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Abstract
This paper defines two K-theoretic invariants, Wh1 and Wh2, for in-
dividual and one-parameter families of Floer chain complexes. The
chain complexes are generated by intersection points of two Lagrangian
submanifolds of a symplectic manifold, and the boundary maps are
determined by holomorphic curves connecting pairs of intersection
points. The paper proves that Wh1 and Wh2 do not depend on the
choice of almost complex structures and are invariant under Hamil-
tonian deformations. The proof of this invariance uses properties of
holomorphic curves, parametric gluing theorems, and a stabilization
process.

1 Introduction

1.1 Overview. This paper adapts the Whitehead torsion from h-cobor-
disms and the Wh2 obstruction from pseudo-isotopies to invariants of the
Floer theory of Lagrangian intersections. The first, defined for Floer chain
complexes, provides an obstruction, when Floer homology cannot, to de-
forming a Lagrangian away from its image under a Hamiltonian isotopy.
The second, defined for a one-parameter family of Floer chain complexes,
provides an obstruction to deforming a Hamiltonian isotopy of one La-
grangian to another ‘away’ from a third Lagrangian.

When Floer proved that Floer homology is invariant to changes in ei-
ther the almost complex structure or the Lagrangian, he showed that the
Floer chain complex only changes in ways which imitate the handle-slides,
births and deaths of critical points in a one-parameter family of Morse
functions. Because his proofs were quite analytical and in some places in-
complete, symplectic geometers have abandoned his approach in favor of
an elegant homotopy of homotopies method. This paper uses Floer’s orig-
inal method, however, as its explicit treatment of handle-slides, births and
deaths are necessary when considering Whitehead torsion and Wh2. The
paper bypasses Floer’s hard analysis with a geometric technique known as
stabilization.
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1.2 History. A symplectic manifold (P,ω) is a 2n-dimensional smooth
manifold P equipped with a nondegenerate closed 2-form ω, known as a
symplectic form. A Lagrangian submanifold L ⊂ P is an n-dimensional
submanifold on which ω vanishes. Lagrangians are the largest submanifolds
on which the symplectic form can vanish. Let

H : P ×R → P , H : (x, t) �→ Ht(x)
be a time-dependent smooth Hamiltonian function. Let XHt be the time-
dependentHamiltonian vector field ofHt defined by ω(XHt(x), .)=−dHt(x).
Then Ht defines a family of exact symplectomorphisms, or Hamiltonian
diffeomorphisms, φt : P → P by φ0(x) = x and

dφt

dt = XHt ◦ φt .
This family is often called a Hamiltonian isotopy.

A fundamental question asks for a lower bound to the number of in-
tersection points of L and φ1(L). This question is closely related to the
problem of finding a lower bound to the number of fixed points of a Hamil-
tonian isotopy φλ : P → P . To see the connection, embed P = {p, p} ⊂
(P×P,ω⊕−ω) as the Lagrangian diagonal and embed φ1(P ) = {p, φ1(p)} ⊂
(P × P,ω ⊕−ω) as a Hamiltonian deformation of the diagonal. The fixed
point problem then becomes a Lagrangian intersection one.

Arnold conjectured that if L � φ1(L), then the sum of the Betti numbers
of L bounds from below the number of elements in {L ∩ φ1(L)} [A]. In
the 1960s, he made a similar conjecture for the non-degenerate fixed point
problem. These statements have been proved at a number of different levels
in a variety of different manners. Eliashberg first proved the fixed point
conjecture for Riemann surfaces [E]. Conley and Zehnder proved this result
for the torus of arbitrary even dimension [ConZ]. Chaperon proved the
Lagrangian intersection conjecture when L is any torus embedded as the
zero-section inside T ∗L [Ch]. Laudenbach and Sikorav extended Chaperon’s
result to any L ⊂ T ∗L embedded as the zero-section [LS]. Floer ([F1,2,3,4])
proved the sum of the Z2-Betti numbers of L to be a bound by constructing
what is now known as Floer homology theory. Oh extended Floer’s result
to the monotone case [O2]. The weakly monotone fixed point version was
proved by Hofer and Salamon [HoS] and Ono [On]. Recently, the general
case of the fixed point conjecture was proved by Fukaya and Ono [FuO] and
Liu and Tian [LiT].

The methods Floer uses are the basis of this paper. Floer chooses an al-
most complex structure J : an element of End(TP ) which satisfies J2 = −id.
Using {L ∩ φ1(L)} as generators and ‘J-holomorphic disks’ to construct a
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boundary map, Floer defines a Floer chain complex, CF (L, φ1(L), J ;Z2),
with Z2-coefficients. He shows that its homology, HF∗(L, φ1(L), J ;Z2), is
independent of both J and φ1. Floer finally equates HF∗(L, φ1(L), J ;Z2)
with the Morse homology, H∗(L;Z2), thereby proving a Z2-version of the
Arnold conjecture.

1.3 Main results. There are more invariants of a Morse chain complex
than just its homology. In algebraic and differential topology, certain K-
theoretic invariants were developed as (sometimes complete) obstructions
to certain phenomena. One invariant, Whitehead torsion, arose in the field
of simple-homotopies and h-cobordisms. Another, Wh2, appeared in the
field of pseudo-isotopies.

Roughly, a simple-homotopy equivalence between two spaces (CW com-
plexes) is a finite sequence of elementary collapses and expansions. An
elementary expansion of a space (CW complex) is the addition to the space
of two cells of consecutive dimensions, where one forms part of the bound-
ary of the other. A collapse is the reverse process. An algebraic Whitehead
torsion for a homotopy equivalence provides a complete answer to whether
or not the map is a simple-homotopy equivalence, [Co], [M1].

An h-cobordism is a triple (W,M−,M+) of manifolds whereM− andM+

make up the disjoint boundary of W , π1(M±)=π1(W ) and H∗(W,M−)=0.
A geometric Whitehead torsion for the pair (W,M−) provides a complete
answer to whether or not W is the trivial cobordism, M− ×R, [Hu]. The
two versions of Whitehead torsion are related in [M1].

An isotopy of M , ft : (M,∂M) → (M,∂M), can be thought of as a
diffeomorphism f : (M,∂M) × [0, 1] → (M,∂M) × [0, 1], which is level
preserving and the identity near M × {0}. A pseudo-isotopy of M is sim-
ilar except that it only requires the level preserving property to hold near
∂(M × [0, 1]). The second Whitehead element of a pseudo-isotopy serves
as an obstruction to deforming the map to an isotopy within the space of
pseudo-isotopies, [HW].

To define the analogous K-theoretic invariants in Floer theory, the defi-
nition of the Floer complex is extended to a complex CF (L, φ1(L), J) with
coefficients in the Z2π1(L) group ring (see section 2.4). Henceforth, assume
π1(L) �= 0; otherwise all invariants defined vanish. Let L′ = φ1(L).

Defining Whitbread torsion requires H∗(CF (L,L′, J)) = 0, defining the
second Whitehead invariant further requires HF∗(L,L′, J ;Z2) = 0. Since
HF∗(L,L′, J ;Z2) ∼= H∗(L;Z2), [F4], which never vanishes for compact L,
Floer theory for non-compact manifolds needs to be developed. One set of
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manifolds for which the theory works are those which have finite-geometry
at infinity (see section 2.3), a concept introduced by Gromov.

Whitehead torsion, known as Wh1, is constructed for the acyclic chain
complex CF (L,L′, J) in the following manner. Let d be the boundary map
and δn : CFn(L,L′, J) → CFn+1(L,L′, J) be a chain contraction such that
dδ + δd = id. Essentially, Whitehead torsion is the matrix d + δ modulo
certain matrix relations (see section 2.5). CF (L,L′, J) may change if either
L′ changes under a Hamiltonian deformation or J changes; however, this
paper shows

Theorem 1.1. Let (P,ω) be a symplectic manifold and L ⊂ P be a
Lagrangian submanifold. Let J and J ′ be two regular compatible almost
complex structures. Let ψλ be a generic Hamiltonian isotopy with compact
support. Let L′ be the image of L under any Hamiltonian diffeomorphism
(with possibly non-compact support) such that L and L′ intersect trans-
versely. Assume that J and J ′ can be connected by a family of compatible
almost complex structures Jλ such that (P,ω, Jλ, L, L′) has finite-geometry
at infinity. For any map u : (D2, ∂D2) → (P,L), assume that

∫
D2 u

∗ω = 0
and that the Maslov index (see section 2.2) of u(∂D2) is even. Assume
CF (L,L′, J)is acyclic. Then

Wh1
(
CF (L,L′, J)

)
= Wh1

(
CF (L,ψ1(L′), J ′)

)
.

When Floer homology vanishes, a non-zero Wh1 for a pair of La-
grangians provides an obstruction to deforming one away from the other.

Fukaya suggests a similar invariance result in [Fu]. He defines the torsion
for a Floer homology group with coefficients in a certain Novikov ring.
Eliashberg and Gromov prove Theorem 1.1 in the special case when P is
the cotangent bundle of L [EG]. Their methods use generating functions
instead of Floer homology. Hutchings and Lee [HutL] have developed an
alternative invariant to Wh1, known as Reidemeister torsion, in the finite-
dimensional setting which instead of requiring a Morse function uses the
more general closed one-form. Lee is currently working on extending their
results to the Floer homology of periodic orbits [Le]. The author and
Lee are also working on adapting Reidemeister torsion to the theory of
Lagrangian intersections. Because Reidemeister torsion does not require a
well-defined symplectic action (see section 2.2), the hypothesis that L′ is a
Hamiltonian deformation of L can be dropped in this setting.

Whitehead torsion is often labeled Wh1 because of the existence of
higher Whitehead groups. In [HW], a two-parameter Morse theory is used
to construct Wh2 as an obstruction in pseudo-isotopy theory. This paper
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takes a similar approach constructing an invariant of CF (L, φΛ(L′), JΛ), a
one-parameter family of Floer chain complexes with Z2π1(L)-coefficients.
Here Λ is the unit interval and L′ is some non-compact Hamiltonian defor-
mation of a non-compact L. Under conditions similar to Theorem 1.1, Wh2
can be defined for a family of acyclic chain complexes. Using terminology
from pseudo-isotopy theory, define the Steinberg word of CF (L, φΛ(L′), JΛ)
to be a list of so-called ‘handle-slides’ of Lagrangian intersections. To
define this word, the choice of JΛ, though non-generic, can always be
made. The associated Wh2 element is this word modulo certain algebraic
relations (see section 2.6). Suppose φΛ and φ′Λ are two compactly sup-
ported Hamiltonian isotopies with φ0 = φ′0 = id, φ1 = φ′1 and suppose
L∩L′ = L∩φ1(L′) = L∩φ′1(L′) = ∅. Suppose JΛ and J ′

Λ are appropriately
chosen one-parameter families of almost complex structures.
Theorem 1.2. For any map u : (D2, ∂D2) → (P,L), assume that∫
D2 u

∗ω = 0 and that the Maslov index of u(∂D2) is even. If there ex-
ists a family of Hamiltonian isotopies connecting φΛ to φ′Λ fixing φ0 = φ′0
and φ1 = φ′1, then

Wh2
(
CF (L, φΛ(L′), JΛ)

)
= Wh2

(
CF (L, φ′Λ(L

′), J ′
Λ)
)
.

One might ask whether a Hamiltonian isotopy taking L′ to L′′ can
avoid a third Lagrangian L. A non-zero Wh2 answers the question in the
negative.

1.4 Applications and extensions. Examples 5.2 and 5.3 construct
symplectic manifolds, Lagrangians and Hamiltonian diffeomorphisms which
have well-defined non-trivial Wh1 and Wh2 invariants.

Consider a manifold M such that either Wh1(π1(M)) or Wh2(π1(M))
is non-zero, and π2(M) = 0. Sections 2.5 and 2.6 defineWhi(G) for i = 1, 2
and G a group. Theorem 5.1 provides examples of when Whi(G) �= 0. Let
(V, ω) = (R1

t×S1
θ×T ∗M,dt∧dθ+ωstd) where ωstd is the standard symplectic

structure on the cotangent bundle. Let Sc(t, θ, x) = (t, θ + c, x) be the
non-trivial Hamiltonian rotation. Let G denote the set of Hamiltonian
diffeomorphisms of V of the form f ◦ Sc where f has compact support and
f ◦ Sc has no fixed points. Then a corollary of Theorem 1.2 is π0(G) �= 0.
Example 5.4 proves this claim.

It is unknown whether or not the invariants can be modified so that the
converse statements to Theorems 1.1 and 1.2 hold. Although the topologi-
cal converses are true (with coefficients in Zπ1 instead of in Z2π1 and with
an additional obstruction measurement in the case of Wh2), there are some
complications in translating the topological methods into symplectic ones.
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For example, finding a Whitney disk is an important step towards proving
that a zero Whitehead torsion of an h-cobordism implies the cobordism to
be trivial. The existence of an analogous ‘Hamiltonian disk’ is unknown in
the symplectic case, however. On a positive note, extending the theory to
Zπ1 coefficients should be feasible. See Remark 5.5.

Milnor defines Whitehead torsion for a more general class of chain com-
plexes [M1]. He considers chain complexes whose homology is freely gen-
erated with a preferred set of bases. Unfortunately, while the Floer chain
complexes are equipped with a preferred set of generators, the Floer homol-
ogy is not. Otherwise Theorem 1.1 would apply to a more general setting.
That is, Lemma 2.13 still holds for Milnor’s torsion; thus, the techniques
of section 3.4 would prove this potential generalization of Theorem 1.1.

1.5 Acknowledgments. The author wishes to thank Stanford Univer-
sity and the Institute for Advanced Study for hosting him while researching
and writing this paper. Most of this material can be found in his thesis
[Su], and he is grateful to his adviser, Yakov Eliashberg. He also wishes to
thank the anonymous referee for instructive feedback. This research was
sponsored by a grant from the NSF, number DMS 97-29992.

2 Preliminaries

2.1 Floer theory. This subsection briefly introduces the Floer homol-
ogy theory developed for Lagrangian intersections [F1,2,3], [O2]. Let (P,ω)
be a symplectic manifold and L,L′ ⊂ P be two transversely intersecting
Lagrangian submanifolds. For now assume that P is closed; this condi-
tion will later be replaced with the more general finite-geometry at infinity
condition. Let Jω denote the space of smooth t-dependent families of ω-
compatible almost complex structures:

J : [0, 1]t × P → End(TP ) , J(t)2 = −Id , ω
(·, J(t) · ) is a metric .

Henceforth, any almost complex structures J will be assumed to be time-
dependent and ω-compatible unless otherwise stated. The time-dependence
is a technical condition used in a certain surjectivity result (proved as The-
orem 5 in [F3] and corrected as Proposition 3.2 in [O2]). The reader will
not notice its necessity in this survey of Floer theory, however, and thus
can choose to ignore it.

Let Θ = R × [0, 1] ⊂ C, k > 2/p and x1, x2 be transverse intersection
points of L and L′. Define the space of strips connecting x1 and x2 to be
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Pp
k(x1, x2) =

{
u ∈ Lp

k;loc(Θ, P )
∣∣ (1) u(R, 0) ⊂ L , u(R, 1) ⊂ L′

(2) ∃ ρi > 0 , and ξi ∈ Lp
k(Θ, TxiP ) such that

u(τ, t) = expxi
ξi
(
(−1)iτ, t

)
, for τ > ρi for i = 1, 2

}
.

For u ∈ Pp
k (x, y), let

Lq
l (u) =

{
ξ ∈ Lq

l;loc(Θ, u
∗TP )

∣∣ ‖ξ‖l,q <∞}
W q

l (u) =
{
ξ ∈ Lq

l (u)
∣∣ ξ(τ, 0) ∈ Tu(τ,0)L and ξ(τ, 1) ∈ Tu(τ,1)L

′} .
Define the map

∂̄J : Pp
k(x, y) → Lp

k−1(u) , ∂̄J(u) =
∂u(τ, t)
∂τ

+ J(u(τ, t), t)
∂u(τ, t)
∂t

. (1)

A holomorphic curve (also called pseudo-holomorphic or J-holomorphic)
u ∈ Pp

k is a zero of the above map, ∂̄J (u) = 0. Define the energy, E , of a
holomorphic curve u to be

E(u) =
1
2

∫ 1

0

∫ ∞

−∞

∣∣uτ (τ, t)∣∣2 +
∣∣ut(τ, t)∣∣2dτ dt . (2)

Let x, y be transverse intersections of L and L′. Let C = C(x, y) be some
positive constant. Let

M(x, y, J) =
{
u ∈ Pp

k(x, y)
∣∣ ∂̄J(u) = 0 and E(u) < C

}
(3)

be the moduli space of such curves with finite energy. Let fc : Θ → Θ be
the translation fc(τ, t) = (τ + c, t). Note that u ∈ M(x, y, J) ⇐⇒ u ◦ fc ∈
M(x, y, J). Thus the translation induces an R-action on the moduli space.
Let M̂(x, y, J) = M(x, y, J)/R be the set of so-called ‘rigid’ holomorphic
curves.
Theorem 2.1 ([F3]). Suppose x and y are transverse intersections of
L and L′, two Lagrangian submanifolds in a closed symplectic manifold
(P,ω). Assume ω|π2(P,L) = ω|π2(P,L′) = 0. Then ∂̄J is a smooth section of a
Banach space bundle Lp

k−1(x, y) over Pp
k whose fiber over u is L

p
k−1. The

linearization of ∂̄J at u

Eu ≡ D∂̄J(u) : TuPp
k(x, y) = W p

k (u) → Lp
k−1(u)

is a Fredholm operator. There is a Baire set Jreg ⊂ Jω for whichM(x, y, J)
is a manifold.

Floer also proves a higher parameter version of Theorem 2.1. Let Λm

be an m-dimensional compact submanifold of Rm. Assume {Lλ}λ∈Λm is a
smooth family of Lagrangian submanifolds. Suppose x = x(λ), y = y(λ) ∈
Lλ∩L represents two families of transverse intersections which exist for all
λ ∈ Λm and which vary smoothly with λ. Define

Pp
k(x, y; Λ

m) =
{
(u, λ)

∣∣ u ∈ Pp
k(x(λ), y(λ)) and λ ∈ Λm

}
.
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Assume JΛm = {Jλ}λ∈Λm is a family of almost complex structures varying
smoothly with λ. Define

∂̄ : Pp
k(x, y; Λ

n) → Lp
k−1(x, y) , ∂̄(u, λ) = ∂̄Jλ

(u) .
Define the moduli space

MΛm(x, y, JΛm) =
{
(u, λ)

∣∣ u ∈ M(x(λ), y(λ), Jλ) and λ ∈ Λm
}

M̂Λm(x, y, JΛm) = MΛm(x, y, JΛm)/R .

