 1 +

n

2
+ ki; r2).

As the arguments of F (n + ki − p, n2 − p; 1 + n
2 + ki; r2) are all nonnegative, the

lemma follows. �

Proposition 2 now follows from dominated convergence. �
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Proposition 3. Suppose that α is an L2-harmonic p-form on Hn/Γ, p ∈ [1, n2 ).
Suppose that Φ−1

p (π∗α) is a current. Then Φ−1
p (π∗α) is supported on the limit set

Λ of Γ.

Proof. Given a smooth form φ ∈ Ωp(Sn−1) with relatively compact support in
Sn−1 − Λ, Proposition 2 implies that

lim
r→1
〈i∗rπ∗α, φ〉 = Cp

〈
Φ−1
p (π∗α), φ

〉
. (2.61)

If Λ = ∅, we assume that supp(φ) 6= Sn−1; this is sufficient for the argument.
Then we can use an upper-half-space model for Hn, with supp(φ) ⊂ Rn−1. Put
V = supp(φ) × (0,∞) ⊂ Hn. Using the coordinates (x1, . . . , xn−1, y) for Hn, let
us write α̃ = a(x, y) + dy ∧ b(x, y). Then [12, Theorem 4.3] states that on V , as
y → 0,

a =
{
a00(x)yn−2p−1 +O(yn−2p log(y)) if p < n−1

2 ,

a01(x)y2 log(y) +O(y2) if p = n−1
2

(2.62)

and

b =
{
b01(x)yn−2p log(y) +O(yn−2p) if p < n−1

2 ,

b00(x)y +O(y2 log(y)) if p = n−1
2 .

(2.63)

(The statement of [12, Theorem 4.3] should read “y → 0”.) As r → 1, the
intersections Sn−1(r) ∩ V asymptotically approach the horosphere pieces

{(x1, . . . , xn−1, y) ∈ Hn : y =
1− r
1 + r

} ∩ V. (2.64)

It follows that
〈
Φ−1
p (π∗α), φ

〉
= 0 for all such φ, from which the proposition follows.

�

Remark. The analog of Proposition 3 is false if p = n
2 . This can be seen in the

case Γ = {e} using Theorem 1.

We give a partial converse to Proposition 3, in the case of convex-cocompact
groups.

Theorem 2.B. If Γ is convex-cocompact then for any p ∈ [1, n−1
2 ), there are

isomorphisms between the following vector spaces :

V1 ={L2-harmonic p-forms on Hn/Γ}.
V2 ={Γ-invariant exact p-hyperforms on Sn−1 which are supported on the limit

set}.
V3 ={Γ-invariant exact p-currents on Sn−1 which are supported on the limit set

and which are Sobolev H−p−ε-regular for all ε > 0}.
V4 =Hp

c(H
n/Γ,R), the p-dimensional real compactly-supported cohomology group

of Hn/Γ.
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Proof. By [12], V1 ∼= V4. In particular, V1 is finite-dimensional. By Gaillard’s
theorem [6, Théorème 2], Corollary 2 and Proposition 3, there are injections V1 →
V3 → V2. It remains to show that there is an injection V2 → V1. In view of
Gaillard’s theorem, it suffices to show that if ω ∈ V2 then Φp(ω) descends to a
form which is square-integrable on Hn/Γ. If Γ is cocompact then this is automatic,
so assume that Γ is not cocompact. As Ω/Γ is compact, we can find a fundamental
domain F for the action of Γ on Hn such that F ∩ Sn−1 is disjoint from Λ. Take
an upper-half-space model for Hn with ∞ ∈ Ω. In terms of the upper-half-space
coordinates (x1, . . . , xn−1, y), [6, Lemme 3] implies that near y = 0,

Φp(ω)
∣∣
F

= yn−2p−1φ(x, y), (2.65)

where the p-form φ(x, y) is continuous up to y = 0. It follows that
∫
F
|Φp(ω)|2dvol

<∞. �

3. 1-Forms

In this section we look in more detail at the case of L2-harmonic 1-forms on convex-
cocompact hyperbolic manifolds. If the hyperbolic manifold is compact, we show
that the Sobolev regularity estimate of Theorem 2.A is sharp. If the hyperbolic
manifold is convex-cocompact but not compact, we show how to construct its
L2-harmonic 1-forms explicitly in terms of the harmonic extension of functions.
In this case, we show that the Sobolev regularity estimate of Corollary 2 can be
slightly improved.

Proposition 4. Suppose that Γ is cocompact. For ε > 0, let V Γ
ε be the Γ-invariant

subspace of the function space H−ε(Sn−1)/C. Then V Γ
ε is isomorphic to H1(Γ;C).

Proof. We first define linear maps I : H1(Γ;C)→ V Γ
ε and J : V Γ

ε → H1(Γ;C). To
define I, given x ∈ H1(Γ;C) = H1(Hn/Γ;C), let α ∈ Ω1(Hn/Γ) be the harmonic 1-
form which represents x. Put α̃ = π∗α. By Theorem 7, Φ−1

1 (α̃) is an exact H−1−ε-
regular Γ-invariant 1-form on Sn−1. Choose f ∈ H−ε(Sn−1) so that Φ−1

1 (α̃) = df .
Then for all γ ∈ Γ,

d(f − γ · f) = df − γ · df = 0. (3.1)

Thus
f − γ · f = c(γ) (3.2)

for some c(γ) ∈ C. Put I(x) = f mod C.
To define J , given f ∈ V Γ

ε , let f ∈ H−ε(Sn−1) be a representative of f , not
necessarily Γ-invariant. As f is Γ-invariant, for each γ ∈ Γ there is a c(γ) ∈ C
such that f − γ · f = c(γ). As

c(γ1γ2) = f−(γ1γ2)·f = (f−γ1·f)+γ1·(f−γ2·f) = c(γ1)+γ1·c(γ2) = c(γ1)+c(γ2),
(3.3)
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we have a cocycle c : Γ→ C. Put J(f) = [c].
We show that J ◦ I is the identity. It suffices to show that the cocycle c of (3.2)

represents x ∈ H1(Γ;C). For this, it suffices to show that for all γ ∈ Γ,

c(γ) =
∫
Cγ

α, (3.4)

where Cγ is a closed curve on Hn/Γ in the homotopy class of γ ∈ π1(Hn/Γ) and
α ∈ Ω1(Hn/Γ) is the harmonic representative of x. Let C̃γ be a lift of Cγ to Hn,
ending at a point m ∈ Hn and starting at γ−1 ·m. Then∫
Cγ

α =
∫
C̃γ

α̃ =
∫
C̃γ

Φ1(df) =
∫
C̃γ

dΦ0(f) = (Φ0(f)) (m)− (Φ0(f)) (γ−1 ·m)
(3.5)

= (Φ0(f)− γ ·Φ0(f)) (m) = (Φ0(f − γ · f)) (m) = (Φ0(c(γ))) (m) = c(γ).

This shows that J ◦ I is the identity. To see that I ◦ J is the identity, given
f ∈ V Γ

ε , let f ∈ H−ε(Sn−1) be a representative of f , not necessarily Γ-invariant.
Define α̃ = Φ1(df). Then α̃ is a smooth Γ-invariant harmonic 1-form on Hn and
projects to a harmonic 1-form α ∈ Ω1(Hn/Γ). By the same sort of calculation as
in (3.5), one finds that J(f) = [α] in H1(Γ;C). By construction, I([α]) = f . Thus
I ◦ J is the identity. �

Theorem 4.A. Suppose that Γ is cocompact. Let α be a nonzero harmonic 1-form
on Hn/Γ. Then Φ−1

1 (π∗α) is not Sobolev H−1-regular.

Proof. Suppose that Φ−1
1 (π∗α) is Sobolev H−1-regular. Then Φ−1

1 (π∗α) = df for
some f ∈ L2(Sn−1). Extending the proof of Proposition 4 to the case ε = 0, the
equivalence class f of f in L2(Sn−1)/C is Γ-invariant and satisfies J(f) = [α].
As Γ acts ergodically on Sn−1, we must have f = 0 and hence [α] vanishes in
H1(Hn/Γ;C), which is a contradiction. �

We now consider groups Γ which are convex-cocompact but not compact. First,
we prove some generalities about the relationship between compactly-supported
cohomology and L2-cohomology.

Let M be a complete connected oriented Riemannian manifold. Let Hp

(2)(M)

be the p-th (reduced) L2-cohomology group of M . It is isomorphic to Ker(4p).
There is a map i : Hp

c(M ;C) → Hp

(2)(M). In general, i is not injective; think of
M = Rn. However, it is true, and well-known, that i always induces an injection
of Im(Hp

c(M ;C)→ Hp(M ;C)) into Hp

(2)(M) [9, Prop. 4]. The next result gives a

sufficient condition for i to be injective on all of H1
c (M ;C). Recall that there is a

notion of the space of ends of M , and of an end being contained in an open set
U ⊂M ; see, for example, [3, §1.2].
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Proposition 5. Suppose that for every end e of M , every open set U containing e
has infinite volume. Suppose that M has a Green’s operator G : C∞0 (M)→ L2(M)
such that 4 ◦G = Id. Then i : H1

c (M ;C)→ H1
(2)(M) is injective.

Proof. We have the decomposition

H1
c(M ;C) =

(
Ker(H1

c (M ;C)→ H1(M ;C))
)
⊕
(

Im(H1
c (M ;C)→ H1(M ;C))

)
.