Assume that the bound on energy C(λ) = C(x(λ), y(λ)) varies continuously
with λ. Since Λm is compact, this continuity implies a uniform bound on
energy.
Theorem 2.2 ([F3]). Suppose x and y are two families of transverse in-
tersections of L and Lλ, λ ∈ Λm. Assume ω|π2(P,L) = ω|π2(P,Lλ) = 0. Then
∂̄ is a smooth section of a Banach space bundle Lp

k−1(x, y) over Pp
k (x, y; Λ

m)
whose fiber over (u, λ) is Lp

k−1. The linearization of ∂̄ at (u, λ)
E(u,λ) ≡ D∂̄(u, λ) : T(u,λ)Pp

k (x, y; Λ
m) = W p

k (u)× TλΛm → Lp
k−1(u)

is a Fredholm operator. There is a Baire set J Λm

reg ⊂ J Λm

ω for which the set
MΛm(x, y, JΛm) is a manifold.

Any JΛm ∈ J Λm

reg will be called a regular or generic family of almost
complex structures.

2.2 Action and index. Floer and others try to capitalize as much as
possible on the similarity of Floer theory to Morse theory. In Morse theory,
a fundamental object is the Morse function. In Floer theory, the analogous
object, when defined, is the symplectic action. Let γ0 be a smooth path
from L to L′. Denote the path space by

Ω(L,L′) =
{
γ ∈ C∞([0, 1], P )

∣∣ γ(0) ∈ L , γ(1) ∈ L′}
and let Ω(L,L′; γ0) ⊂ Ω(L,L′) be the component containing γ0. For
γ ∈ Ω(L,L′; γ0) let S(γ) ⊂ P be the image of any path of paths from γ
to γ0. Define the action A on Ω(L,L′; γ0) by

A(γ) =
∫
S(γ)

ω . (4)

The action is not well defined, a priori, because A(γ) depends on the choice
of S(γ). The following lemma demonstrates when an action exists and
illustrates the action’s main use.
Lemma 2.3 ([F1], [O1]). The action is well defined if L′ is a Hamiltonian
deformation of L and ω|π2(P,L) = 0. If the action exists, then for any
intersections x, y ∈ L ∩ L′, and any u ∈ M(x, y, J)

E(u) = A(y)−A(x) .
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In particular, if A(y) ≤ A(x) then M(x, y, J) has no non-constant
curves.

It is easy to show that critical points of A are exactly intersection points
of L and L′. Choosing J ∈ Jω induces a metric on P , which, by integration
induces one on Ω(L,L′; γ0). This metric is not complete; thus, the L2-
gradient, a crucial ingredient in Morse theory, is not an element of TΩ.
Nevertheless, it can be readily shown that the equation for ‘L2-gradient
flows,’ an ODE in the infinite-dimensional path space, can be re-expressed
as the Cauchy–Riemann PDE in P, ∂̄J(u) = 0. By the above theorem, then,
M̂(x, y, J) is analogous to the space of rigid Morse-gradient flows.

Lemma 2.3 shows that as in Morse theory, there are no gradient flows
from an intersection point to itself or to another point with a higher action.
Lemma 2.3 further removes the choice of energy bound, C(x, y), made in
the definition of M(x, y, J).

In addition to the Morse function, f , with its gradient flows, there is
the Morse index assigned to each critical point of f . Recall that the index
of a critical point is the number of negative eigenvalues of the Hessian at
that point. Furthermore, the dimension of the set of gradient trajectories
between two critical points equals the difference in indices. The Morse
index provides a grading for the critical points when viewed as chains in
Morse homology theory. The symplectic analogy to this index is the Maslov
index.

Let x and y be two transverse intersections of L and L′. Consider any
u ∈ Pp

k (x, y), and temporarily reparameterize Θ so that u : [0, 1]2 → P .
Since [0, 1]2 is contractible, there exists a trivialization F : u∗TP →
[0, 1]2 ×Cn which is constant on {0} × [0, 1] and {1}× [0, 1], and such that
at the points x and y the tangent spaces of L′ are i times the tangent spaces
of L. Let Lag(n) be the space of Lagrangian planes in (R2n, dx∧dy). Con-
struct a loop Lu : ∂([0, 1]2) → Lag(n) by Lu(τ, 0) = F (Tu(τ,0)L), Lu(1, t) =
eiπt/2F (TyL), Lu(τ, 1) = F (Tu(τ,1)L′), and Lu(0, t) = e−iπt/2F (TxL′).

Define the relative Maslov index mu(x, y) to be µ(Lu) where µ is the
usual Maslov index for loops in Lag(n) (see p. 48-49 of [McS1] for a review
of µ).

Floer proves the following dimension argument which clarifies the anal-
ogy between the Maslov index and Morse index. Although he gives an
unparameterized version, the general parameterized version is an obvious
extension.

Theorem 2.4 ([F2]). Assume the notation and hypotheses from Theo-
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rem 2.2. Note that m might be 0. Assume JΛm is regular. The component
of MΛm(x, y, JΛm) containing (u, λ), O ⊂ MΛm(x, y, JΛm), has manifold
dimension

dimO = IndEu,λ = mu

(
x(λ), y(λ)

)
+m = mu(x, y) +m (5)

where Ind is the Fredholm index.

The last equality uses the fact that the index is integer-valued and varies
continuously with λ.

Let Mn
Λm(x, y, JΛm) ⊂ MΛm(x, y, JΛm) denote the union of (n + m)-

dimensional components. So if (u, λ1, . . . , λm) ∈ Mn
Λm(x, y), then mu(x, y)

= n for generic u. Similarly, denote the (n+m−1)-dimensional components
of rigid curves by M̂n

Λm(x, y, JΛm).
The relative Maslov index is not as ‘strong’ as the relative Morse index

because while the former depends on u, the latter does not depend on the
connecting gradient flow. Thus, the Maslov index at first does not seem to
provide a grading for the Lagrangian intersection points.

Define the homomorphism

F : π2(P,L) → Z, F (v) = µ(v(∂D2)) (6)

where v is thought of as the map v : (D2, ∂D2) → (P,L). Define the
minimal Maslov number Σ(L) as the positive generator for the subgroup
F (π2(P,L)) ⊂ Z.

Lemma 2.5 [O2, Lemma 5.2]. Suppose L′ is a Hamiltonian deformation
of L. Suppose x, y are transverse intersections of L and L′. Let u, v ∈
M(x, y, J). Then there exists an integer n such that mu(x, y)−mv(x, y) =
nΣ(L).

Note that in this case Σ(L′) = Σ(L). A corollary of Lemma 2.5 is that
a ZΣ(L)-valued grading for the transversal intersection points exists. Pick
x ∈ L ∩ L′ which, as a constant path, lies in Ω(L,L′; γ0), and define its grad-
ing to be 0 ∈ ZΣ(L). Thus if L � L′ and L′ is a Hamiltonian deformation of
L, then this choice determines a grading µ : {L ∩ L′} ∩ Ω(L,L′; γ) → ZΣ(L).

2.3 Finite geometry at infinity. In section 4.1, Wh2 is defined as-
suming L ∩ φ1(L) = ∅ which requires HF∗(L, φ1(L), J ;Z2) = 0. But

HF∗(L, φ1(L), J ;Z2) = H∗(L)

which never vanishes for compact L; thus, the acyclic requirement moti-
vates a generalization of the previous theorems to a class of non-compact
manifolds developed by Gromov in [G]. A brief treatment of this can be
found in Chapter 5 of [AuL].



820 M.G. SULLIVAN GAFA

Definition 2.6. Suppose (P,ω) is a symplectic manifold with a compat-
ible almost complex structure J . Let g be the associated metric, that is,
g(v,w) = ω(v, Jw). Let L,L′ ⊂ P be Lagrangian submanifolds.
(P,ω, J, L,L′) has finite-geometry at infinity if g is complete and there exist
r1, C1, C2 positive constants and a compact set K ⊂ P such that

1. For all p ∈ P , expp : B(0, r1) → B(p, r1) is a diffeomorphism.
2. For all γ : S1 → B(p,r) ⊂ P with r < r1, γ extends to γ̄ : D2 → B(p,r)

such that Areag(γ̄) ≤ C1 lengthg(γ).
3. If x ∈ L \ (L ∩K) and x′ ∈ L′ \ (L′ ∩ K) then dist(P,g)(x, x′) > r1.

If x, x′ ∈ L \ (L ∩K), and dist(P,g)(x, x′) < r1, then dist(L,g)(x, x′) <
C2 dist(P,g)(x, x′). Here, dist(L,g) refers to the Riemannian distance
associated with the induced metric on L. A similar statement holds
for L′.

4. For all x ∈ L ∪ L′, L ∩B(x, r1) and L′ ∩B(x, r1) are contractible.

A family of such 5-tuples, (P,ω, JΛ, LΛ, L
′
Λ), has uniform finite-geometry

at infinity if the constants r1λ
, C1λ

, C2λ
and the choice of compact sets Kλ

do not depend on λ ∈ Λ.
For a given symplectic manifold (P,ω) and a pair of Lagrangians (L,L′)

(resp. family of pair of Lagrangians (LΛ, L
′
Λ)), denote by FG(L,L′) (resp.

FG(LΛ, L
′
Λ)) the set of ω-compatible almost complex structures J (resp. JΛ)

for which (P,ω, J, L,L′) has finite-geometry (resp. (P,ω, JΛ, LΛ, L
′
Λ) has

uniform finite-geometry).

Note that compact symplectic manifolds have finite-geometry at infinity.
The main property enjoyed by a symplectic manifold with finite-geometry
at infinity is that a holomorphic curve u ∈ M(x, y, J) is contained in a
compact set.

Theorem 2.7. Consider a family (P,ω, JΛ, L, L′
Λ), which has uniform

finite-geometry at infinity. Assume that the energy of all holomorphic strips
is uniformly bounded. That is, for any u ∈ Mλ(xλ, yλ, Jλ), E(u) < E for
some constant E. Then there exists a compact K ′ ⊂ P such that the image
of any such u lies in K ′.

Note that the theorem does not require the Lagrangian submanifolds
to intersect transversely. The proof relies on a monotonicity property of
holomorphic strips proved by Propositions 4.3.1(ii) and 4.7.2(ii) of [AuL,
Chapter 5].

Lemma 2.8. Suppose (P,ω, J, L,L′) has finite-geometry with constants
r1, C1, C2 and compact set K from Definition 2.6. Choose C3 such that for
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all p, p′ ∈ K, dist(P,g)(p, p′) < C3. Let S ⊂ Θ be a simply-connected con-
nected domain in Θ. Let f : S → P be the restriction of some holomorphic
strip u : Θ → P . If (f(S), f(∂S)) ⊂ (B(x, r), ∂B(x, r)) for some r < r1 and
if x ∈ f(S) then Area(f(S)) ≥ C4r

2 where C4 = 1/4C1(C2 + C3 + 1).

Now for the proof of Theorem 2.7.

Proof. Let K0 = K. Suppose P is not compact; otherwise, there is nothing
to prove. Define inductively

Ki =
{
x ∈ P

∣∣ dist(P,g)(x,Ki−1) ≤ 1
}
.

Note that Ki−1 � Ki because P is non-compact, and that Ki is compact
because the metric is complete. Consider a holomorphic curve u : Θ → P
with Lagrangian boundary conditions which passes through Ki\Ki−1 going
from Ki−1 to Ki+1\Ki. Let Θ′ ⊂ Θ be some (simply-connected) subdomain
where this occurs. Without loss of generality, assume r1 ≤ 1/2. Then there
exists x ∈ u(Θ′) such that B(x, r1) ⊂ Ki\Ki−1. Let S = u−1(B(x, r1))∩Θ′.
Then by Lemma 2.8, Area (u(S)) ≥ C4r1

2. Note that C4 does not depend
on λ. Any strip must start (and end) at some points in L ∩ L′

λ ⊂ K0.
If N ≥ E/C4r1

2, then the image of the strip lies in KN+1. This last
statement uses the fact that for holomorphic curves, energy and area are
equal (Lemma 2.5 of [O1]). ✷

Corollary 2.9. Replace the condition that L,L′ and P are compact
manifolds and J ∈ Jω with J ∈ FG(L,L′). In the parameterized setting,
assume that JΛ ∈ FG(L,L′

Λ). If the other hypotheses of the theorems of
sections 2.1 and 2.2 remain, then the theorems’ conclusions still hold.

Proof. The only non-local aspect of the proofs of the theorems in sections 2.1
and 2.2 is the application of Gromov’s compactness theorem (see [F3, Theo-
rem 1] or [O2, Proposition 3.7] for a specific statement). Roughly speaking,
Gromov’s compactness theorem states the following:

Consider a sequence of un of Jn-holomorphic curves in a compact sym-
plectic manifold P with uniformly bounded energy and boundaries L
and Ln. Suppose Jn → J and Ln → L′ in the C∞-topology. Then, up
to certain reparameterizations in the domain, there exists a subsequence
of the curves that converges uniformly to a so-called cusp-curve which is a
union of curves in M(x0, x1, J)×M(x1, x2, J)× . . .×M(xk−1, xk, J).

The only use of the compactness of P is the assumption that the curves
un lie in a compact set. But this assumption can be replaced by Theo-
rem 2.7. ✷
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The following definition encapsulates all the hypotheses needed for the
analysis of the main theorems to hold. It essentially summarizes the rele-
vant concepts from sections 2.2 and 2.3.
Definition 2.10. (L,L′) are called admissible if L′ is an exact deforma-
tion of L, ω|π2(P,L)

= 0, Σ(L) ∈ 2Z, and FG(L,L′) �= ∅.
2.4 Floer homology with group ring coefficients. Henceforth as-
sume the admissibility condition. Suppose π1(L) �= 0. For a regular
J ∈ FG(L,L′), define CF (L,L′, J) to be the graded module freely gener-
ated by the elements of {L∩L′}∩Ω(L,L′; γ0) over the group ring Z2π1(L).
Remark 2.11. Alternatively, CF (L,L′, J) could be the direct sum of
complexes generated by all intersection points, {L∩L′}. This counts more
intersections but makes the notation a bit more complicated. Since the
statements and proofs of theorems do not change when multiple components
are considered, for the sake of brevity the discussion is restricted to the set
of intersections in one component and will henceforth label this set {L∩L′}.

Assign the ZΣ(L)-cyclic grading, µ, to CF (L,L′, J). Fix a base point
p ∈ L. For any loop γ : S1 → L such that γ(0) = γ(1) = p, denote its
homotopy class by [γ] ∈ π1(L; p) ∼= π1(L). For each z ∈ {L∩L′}, pick a base
path γz : [0, 1] → L, γz(0) = p, γz(1) = z. For each u ∈ M̂(x, y, J), define
γu : [0, 1] → L by γu(s) = u

(
1
s − 1

1−s , 0
)
. That is, γu(0) = y, γu(1) = x

and γu follows the image of u(∗, 0). To be consistent with the conventions
of others, such as [HW], write the composition of paths from left to right;
thus, α = [γyγuγ−1

x ] is an element of π1(L).
Define a boundary operator

dn : CFn(L,L′, J) → CFn−1(L,L′, J)

d(y) =
∑

{x∈L∩L′||µ(x)=µ(y)−1}

( ∑
u∈cM1(x,y,J)

[γyγuγ−1
x ]
)
x .

Note that by Gromov compactness, the interior summand sums over a
compact 0-dimensional manifold and hence is finite.

Suppose h : C → C ′ is a homomorphism between two free modules with
given sets of generators (for example, C ′ = C with the canonical basis of
intersection points, and h = d). If h(y) =

∑
i αixi, then let 〈h(y), xk〉 =

〈xk, h(y)〉 = αk.
Theorem 2.12. d2 = 0.

Proof. This is a brief review of the original proof of d2 = 0 for Floer
homology with Z2-coefficients, with an extension to a proof for Z2π1(L)-
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coefficients. Suppose x, y, y′ and z are intersection points such that, for
simplicity, dz = y + y′. Let u and u′ be the unique rigid curves connecting
z to y and y′ such that mu(y, z) = mu(y′, z) = 1. Suppose {v1, . . . , vk}
(resp. {v′1, . . . , v′l}) are the unique set of curves connecting y (resp. y′) to x
of Maslov index 1. When working with Z2 coefficients, it suffices to show
that l ≡ k mod 2 since this implies 〈d2z, x〉 = 〈dy + dy′, x〉 = 0 ∈ Z2.

Note that Σ(L) ∈ 2Z, x �= z, and Gromov compactness implies that
any non-closed one-dimensional component of M̂2(x, z, J) must converge
to a cusp-curve in M̂1(x, p, J)×M̂1(p, z, J). Floer constructs a one-to-one
correspondence between such a set of limit points and cusp-curves [F1].
Since the number of boundary points of an open bounded one-manifold is
even, this correspondence proves that l ≡ k mod 2.

Now to prove 〈d2z, x〉 = 0 ∈ Z2π1(L). To simplify notation, assume
l = k = 1 and write v = v1, v′ = v′1. Denote by {ũs} the component
of M̂2(x, z, J) with u ∪ v and u′ ∪ v′ as endpoints. For i = 0, 1, let α =
[γzγuγ−1

y ], α′ = [γzγu′γ−1
y′ ], β = [γyγvγ−1

x ] and β′ = [γy′γv′γ−1
x ]. Then

〈d2z, x〉 = 〈αdy + α′dy′, x〉 = αβ + α′β′ = 0 ∈ Z2π1(L)

because

αβ = [γzγuγvγ−1
x ] = [γzγũsγ

−1
x ] = [γzγu′γv′γ

−1
x ] = α′β′ . �

Thus, CF (L,L′, J) is a Z2π1(L)-chain complex and its homology can
be defined:

HFn

(
L,L′, J ;Z2π1(L)

)
=

ker(dn)
Im(dn+1)

. (7)

2.5 Algebra of Wh1. This subsection briefly reviews the Whitehead
torsion which arises in simple-homotopy theory. Chapter 3 of [Co] offers a
good introduction with more details.

For any ring R with unit, let GL(R) be the direct limit of GL(n,R).
Let G ⊂ R be a subgroup of the units of R. Consider matrices A and B

A =



1
1

. . .
r 1

. . .
1

1


B =



1
. . . ©

1
g

1

© . . .
1


(8)
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Here r ∈ R and g ∈ G. Let E(R) ⊂ GL(R) denote the subgroup generated
by the matrices of type A, also known as elementary matrices. Matrices
of type A shall be written as Eij(r). Let EG ⊂ GL(R) be the subgroup
generated by E(R) and matrices of type B. Define the quotient map, called
the torsion map, by

τ : GL(R) → KG(R) =
GL(R)
EG

.

The reader can easily check that KG(R) is abelian. Also, if G contains the
unit −1, then τ is invariant under elementary row operations.

For a general group H, denote by Z2(H) the Z2-group ring of H. Define
the first Whitehead group of the given group H to be

Wh1(H) = KH(Z2(H)) .

Henceforth, consider the group G to be a subgroup of the units of the
ring R with −1 ∈ G. (For example, (G,R) = (H,Z2(H)) satisfies this
condition since −1 = 1 ∈ H.) Define an (R,G)-module to be a free R-
module M , along with a preferred set B of bases such that for all b, b′ ∈ B,
τ〈b/b′〉 = 0. Here 〈b/b′〉 is the change of basis matrix from b to b′. If f :
M1 → M2 is a module homomorphism, write 〈f〉b1,b2 to denote the matrix
representing f with respect to bases b1 and b2 of M1 and M2, respectively.
When the choice of basis does not matter, the subscripts will sometimes
be omitted. Define an (R,G)-complex to be a free chain complex over R,
(C = {Ci}, d) where each Ci is an (R,G)-module with preferred sets of
bases Bi. Denote by B = {b1 ∪ b2 ∪ . . . | bi ∈ Bi} the preferred set of bases
for C. The grading of (C, d) can be either Z or Z2k. Suppose (C, d) is an
acyclic (R,G)-complex. A chain-contraction δ for (C, d) is a set of maps

δn : Cn → Cn+1 , δn−1dn + dn+1δn = Id : Cn → Cn .

Pick any δ and write

Codd = C1 ⊕ C3 ⊕ · · · , Ceven = C0 ⊕ C2 ⊕ · · ·
Denote the preferred bases of Codd by Bodd = {b1 ∪ b3 ∪ · · · | b2i+1 ∈ B2i+1}
and do the same for Ceven. The torsion of the chain complex with a pre-
ferred set of bases B is

Wh1(C, d,B) = τ
(〈(d+ δ)|Codd

〉) (9)

where the matrix is with respect to any pair of preferred bases. In sec-
tion 3.1, the chain complex will come equipped with a canonical set of
preferred bases; thus, the dependence of Wh1 on B will henceforth nota-
tionally be omitted. In [Co], Cohen proves that the torsion is well defined;
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i.e. (d+ δ)odd is invertible and τ is independent of the choice of bases in B
and δ.

Let (C,d) be any (R,G)-module. Fix a preferred basis. Suppose x,y ∈ Ci

for some i are two basis elements. Let δab = 1 if a = b and 0 otherwise. Let
f : (C, d) → (C, d′ = f◦d◦f−1) be a chain map defined on the basis elements
by f(p) = p+ δpxgy for some fixed g ∈ G and extended as a homomorphism
to all chains. Let (T, dT ) denote a trivial acyclic (R,G)-complex

(T, dT ) : 0 → Tk → Tk−1 → 0

where Tk = Tk−1
∼= R and Bk = Bk−1

∼= G. Let (C, d) be any (R,G)-
complex. The following lemma will be useful later.

Lemma 2.13. Wh1(C, d′) = Wh1(C, d) = Wh1(C ⊕ T, d⊕ dT ) .

Proof. For the first equality, note that if δ is a chain contraction for (C, d),
then δ′ = f ◦ δ ◦ f−1 is a chain contraction for (C, d′). Thus

Wh1(C, d′) = τ
(〈(d′ + δ′)Codd

〉) = τ
(〈(f ◦ (d+ δ) ◦ f−1)Codd

〉)
= τ
(〈f |Ceven

〉)τ(〈(d+ δ)|Codd
〉)τ(〈f−1

∣∣
Codd

〉)
= 1 ·Wh1(C, d) · 1 .

This last equality holds regardless of the parity of the index of x.
To prove the lemma’s second equality, pick bk−1 ∪ bk ∈ BT = G × G.

Define δT : Tk−1 → Tk by δT (bk−1) = bk. Then δ′′ = δ ⊕ δT is a chain
contraction for C ′′ = C ⊕ T . Choose bo ∈ Bodd and be ∈ Beven. If k is odd,
let b′′o = bk ∪ bo and b′′e = bk−1 ∪ be. If k is even, pair up the bases the other
way; thus, b′′o ∈ B′′

odd and b′′e ∈ B′′
even.

Regardless of the parity of k, 〈(dT + δT )odd〉 = (1). Thus, the matrix
〈(d′′+δ′′)odd〉b′′o ,b′′e differs from 〈(d+δ)odd〉bo,be in that it has an extra column
inserted in the jth spot and an extra row in the ith spot with all zeroes
except for a 1 in the (i, j) entry. As elements of GL(R), these two matrices
differ by only an elementary operation and so have the same torsion. ✷

2.6 Algebra of Wh2. This subsection briefly reviews the second White-
head group which arises in pseudo-isotopy theory. See [HW] for an intro-
duction to pseudo-isotopies and more algebraic details.

Let R be any ring and define the Steinberg group, St(R), to be the free
group generated by the symbols hij(r) where 0 ≤ i, j < ∞ and i �= j,
modulo the relations

(St1): hij(α)hij(β) = hij(α+ β)
(St2): hij(α)hkl(β)hij(α)−1hkl(β)−1 = 1 for i �= l and j �= k
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(St3): hij(α)hjk(β)hij(α)−1hjk(β)−1 = hik(αβ) for i, j, k distinct .
Denote by Γ the indexing set of the generators. As written above, Γ is a

subset of the non-negative integers, although it need not always be. Denote
the projection homomorphism π : St(R) → E(R) defined on the generators
by π(hij(α)) = Eij(α). It is easy to check that π preserves the relations,
and thus is well defined. Henceforth, assume R = Z2[G] for some group G.
Define the following subgroups of St(R): let W (G) be generated by words
of the form wij(g) = hij(g)hji(g−1)hij(g); let U(R) be the pre-image under
π of all lower-triangular matrices in E(R); let U(G) ⊂ U(R) be generated
by words of the form wij(g)wij(1) and generators hkl(α) with k < l; let
K2(R) = ker π. Define the second Whitehead group of the group G to be

Wh2(G) =
K2(Z2[G])

W (G) ∩K2(Z2[G])
=
U(R)
U(G)

. (10)

The equivalence of these two definitions is proved on p. 105–107 of [HW].
Now to construct an element of Wh2(G) for certain one-parameter fam-

ilies of Z or Z2k-graded acyclic chain complexes. Let Ci = Bi ⊕ Zi where
Bi and Zi are free R-modules generated by {bni } and {zni }, respectively.
Here i ∈ Z2k or Z. Let Sti(R) be the Steinberg group generated by hpq(r)
where p and q are distinct generators of Ci. Note that the index set Γ is
now made of generators. Γ can be well-ordered by ordering the genera-
tors ∪i{b0i , z0i , b1i , . . . }. Let πi : Sti(R) → Ei(R) be the projection where
Ei(R) is generated by elementary matrices Epq(r). Since Γ is well-ordered,
‘row p’ and ‘column q’ make sense. Let C = ⊕Ci, StC(R) = ⊕Sti(R) and
EC(R) = ⊕Ei(R). Define WC(G),WC (R), et cetera to be appropriate sub-
spaces of StC(R). Define Codd and Ceven as in section 2.5. Define Steven et
cetera in the obvious way.

Let C(C) be the set of pairs (d, δ) = ∪i{(di, δi)} where d is a boundary
map for C and δ is a chain contraction map for d satisfying δ2 = 0. Let
χ = (χ0, χ1, . . . ) ∈ StC(R) be any element. Define an action of StC(R) on
C(C) as follows:

χ : C(C) → C(C)

χ · (d, δ) = (χ · d, χ · δ) = ∪i

{
(π(χi)diπi−1(χi−1)−1, π(χi)δiπi−1(χi−1)−1)

}
.

Define the standard pair (D,∆) ∈ C(C) for C by the equations
D(bni ) = zni−1, ∆(zni ) = bni+1, D(zni ) = ∆(bni ) = 0.

A pair (d, δ) is called elementary if for any canonical generator p of Ci,
di(p) = 0 or di(p) = q where q is a generator of Ci−1. Define

Υ =
{
χ ∈ StC(R)

∣∣ χ · (D,∆) is elementary
}
.
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Hatcher and Wagoner prove ([HW, Lemma III.3.1]) that for each χ ∈ Υ
there exists a w ∈ WC(G) such that

wχ ·Deven + wχ ·∆even ∈ π(U(R)) ⊂ E(R) .
Note that

wχ ·Deven + wχ ·∆even = π
(∏
0≤i

w2iχ2i
∏
0≤i

χ−1
2i+1w

−1
2i+1

)
.

Define a map
Σ : Υ →Wh2(G)

Σ(χ) =
∏
0≤i

w2iχ2i
∏
0≤i

χ−1
2i+1w

−1
2i+1 mod U(G) .

Hatcher and Wagoner prove ([HW, p. 124–125]) that Σ(χ) does not de-
pend on the choice of w ∈ WC(G) made in [HW, Lemma III.3.1]. Although
their proofs are for R = Z[G], the proofs for R = Z2[G] when not identical
are simpler.

3 The Wh1 Theorem

3.1 The statement. Suppose CF (L,L′, J) is acyclic. Choose as a pre-
ferred set of bases the set consisting of a single canonical basis, {L ∩ L′}.
Define the Whitehead torsion of CF (L,L′, J) (with basis {L ∩ L′}) to be

Wh1
(
CF (L,L′, J)

) ∈ Wh1(π1(L)) =
GL(Z2π1(L))

Eπ1(L)
. (11)

Define the stabilization of (P,ω) to be the symplectic manifold (P̃ , ω̃) =
(P ×R2, ω+dx∧dy). The R2-component is called the fiber of the stabiliza-
tion. The (x, y) coordinates are called the stabilization’s fiber coordinates.

The stabilized Lagrangians are defined to be L̃ = L × {(x, 0) | x ∈ R}
and L̃′ = L′ ×{(x,±2x) | x ∈ R}. L′ can be stabilized in either a ‘positive’
or ‘negative’ manner. Note that no additional points of intersection arise
from stabilizing the Lagrangians. If L′ is the time-one map of a Hamiltonian
deformation of L with Hamiltonian function Ht : P → R, then so too is L̃′

of L̃ with Hamiltonian H̃t(p, x, y) = Ht(p)± x2.
Theorem 3.1. Suppose (L,L′) are admissible and ψ1 is the time-one map
of a compactly supported Hamiltonian isotopy connected to the identity.
Suppose J ′, J ′′ ∈ FG(L,L′) = FG(L,ψλ(L′)) are regular and are connected
by a one-parameter family jΛ ⊂ FG(L,L′). Suppose CF (L,L′, J ′) is acyclic
so that its Whitehead torsion can be defined. Then

Wh1
(
CF (L,L′, J ′)

)
= Wh1

(
CF (L,ψ1(L′), J ′′)

)
.
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Wh1(CF (L,L′, J ′)) does not depend on the choice of base paths needed to
define Floer chain complexes with Z2π1(L)-coefficients.

If L̃ and L̃′ are the stabilizations of L and L′ respectively, then

Wh1
(
CF (L,L′, J ′)

)
= Wh1

(
CF (L̃, L̃′, J ′ ⊕ Jstd)

)
.

Remark 3.2. An example of two such almost complex structures is when
J ′ ∈ FG(L,L′) is regular and J ′′ is another almost complex structure which
agrees with J ′ outside some suitably large set but is generically perturbed
within the set. The two are obviously connected by some jΛ ⊂ FG(L,L′).
Moreover, Theorem 2.7 implies all holomorphic curves lie in some compact
set; hence, the regularity requirement for J ′′ is vacuous outside the set.

The proof of Theorem 3.1 constructs a one-parameter family of pairs
of Lagrangians and a one-parameter family of almost complex structures
connecting (L,L′, J ′) to (L,ψ1(L′), J ′′). The changes that occur in the
resulting one-parameter family of Floer chain complexes are then examined
and proved to not affect the chain complexes’ Whitehead torsion.

There are two phenomena that generically occur at discrete times in
a one-parameter family which can alter the chain complex. At isolated
instances, a non-generic holomorphic curve u with mu(x, y) = 0 can generi-
cally appear which shall be named a handle-slide after the analogous Morse
phenomenon. The handle-slide is said to represent [γyγuγ−1

x ] ∈ π1(L). Since
A(y) > A(x), u represents a ‘negative L2-gradient’ flow from y ‘down’ to x.
For this reason, u will sometimes be called a handle-slide from y to x.

The second phenomenon is the appearance or disappearance of pairs
of intersection points. These shall be called births and deaths. Let Q :
Rn−1 → R be a non-degenerate quadratic function. Consider the family
of functions fλ(q1, q2, . . . , qn) = q31 + λq1 +Q(q2, . . . , qn) where λ ∈ [−1, 1].
Let L = Rn × 0 be the Lagrangian zero-section in (R2n, dq ∧ dp) and
let Lλ = {(q1, . . . , qn, p1, . . . , pn) | pi = ∂fλ/∂qi}. Then L and Lλ have
two transverse intersection points when λ < 0 which ‘die’ as a degenerate
intersection at λ = 0. The general death of two intersection points is
locally modeled by this example. Define an independent birth or death to
be one when there are no holomorphic curves connecting the degenerate
intersection point with any other intersection point.

3.2 Births, deaths and stabilization. Before proving in Theorem 3.12
that these are the only singularities to consider, a discussion of stabilization
and its application to births and deaths is needed. This subsection provides
an explicit construction of how to adjust the fiber coordinate of a birth or
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death. The subsection also takes a first step in applying stabilization to
render all births and deaths independent.

To model the birth phenomenon by a one-parameter family of func-
tions, choose a Darboux neighborhood N of the location of the birth and
a symplectic chart κ

κ : (N, ω|N ) →
(
I2n,

∑
i

dqi ∧ dpi
)

where I = [−3, 3] .

Assume N is small enough such that L ∩ N and Lλ ∩ N are both diffeo-
morphic to Rn. Choose κ such that

κ(N ∩ L) = In × 0 , (12)

κ(N ∩ Lλ) =
{(

q1, . . . , qn,
∂fλ
∂q1

, . . . , ∂fλ
∂qn

) ∣∣ (q1, . . . , qn) ∈ In
}

(13)

where fλ : In → R is smooth and λ ∈ Λ = [0, 1].
Let σ1 : R → R be an even smooth bump function supported on [−1, 1]

and non-vanishing on (−1, 1). Assume σ1 has a unique maximum of 1 at 0,
and that σ′1 has a unique minimum of −2 at 1

2 . Assume that for z ∈ (0, 12),
σ′1(z) = σ′1(1−z). Let σ2(z) = σ1

(
z+ 1

2

)
. Thus, σ′2 is locally even around 0.

There exists some non-degenerate quadratic function Q : Rn−1 → R and
symplectomorphism κ so that

fλ(q1, q2, . . . , qn) = ε1q1 + λσ2(q1) +Q(q2, . . . , qn) (14)
where 1 > ε1 > 0 can be made arbitrarily small. Note that λmax{σ′2}+ ε1
< 3 implies that κ(N ∩ Lλ) is a graph in I2n. Points in L ∩ Lλ ∩ N
correspond to critical points of fλ. For λ ∈ [0, 12ε1), ∂fλ

∂q1
> 0 implies there

are no such critical points, at λ = 1
2ε1 there is a degenerate critical point

at (0, 0, . . . , 0), and for λ ∈ (12ε1, 1], there are two non-degenerate critical
points with positive and negative q1-coordinates.

To simplify notation, assume that dimP = 2n = 2; the stabilization
process for manifolds of higher dimensions is similar. The few differences
between the two-dimensional case and the general case will be addressed
when they arise.

In the neighborhood Ñ = N ×R2 of the birth, letting κ̃ = κ × idR2 ,
the stabilized Lagrangians are modeled by

κ̃(Ñ ∩ L̃) =
{
(q, 0, x, 0)

∣∣ (q, x) ∈ I×R
}

(15)

κ̃(Ñ ∩ L̃λ) =
{(

q, ∂Fλ
∂q , x,

∂Fλ
∂x

) ∣∣ (q, x) ∈ I×R
}

where (16)

Fλ(q, x) = fλ(q)− x2 . (17)
Theorem 3.3. Consider the one-parameter family of functions Fλ : I×R
→ R in equation (17) which has a unique birth at (λ, q, x) =

(
1
2ε1, 0, 0

)
.
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Given any constant C ∈ R, there exists a one parameter family of functions
Gλ : I×R → R such that

1. G0 = F0 and G1 = F1.
2. Gλ(q, x) = F0(q, x) = F1(q, x) for q in a neighborhood of ∂I.
3. |∂Gλ/∂q| < 3.
4. No deaths of critical points occur and a unique birth occurs arbitrarily
close to (λ, q, x) =

(
1
2ε1, 0, C

)
.

5. At the moment of birth, supp(Gλ − F0) ⊂ (−1, 1)× (C − 1, C + 1).
Remark 3.4. An identical result holds for the positive stabilization of Lλ,
when Fλ(q, x) = fλ(q) + x2 replaces equation (17).

The proof appears in the Appendix. For an overview of the proof, first
consider the linear function F(q, x) = q. The idea is to perturb F with a
“growing bump function” to generate two critical points. That is, let

Fλ(q, x) = F(q, x) + λσ2(q)σ1(x)
for λ ∈ [0, 1]. A pair of critical points are born at λ = 1/2 and (q, x) = (0, 0).

Next replicate this perturbation for the non-linear function N (q, x) =
F(q, x)− x2. Choose some small ε > 0 and let

Nλ(q, x) = N (q, x) + λεσ2
(q
ε

)
σ1
(
x
ε

)
= εFλ

( q
ε ,

x
ε

)− ε2
(
x
ε
2
)
.