(3.6)
We first show that i is injective on Ker(H1

c (M ;C)→ H1(M ;C)). A representative
of Ker(H1

c (M ;C) → H1(M ;C)) is a closed compactly-supported 1-form α such
that α = df for some function f . By construction, f is locally constant outside of
a compact subset of M and so gives a function on the space of ends of M . Now
d(f −G4f) is a harmonic 1-form on M . As

〈dG4f, dG4f〉 = 〈G4f,4f〉, (3.7)

we have that d(f−G4f) is square-integrable. The map α→ d(f−G4f) describes
i on Ker(H1

c(M ;C) → H1(M ;C)). To see that it is injective, suppose that d(f −
G4f) = 0. Then f−G4f is constant. As G4f ∈ L2(M), the volume assumption
implies that f , as a function on the space of ends of M , is a constant c. Then
f − c is compactly-supported on M , with d(f − c) = α, so [α] = 0 in H1

c (M ;C).
In summary, we have realized an injection of Ker(H1

c(M ;C) → H1(M ;C)) into
H1

(2)(M).
It remains to show that

i
(

Ker(H1
c(M ;C)→ H1(M ;C))

)
∩ i
(

Im(H1
c(M ;C)→ H1(M ;C))

)
= 0. (3.8)

Suppose that d(f−G4f) is nonzero and lies in the image, under i, of Im(H1
c (M ;C)

→ H1(M ;C)). Then d(f − G4f) = ω mod Im(d) for some closed compactly-
supported 1-form ω. Furthermore, by assumption, there is a closed compactly-
supported (dim(M) − 1)-form η such that

∫
M ω ∧ η = 1. However,

∫
M d(f −

G4f) ∧ η = 0. It follows that

i
(

Ker(H1
c(M ;C)→ H1(M ;C))

)
∩ i
(

Im(H1
c(M ;C)→ H1(M ;C))

)
= 0. (3.9)

This proves the proposition. �

Suppose that Γ is convex-cocompact but not cocompact. Then Hn/Γ satisfies
the hypotheses of Proposition 5 and so i : H1

c(H
n/Γ;C)→ H1

(2)(H
n/Γ) is injective.

For the rest of this section, we assume that n > 2. It follows from [12, Theorem
3.13] that i is an isomorphism. This essentially comes from the fact that given an
L2-harmonic 1-form ω on Hn/Γ, one can apply the Poincaré Lemma from infinity
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to homotop ω to something with compact support. We show how to construct the
L2-harmonic 1-forms on Hn/Γ explicitly.

Lemma 3. There is an isomorphism between H1
c (Hn/Γ;C) and the quotient space

W = {(f, c) ∈ C∞(Ω)×H1(Γ;C) : f is locally-constant and for all γ ∈ Γ, (3.10)

f − γ · f = c(γ)}/C.

(Here C acts by addition on C∞(Ω) and fixes H1(Γ;C).)

Proof. Given x ∈ H1
c(H

n/Γ;C), represent it by a smooth closed compact-supported
1-form α ∈ Ω1(Hn/Γ). Put α̃ = π∗α. As α is compactly-supported, we can extend
α̃ continuously by zero to become a closed 1-form on Hn ∪ Ω. Fix a point s ∈ Ω.
Define f : Ω→ C by

f(z) =
∫
C̃

α̃, (3.11)

where C̃ is a curve in Hn ∪ Ω from s to z. Then

(f − γ · f)(z) =
∫
C̃′
α̃, (3.12)

where C̃′ is a curve in Hn∪Ω from γ−1 · z to z. Now C̃′ projects to a closed curve
C′ on the compact manifold-with-boundary (Hn ∪ Ω) /Γ. Then

(f − γ · f)(z) =
∫
C′
α. (3.13)

It follows that f − γ · f = c(γ), where c is the image of x in H1((Hn ∪Ω)/Γ;C) ∼=
H1(Γ;C). A different choice of s changes f by a constant.

Conversely, given (f, c) ∈ W , fix a point m0 ∈ Hn/Γ. Let R be large enough
that the convex core of Hn/Γ lies within BR(m0). Let φ : [0,∞) → R be a
smooth function which is monotonically nonincreasing, identically one on [0, R] and
identically zero on [R+ 1,∞). Let η ∈ C∞(Hn) be the lift to Hn of φ(d(m0, ·)) ∈
C∞(Hn/Γ). Extend f inward to a locally-constant smooth function F : (Hn −
π−1(BR(m0))) → C. Put α̃ = d((1 − η)F ) on Hn − π−1(BR(m0)) and extend it
by zero to Hn. Then α̃ is a closed Γ-invariant 1-form on Hn which descends to
a closed 1-form α ∈ Ω1(Hn/Γ) with support in BR+1(m0), and hence an element
[α] ∈ H1

c (Hn/Γ;C).
One can check that these two maps are inverses. We omit the details. �

The map W → H1(Hn/Γ;C) induced from (f, c) → c is the same as the map
H1
c (Hn/Γ;C) → H1(Hn/Γ;C). Its kernel can be identified with the Γ-invariant
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locally-constant functions on Ω, modulo C. This has dimension equal to the num-
ber of ends of Hn/Γ minus one, as it should.