Writing Nλ in this second form indicates that Nλ is locally like Fλ near
(0, 0). Thus Nλ has similar dynamics for its critical points.

This is the basic idea to the construction behind Theorem 3.3. The the-
orem also adjusts the location of the critical points. See Figure 1. Through-
out the proof, care must be taken to ensure that |∂Nλ/∂q| < 3 so that the
graph of the derivative lies in the appropriate neighborhood.
Remark 3.5. Recall that a critical point near (0, C) corresponds to
a Lagrangian intersection near κ̃−1(0, 0, C, 0) ∈ P̃ which lies away from
P × {(0, 0)} ⊂ P̃ . Part of the goal of Theorem 3.3 is to ‘slide’ the inter-
section point back to P × {(0, 0)} after the birth (STEP 4 of the proof of
Theorem 3.3). This sliding is equivalent to sliding the critical point from
(0, C) to the x = 0 n-plane.

As Figure 1 may indicate, pairs of critical points of relative index 1 may
slide up or down in the fiber direction (x) without globally affecting the
gradient flows; however, individual critical points do not have this flexibility.
If Nλ slid a single critical point from (q, x) = (0, 0) to (0, C) (or in the other
direction, as done in STEP 4) for some large C, a quick check of the gradient
vector field would reveal that ∂

∂qNλ would have to be large. Alternatively,
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x

q

Figure 1: Two newly-born critical points near (q, x) = (0, C).

the obstruction to sliding a single critical point without affecting the global
structure of the function can be seen by considering the topology of nearby
regular level sets.

By replacing Fλ with Gλ, a direct corollary of properties (1)–(4) of
Theorem 3.3 is the following:

Corollary 3.6. For the fixed Lagrangian L̃ locally given by the equation
(15), any constant C ∈ R and the moving Lagrangian L̃λ locally given by
equations (16) and (17), there exists a Hamiltonian deformation of L̃0, say
L̄Λ, such that

1. L̄0 = L̃0, L̄1 = L̃1.

2. L̄λ ∩ (P̃ \ Ñ) = L̃λ ∩ (P̃ \ Ñ) for λ ∈ [0, 1].
3. No pairs of points in L̃ ∩ L̄λ become degenerate and die, and only
one pair of such points is born. The birth occurs arbitrarily close to
κ̃−1(0, 0, C, 0) ∈ N ×R2 = Ñ .

When Fλ(q, x) = fλ(q) + x2 replaces equation (17), a similar result
holds.

The following theorem demonstrates how holomorphic curves connect-
ing intersection points with non-zero fiber coordinates to intersection points
with zero fiber coordinates often cannot exist. A future application of this
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theorem will make births and deaths independent by adjusting their fiber
coordinates. Let Jstd be the standard complex structure on R2.

Theorem 3.7. Consider P̃ , L̃, Ñ , κ̃ and I from the discussion preceding
Theorem 3.3 but this time stabilized twice.

Let L̄ be any Lagrangian such that

L̄ ∩ (P̃ \ Ñ) =
(
L′ × {(x1,−2x1, x2, 2x2) | (x1, x2) ∈ R2}) ∩ (P̃ \ Ñ)

for some n-dimensional Lagrangian L′ ⊂ P . Let

F (q1, . . . , qn, x1, x2) = f(q1, . . . , qn)− x21 + x22

for some smooth f : In → R. Assume L̄ is locally modeled in Ñ by some
G : In ×R2 → R which satisfies

supp(G− F ) ⊂ {(q1, . . . , qn, x1, x2) ∣∣ xj ∈ Oj} (18)

where Oj ⊂ R \ {0} is some bounded interval.
Choose any z ∈ L̄∩ L̃∩ (P × (R4 \{0})) and any z′ ∈ L̄∩ L̃∩ (P ×{0}).

Then

M̂(z, z′, J ⊕ Jstd ⊕ Jstd) = M̂(z′, z, J ⊕ Jstd ⊕ Jstd) = ∅
for any J ∈ Jω.

Proof. Let prfj
: P̃ → R2 = C denote the projection onto the (xj , yj)-

coordinates for j = 1, 2. Note that prfj
(z′) = (0, 0) while prfj

(z) = (Cj , 0)
for some non-zero Cj ∈ Oj .

For any J ∈ Jω, prfj
is (J ⊕ Jstd ⊕ Jstd, Jstd)-holomorphic. Let Qj =

prfj
(L̃) and Q′

j = prfj
(L̄). Then Qj ⊂ C is the horizontal xj-axis while

Q′
j ⊂ C is the union of the line yj = (−1)j2xj and some set contained in

Oj × [−k, k] ⊂ C for some positive constant k.
Consider the case j = 1. Let Ai, i = 1, . . . , 4, denote the four quadrants

of C partitioned by the x-axis and line y1 = −2x1 where A1 = {(x1, y1) |
−2x1 < y1 < 0} and A2, A3 and A4 are the other quadrants in counter-
clockwise order.

If u ∈ M̂(z′, z, J ⊕ Jstd ⊕ Jstd), then u1 = prf1 ◦ u : Θ → C maps the
unique complex orientation of Θ to the unique complex orientation of C.
Recall the boundary conditions

(a) u1(Rτ × 0) ⊂ Q1 , (b) u1(Rτ × 1) ⊂ Q′
1 ,

(c) limτ→−∞ u1(τ, ∗) = (0, 0) , (d) limτ→∞ u1(τ, ∗) = (C1, 0) .

Conditions (a), (b) and (c) along with the orientation requirement force u1
to map (at least partially) into the interior of A2 or A4. In either case, the
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open-mapping theorem for non-constant maps implies that u1 maps onto
the unbounded A2 \ Q′ or A4 \ Q′. Thus,

∞ = E(u1) ≤ E(u) <∞.

And so M̂(z′, z, J ⊕ Jstd ⊕ Jstd) is empty.
To show M̂(z, z′, J⊕Jstd⊕Jstd) is empty, repeat the logic of the previous

two paragraphs with j = 2. ✷

Remark 3.8. Theorem 3.7 can be generalized to an open set (in the
C∞ topology) of J ⊕ Jstd ⊕ Jstd ∈ Jω+dx1∧dy1+dx2∧dy2 . The theorem also
holds for an open set (in the C∞ topology) of L̄ in the space of compact
Hamiltonian deformations of L̄. The proofs are similar so only the first
generalization will be justified.

Suppose there is no such open set of structures about J ⊕ Jstd ⊕ Jstd,
then construct a sequence J̃n which converges to J ⊕ Jstd ⊕ Jstd for which
there are J̃n-holomorphic curves, un, between z′ and z. Without loss of
generality, pass to a subsequence and assume they all lie in M̂(z′, z, J̃n).
By Gromov’s compactness theorem, the curves converge to a J⊕Jstd⊕Jstd-
cusp-curve, v1 ∪ v2 ∪ . . . ∪ vk ∈ M̂(z′, z1, J ⊕ Jstd ⊕ Jstd) × M̂(z1, z2, J ⊕
Jstd ⊕ Jstd)× . . .×M̂(zk−1, z, J ⊕ Jstd ⊕ Jstd). For some i, zi−1 ∈ P × {0}
and zi ∈ P × (R4 \ {0}). By the above theorem, no such vi can exist.

The next theorem and lemma assume a single stabilization; however,
the below discussion has an obvious extension for multiple stabilizations.

The action functional in equation (4) extends from A : Ω(L,L′; γ0) → R
to

Ã : Ω(L̃, L̃′; γ0) → R , Ã(γ) =
∫
S(γ)

ω + dx ∧ dy . (19)

As before, S(γ) is a homotopy from γ to γ0. Note that Ω(L,L′; γ0) ⊂
Ω(L̃, L̃′; γ0) and Ã∣∣

Ω(L,L′;γ0)
= A.

Theorem 3.9. If (L,L′) are admissible then so are (L̃, L̃′). The map
J → J ⊕ Jstd embeds FG(L,L′) into FG(L̃, L̃′). The curve ũ ⊂ P̃ is
(J⊕Jstd)-holomorphic if and only if ũ = (u, 0) and u ⊂ P is J-holomorphic.

If u ∈ M̂(x, y, J) then mu(x, y) = mũ(x, y).

Proof. The first two statements are obvious. To prove the third statement,
consider the projection prf : P̃ → R2 onto the fiber component. The
projection is holomorphic since J̃ splits. Thus, if u is any holomorphic
strip between two critical points in P̃ satisfying the Lagrangian boundary
conditions, then prf ◦u is a Jstd-holomorphic curve with boundaries on the
x-axis and y = ±2x line. By the maximum-modulus principle, prf ◦ u = 0.
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Let L(t) ∈ Lag(n) denote the loop in Lag(n+1) used to definemũ(x, y).
Since P̃ = P ×R2 and ũ = (u, 0), the loop splits Lu(t) = (L′(t),L′′(t)) ∈
Lag(n)⊕Lag(1) where L′′(t) is the constant loop. By the additive property
of the Maslov index for loops (e.g. see [McS1, p. 48–49]),

mũ(x, y) = µ(Lu) = µ(L′) + µ(L′′) = mu(x, y) + 0 . �

Because the symplectic structure on the fiber coordinates is standard,
Stokes theorem leads to a trivial observation which will be useful later.
Lemma 3.10. Consider P̃ , L̃, Ñ , κ̃ and I from the discussion preceding
Theorem 3.3. Let L̃′ be any stabilized Lagrangian locally given by F :
In × R → R. Let Π : I2n × R2 → In × R be the projection onto the
(q1, . . . , qn, x) coordinates. Suppose w, z ∈ L̃ ∩ L̃′ ∩ Ñ . Then

Ã(w)− Ã(z) = F
(
Π(κ̃(w))

) − F
(
Π(κ̃(z))

)
.

That is, the relative action values of the intersection points equal the cor-
responding relative critical values of the function.

The proofs of the main theorems will set standard the almost complex
structures near a degenerate intersection point. In this situation, the fol-
lowing result holds. To simplify notation, let M(x, y) = M(x, y, J).
Lemma 3.11. Suppose the pair of intersection points (x, y) of Lagrangians
L and Lλ are born at λ = 0 with A(y) > A(x). Assume there exists
an ε > 0 and a Darboux neighborhood N ⊂ P of the degenerate point
and symplectomorphism κ such that for all λ ∈ (−ε, ε), κ : (N,Jλ, ω) →
(I2n, Jstd, dq ∧ dp). In this lemma, let I be some possibly small interval
which contains (−δ, δ), δ > 0.

Then there exist 0 < ε′ < ε such that for λ ∈ (0, ε′), M̂λ(x, y) =
M̂1

λ(x, y) contains a unique element. In particular, µ(y) = µ(x) + 1.

Proof. Let xλ = x and yλ = y denote the newly born pair of points which
exist when λ > 0. Assume ε′ is small enough so that xλ, yλ ∈ N for
λ ∈ (0, ε′). The proof of Theorem 2.7 shows that for any uλ ∈ M̂λ(x, y)
not contained in N , E(uλ) ≥ f(δ) > 0 for some strictly increasing function
f : R+ → R+. But E(uλ) = A(yλ) − A(xλ) → 0 as λ → 0+. Thus, for
small λ, uλ ⊂ N .

Decompose the curve into its complex projections uλ = uλ1 + . . .+ uλn.
Let prk : Cn → C be the holomorphic projection onto the k-th coor-
dinate. After possibly shrinking N , and thus restricting λ to a smaller
interval, assume that equations (12) and (13) hold, where fλ(q1, . . . , qn) =
q31 + λq1 +Q(q2, . . . , qn) for some non-degenerate quadratic Q. For k > 1,
the projections prk(κ(N ∩L)) and prk(κ(N ∩Lλ)) are lines which intersect
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at one point. Thus, by the maximum-modulus theorem, uλ = uλ1 . Since
such a solution always exists in this local model of C, M̂λ(x, y) = {uλ}.

Let L ∈ Lag(n) denote the loop in Lag(n) used to define mu(x, y).
Note that the loop splits Lu = (L′,L′′) ⊂ Lag(1) ⊕ Lag(n − 1) where
L′ = {eiπt}R ⊂ C and L′′ is the constant loop. By the additive and
normalization properties of the Maslov index for loops

muλ
(x, y) = µ(Luλ

) = µ(L′) + µ(L′′) = 1 + 0 . (20)
It is easy to check that this curve represents a regular value of D∂̄J ,

since the cokernel of D∂̄Jstd
= ∂̄Jstd

is empty when the intersections are
transverse ([F1]). Thus M̂1

λ(x, y) = {uλ}. ✷

3.3 Perturbing the one-parameter family. Consider the two almost
complex structures J ′, J ′′ ∈ FG(L,L′) given in Theorem 3.1 which are
connected by jΛ. Let JΛ be the space of one-parameter families of almost
complex structures, JΛ, such that J0 = J ′, J1 = J ′′, and Jλ = jλ outside
some compact set K ⊂ P (which can depend on the family JΛ). Note that
Jλ ∈ FG(L,L′).

Let ΦΛ be the space of one-parameter families of compactly supported
Hamiltonian deformations, φΛ, such that φ0 = id and φ1 = ψ1.

Suppose P and its Lagrangian submanifolds were stabilized. The Hamil-
tonian isotopy φΛ then would extend to φ̃Λ:

φ̃λ : P̃ = P ×R2 → P̃ , φ̃λ = φλ × idR2 . (21)
Define Φ̃Λ to be the set of compactly supported Hamiltonian isotopies
connecting id : P̃ → P̃ to ψ̃1.

Note that J ∈ FG(L,L′) extends to J̃ = J ⊕ Jstd ∈ FG(L̃, L̃′). Define
J̃Λ to be the space of one-parameter families of almost complex structures,
J̃λ, such that J̃0 = J ′ ⊕ Jstd, J̃1 = J ′′ ⊕ Jstd and J̃λ = jλ ⊕ Jstd outside of
a compact set in P̃ .

Let pi : X1 × . . . × Xm → Xi be the projection map onto the i-th
component.
Theorem 3.12. There exists a non-empty set A ⊂ ΦΛ × JΛ such that
(φΛ, JΛ) ∈ A satisfies the following properties:

(i) L intersects φλ(L′) transversely for all but a discrete set of λ. Non-
transverse intersections are isolated in λ and have only one degener-
ate direction with a quadratic tangency. Furthermore, there are no
simultaneous death/births (i.e. no quadratic tangencies of the form
fλ(x) = x2 − λ2).

(ii) After stabilizing twice, all births and deaths are independent.
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(iii) At a degenerate intersection at time λ0, there exists a Darboux neigh-
borhood U ⊂ P of the point and an open interval O ⊂ Λ about λ0
such that for all λ ∈ O, (U, Jλ|U ) = (Cn, Jstd).

(iv) If Λ′ ⊂ Λ is a subinterval and xΛ′ and yΛ′ are two families of trans-
verse intersections denoted by x and y, then for each JΛ′ ∈ p2(A),
M̂Λ′(x, y, JΛ′) is a smooth manifold. Also, for (u, λ) ∈ M̂Λ′(x, y, JΛ′),
IndEu,λ = mu(x, y) + 1.

(v) Handle-slides occur only at isolated λ, and do not occur when there
is a degenerate intersection.

Furthermore, for each φΛ ∈ ΦΛ which satisfies condition (i), φΛ ∈ p1(A).

Proof. (i) The first statement follows from Darboux’ Theorem and the clas-
sification of one-parameter families of smooth functions [AGV], [C]. Con-
sider an intersection x at λ0. There exists a family of functions fλ : Rn → R
for λ ∈ (λ0 − ε, λ0 + ε), a neighborhood U of x and a symplectomorphism
κ : (U,ω) → (T ∗L, dq∧dp) such that κ(Lλ∩U) =

{
q1, . . . , qn,

∂fλ
∂q1

, . . . , ∂fλ
∂qn

}
.

Let gkλ = ∂fλ/∂qk. Arnold, Cerf and others have shown that any one
parameter-family of smooth functions can be deformed so that its degen-
erate zeroes are isolated and the derivative has at most one quadratic de-
generacy.

(ii) Suppose a birth occurs at λ = λ1. Denote the degenerate intersec-
tion by z ∈ L ∩ φλ1(L

′). Let z′ ∈ L ∩ φλ1(L
′) \ {z}. To be consistent with

the notation of Corollary 3.6, temporarily denote φλ(L′) by Lλ. Stabilize
Lλ twice, in both the positive and negative manner.

Choose N ⊂ P a Darboux neighborhood of z and κ a symplectomor-
phism. Let Ñ = N ×R2

x1,y1
×R2

x2,y2
and κ̃ = κ× idR4 . Assume equations

(15), (16) and (17) hold with Fλ(q, x1, x2) = fλ(q) − x21 + x22. Here L̃ and
L̃λ are the stabilized Lagrangians. Apply Corollary 3.6 twice to replace L̃λ

by L̄λ so that the birth now occurs at κ̃−1(0, C, 0, C, 0) for some C - 1.
Here 0 ∈ N .

Without loss of generality, assume the birth still occurs at λ = λ1 and
denote the degenerate intersection again by z. Let L̄λ be locally modeled
by Gλ(q, x1, x2). Then property 5 of Theorem 3.3 and C − 1 > 0 implies
L̄λ1 (that is, the support of Gλ1 − F0) satisfies equation (18) when setting
Oj = (C − 1, C + 1) for j = 1, 2.

Thus, by Theorem 3.7, no J ⊕ Jstd ⊕ Jstd-holomorphic curves exist be-
tween z′ and z (for any almost complex structure J on P ). The result now
follows from Remark 3.8.
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(iii) Since JΛ is contractible and hence path-connected, there exists a
path from J ′ to J ′′ which, near designated parameter values, is standard
in a certain Darboux neighborhood.

(iv) If either xλ or yλ lies outside of a neighborhood in which Jλ is fixed,
(iv) essentially restates Theorems 2.2 and 2.4. Only the argument of the
surjectivity of Eu requires a generic choice of almost complex structures.
But provided Jλ can be deformed on some open set of the image of u (where
u is somewhere injective), then surjectivity can be achieved. The parame-
terized version is no different. The one exception which must be handled
separately is when xλ and yλ are about to cancel each other. For some time
λ before the death at λ0, both intersection points lie in a neighborhood U
on which Jλ cannot be deformed. But for this special case, the proof of
Lemma 3.11 offers a precise description of the curves connecting the two
newly-born points and so the statement still holds.

(v) Floer makes this same claim in Proposition 3.2 [F1] although his
proof is incomplete. Lee [Le] proves an analogous statement in detail for
the Floer theory of fixed points. To see how Lee’s details can apply to the
Lagrangian intersection version, apply the following “naturality” trick [S2].

Suppose ∂̄J(u) = 0. Let v(τ, t) = φ−1
t (u(τ, t)). Then v satisfies a per-

turbed Cauchy–Riemann equation:
∂v
∂τ + (φt)∗J

(
v(τ, t), t

) (
∂v
∂t +XHt

)
= 0 (22)

where Ht generates the Hamiltonian isotopy φt. Note that by adding the
zero-order term, the previously moving Lagrangian boundary condition be-
comes fixed.

Solutions to equation (22), with Rτ ×S1
t replacing the domain Θ, repre-

sent gradient flows in the Floer theory for fixed points. Not all analysis for
the fixed point version applies to the Lagrangian intersection version since
the former does not have to consider a boundary condition; however, since
all small neighborhoods, as well as some dense neighborhoods, of R× S1

are naturally diffeomorphic to neighborhoods in Θ, much of the local anal-
ysis transfers between the two theories. In particular, Lee’s method easily
adapts to prove (v). ✷

3.4 Proof of Theorem 3.1.

Proof. Pick (φΛ, JΛ) ∈ A (defined in Theorem 3.12) connecting (L′, J ′) to
(ψ1(L′), J ′′). To simplify notation, let Lλ = φλ(L′).
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Let v1, . . . , vk be a set of Jλ0-holomorphic curves such that vi ∈
M̂λ0(xi, xi+1). Denote the union of the images by v1 ∪ . . .∪ vk. This cusp-
curve can also be thought of as a path in Ω(L,Lλ0 ; γ0). When thought of
as such a path, define the neighborhood of the cusp-curve to be

Uε(v1, . . . , vk;λ0) ⊂ Ω(L,LΛ; γ0) ,
Uε(v1, . . . , vk;λ0) =

{
(γ, λ) ∈ Ω(L,Lλ; γ0)×R

∣∣ |λ− λ0| < ε and
max
t∈[0,1]

dist
(
γ(t), vj(τ, t)

)
< ε for some τ ∈ R, and 1 ≤ j ≤ k

}
.

Theorem 3.13 ([F1]). Suppose there are no births or deaths through-
out Λ, but that at λ = 0 ∈ Λ there exists a handle-slide u from y to x. For
any other intersection point w, there exists ρ0 > 0 and a local diffeomor-
phism

L : {u} × [ρ0,∞)× M̂1
0(w, x) → M̂1

Λ(w, y) .

Furthermore, for all v ∈ M̂1
0(w, x), there exists ε > 0 such that L is onto

M̂1
Λ(w, y)∩Uε(u, v; 0). A similar result holds for {u}×[ρ0,∞)×M̂1

0(y,w) →
M̂1

Λ(x,w).

Corollary 3.14. Suppose a handle-slide from y to x representing
α ∈ π1(L) occurs at λ = 0. Let (C, d−) and (C, d+) denote the Z2π1(L)-
chain complexes immediately before and after λ = 0. Define the module
homomorphism f : C → C by setting f(p) = p + δpyαx for each basis
element b. Then

d+ = fd−f−1 .

Proof. Let M̂1
0(x, y) = {u}. Let z,w be two intersections with µ(z) =

µ(w) + 1 ∈ ZΣ(L). The only subtlety in checking that 〈fd−f−1z,w〉 =
〈d+z,w〉 is when either z = y or w = x, but not both. Consider the case
z = y and w �= x. The other case is similar. The equation can be easily
verified if 〈d−x,w〉 = 0. Instead suppose M̂1

0(w, x) = {v} and 〈d−y,w〉 = 0.
If M̂1

0(w, x) has multiple elements and/or 〈d−y,w〉 �= 0, the arguments
are similar. Let β = [γxγvγ−1

w ]. By the manifold property of M̂Λ(w, y),
M̂1

λ(w, y) = {uλ} for small λ > 0. Furthermore, the convergence of uλ to
u ∪ v implies that

〈fd−f−1y,w〉 = 〈fd−(y + αx), w
〉
=
〈
d−(y + αx), w

〉
= αβ = [γyγuγ−1

x γxγvγ
−1
w ] = [γyγuγvγ−1

w ] = [γyγuλ
γ−1
w ] = 〈d+y,w〉 . �

Let (T, dT ) denote a trivial acyclic chain complex

(T, dT ) : 0 → Z2π1(L) → Z2π1(L) → 0 .
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Lemma 3.15. Let (C, d−) and (C+, d+) denote the Floer chain complex
immediately before and after the birth of intersection points x and y. Then
(C+, d+) = (C−⊕T, d−⊕dT ), where T is generated by x and y and dT (y) =
αx for some α ∈ π1(L).

Proof. By Theorem 3.12 (ii), the independence of the birth implies that
d+ = d− ⊕ dT . By Theorem 3.12 (iii), there exists an open interval O ⊂ Λ
about 0 and a neighborhood N ⊂ P of the degenerate point at λ = 0
such that for all λ ∈ O, κ : (N,Jλ, ω) → (I2n, Jstd, dq ∧ dp) under the
symplectomorphism κ. The result now follows from Lemma 3.11. ✷

Lemmas 2.13, 3.15 and Corollary 3.14 show that births, deaths and
handle-slides do not change Wh1(CF (L,L′J ′)) ∈ Wh1(Z2π1(L)). Theo-
rem 3.12 proves that these are the only ‘local’ singularities that need to be
considered; however, ‘globally’ CF (L,L, J ′) may undergo one other type
of alteration. Suppose ψ1(L′) = L′, J ′ = J ′′ and there are neither handle-
slides nor birth-deaths for λ ∈ [0, 1]. For each family of intersection points
x = {xλ}, define the loop βx : [0, 1] → L by βx(λ) = xλ. The matrix
for d0 and for d1 then differ by a finite combination of matrices of type
B in equation (8), where g = [βx] ∈ Z2π1(L). Since the definition of the
Wh1(π1(L)) mods out such matrices,

Wh1
(
CF (L,L′, J ′)

)
= Wh1

(
CF (L,ψ1(L′), J ′′)

)
.

The invariance of the torsion under this last alteration also shows that
a different choice of base paths γx for any intersection x does not affect
Wh1(CF (L,L′, J ′)).

The last statement of Theorem 3.1 follows trivially from Theorem 3.9. ✷

4 The Wh2 Theorem

4.1 The statement. Consider Lagrangians L,L′ and L′′ such that
(L,L′) are admissible and L′ and L′′ are connected by a compactly sup-
ported Hamiltonian isotopy, φΛ. Assume that L ∩ L′ = L ∩ L′′ = ∅. Note
that this implies automatically that L is not compact, since otherwise a
non-vanishing Floer homology would imply that L′ and L′′ could not be
separated from L.

Let ΦΛ be the set of compactly supported Hamiltonian isotopies which
connect φ1 with id. Perturb φΛ (fixing φ0 and φ1) so that it lies in p1(A)
where A is defined in Theorem 3.12. (Note that A ⊂ ΦΛ × JΛ and so
cannot be defined until JΛ is defined, and hence not until J ′ and J ′′ are
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chosen. But for φΛ to be in p1(A), φΛ need only satisfy condition (i) of
Theorem 3.12. This condition does not require almost complex structures
to be chosen.) Since any two perturbed φΛ are connected by the first
perturbation composed with the inverse of the second, the proof of the
main theorem shows that the Wh2 element does not depend on the choice
of the perturbation.

Choose compatible almost complex structures J ′, J ′′ ∈ FG(L,L′) =
FG(L,L′′) and a path jΛ ⊂ FG(L,L′) connecting them. Let JΛ be the
space of one-parameter families of compatible almost complex structures
as defined in section 3.3. Choose any JΛ ∈ JΛ such that (φΛ, JΛ) ∈ A.
Such a JΛ exists by the last statement of Theorem 3.1.

Fix a base point p ∈ L and a path γxλ
from p to xλ ∈ L ∩ φλ(L′) as

before. If x and y represent a family of pairs of intersection points which are
born at λ0, then choose paths so that γyλ

= γxλ
γ−1
uλ

where uλ is the unique
element in M̂1

λ(x, y) from the proof of Lemma 3.11. Denote by (Cλ, dλ)
the chain complex with Z2π1(L)-coefficients. Note that L ∩ L′ = ∅ implies
that the chain complex is acyclic. Label each birth pair of intersections
(x, y) as (zni−1, b

n
i ) where i = µ(y). Note that by choice of base paths,

〈dλ(bni ), zni−1〉 = 1 for λ shortly after the birth.
Let StC(Z2π1(L)) be the Steinberg group whose indexing set includes all

(one-parameter families of) intersection points in L∩Lλ that may ever exist.
Let C be the chain complex generated by this set of intersection points.
Note that Cλ ⊂ C. Let D : C → C be the canonical boundary operator
from section 2.6 defined by D(bni ) = zni−1 and D(zni ) = 0. Similarly, let ∆
be the canonical contraction map. Extend the boundary operator dλ from
Cλ to C in the following way: for an intersection point x ∈ C \Cλ which is
not yet born, define dλ(x) = D(x); for a pair of points x, y ∈ C \Cλ which
died together at some earlier time λ0 < λ with µ(y) = µ(x) + 1, define
dλ(y) = 〈dλ0−εy, x〉x and dλ(x) = 0 (where ε > 0 is small enough such that
λ0− ε ∈ O from Theorem 3.12 (iii)). Note that before any intersections are
born, dλ = D, whereas after they have all died, dλ maps each generator to
another or to 0.

Let d− and d+ denote dλ just before and after some time λ0 when a
handle-slide exists from z to w representing α ∈ π1(L). Then,

d+ = hzw(α) · d−
is a restatement of Corollary 3.14 in the language of section 2.6. Sup-
pose a handle-slide from zi to wi representing αi occurs at λ = λi. Since
(φΛ, JΛ) ∈ A, the handle-slides can be re-ordered so that i < j ⇒ λi < λj.
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Define
St(φΛ, JΛ) = hzkwk

(αk) · · · hz1w1(α1) ∈ StC(Z2π1(L)) . (23)
Suppose λ ∈ (λi, λi+1). Define δλ : C → C by δλ = χi · · ·χ1 · ∆. It is
easy to check that δλ is a contraction map for dλ. Furthermore (d1, δ1)
is elementary; thus, St(φΛ, JΛ) ∈ Υ. Now use the methods of section 2.6
to construct Wh2(φΛ, JΛ) from St(φΛ, JΛ). Hatcher and Wagoner prove
([HW, p. 129–130]) that the choices of base point, base paths, and ordering
of intersection points (the choice of n made when labeling the birth pair
(x, y) as (zni−1, b

n
i )) does not alter Wh2(φΛ, JΛ).

Theorem 4.1. Let φ′Λ ∈ ΦΛ, which again after perturbation can be
assumed to be in p1(A). Choose another J ′

Λ ∈ JΛ such that (φ′Λ, J
′
Λ) ∈ A.

If φΛ can be deformed to φ′Λ in the space of one-parameter families of
compactly supported Hamiltonian isotopies, then

Wh2(φΛ, JΛ) = Wh2(φ′Λ, J
′
Λ) . (24)

Furthermore, Wh2 is invariant under stabilization.

4.2 Perturbing the two-parameter family. Define the Cerf diagram
of (φΛ, JΛ) ∈ A to be the collection of graphs of the symplectic action’s
(critical) values at {L∩Lλ}, thought of as #{L∩Lλ} continuous functions
from (subsets of) Λ toR. See Figure 2. For generic (φΛ, JΛ) ∈ A, A|{L∩Lλ} :
{L ∩ Lλ} → R is injective except for possible discrete λ ∈ Λ; thus, an
obvious correspondence exists between {L ∩ Lλ} and individual curves of
the Cerf diagram.

-1 1

a1

b1 b2

a2

Figure 2: An example of a marked Cerf diagram. After the birth of the pairs
(a1, b1) and (a2, b2), there is a handle-slide from b2 to b1 at approximately λ = 0.
By Lemma 3.11, µ(b1) = µ(a1) + 1 = µ(b2); thus, such a handle-slide could exist.

A marked Cerf diagram is a Cerf diagram with handle-slides between
intersection points represented by vertical line segments connecting the
corresponding critical values. See Figure 2. Because A(x) > A(y) ⇒
M(x, y) = ∅, the marked Cerf diagram also determines the ‘direction’ of
the handle-slide.
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Let ΦΛ2 be the space of two-parameter families of compactly supported
Hamiltonian symplectomorphisms, φΛ2, such that φ(0,s) = id, φ(1,s)=φ1=φ′1,
φ(λ,0) = φλ and φ(λ,1) = φ′λ. Let JΛ2 be the space of two-parameter fam-
ilies of almost complex structures, JΛ2 , such that J(λ,0) = Jλ, J(λ,1) = J ′

λ,
and J(0,s) and J(1,s) are any two paths in FG(L,L′) = FG(L,L′′) which
connect J0 to J ′

0 and J1 to J ′
1, respectively. Such paths exist because JΛ

is contractible. Note that Jλ,0 = Jλ,1 = jλ outside a compact set since
JΛ, J

′
Λ ⊂ JΛ.

Let Ã ⊂ Φ̃Λ×J̃Λ be the ‘stabilized’ analogy to A ⊂ ΦΛ×JΛ. Note that
(φΛ, JΛ) ∈ A implies (φ̃Λ, J̃Λ) ∈ Ã where φ̃Λ is the family of φ̃λ defined in
equation (21) and J̃Λ = JΛ ⊕ Jstd. By the third statement of Theorem 3.9,
the set of holomorphic curves does not change after stabilization; thus, each
property in Theorem 3.12 by which Ã is defined is easily verified. Define
Φ̃Λ2 × J̃Λ2 in a manner analogous to the definition of ΦΛ2 × JΛ2 .

In section 3.3, the types of singularities encountered when considering a
one-parameter family (LΛ, JΛ) were reduced to births, deaths and handle-
slides. There is an analogous list of ‘unavoidable’ phenomena in a generic
(φΛ2 , JΛ2) ∈ ΦΛ2 ×JΛ2 . The birth or death phenomenon is a codimension
one singularity since it results from an intersection of two Lagrangians with
a one-dimensional tangency. Hence the set of (λ, s) where a birth or death
occurs for a given pair of critical points is one-dimensional. Similarly, just
as the handle-slide occurred at isolated moments in a one-parameter family,
the set of (λ, s) ∈ Λ2 where it occurs between a given pair of critical points
is one-dimensional.

Each of the singularities in a generic (φΛ2 , JΛ2) can be represented as a
bifurcation in a family, parameterized by s, of marked Cerf diagrams. To
help illustrate the singularities appearing in Figure 3, some of the corre-
sponding bifurcations accompany their descriptions.

1. Point ‘a’: There are two types of singularities which result from the
intersection of two families of handle-slides. The point ‘a’ closer to the
bottom-left corner involves two handle-slides whose union as curves
in P does not make a handle-slide; thus, no other handle-slides are
affected by this singularity. A cusp-curve of two handle-slides exists
at the other point ‘a’, however, and hence represents a boundary
point of the one-dimensional moduli space associated with the third
handle-slide. See Figure 4.

2. Points ‘b’ and ‘c’: At point ‘b’ the order of two families of births is
exchanged. At point ‘c’ the order of a family of deaths and a family
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g

f

e

d
d

b

c

a

a

Figure 3: Handle-slides, births and deaths in (φΛ2 , JΛ2). The λ-axis and s-axis
correspond to the horizontal and vertical axes, respectively. Dashed lines represent
handle-slides and solid lines, births or deaths.

of handle-slides is exchanged. See Figure 5.
3. Points ‘d’ and ‘e’: The points marked ‘d’ represent the death of a

birth and death, and the birth of a birth and death. A death of two
handle-slides lies at point ‘e’. These points exist when the manifolds
are tangent to the s = k lines for constants k.

4. Point ‘f ’: At an isolated (λ, s), a holomorphic curve with mu(x, y) =
−1 can appear. This curve shall be called a super handle-slide. As
illustrated in Figures 3 and 6, the super handle-slide paired with
index 1 curves can be a boundary point for several moduli spaces of
handle-slides.

5. Point ‘g’: Point ‘g’ represents what [HW] and others call a ‘dovetail’ or
‘swallowtail.’ Suppose L and L(λ,s) are one dimensional Lagrangians
in T ∗R and L = R×0 while L(λ,s) = {x, x3−sx+λ}, then a dovetail
singularity occurs at λ = s = 0. This can also be thought of as a cubic
tangency, just as a birth or death is a quadratic tangency. Several
families of handle-slides might appear with a dovetail. The dovetail
also marks the birth of a birth and a death. See Figure 7.

Note that since φ0,s(L′) = L′ and φ1,s(L′) = L′′, there are no intersec-
tion points at those (λ, s) values and hence no births, deaths or handle-
slides.
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Figure 4: The order of two families of handle-slides is exchanged. In the bottom
example, the resulting cusp-curve represents the boundary point of the moduli
space of a third handle-slide.

Figure 5: The order of a family of deaths and a family of handle-slides is ex-
changed.

As the Cerf diagram for point ‘g’ indicates, a dovetail involves one
intersection point of index i and two of index i − 1. Label them a, b and
b′ respectively. (The upside-down dovetail is similar.) The dependence of
these points on (λ, s), when they exist, will usually be suppressed in the
notation. Suppose the dovetail occurs at (λ, s) = (0, 0) where a and b′ do
not exist for s < 0. Let d(λ,s) denote the boundary map of the chain complex
at (λ, s). Without loss of generality, assume that for small positive s, the
birth of (b′, a) occurs at −s < −λBD(s) < 0 and the death of (b, a) at
λBD(s).

Definition 4.2. A dovetail is nice if there exists ε > 0 and a fourth
intersection point, e, such that

1. µ(a) = µ(e).
2. For all (λ, s) ∈ [−ε, ε]× [−ε, ε], for all x ∈ X = {a, b, b′, e} and for all

y ∈ {L ∩ L′} \X
M̂λ,s(x, y) = M̂λ,s(y, x) = ∅ .