Choose x ∈ H1
c (Hn/Γ;C). Define the locally-constant function f : Ω→ C as in

the proof of Lemma 3. As Λ has measure zero, we can think of f as a measurable
function on Sn−1.

Proposition 6. f lies in Lp(Sn−1) for all p ∈ [1,∞).

Proof. Let K be the convex core of Hn/Γ and let ∂K be its boundary. Put
K̃ = π−1(K), the convex hull of Λ, and put ∂̃K = π−1(∂K). As K̃ is convex
and K is compact, it follows that ∂̃K is quasi-convex, meaning that there is an
R > 0 such that if y1, y2 ∈ ∂̃K then the geodesic from y1 to y2, in Hn, lies in an
R-neighborhood of ∂̃K. We take a ball model Bn for Hn such that x0 = π(0) lies
in K.

If Ω ⊂ Sn−1 is connected then the result is trivial, so we assume that Ω has
more than one connected component. Let D be a connected component of Ω. We
first estimate the spherical volume of D. There is an end e of Hn/Γ such that if a
curve c in Hn goes to D then π ◦ c exits e. Let ∂eK be the connected component
of ∂K corresponding to e. Then there is a component ∂̃DK of π−1(∂eK) such that
D retracts onto ∂̃DK under the nearest-point retraction. Furthermore, the closure
of ∂̃DK in Bn separates D from K− ∂̃DK. Let rD be the hyperbolic distance from
0 to ∂̃DK. Then ∂̃DK ⊂ Hn −BrD (0). We are interested in what happens when
rD is large. If z1, z2 ∈ ∂D then the geodesic from z1 to z2 cannot enter BrD−R(0),
as this would violate the quasi-convexity of ∂̃K. Quantitatively, this implies that
the spherical distance from z1 to z2 cannot exceed 2 sin−1

(
1

cosh(rD−R)

)
. Thus D

lies within a spherical ball of radius r0 = 4 sin−1
(

1
cosh(rD−R)

)
. As the volume of

this spherical ball is bounded above by a constant times rn−1
0 , we conclude that

there is a constant C > 0 such that vol(D) ≤ Ce−(n−1)rD , uniformly in the choice
of D.

The connected components of Ω are in one-to-one correspondence with the set
π1(K, ∂K). Fix an end e of M , with associated connected component ∂eK of
∂K. Take the ball model so that x0 ∈ ∂eK. The connected components D of Ω
corresponding to e form the preimage of ∂eK under the map π1(K, ∂K)→ π0(∂K).
Given D, let c(s), 0 ≤ s ≤ rD, be a normalized minimal geodesic from 0 to ∂̃DK.
Consider a loop LD in Hn/Γ which starts at x0, follows π ◦ c to π(c(rD)) ∈ ∂eK
and then returns to x0 by a length-minimizing path in ∂eK. The length of LD
will be bounded above by rD + diam(∂eK). On the other hand, LD describes a
class [LD] ∈ π1(K,x0). It follows that d(0, [LD] · 0) ≤ length(LD). Also, as c is
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minimal from 0 to c(rD), we have rD ≤ d(0, [LD] · 0) + diam(∂eK). Thus

d(0, [LD] · 0) ≤ length(LD) ≤ rD + diam(∂eK) ≤ d(0, [LD] · 0) + 2diam(∂eK).
(3.14)

In terms of the homotopy sequence

π1(K,x0) α→ π1(K, ∂K)
β→ π0(∂K), (3.15)

we have defined a map s : β−1(∂eK) → π1(K,x0) which sends D to [LD], with
α ◦ s = Id on β−1(∂eK). Thus s is injective. By the construction of f , there is a
bound

|f(D)| ≤ A length(LD) +B ≤ Ad(0, [LD] · 0) +B′ (3.16)

for D ∈ β−1(∂eK). Then∑
D∈β−1(∂eK)

|f(D)|pvol(D) ≤
∑

D∈β−1(∂eK)

(Ad(0, [LD] · 0) +B′)p· (3.17)

Ce−(n−1)(d(0,[LD]·0)−diam(∂eK)).