(Note that this condition is vacuous for x ∈ {a, b′} and s < 0.)
3. There exist some ε′ < λBD(ε) arbitrarily close to λBD(ε) such that
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i + 1

i

i +1

i

i

Figure 6: This marked Cerf diagram for a super handle-slide lists the indices of
the intersection points next to the graphs of their action values. Assume the super
handle-slide occurs between the points with the second and third highest action
values.

Figure 7: There is an ‘opposite’ dovetail whose Cerf diagrams are turned upside-
down.

d(−ε′,ε)e = b, d(−ε′,ε)a = b′, d(ε′,ε)e = b′ and d(ε′,ε)a = b.

4. For all (λ, s) ∈ [−ε, 0) × [0, ε] A(e) ≥ A(a) ≥ A(b′) ≥ A(b) and for
all (λ, s) ∈ (0, ε] × [0, ε] A(e) ≥ A(a) ≥ A(b) ≥ A(b′) with equalities
only holding for degenerate intersection points.

Theorem 4.3. After four stabilizations, there exists a non-empty set
B ⊂ ΦΛ2 × JΛ2 such that any (φΛ2 , JΛ2) ∈ B satisfies the following prop-
erties:

(i) L intersects φ(λ,s)(L′) transversely for all but a codimension one set of
(λ, s). The set of parameter values for which an intersection has only
one degenerate direction with a quadratic tangency forms a trans-
versely intersecting collection of one dimensional curves in Λ2. The
only other degenerate intersections are the cubic degeneracies asso-
ciated with dovetails. These are isolated from all other degeneracies
except, of course, from the birth and death pairs which define them.

(ii) All dovetails are nice.
(iii) All births and deaths away from a neighborhood of the dovetails are

independent.

(iv) Consider a one-parameter family of quadratically degenerate inter-
sections occurring at Γ ⊂ Λ2. There exists a family of Darboux
neighborhoods Uλ ⊂ P of the points and an open set O ⊂ Λ2 of Γ
such that for all (λ, s) ∈ O, (Uλ, J(λ,s)

∣∣
U
) = (Cn, Jstd).
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(v) If Λ′ ⊂ Λ2 is an open subset and xΛ′ and yΛ′ are two families of trans-
verse intersections denoted by x and y, then for each Jλ′ ∈ p2(B),
M̂Λ′(x, y) is a smooth manifold. Also, for (u, λ, s) ∈ M̂Λ′(x, y),
IndEu,λ,s = mu(x, y) + 2.

(vi) Away from dovetail occurrences, the set of parameter values (λ, s) for
which there are handle-slides is, in general, a transversely intersecting
collection of one dimensional curves. The only exception to this is the
crossing of two handle-slides with a common critical point, which can
create a third family of handle-slides. See point ‘a’. These curves also
transversely intersect the curves associated with births or deaths. The
collection of curves associated with handle-slides, births and deaths
intersects the s = k lines transversely except for possible tangencies
at isolated points.

(vii) Super handle-slides occur only at isolated (λ, s).

Proof. The proofs of statements (i), (iii), (iv), (v) and (vii) are very similar
to their counterpart statements (i), (ii), (iii), (iv) and (v), respectively, in
Theorem 3.12 and will not be reproved here. The Darboux charts for the
fourth statement are chosen small enough so that when two degenerate
points occur at the same time, their charts do not intersect (except in the
cubic case, when they come together). For the manifold results in the fifth
statement, again almost all holomorphic curves exit the Darboux charts
of statement (iv). The exceptions can again be studied as curves entirely
in Cn.

(ii) Consider (φΛ2 , JΛ2) ∈ ΦΛ2 × JΛ2 such that statement (i) holds for
φΛ2 and a dovetail occurs at (λ, s) = (0, 0). Let Lλ,s = φλ,s(L′).

Choose some small Darboux neighborhood N of the cubic degeneracy
and chart κ : N → R2n such that κ(L ∩ N) is the zero section while, for
(λ, s) near (0, 0), κ(Lλ,s ∩N) is modeled by the graph of dfλ,s with

fλ,s(q1, . . . , qn) = q41 − sq21 + λq1 +Q(q2, . . . , qn) (25)

for some non-degenerate quadratic Q. To simplify notation, henceforth
assume (q1, q2, . . . , qn) = q1 = q. The more general case is similar. Also,
the symplectomorphism κ will be omitted.

s = -1 s = 1

Figure 8: A dovetail. The two figures graph the critical values of fλ,±1 from equa-
tion (25) as λ varies in [−1, 1]. Figures 8, 9 and 10 are unmarked Cerf diagrams.
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Note that by Lemma 3.10, the Cerf diagram for the relative action values
of the intersection points agrees with Figure 8. The main idea is to replace
the one-parameter family of Cerf diagrams in Figure 8 with the family in
Figure 9. Let b denote the intersection point in the first Cerf diagram in
Figure 8 (s = −1). In the second diagram (s = 1), let (b′, a) denote the
pair of intersections created at the birth with µ(b′) = µ(a) − 1. Thus, to
be consistent with the notation of the first diagram, the pair (b, a) dies at
some later λ. Let (e2, e1) be the pair of (families of) intersection points
which appear in Figure 9 but not in Figure 8. Here µ(e2) = µ(e1)− 1. The
following paragraph sketches the purpose of (e2, e1). Details will follow.

The pair (e2, e1) can be created with the techniques from section 3.2.
Pairing e1 with b before the dovetail occurs, the techniques in section 3.2
allow the two intersection points to slide in the fiber directions. Note that
e1 and b slide ‘up’ one fiber and ‘down’ the other; thus, by Lemma 3.10, the
relative action values can be assumed to be those represented by Figure 9.
See Remark 3.5 for a description of sliding in the fiber direction. The
main purpose of creating e1 is to adjust the fiber coordinates of b, so that
Theorem 3.7 and Remark 3.8 ensure that property 2 of Definition 4.2 holds
when b undergoes a dovetail. Between the third (furthest right on top row,
s = −s0 < 0) and fourth (furthest left on bottom row, s = s0 > 0) Cerf
diagrams in Figure 9, the dovetail occurs.

Figure 9: Making the dovetail nice.

Details of the family of functions in N will be given for the fourth
diagram in Figure 9, which corresponds to a one-parameter family (in λ)
for s = s0. There is a birth, a simultaneous death/birth (see Theorem
3.12 (i)), a birth, a death, a simultaneous death/birth and a death which
occur at −1 < λ1 < . . . < λ6 < 1, respectively. See Figure 10. Without
loss of generality, assume that λ1(s) and λ6(s) are independent of s for
s ∈ [−s0, s0], −λ2(s) = λ5(s) = s0 for s ∈ [−s0, s0], and −λ3(s) = λ4(s) =
1
2s for s ∈ [0, s0]. Define λ3(s) = λ4(s) = 0 for s ∈ [−s0, 0) even though
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5 61 2 3 4

b b’

e1

a

e2

Figure 10: An enlargement of the fourth diagram in Figure 9.

they do not mark degenerate intersection points.
Stabilize P four times. Let Fλ,s(q, x1, . . . , x4) = fλ,s(q)−x21+x22−x23+x24

model the stabilized L̃λ,s. Let Ñ = N ×R8. Rather then repeat the calcu-
lus from Theorem 3.3, a verbal explanation will describe how to construct
a Gλ,s from Fλ,s, such that after replacing L̃λ,s ∩ Ñ with some L̄λ,s ∩ Ñ
locally modeled by Gλ,s, the dovetail is nice. To reduce the notation, rep-
resent points in L̃∩ Ñ (often in {L̃ ∩ L̃λ,s ∩ Ñ}) by their (q, x1, x2, x3, x4)-
coordinates. The explicit description will only be given for s = s0; however,
the deformation for more general s can be easily seen. Figure 11 illustrates
the dovetail at s = s0 after stabilizing but before sliding critical points in
the fiber directions. Figure 12 illustrates the graphs of Gλ,s0(q, x1, 0, 0, 0)
for some λ ∈ (λi, λi+1), i = 1, . . . , 5.

Set ε = s0. Note that (φΛ2 , JΛ2) will be altered for (λ, s) in some set
larger than [−ε, ε] × [−ε, ε] = [λ2, λ5] × [−s0, s0]. Indeed, the set contains
at least all λ ∈ [λ1, λ6] and s ranging from diagram 1 to diagram 6 in
Figure 9. Nonetheless, the properties of a nice dovetail need only be verified
for (λ, s) ∈ [−ε, ε] × [−ε, ε]. Choose δ > 0, independent of s ∈ [−s0, s0],
such that
δ . 1

4 min
{
λ2 − λ1, λ3(s0)− λ2, λ4(s0)− λ3(s0), λ5 − λ4(s0), λ6 − λ5

}
.

b b’

a

b b’

a

b
b’

Figure 11: The graphs of Fλ,s0(q, x1, 0, 0, 0) for selected λ ∈ [−1, 1]. This figure
only shows the stabilization associated to x1. Note that by Lemma 3.10, the
relative action values of a, b and b′ are similar to those drawn in the s = 1 diagram
in Figure 8.
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b

e1

e2
e1 a

b’
b

e2 e2

e2 b’

e2

e1

e1

b

e1

b’

Figure 12: The graphs of Gλ,s0(q, x1, 0, 0, 0) for selected λ ∈ (λ1, λ6). Each little
‘squiggle’ represents a pair of critical points of relative index one at some non-
zero x1 value, C. Note that the relative indices implied by the squiggles agree
with those from Definition 4.2. This figure only shows one stabilization. Since
a second stabilization is always required to make births and deaths independent,
the relative action values of a, b, b′, e1 and e2 can be assumed to be those drawn
in Figure 10.

STEP 1: The birth of (e2, e1).
When (λ, s) = (−1, s0), assume the intersection b occurs at

(q, x1, x2, x3, x4) = (0, 0, 0, 0, 0). For λ ∈ [0, λ1 + δ], deform Fλ,s0 away
from b such that there is an independent birth of the pair (e2, e1) at
(q, x1, x2, x3, x4) = (−q0, C,C, 0, 0) which slides to (−q0, 0, 0, 0, 0). Here
0 < q0 < 1 and C - 1. Fixing J in a neighborhood of the birth, an argu-
ment as in the proof of Lemma 3.11 implies that µ(e1) = µ(e2) + 1. The
first diagram in Figure 12 occurs at some λ ∈ (λ1, λ1 + δ), after the birth
of (e2, e1) but before the pair slides to x1 = x2 = 0.

STEP 2: Sliding (b, e1).
For λ ∈ [λ1 + δ, λ2 − δ], adjust the critical points so that e1 is close to b

instead of e2. In other words, replicate the changes of Fλ,s0 from diagrams
2 to 3 in Figure 11. Assume that for λ ∈ [λ1 + δ, λ2 − δ],

Gλ,s0(q, x1, x2, x3, x4) = gλ,s0(q)− x21 + x22 − x23 + x24 (26)
for some gλ,s0 : I → R.

Choose Ñ ′ ⊂ Ñ \{e2} containing e1, b and (I′)2×R8 for some small set
I′ ⊂ [−1, 1]. For λ ∈ [λ2 − δ, λ2 + δ], deform the function in Ñ ′ such that
e1 and b slide in the (x1, x2)-coordinates and degenerate in a simultaneous
death/birth at (q, x1, x2, x3, x4) = (q0, C,C, 0, 0) and λ = λ2. The second
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diagram of Figure 12 illustrates this slide. Again, fixing J in a neighbor-
hood of this simultaneous death/birth demonstrates that µ(e1) = µ(b)+ 1.
This verifies property 1 of Definition 4.2. As will be detailed in STEP 3,
Theorem 3.7 and Remark 3.8 show that no holomorphic curves connect any
other intersection points to e1 and b.

Let Br(0) denote the ball of radius r about 0 ∈ R8. Fix r . 1. Since
the pair (e1, b) is born (with names unchanged), a set of base paths must
be chosen. Choose γe1 , and hence γb, such that γe1 ⊂ Ñ ∪ (P ×Br(0)).

STEP 3: Property 2 of Definition 4.2.
For (λ, s) ∈ [λ2, λ5] × [−s0, s0] the deformation of Gλ,s will remain re-

stricted to some small neighborhood of (x1, x2) = (C,C) in R2 away from
(0, 0). That is,

supp(Gλ,s −Gλ2−δ,s) ⊂
{
(q, x1, x2, x3, x4)

∣∣ q ∈ I , x1 ∈ O1 , x2 ∈ O2

}
(27)

where Oj ⊂ R \ {0} is some bounded interval. The discussion in STEPS 1
and 2, including equation (26), clearly generalizes to any s ∈ [−s0, s0].
Applying equations (26) and (27) to Theorem 3.7 and Remark 3.8 thus
proves that intersection points which are born as a result of the deformation
at some (λ, s) ∈ [−s0, s0] × [−s0, s0] (namely a, b, b′ and e1) cannot be
connected via holomorphic curves to intersection points whose (x1, x2)-
coordinates are zero (such as e2). This justifies property 2 of Definition 4.2.

STEP 4: The birth of (b′, a).
Thus far, all holomorphic curves and intersection points have zero x3

and x4 coordinates. In particular

Gλ3−δ,s0(q, x1, x2, x3, x4) = gλ3−δ,s0(q, x1, x2)− x23 + x24 (28)

for some gλ3−δ,s0 : I×R2 → R.
Choose a neighborhood Ñ ′′ ⊂ Ñ ′\{b, e1} which contains (I′)2×(I′′)4×R4

for some small interval I′′. See Figure 13. For λ ∈ [λ3 − δ, λ3 + δ], de-
form the function in Ñ ′′ such that at λ = λ3, the pair (b′, a) is born near
(q, x1, x2, x3, x4) = (q0, C,C,C,C) with µ(b′) = µ(a) − 1. Construct Gλ,s0

such that

supp(Gλ3,s0 −Gλ3−δ,s0) ⊂
{
(q, x1, x2, x3, x4)

∣∣ q ∈ I , x3 ∈ O3 , x4 ∈ O4

}
(29)

where Oj ⊂ R \ {0} is some bounded interval. Applying equations (28)
and (29) to Theorem 3.7 and Remark 3.8 ensures that the birth of (b′, a) is
independent of b and e1.

Note that by convention, d(λ3+δ,s0)a = b′. Moreover, property 2 of
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(C,C)

(C,C)

Interval I’’

Interval I’’’

Interval I’

a

b

b’

e1

x1,x2 directions

x3,x4 directions

q axis

Figure 13: The birth and death of (e2, e1) occur in the lower plane (q = −q0)
at (x1, x2, x3, x4) = (C,C, 0, 0). These events occur at λ = λ1 and λ = λ6. In
the upper plane (q = q0), the points marked e1, b and b′ indicate where those
intersections lie when λ ∈ (λ3 + 2δ, λ4 − 2δ). This takes place after b′ is born and
slides to x3 = x4 = 0 but before b slides to x3 = x4 = C to die. The point marked
a approximates the locations of the birth of (b′, a) and the death of (b, a) which
occur at λ = λ3 and λ = λ4, respectively. All other intersection points lie on the
q-axis.

Definition 4.2 and the independence of the birth of (b′, a) imply that no
handle-slides exist starting or ending at e1 or b for λ ∈ [λ2, λ3 + δ]. Thus,
d(λ3+δ,s0)e1 = gb for some g ∈ π1(L). By setting 0 < A(e1) − A(b) . 1
for λ ∈ [λ2, λ3 + δ], the proof of Theorem 2.7 implies that any holomorphic
curve u ∈ M̂λ,s0(b, e1) remains in Ñ . Since L̃ ∩ Ñ is contractible and
d(λ2,s0)e1 = b, [γe1γuγ

−1
b ] = 1 ∈ π1(L); thus, d(λ3+δ,s0)e1 = b. Setting −ε′

from the Definition 4.2 equal to λ3 + δ, half of property 3 of Definition 4.2
now holds.

Choose γa, and hence γb′ , such that γa ⊂ Ñ ∪ (P × Br(0)) and
γa ∩ (P × Br(0)) = γe1 ∩ (P × Br(0)). For λ ∈ [λ3 + δ, λ3 + 2δ], slide
(b′, a) back to the x3 = x4 = 0 plane. Diagram 3 of Figure 12 shows the
function for some λ ∈ [λ3 + 2δ, λ4 − 2δ].
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STEP 5: The death of (b, a).
Choose a neighborhood Ñ ′′′ ⊂ Ñ ′ \ {b′, e1} which contains a, b and

(I′)2 × (I′′′)4 ×R4 for some small interval I′′′. See Figure 13. For λ ∈
[λ4 − 2δ, λ4 + δ], deform the function in Ñ ′′′ such that for λ ∈
[λ4− 2δ, λ4− δ], the pair slides in the (x3, x4)-coordinates to a small neigh-
borhood of (q, x1, x2, x3, x4) = (q0, C,C,C,C), and at λ = λ4, (b, a) dies
near (q0, C,C,C,C). For λ ∈ [λ4 − δ, λ], apply Remark 3.8 to ensure that
no curves connect e1 or b′ to a or b. Note that for λ ∈ (λ3+ δ, λ4− δ) there
may be holomorphic curves starting and ending at {a, b, b′, e1}.

Assume for λ ∈ [λ4−δ, λ4], 0 < A(a)−A(b) . 1. Then, by Lemma 3.11
and the argument of Theorem 2.7, there is a unique curve in M̂1

λ4−δ,s0
(b, a)

that stays in Ñ . Since Ñ∩L̃ is contractible, it then follows from the manner
in which a slid to and from the x3 = x4 = 0 plane, as well as the assumption
that γz∩(P×Br(0)) is the same for all z ∈ {a, b, b′, e1}, that d(λ4−δ,s0)a = b.
A similar argument verifies d(λ4−δ,s0)e1 = b′. Since ε′ = −(λ3 + δ) = λ4− δ,
the second half of property 3 of Definition 4.2 now holds.

STEP 6: STEPS 4 and 5 for s < s0.
Unlike STEPS 1-3, STEPS 4 and 5 will not work for all s < s0. Since

lims→0+ λ4(s)− λ3(s) = 0, the pair (b′, a) has a decreasing interval of time
to slide from (q0, C,C,C,C) to (q0, C,C, 0, 0). Instead, for s < s0, the
birth will occur near (q, C,C,C(s), C(s)) where C(s0) = C and C(0) = 0.
A similar adjustment applies to STEP 5.

Note that for small (positive) s, equation (29) and its analogue in
STEP 5 may fail; thus, the birth and death may no longer be indepen-
dent. For example, at (λ3(s), s), some holomorphic curves may connect
x ∈ {b, e1} to the degenerate intersection a = b′. Nevertheless, none of the
properties of a nice dovetail are compromised.

STEP 7: The rest.
Repeating the part of the discussion for λ ∈ [0, λ2 + δ] in reverse com-

pletes the description of Gλ,s0 for λ ∈ [λ5 − δ, 1]. See diagrams 4 and 5 of
Figure 12.

As mentioned in the caption of Figure 12, with both negative (x1
and x3) and positive (x2 and x4) stabilization, the critical levels of Gλ,s

can be adjusted so that property 4 of Definition 4.2 holds. For example, if
necessary, the birth of (b′, a) can occur at (q0, C1, C2, C3, C4) for Ci �= Cj

instead of at (q0, C,C,C,C).

(vi) There are several claims in the sixth statement. To show that
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the parameter values of handle-slides intersect those of other handle-slides,
births and deaths transversely, repeat the arguments from Theorem 3.12(v).
To ensure the transversality of the s = k lines with parameter values as-
sociated to births, deaths and handle-slides, first note that there are no
points of type ‘d’ or ‘e’ (as labeled in Figure 3) near ∂Λ2. It suffices then
to reparameterize Λ2 if necessary by a diffeomorphism of the square Λ2 to
itself which is the identity near the boundary. ✷

4.3 Proof of Theorem 4.1.

Proof. STEP 1: Two handle-slides.
Suppose two families of handle-slides cross at (λ, s) = (0, 0). That is, if

they lie in M̂0
(λη(s),s)

(x,w) and M̂0
(λν(s),s)

(z, y) and represent the elements
η and ν in π1(P ), then λν > λη for s < 0 while λν < λη for s > 0. There
are several cases to consider: (i) w, x, y, z are distinct, (ii) w = y and/or
x = z, and (iii) either x = y or w = z but not both.

The goal is to show that Wh2(φΛ,s− , JΛ,s−) = Wh2(φΛ,s+, JΛ,s+) for
some small s− < 0 < s+. It suffices to show that the Steinberg word is
unchanged. In cases (i) and (ii), the second Steinberg relation

hwx(η)hyz(ν)h−1
wx(η)h

−1
yz (ν) = 1 ,

indicates that the order of the handle-slides does not matter. There are
no cusp-curves in these two cases. Hence, by Gromov compactness and
the manifold property of holomorphic curves, M̂0

Λ,s−(p, q) = M̂0
Λ,s+

(p, q).
That is, no handle-slides can appear or disappear. Thus, Wh2 does not
change.

In case (iii), the second Steinberg relation does not apply. The presence
of a cusp-curve and its subsequent gluing theorem below shows how the
order is relevant. Consider the x = y case; the other case is similar.

Define a neighborhood of a cusp-curve as a path in Ω(L,LΛ2 ; γ0) in a
manner analogous to the one-parameter case:

Uε(v1, . . . , vk;λ0, s0)

=
{
(γ, λ, s) ∈ Ω(L,Lλ,s; γ0)×R2

∣∣ |λ− λ0|+ |s− s0| < ε and
max
t∈[0,1]

dist(γ(t), vj(τ, t)) < ε for some τ ∈ R, and 1 ≤ j ≤ k
}
.

Theorem 4.4. Suppose w, x = y, and z are as above. Then there exist
positive constants ρ0 and C and a local diffeomorphism

L : M̂0
(0,0)(z, x)× [ρ0,∞)× M̂0

(0,0)(x,w) → M̂0
Λ2(z,w).
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Furthermore, for all (u, u′) ∈ M̂0
(0,0)(z, x)×M̂0

(0,0)(x,w), there exists ε > 0

such that L is onto M̂0
Λ2(z,w) ∩ Uε(u, u′; 0, 0).

This is similar to Theorem 3.13. The difference is that the parameter
space is one dimension larger and, this time, the curves u and u′ to be glued
are handle-slides. The proof is nearly identical to the proof for Theorem 4.5,
presented in the Appendix, and thus will not be given.

In case (iii), there is one cusp-curve, (u, u′) ∈ M̂0
(0,0)(z, x)×M̂0

(0,0)(x,w).

So if M̂0
(λ,s)(z,w) = ∅ for s < 0 then there exists unique vλ,s ∈ M̂0

(λ,s)(z,w)
for s > 0 and λ = λ(s). Furthermore, because these curves converge to the
cusp-curve, γwγv(λ,s)

γ−1
z converges to γwγu′γ−1

x γxγuγ
−1
z as (λ, s) → (0, 0);

thus, [γwγv(λ,s)
γ−1
z ] = ην. Assume |s−|+ |s+| < ε where ε = ε(u, u′) > 0 is

the same ε from Theorem 4.4. Then St(φΛ,s− , JΛ,s−) = St(φΛ,s+, JΛ,s+) by
the third Steinberg relation:

hwx(η)hxz(ν)h−1
wx(η)h

−1
xz (ν) = hwz(ην) .

STEP 2: A super handle-slide.
Suppose a super handle-slide occurs at (λ, s) = (0, 0) then the following

gluing theorem holds:
Theorem 4.5. Suppose that for an isolated (0,0) ∈ Λ2, M̂−1

(0,0)(y,z) = {v}.
Let w and x be any other critical points such that µ(x) = µ(z) = µ(w)− 1.
Then there exist positive constants ρ0 and C and a local diffeomorphism

L : M̂1
(0,0)(x, y) × [ρ0,∞)× {v} → M̂0

Λ2(x, z) .

Furthermore, for all u ∈ M̂1
(0,0)(x, y), there exists ε > 0 such that L is

onto M̂0
Λ2(x, z) ∩ Uε(u, v; 0, 0). A similar diffeomorphism exists between

M̂1
(0,0)(z,w) × [ρ0,∞)× {v} and M̂0

Λ2(y,w).

Proof. Define a family of charts expy : [0, 1]×TyP → P by expy(0, TyL) ⊂ L
and expy(1, TyL′) ⊂ L′. Recall the domain of the curves is Θ = Rτ × [0, 1]t.
Pick ξu ∈ C∞(Θ,TyP ) such that for large enough τ , u(τ ,t) = expy(t,ξu(τ ,t)).
Let β : R → R be a smooth function such that

β(τ) = 0 for τ ≤ 0 β(τ) = 1 for τ ≥ 1 and |β′| < 2 . (30)
Define the pregluing of u and v, L1 : M̂1

(0,0)(x, y)× [ρ0,∞)×{v} → P(x, z)
by
χ = (u, ρ, v) �→ L1(χ) = wχ(τ, t)

=


u(τ + ρ, t) if τ ≤ −1

expy
(
t, β(−τ)ξu(τ + ρ, t) + β(τ)ξv(τ − ρ, t)

)
if − 1 ≤ τ ≤ 1

v(τ − ρ, t) if τ ≥ 1 .
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This is the first step in the gluing process. Although the result is not a
holomorphic curve from x to z, by the finiteness of M̂1

(0,0)(x, y), there exists
ρ0, k > 0 and ε : R+ → R+ with limρ→∞ ε(ρ) = 0 such that for all ρ > ρ0
and for all u ∈ M̂1

(0,0)(x, y), ‖∂̄Jw(u,ρ,v)‖p < kε(ρ). A basic contraction
mapping theorem for Fredholm maps, stated in [F1], [Su] and proved in
[Sc2], adds a correction term to the preglued curve (wχ, 0, 0) ∈ P(x, z; Λ2)
making it holomorphic. Moreover, the contraction map provides a bijection,
L2, between the preglued terms with small ∂̄, and ∂̄−1(0) ⊂ P(x, z; Λ2).
Recall that the Maslov index is based on the homotopy of a loop in Lag(n);
thus, for ρ large enough, IndEwχ = IndEu + IndEv. Hence, letting L =
L2 ◦L1 gives the required diffeomorphism into M̂0

Λ2(x, z). The last step
which shows that the curves in the image of L converge to u∪ v uniformly
is proved on [F1, p. 532–533]. ✷

The main difficulty in this and similar gluing situations is to prove that
for ρ large enough, E(:1(u,ρ,v),0,0) has a right inverse bounded uniformly
in ρ. Such a bound is necessary to apply the contraction mapping theorem.
Several papers provide such a bound for the periodic orbit version of Floer
homology. Floer proves this bound ([F1]) for the unparameterized version
of Lagrangian intersections; however, he spends only a few lines on how
to extend this to the parameterized version. In proving Theorem 4.6, the
Appendix expands on those few lines and corrects some of the errors he
makes in the unparameterized version.

To simplify notation, denote (w(u,ρ,v), 0, 0) = (wχ, 0, 0) by Oχ and let
ρ(Oχ) = ρ, u(Oχ) = u, et cetera.

Theorem 4.6. There exist positive constants C, ρ0 such that for all Oχ
which satisfy ρ(Oχ) > ρ0, E;χ is invertible with right inverse G;χ. Further-
more,

‖G;χ(η) ‖p,k ≤ C‖ η ‖p,k−1 .

Now consider what effects a super handle-slide v ∈ M̂−1
(0,0)(y, z) has on

the Steinberg word. Let α = [γzγvγ−1
y ]. Assume M̂0

(λ,s)(x, z) = ∅ for s < 0
where x is some third intersection not involved with the super handle-slide.
Choose some small s+ > 0, s− < 0 satisfying |s+| + |s−| < ε where ε is
from Theorem 4.5. Since L∩L(0,0) is finite, s± can be chosen independent
of x. Pick any u ∈ M̂1

(0,0)(x, y) and let β = [γyγuγ−1
x ]. As in the gluing

theorem for two handle-slides, the cusp-curve u∪v is the limit of a sequence
v(λ,s) ∈ M̂0

(λ,s)(x, z) with s > 0 and λ = λ(s), since M̂0
(λ,s)(x, z) = ∅

for s < 0. Since the loops γzγv(λ,s)
γ−1
x converge to γzγvγuγ

−1
x , as (λ, s)



856 M.G. SULLIVAN GAFA

approaches (0, 0), [γzγv(λ,s)
γ−1
x ] = αβ. Since this equality holds for each

u ∈ M̂1
(0,0)(x, y), Stµ(x)(φΛ,s+ , JΛ,s+) differs from Stµ(x)(φΛ,s− , JΛ,s−) by

the addition of ∏
{x|µ(x)=µ(z),x �=z}

hzx
(
α〈d(0,0)y, x〉

)
.

Note that the order of the slides does not matter by the second Steinberg
relation. A similar argument shows that Stµ(y)(φΛ,s+ , JΛ,s+) differs from
Stµ(y)(φΛ,s− , JΛ,s−) by the addition of∏

{w|µ(w)=µ(y),w �=y}
hwy

(〈d(0,0)w, z〉α) .
Hatcher and Wagoner in [HW] call this change in the Steinberg word

the “exchange relation” based on an example they provide in [HW, p. 142–
143]. They prove in [HW, p. 156–159], that such a change does not affect
the Wh2 element.

STEP 3: A dovetail.
Suppose a nice dovetail occurs at (λ, s) = (0, 0) involvingX = {a, b, b′, e}.

Let ε and ε′ be from Definition 4.2. Suppose no other singularity occurs for
(λ, s) ∈ [−ε, ε]× [−ε, ε]. The upside-down story is similar.

Because of property 2 of Definition 4.2, there are no handle-slides con-
necting points in X with points in {L∩Lλ,s}\X for (λ, s) ∈ [−ε, ε]× [−ε, ε].
Because of properties 1 and 4 of Definition 4.2, the only handle-slides which
might be affected by the dovetail (that is, which might appear or disap-
pear with the dovetail) are of the form hb′b(α1), he1a(α2), hbb′(α3). Using
the first Steinberg relation, let α1, α2, α3 ∈ Z2π1(L) represent the summed
handle-slides between the three possible pairs of points. By the second
Steinberg relation the handle-slides can be assumed to occur in the above
order. The goal is to show that Wh2(φΛ,−ε, JΛ,−ε) = Wh2(φΛ,ε, JΛ,ε).

At s = ε, assume without loss of generality that the handle-slides occur
while λ ∈ [−ε′, ε′]. Let d± = d(±ε′,ε).

For i = 1, 2, 3, let fi : C → C represent the change in chain complexes
induced by the handle-slides:

f1(p) = p+ δb
′
p α1b , f2(p) = p+ δepα2a , f3(p) = p+ δbpα3b

′ .
Here p are the intersection points which generate the chain complex. Since
fi = f−1

i , d+ = f3f2f1d−f1f2f3. Property 3 of Definition 4.2 and an easy
computation then show

d+e = f3f2f1d−f1f2f3e =⇒
b′ = b+ α3b

′ + α2b
′ + α2α1b+ α2α1α3b

′
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d+a = f3f2f1d−f1f2f3a =⇒
b = b′ + α1b+ α1α3b

′ .

This implies α1 = α2 = α3 = 1, which is a specific case of

hb′b(ν), he1a(−〈d−e, b〉ν−1), hbb′(−ν−1).

Hatcher and Wagoner prove that this particular algebraic change does not
affectWh2 when they treat an even more general dovetail singularity ([HW,
p. 153]).

STEP 4: Other singularities.
Most of the remaining singularities have no effect on the Steinberg word.

Switching the order of two births (or two deaths), or a birth (or death) and
a handle-slide does not change any algebraic invariants because the births
and deaths are independent. If an hxw(ν) is born at (0, 0), then obviously
at s > 0 there are two of them, which by the first Steinberg relation in
Z2-coefficients does not alter the Steinberg word. The death of two handle-
slides (point ‘e’) is the same. A birth or death of a birth-death pair (point
‘d’) does not affect the Steinberg word because of Theorem 4.3 (iii). There
is something to prove when a birth at s = 0 of a death-birth pair occurs.
(A death-birth is where for a given s < 0, the death proceeds the birth
in λ. As s approaches 0, the death and birth converge and cancel each
other out for s > 0.) The death of a death-birth pair is similar. Although
St(φΛ,s− , JΛ,s−) �= St(φΛ,s+, JΛ,s+), the Wh2 elements are the same. The
algebraic proof is no different than Hatcher and Wagoner’s because there
are no analytical gluing theorems to apply; thus, it will be omitted.

This finishes the proof of Theorem 4.1. ✷

5 Some Examples and Concluding Remarks

The following calculations provide some examples of non-trivial Whitehead
groups.

Theorem 5.1 ([Co], [W]). Wh1(Z5) �= 0. In fact, if G is any abelian
group that contains an element of order q �= 1, 2, 3, 4, 6 then Wh1(G) �= 0.
If H is any group, then Wh2(H × Z) = Wh2(H)⊕Wh1(H)⊕ (?).

The third summand is unknown in the second result. Wagoner proves
this second result for his R = Z(H) version of Wh2, but the proof does
not change with the current definition. He first shows that K2(R[t, t−1]) ∼=
K2(R) ⊕ K1(R) ⊕ (?) where R[t, t−1] is the Laurent polynomial ring with
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coefficients in an arbitrary ring R. Note that Z2(H × Z) = Z2(H)[t, t−1]
under the identification∑

ni · (gi, zi) ↔
∑

nigit
zi .

Wagoner then proves the theorem by showing that the equivalence on the
K2 level factors through to one on theWh2 level. The proof of this factoring
through is the same for both definitions of Wh2.
Example 5.2. A Lagrangian h-cobordism. Consider any closed manifold,
M , of arbitrary dimension, such that π2(M) = 0 and π1(M) is a finitely-
generated abelian group with elements of finite order �= 1, 2, 3, 4, 6. For
example, construct a 3-skeleton with the appropriate homotopy groups,
embed it in some RN and fill it out (a strong homotopy equivalence).
After gluing a copy of it along its boundary, it becomes closed with the
same lower homotopy groups.

By the above theorem, Wh1(π1(M)) �= 0. Suppose dimM ≥ 5. By a
realization theorem [Co], for any τ0 �= 0 ∈ Wh1(π1(M)), there exists an
h-cobordism, (W,M,M1) such that

H∗
(
C(W,M ;Z2π1(M))

)
= 0 and Wh1

(
C(W,M ;Z2π1(M))

)
= τ0 .

Here C(Y,X) denotes the relative simplicial complex of (Y,X). Suppose
K ⊂W is a large enough compact set such thatW = K ∪M×(−∞,−1]r ∪
M1 × [1,∞)r. For any Morse function f on W such that f |(W\K) = r,
CM(W,f ;Z2π1(W )) = C(W,M ;Z2π1(M)). Here CM(X, f) is the Morse
chain complex of X defined by f .

Embed W = {q, 0} ⊂ (T ∗W,dq ∧ dp) as the Lagrangian zero-section.
Define the Hamiltonian H : T ∗W → R by H(q, p) = f(q). If φt is the as-
sociated Hamiltonian and Wt = φt(W ) then W1 is the graph of df . When
Floer proves that Floer homology is the same as Morse homology in [F4],
he equates the two chain complexes by constructing a specific J and a bijec-
tion from the gradient flows of f between two critical points to boundaries
of the J-holomorphic curves u(τ, 0) ⊂W between the corresponding inter-
section points. He does not require any compactness of P . He does state
that f must be C2-small; however, in his proof he only requires that |∇∇f |
be small. This can be accomplished by scaling f . This provides the corre-
sponding equivalence between Morse chain complexes with Z2π1(W ) coeffi-
cients and CF (W,W1, J). Note that π2(T ∗W,W ) = 0 and π1(W ) = π1(M);
thus, (W,W1) are admissible. Since Wh1(CF (W,W1, J ;Z2π1(W )))=τ0 �=0,
by the above theorem, W1 can never be separated from W by a compact
Hamiltonian isotopy. For an h-cobordism, Z2-Morse homology is zero, so
Z2-Floer homology does not detect this.
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As a final remark, assume that W embeds as a Lagrangian submanifold
in some arbitrary symplectic manifold. Suppose that the Lagrangian neigh-
borhood theorem provides W with a non-thinning-out neighborhood sym-
plectomorphic to T ∗W , despite the non-compactness ofW . Then the above
example can be applied to this case. Again construct f small enough so that
the graph of its derivative (W1) remains in the Lagrangian neighborhood
symplectomorphic to T ∗W . Then the Whitehead torsion obstructs compact
deformations of W1 off of W within the full symplectic manifold, P .