By [14], there is an ε > 0 such that∑
γ∈Γ

e−(n−1−ε)d(0,γ·0) <∞. (3.18)

It follows that f is Lp on
⋃
{D ∈ β−1(∂eK)}. Considering together the finite

number of ends of Hn/Γ, the proposition follows. �

Lemma 4. For f ∈ L2(Sn−1), let Φ0f ∈ C∞(Hn) be its harmonic extension.
For 1 ≤ j ≤ n, let xj be the restriction to Sn−1 of the j-th coordinate function on
Rn. Then

|∇(Φ0f)|2(0) = (n− 1)2
n∑
j=1

∣∣∣∣
∫
Sn−1 xjfdvol

vol(Sn−1)

∣∣∣∣2 . (3.19)

Proof. Let {βi}∞i=1 be an orthonormal basis of L2(Sn−1) consisting of eigenvectors
of 4Sn−1 with eigenvalue (ki+1)(ki+n−1), ki ∈ Z∩ [−1,∞). Let f =

∑∞
i=1 aiβi

be the Fourier expansion of f . Then from [6, p. 599],

(Φ0f)(r, θ) =
Γ(n2 )

Γ(n− 1)

∞∑
i=1

ai
Γ(n+ ki)

Γ(n2 + ki + 1)
r1+kiF (1−n

2
, 1+ki; 1+

n

2
+ki; r2)βi(θ).

(3.20)
It follows that

|∇(Φ0f)|2(0) =
(n− 1)2

n2

∑
ki=0

|ai|2
(
|βi|2 + |∇Sn−1βi|2

)
. (3.21)
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We can take the βi’s with ki = 0 to be the functions
{(

n
vol(Sn−1)

) 1
2
xj

}n
j=1

. In

this case, one can verify that |βi|2 + |∇Sn−1βi|2 is constant on Sn−1. Its integral
is ∫

Sn−1

(
|βi|2 + |∇Sn−1βi|2

)
dvol = 〈βi, βi〉+ 〈βi,4Sn−1βi〉 = 1 + (n− 1) = n.

(3.22)
Hence

|βi|2 + |∇Sn−1βi|2 =
n

vol(Sn−1)
(3.23)

and so

|∇(Φ0f)|2(0) =
(n− 1)2

n vol(Sn−1)

∑
ki=0

|ai|2 (3.24)

=
(n− 1)2

n vol(Sn−1)

n∑
j=1

∣∣∣∣∣
∫
Sn−1

(
n

vol(Sn−1)

) 1
2

xjfdvol

∣∣∣∣∣
2

= (n− 1)2
n∑
j=1

∣∣∣∣
∫
Sn−1 xjfdvol

vol(Sn−1)

∣∣∣∣2 .
The lemma follows. �

Proposition 7. d(Φ0f) is a Γ-invariant harmonic 1-form on Hn. It descends to
an L2-harmonic 1-form on Hn/Γ.

Proof. As f is L2, Φ0f is well-defined. As Φ0f is harmonic, 41d(Φ0f) =
d(40Φ0f) = 0. Thus d(Φ0f) is harmonic. Furthermore, for all γ ∈ Γ,

d(Φ0f)− γ · d(Φ0f) = d(Φ0(f − γ · f)) = d(Φ0cγ) = dcγ = 0. (3.25)

Thus d(Φ0f) is Γ-invariant. It remains to show that the descent of d(Φ0f) to
Hn/Γ is L2.

Let m be a point in the connected component of Hn/Γ−K corresponding to
an end e. Take a ball model Bn of Hn with π(0) = m. Let D be the connected
component of Ω adjacent, in Bn, to the connected component of Hn−K̃ containing
0. Changing f by a constant, we may assume that f vanishes on D. The method
of proof of Proposition 6 implies that the L1-norm of f , as seen in the visual sphere
at m, is O(e−(n−1)d(m,K)) with respect to m. Then by Lemma 4,

|∇(Φ0f)|2(0) = O(e−2(n−1)d(m,K)). (3.26)

On the other hand, the volume of {m ∈ Hn/Γ : d(m,K) ∈ [j, j+1]} is O(e(n−1)j).
The proposition follows. �
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Thus we have constructed dim(H1
c (Hn/Γ;C)) linearly-independent L2-harmonic

1-forms on Hn/Γ.

Theorem 4.B. Let Γ be a convex-cocompact group which is not cocompact. Let
α be a nonzero L2-harmonic 1-form on Hn/Γ. Then Φ−1

1 (π∗α) is Sobolev H−1-
regular.

Proof. We know that π∗α = d(Φ0f) for some f ∈ L2(Sn−1) constructed as in
Lemma 3. Then π∗α = Φ1(df), with df being Sobolev H−1-regular. �

4. Surfaces

Theorem 5.A. Let Γ be a torsion-free uniform lattice in Isom+(H2), with H2/Γ
a closed surface of genus g. Then
1. dim

(
A′0(S1)

)Γ
= 2g.

2. dim
(
D′0(S1)

)Γ
= 2g.

3. dim
(
DZ(S1)/C

)Γ
= 2g.

4. dim
(
L2(S1)/C

)Γ
= 0.

Proof. The proof is similar to the proof of Theorem 2.A. If F ∈
(
A′0(S1)

)Γ
then

dF is a Γ-invariant exact hyperform on S1 and Φ1(dF ) is a Γ-invariant closed and
coclosed 1-form on H2. Thus Φ1(dF ) = π∗α for a harmonic 1-form on H2/Γ. In
terms of the complex coordinate z onD2, we can write Φ1(dF ) = h1(z)dz+h2(z)dz
where h1(z) and h2(z) are holomorphic functions. Let k1(z) and k2(z) satisfy
hi(z) = k′′i (z) for i ∈ {1, 2}. Then

d(Φ0F ) = Φ1(dF ) = d (k′1(z) + k′2(z)) , (4.1)

so Φ0F = k′1(z) + k′2(z) + const. As α is bounded, Φ1(dF ) is uniformly bounded
on H2 and so

sup
z∈D2

(1− |z|2) |k′′i (z)| <∞. (4.2)

That is, k′i is an element of the Bloch space and so ki has a boundary value in the
Zygmund functions Z [7, p. 282,442]. Thus F (θ) = k′1(eiθ) + k′2(e−iθ) + const.,
showing that F has the required regularity.

Part (4) follows from the fact that Γ acts ergodically on S1. �

Theorem 5.B. Let Γ be a torsion-free nonuniform lattice in Isom+(H2), with
H2/Γ the complement of k points in a closed surface S of genus g. Then
1. dim

(
A′0(S1)

)Γ
=∞.
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2. dim
(
D′0(S1)

)Γ
= max(2g, 2g + 2k − 2).

3. dim
(
H−

1
2 (S1)/C

)Γ
= 2g.

4. dim
(
DZ(S1)/C

)Γ
= 2g.

5. dim
(
L2(S1)/C

)Γ
= 0. �

Proof. Sending f ∈
(
A′0(S1)

)Γ
to Φ1(df), we see that

(
A′0(S1)

)Γ
is isomorphic

to the space of closed and coclosed 1-forms on H2/Γ. Let p be a puncture point
in S and let Z be the subgroup of Γ generated by a loop around p. Then the
cusp of H2/Γ corresponding to p embeds in H2/Z. We model the latter by the
upper-half-plane quotiented by z → z + 1. Consider the pullback of Φ1(df) under
the quotient map H2/Z→ H2/Γ. As in [8], such a 1-form on H2/Z can be written
as h1(z)dz + h2(z)dz, where hi(z) = hi(z + 1). Each hi has a Fourier expansion

hi(z) =
∑
j∈Z

ci,je
2π
√
−1jz . (4.3)

If c1,j = 0 for j < −J then a change of variable w = e2π
√
−1z gives

h1(z)dz =
∑
j≥−J

c1,jw
j−1 dw

2π
√
−1

, (4.4)

and similarly for h2(z)dz.
To each puncture point pl ∈ S, 1 ≤ l ≤ k, assign an integer Jl and let

i
(
−
∑k
l=1(Jl + 1)pl

)
denote the space of holomorphic differentials on S whose

Laurent expansion around each pl has the form of the right-hand-side of (4.4)
with J = Jl. By the Riemann-Roch theorem, i(D) ≥ g−1+

∑k
l=1(Jl+1). Taking

the numbers {Jl}kl=1 large, part (1) follows.
Part (2) was proven in [8]. For completeness, we repeat the argument. On the

upper-half-plane, |h1(z)dz| = |h1(x + iy)|y. As d(i, iy) = | ln(y)|, if h1(z)dz has
slow growth as y → ∞ then we must have c1,j = 0 for j < 0. The space of such

holomorphic differentials on S has dimension i
(
−
∑k
l=1 pl

)
. The Riemann-Roch

theorem implies that i
(
−
∑k
l=1 pl

)
= max(g + k, g + k − 1). Part (2) follows.

Suppose that f ∈
(

H−
1
2 (S1)/C

)Γ
. Then df is H−

3
2 -regular. Considering

Φ1(df), we know that on a cusp, h1(z) has an expansion (4.3) with c1,j = 0 for
j < 0. If c1,0 6= 0 then as y → ∞, h1(z)dz ∼ c1,0dz. To analyze the singularity
at a cusp point on S1, we consider the 1-form c1,0dz on the upper-half-plane
and perform the reflection z → z

|z|2 . On the boundary of the upper-half-plane,

this restricts to x → 1
x and so c1,0dx → −c1,0 dxx2 . The point i∞ gets mapped
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to 0 and so it is enough to look at the singularity of −c1,0 dxx2 near x = 0. The
Fourier transform of 1

x2 is proportionate to |k|. Hence 1
x2 lies in Hs if and only

if
∫
R(1 + k2)s|k|2dk < ∞, i.e. if s < −3

2 . This contradicts the assumption that

df is H−
3
2 -regular. Thus c1,0 = 0. Then Φ1(df) is bounded and as in the proof

of Theorem 5.A, f ∈
(
DZ(S1)/C

)Γ
. Furthermore, h1(z)dz extends smoothly over

the puncture points to give a holomorphic differential on S. We conclude that

both
(

H−
1
2 (S1)/C

)Γ
and

(
DZ(S1)/C

)Γ
are isomorphic to two copies of the space

of holomorphic differentials on S, the dimension of which is g. Parts (3) and (4)
follow.

Finally, part (5) follows from the ergodicity of the Γ-action on S1. �

5. 3-Manifolds

5.1. Quasi-Fuchsian groups

Let S be a closed oriented surface of genus g > 1. Let Γ be a quasi-Fuchsian
subgroup of Isom+(H3) which is isomorphic to π1(S). Then H3/Γ is diffeomorphic
to R × S and H1

c (H3/Γ;C) = C. (In terms of the projection p : R × S → R, a
proper map, one has H1

c (H3/Γ;C) = p∗
(

H1
c (R;C)

)
). Thus there is a nonzero

L2-harmonic 1-form α on H3/Γ.
By Corollary 2 and Proposition 3, Φ−1

1 (π∗α) is a Γ-invariant exact 1-current
supported on the limit set Λ ⊂ S2. The domain of discontinuity Ω ⊂ S2 is the
union of two 2-disks D+ and D−, with D+/Γ and D−/Γ homeomorphic to S. Let
χD+ ∈ L2(S2) be the characteristic function of D+. By Proposition 7, Φ−1

1 (π∗α)
is proportionate to the exact 1-current dχD+ on S2.

In order to write dχD+ more directly on Λ, we follow the general scheme of [5,
Section IV.3.γ]. Let Z : D2 → D+ be a uniformization of D+. By Carathéodory’s
theorem, Z extends to a continuous homeomorphism Z : D2 → D+. The restric-
tion of Z to ∂D2 gives a homeomorphism ∂Z : S1 → Λ.

From a general construction [5, Theorem 2, p. 208], the 1-current dχD+ defines
a cyclic 1-cocycle τ on the algebra C1(S2) by

τ(F 0, F 1) =
∫
S2
dχD+ ∧ F 0dF 1. (5.1)

Lemma 1. The function space H
1
2 (S1) ∩ L∞(S1) is a Banach algebra with the

norm

||f || =
(∫

R+

∫
S1

|f(θ + h)− f(θ)|2
h2 dθdh

) 1
2

+ ||f ||∞. (5.2)
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Given f0, f1 ∈ H
1
2 (S1) ∩ L∞(S1), let

f i(θ) =
∑
j∈Z

cije
√
−1jθ (5.3)

be the Fourier expansion. Define a bilinear function

τ :
(

H
1
2 (S1) ∩ L∞(S1)

)
×
(

H
1
2 (S1) ∩ L∞(S1)

)
→ C (5.4)

by
τ(f0, f1) = −2πi

∑
j∈Z

jc0j c
1
−j . (5.5)

Then τ is a continuous cyclic 1-cocycle on H
1
2 (S1) ∩ L∞(S1).

Proof. It is straightforward to check that H
1
2 (S1) ∩ L∞(S1) is a Banach algebra

with the given norm. It is also easy to check that τ is continuous. If f0, f1 ∈
C∞(S1) then

τ(f0, f1) =
∫
S1
f0df1. (5.6)

As in [5, p. 182], put

(bτ)(f0, f1, f2) = τ(f0f1, f2)− τ(f0, f1f2) + τ(f2f0, f1). (5.7)

If f0, f1, f2 ∈ C∞(S1) then (bτ)(f0, f1, f2) = 0. As C∞(S1) is dense in H
1
2 (S1)∩

L∞(S1) and bτ is continuous in its arguments, it follows that bτ = 0. �

Theorem 6. Given F 0, F 1 ∈ C1(S2), put f i = (∂Z)∗F i, i ∈ {1, 2}. Then
f i ∈ H

1
2 (S1) ∩ L∞(S1) and

τ(F 0, F 1) = −τ(f0, f1). (5.8)

Proof. Consider S2 as C ∪∞ with ∞ ∈ D−. For r ∈ (0, 1), let ir : S1 → D2 be
the embedding of S1 as the circle of radius r around 0 ∈ D2. Thinking of Z as a
map from D2 to C, let

Z(z) =
∞∑
k=0

ckz
k (5.9)

be its Taylor’s series. Then

i

2

∫
Br(0)

dZ ∧ dZ∗ =
i

2

∫
S1
i∗rZd(i∗rZ

∗) = π
∞∑
k=0

kr2k|ck|2. (5.10)
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As Z is univalent,

i

2

∫
D2

dZ ∧ dZ∗ = area(Z(D2)) <∞. (5.11)

It follows that
lim
r→1

i∗rZ = ∂Z (5.12)

in H
1
2 (S1) ∩ L∞(S1). Then f i ∈ H

1
2 (S1) ∩ L∞(S1).

We have

τ(F 0, F 1) =
∫
S2
dχD+ ∧ F 0dF 1 (5.13)

= −
∫
S2
χD+dF 0 ∧ dF 1

= −
∫
D+

dF 0 ∧ dF 1

= −
∫
D2

d(Z∗F 0) ∧ d(Z∗F 1).

Then

τ(F 0, F 1) = lim
r→1
−
∫
Br(0)

d(Z∗F 0) ∧ d(Z∗F 1) (5.14)

= lim
r→1
−
∫
S1
i∗rZ
∗F 0 ∧ d(i∗rZ

∗F 1)

= lim
r→1
−τ(i∗rZ

∗F 0, i∗rZ
∗F 1).

From (5.12),
lim
r→1

i∗rZ
∗F i = f i (5.15)

in H
1
2 (S1) ∩ L∞(S1). The theorem follows. �

Example. Let Σ be a closed oriented surface of genus g > 2, let φ ∈ Diff(Σ) be an
orientation-preserving pseudo-Anosov diffeomorphism and let M be the mapping
torus of φ. Then M is a 3-manifold which fibers over the circle and admits a
hyperbolic structure [16, 13]. Let M̂ = H3/Γ be the corresponding cyclic cover
of M , with the pullback hyperbolic metric. The group Γ is isomorphic to π1(Σ).
From [10, Proposition 9], M̂ has no nonzero L2-harmonic 1-forms. This contrasts
with the quasi-Fuchsian case.
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5.2. Covering spaces

If M is a closed 3-manifold then M has nontrivial L2-harmonic 1-forms if and only
if b1(M) > 0. There are many examples of hyperbolic manifolds 3-manifolds M
with b1(M) > 0, such as those which fiber over a circle. It is less obvious that
there are infinite normal covers M̂ = H3/Γ of closed hyperbolic 3-manifolds such
that M̂ has nonzero L2-harmonic 1-forms. We give some examples. The limit sets
will be all of S2.

Let M be a closed oriented hyperbolic 3-manifold with a surjective homomor-
phism α : π1(M) → Fr onto a free group with r > 1 generators. Let M̂ = H3/Γ
be the corresponding cover with Γ ∼= Ker(α). The space of ends of M̂ is a Cantor
set. As Fr is nonamenable, Proposition 5 applies to show that M̂ has an infinite-
dimensional space of L2-harmonic 1-forms. Thus for all ε > 0,

(
H−ε(S2)/C

)Γ
is

infinite-dimensional.
For another example, let Σ be a closed oriented surface of genus g > 2. Let ρ

be a nonzero element of H1(Σ;Z) = Z2g . Let Σ̂ be the cyclic cover of Σ coming
from the homomorphism π1(Σ)→ H1(Σ;Z)

ρ→ Z. It is an infinite-genus surface.
Let φ be an orientation-preserving pseudo-Anosov diffeomorphism of Σ which

acts trivially on H1(Σ;Z); it is a surprising fact that such diffeomorphisms exist
[17]. It lifts to a diffeomorphism φ̂ of Σ̂. Let M be the mapping torus of φ, with its
hyperbolic metric. It follows from the Wang sequence that H1(M ;Z) = Z2g ⊕ Z.
Let M̂ = H3/Γ be the cyclic covering of M coming from ρ ⊕ 0 ∈ H1(M ;Z).
Equivalently, M̂ is the mapping torus of φ̂.

Given eiθ ∈ U(1), let ρθ : Z → U(1) be the representation ρθ(n) = einθ. Let
Eθ be the flat unitary line bundle on Σ coming from the representation π1(Σ)→
H1(Σ;Z)

ρ→ Z ρθ→ U(1). Let Fθ be the flat unitary line bundle on M coming from

the representation π1(M) → H1(M ;Z)
ρ⊕0→ Z ρθ→ U(1); it is the mapping torus

for the action of φ on Eθ. As in [10, Section 4], it follows from Fourier analysis
that M̂ has a nonzero L2-harmonic 1-form if and only if H1(M ;Fθ) 6= 0 for all θ.
Furthermore, because of the Z-action on M̂ , if there is one nonzero L2-harmonic
1-form then there is an infinite-dimensional space.

From the Euler characteristic identity and Poincaré duality,

2− 2g = 2 dim H0(Σ;Eθ)− dim H1(Σ;Eθ). (5.16)

As dim H0(Σ;Eθ) ≤ 1, it follows that

dim H1(Σ;Eθ) = 2g − 2
(

1− dim H0(Σ;Eθ)
)
> 0. (5.17)

From the Wang sequence,

H1(M ;Fθ) ∼= H0(Σ;Eθ)⊕H1(Σ;Eθ) 6= 0. (5.18)
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Thus M̂ has nonzero L2-harmonic 1-forms and for all ε > 0,
(
H−ε(S2)/C

)Γ
is

infinite-dimensional. The L2-harmonic 1-forms on M̂ arise from the fact that
Im
(

H1
c(M̂ ;C)→ H1(M̂ ;C)

)
is nonzero.
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