Example 5.3. A realization of non-trivial Wh2 elements. Construct M
as in Example 5.2 but this time assume at least one copy of Z in π1(M). Let
W = M ×R. By the above theorem, Wh2(π1(W )) �= 0. Any non-trivial
element Y ∈ Wh2(π1(W )) can be realized by a function f : W → R which,
outside of a compact set, is the projection onto the R-component of W ,
[HW]. Scale f to get the bound on the second derivative needed in [F4].
Let W1 denote the graph of df and W0 denote the graph of the derivative of
the projection, prt : W → R. W0 and W1 are deformations of W under the
Hamiltonian isotopies generated by the Hamiltonian vector fields XHprt

and XHf
, respectively. Although these isotopies are not compact, they

agree outside a compact set; thus, composing one with the inverse of the
other provides a compactly supported Hamiltonian isotopy φΛ taking (say)
W0 to W1. Note that with an appropriate perturbation of φΛ and choice
of JΛ, Wh2(φΛ, JΛ) = Y �= 0. Thus by the above theorem, φΛ can never be
deformed into some φ′Λ takingW0 toW1 such that for all λ, φ′λ(W0)∩W = ∅.
Again, this obstruction applies to a more general symplectic manifold P in
which an embedded W is Lagrangian, provided there exists a non-thin
cotangent neighborhood of W .

Example 5.4. π0 of the space of fixed-point-free compact Hamiltonian
deformations of a shift. Consider M as in Example 5.2. Let (V, ω) =
(R1

t ×S1
θ ×T ∗M,dt∧dθ+ω0) where ω0 is the standard symplectic form on

the cotangent bundle. By Theorem 5.1, Wh2(π1(V )) �= 0. Let Sc : V → V
denote the non-trivial Hamiltonian shift by c ∈ S1 in the S1

θ -direction. Let
G denote the set of Hamiltonian diffeomorphisms of V of the form f ◦ Sc
where f has compact support and f ◦ Sc has no fixed points. Then a
corollary of Theorem 4.1 is that π0(G) �= 0.

Embed V ↪→ (V ×V, ω⊕−ω) as the Lagrangian diagonal D. Let GrSc ⊂
(V ×V, ω⊕−ω) be the Lagrangian graph of Sc. Although D is not compact
in either the x-direction (x ∈ T ∗M) or the (t, θ)-direction, there exists a
neighborhood N ⊃ D symplectomorphic to T ∗D which contains GrSc . This
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follows because GrSc = {t, θ, x, t, θ + c, x} and hence N need only remain
‘thick’ in the T ∗(R1

t , S
1
θ )-coordinates of T ∗D. Such a requirement holds

trivially because of the translation invariance of D in the (t, θ)-direction.
Note that GrSc is graphical in T ∗D; that is, it is the graph of the derivative
of some g : D → R standard outside a compact set.

As in Example 5.3, choose some h : D → R which agrees with g outside
a compact set, has appropriate derivative bounds, has no critical points and
represents a non-trivial element in Wh2(π1(D)). Denote by W ⊂ N the
Lagrangian graph of dh. This can be done since h(t, θ, v) = h(t, θ) outside
a compact set. By Theorem 4.1, the obvious deformation of W to GrSc

cannot be deformed to avoid D. Thus W corresponds to an element in G
which lies in a path-connected component that does not contain Sc.

Remark 5.5. Coherent orientation and Z-coefficients. Floer and Hofer
in [FH], use ‘coherent orientation’ to introduce Z-coefficients for the pe-
riodic orbits version of Floer homology. This homology theory addresses
Arnold’s conjecture on fixed points. Fukaya, Oh, Ohta and Ono [FuOOO]
have recently developed coherent orientation for the Lagrangian intersec-
tion version. There are additional hypotheses which are needed in this sit-
uation but are unnecessary in [FH]. Essentially, if i : L→ P represents the
inclusion map and w2(TL) ∈ H2(L;Z2) is the second Stiefel–Whitney class
of L, then one must assume that w2(TL) = i∗a for some a ∈ H2(P ;Z2).
With coherent orientation, Floer homology can be easily defined with Zπ1-
coefficients. Assuming the determinant bundles (a section of which orients
the moduli space of holomorphic curves) can incorporate the parameter
space, then Z-versions of Theorems 3.13, 4.4 and 4.5 hold. The rest of the
proofs for Z-versions of Theorems 3.1 and 4.1 then readily follow.

Remark 5.6. Degenerate gluing instead of stabilization. There is an alter-
native proof to Theorem 3.1 (but not Theorem 4.1) in [Su] which does not
use stabilization. It relies on gluing theorems and a version of Theorem 2.1
for degenerate intersections. Essentially, if the birth (or death) of (x, y) is
not independent, Floer proves a gluing theorem which establishes a bijec-
tion between M̂1−(p, q) and M̂1

+(p, y) × M̂1
+(x, q) [F1]. Unfortunately, as

mentioned in section 1.1, Floer’s complicated analysis is in some places in-
correct or incomplete. A partial completion of this degenerate intersection
theory can be found in [Su].
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Appendix A. Proof of Theorem 3.3

Proof. STEP 1: Constructing a birth at (q, x) = (0, C) in the linear case.
Let F (q, x) = F0(q, x) = ε1q − x2 from equation (17) and rewrite it as

the sum of a quadratic and a linear function
F (q, x) = −C2 + ε1q − 2C(x− C)− (x− C)2

= l(q, x)− (x− C)2. (31)
STEP 1 constructs a bump function, growing with λ, which when added to
l(q, x) results in the birth of two critical points for l(q, x) near (q, x) = (0, C).

Let C ′ = 1
2(ε

2
1 + (2C)2)1/2. Let A ∈ O(2,R) be a linear change of

coordinates from (q, x) to (r, w) defined by

A =
1

2C ′

(
2C ε1
ε1 −2C

)
. (32)

The r and w directions are easily verified to be the level set and gradient
directions of l, respectively. Let (r0, w0) = A(0, C). If dimP = 2n > 2,
the change of coordinates is done so that w, r1 are again q1, x transformed
by A, while ri = qi for 2 ≤ i ≤ n. Note that the linear term in equation
(31) becomes

l(r, w) = −C2 + 2C ′w . (33)

Let M =
(
C ′ + 1

2ε1
)/
ε1. Let j :

[
0, 12
]→ [0, 1] be a smooth strictly increas-

ing function such that

j(0) = 0 , j

(
1
2
ε1

)
=

C ′

C ′ + 1
2ε1

and j

(
1
2

)
= 1 . (34)

Perturb the function from equation (33) to be
lλ(r, w) = −C2 + 2C ′w + j(λ)ε1σ2

(
M(w − w0)

)
σ1(r − r0) . (35)

For the 2n > 2 case, replace the last term σ1(r − r0) by σ1(((r1 − r0)2 +
(r2 − 0)2 + . . . + (rn − 0)2)1/2).

Lemma A.1. For λ ∈ [0, 12ε1), lλ has no critical points. At λ = 1
2ε1, lλ

has a degenerate critical point at (r0, w0). For some λ0,
1
2 > λ0 > 1

2ε1,
λ ∈ (12ε1, λ0] implies lλ has exactly two nondegenerate critical points.
Proof.

∂lλ
∂r = j(λ)ε1σ2

(
M(w − w0)

)
σ′1(r − r0)

which, by the definition of σ1 and σ2 vanishes only when
|r − r0| ≥ 1 , r = r0 , w − w0 ≥ 1

2M or w − w0 ≤ − 3
2M . (36)

See Figure 14. Whereas,
∂lλ
∂w = 2C ′ + j(λ)ε1Mσ′2

(
M(w − w0)

)
σ1(r − r0) .
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For λ ∈ [0, 1] define

S(λ) =
(
∂lλ
∂w

)−1

(0)

=

{
(r, w)

∣∣∣ −σ′2(M(w − w0))σ1(r − r0) =
2C ′

j(λ)
(
C ′ + 1

2ε1
)} . (37)

The intersection of the set in equation (36) with the set in equation (37)
represents the critical points of lλ.

For λ ∈ [0, 12ε1), j(λ) < C ′/(C ′ + 1
2ε1
)

(from equation (34)) implies
that 2C ′/j(λ)(C ′ + 1

2ε1
)
> 2, but |σ′2(M(w − w0))σ1(r − r0)| ≤ 2 by the

definition of σ1 and σ2. Thus, S(λ) = ∅ when λ ∈ [0, 12ε1). This proves the
first statement of the lemma.

r
0
 -1 r

0
r
0

+1

w
0
+ 1/2M

w
0

w0 -3/2M

S( λ )

Figure 14: The zero sets in equations (36) and (37).

Next consider S(λ) for λ ≥ 1
2ε1. Note that 2C ′/j(λ)(C ′ + 1

2ε1
)
mono-

tonically decreases in λ, with limλ→( 1
2
ε1)+

2C ′/j(λ)(C ′ + 1
2ε1
)

= 2. Fur-
thermore, the graph of −σ1(r − r0)σ′2(M(w − w0)) has an isolated global
maximum of 2 at (r0, w0). Thus as λ increases, S(λ) represents the de-
creasing level sets of the graphs. The first non-trivial level set is S

(
1
2ε1
)
=

{(r0, w0)}. This proves the second statement of the lemma.
Recall that σ1 is globally even while σ′2 is locally even. Thus for some

λ0 > 1
2ε1, if λ ∈ (

1
2ε1, λ0

]
then S(λ) is a small embedded closed curve,

symmetric in w − w0 and r − r0, and contained in the set{
(r, w)

∣∣ |r − r0| < 1 , 1
2M > w − w0 >

−3
2M

}
.

See Figure 14. Thus the intersection of the sets in equations (36) and (37)
consists of exactly two points. ✷

STEP 2: A bound on the partial derivatives.
On the linear level, l has been deformed to lλ by the addition of a bump

function whose support is contained in {(r, w) | |r − r0| < 1 , |w − w0| <
3/2M} ⊂ I × R. To ensure that the support of the perturbation lies in
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κ̃(Ñ ) = {(q, p, x, y) | |q| < 3 , |p| < 3}, ∂lλ/∂q must be bounded by 3.
Rewrite equation (35) in the original coordinates

lλ(q, x) = −C2 + ε1q − 2C(x− C)

+ j(λ)ε1σ2

(
M
ε1q − 2C(x− C)

2C ′

)
σ1

(
2Cq + ε1(x− C)

2C ′

)
. (38)

Let k = 2 ≥ max(|σ1|, |σ′1|, |σ2|, |σ′2|). Then∣∣∣∂lλ∂q ∣∣∣ ≤ ε1 + j(λ)ε1
(
M ε1

2C′k
2 + 2C

2C′ k
2
)

≤ ε1 + k2
(
ε1

3C
2C′ + ε1

2C
2C′
)
. (39)

Since C ′ > C, it suffices to choose ε1 < 3/
(
1 +

(
3
2 + 2

2

)
k2
)
. Since

σ2(M(w − w0)) is not a function of q2, . . . , qn, this choice works for the
case 2n > 2 as well, i.e. |∂lλ/∂qi| is appropriately bounded. Note that the
choice of ε1 determines C ′ and M .

STEP 3: Perturbing the non-linear case.
To emphasize the homogeneity, rewrite the bump function from equa-

tion (38) as

σ(λ, q, x− C) = j(λ)ε1σ2

(
M
ε1q − 2C(x− C)

2C ′

)
σ1

(
2Cq + ε1(x− C)

2C ′

)
(40)

and the linear part of lλ as

lh(q, x− C) = −C2 + ε1q − 2C(x− C) . (41)

Lemma A.2. Since lh(q, x−C)+σ(λ, q, x−C) has two newly born critical
points near (q, x) = (0, C), there exists ε2 > 0 such that
lh(q, x−C)+ ε2σ

(
λ, q

ε2
, x−C

ε2

)− (x−C)2 also has exactly two critical points
near (0, C).

Proof. Note that lh(q, x−C) = ε2lh
( q
ε2
, x−C

ε2

)
while (x−C)2 = ε2

(
ε2(x−C

ε2
)2
)
.

Thus, scaling down by a factor of ε2, the added (x − C)2 term effectively
is made C2-small while the linear part is unchanged. And so, after adding
an appropriately scaled down bump function to create critical points, the
C2-small quadratic term does not affect the Morse structure of the function.

To prove the lemma more rigorously, it suffices to take partial derivatives
after changing coordinates to (q̄, x̄) = (q/ε2, x− C/ε2).

∂
∂q

(
lh(q, x− C) + σ(λ, q, x − C)− (x− C)2

)
(42)

= ∂
∂q̄

(
lh(q̄, x̄) + σ(λ, q̄, x̄)

)
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∂
∂x

(
lh(q, x− C) + σ(λ, q, x− C)− (x− C)2

)
(43)

= ∂
∂x̄

(
lh(q̄, x̄) + σ(λ, q̄, x̄)

)− 2ε2x̄ .

Thus the size of the change of the zero set is controlled by ε2 and can be
made small enough so that Lemma A.1 holds for the non-linear function.
(Perhaps λ0 must decrease a bit, but the non-empty interval

(
1
2ε1, λ0

]
in

Lemma A.1 still exists for small enough ε2.) ✷

Using Lemma A.2, define for λ ∈ [0, λ0]

Gλ(q, x) = F0(q, x) + ε2σ

(
λ,

q

ε2
,
x− C

ε2

)
= −C2 + ε1q − 2C(x− C)− (x− C)2 + ε2σ

(
λ,

q

ε2
,
x− C

ε2

)
= −C2 + ε1q − 2C(x− C)− (x− C)2

+ ε2j(λ)ε1σ2

(
M
ε1

q
ε2

− 2C (x−C)
ε2

2C ′

)
σ1

(2C q
ε2

+ ε1
(x−C)
ε2

2C ′

)
. (44)

Note that the bound in equation (39) still applies to Gλ because of equa-
tion (42). So Gλ = F0, in a neighborhood of ∂(I×R), the birth of the two
critical points of G occurs within ε2 of (0, C) and |∂Gλ/∂qi| < 3.

Now to prove property 5 of the theorem. The definition of σ in equation
(40) implies that supp(σ) ⊂ (−3, 3)×(−K,K) whereK = K(M,ε1,C) <∞.
Choose ε2 . K−1. Then for λ ∈ [0, λ0] (which includes the moment of
birth), equation (44) implies

Gλ(q, x)− F0(q, x) = ε2σ

(
λ,

q

ε2
,
x− C

ε2

)
which has support in (−3ε2, 3ε2) × (−Kε2 + C,Kε2 + C) ⊂ (−1, 1) ×
(C − 1, C + 1).

STEPS 4 and 5 will construct Gλ such that G1 = F1 without disrupting
the above properties of Gλ.

STEP 4: Sliding the pair of critical points back to x = 0.

Let b ∈ I × R denote the midpoint between the two critical points
of Gλ0 . So b ≈ (0, C). Let γ : [λ0, 3/4] → I ×R denote the line-segment
starting at b and ending at (0, 0). Write γ(λ) = (γq(λ), γx(λ)).

For λ ∈ [
λ0,

3
4

]
, define C(λ) = γx(λ), C ′(λ) = 1

2(2C(λ)2 + ε1)1/2

and M(λ) =
(
C ′(λ) + 1

2ε1
)/
ε1. Replace C,C ′ and M in equation (44)
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by C(λ), C ′(λ) and M(λ) to define Gλ for λ ∈ [λ0, 3/4].

Gλ(q, x) = −C(λ)2 + ε1q − 2C(λ)
(
x− C(λ)

)− (x− C(λ)
)2

+ ε2j(λ0)ε1σ2

(
M(λ)

ε1
q
ε2

− 2C(λ) (x−C(λ))
ε2

2C ′(λ)

)
σ1

(2C(λ) q
ε2

+ ε1
(x−C(λ))

ε2

2C ′(λ)

)
.

(45)
Repeat bounding of the partial in STEP 2 and the scaling down in

STEP 3 as λ increases from λ0 to 3/4. No additional births or deaths
occur because the dynamics of the zero sets (equations (36), (37) where
the coordinates r and w now vary with λ according to equation (32)) are
unchanged. The constants ε1, ε2 might need to be made smaller, but the
partial derivatives vary continuously with λ in the compact set [λ0, 3/4];
thus, there exist εi > 0 which keep the partials appropriately bounded.

To see intuitively how no other births or deaths occur in STEP 4, note
that ∇(ε1q + x2)(γ(λ)) always approximates the line connecting the two
critical points (see Figure 1).

STEP 5: Making G1 = F1.
Note that

G3/4(q, x) = ε1q − x2 + ε2j(λ0)ε1σ2
(

q
ε2

)
σ1

(
x
ε2

)
(46)

For i = 1, 2, 3, define ji : [3/4, 1] → R to be smooth strictly monotonic
functions such that
j1
(
3
4

)
= ε2j(λ0)ε1 , j2

(
3
4

)
= j3

(
3
4

)
= 1

ε2
, j1(1) = j2(1) = 1 , j3(1) = 0 .

And for λ ∈ [3/4, 1], define
Gλ(q, x) = ε1q − x2 + j1(λ)σ2(j2(λ)q)σ1(j3(λ)x) .

It it easy to verify that G1 = F1 and Gλ satisfies all the required properties,
as in STEP 4. ✷

Appendix B. Proof of Theorem 4.6

Proof. Construct a map Lχ : kerEu ⊕ kerEv → TwχP(x, z) by

Lχ(ξ, η) =


β(−τ − 1)ξ(τ + ρ, t) if τ ≤ −1 ,

0 if − 1 ≤ τ ≤ 1 ,
β(τ − 1)η(τ − ρ, t) if τ ≥ 1 .

Here β is defined in equation (30). Note that as ρ(Oχ) → ∞, Lχ(kerEu ⊕
kerEv) converges to kerEwχ . Define A(wχ) ⊂ T;χP(x, z; Λ2) to be

A(wχ) =
{
(ξ, µ1, µ2)

∣∣ 〈ξ, η〉L2 = 0 ∀ η ∈ Lχ(kerEu ⊕ kerEv)
}
.



866 M.G. SULLIVAN GAFA

The main inequality to show is that for all (ξ, µ1, µ2) ∈ A(wχ),

‖ ξ ‖p,k + |µ1|+ |µ2| ≤ C
∥∥Oχ(ξ + µ1X1 + µ2X2)

∥∥
p,k−1

(47)

for some constant C. Here X1,X2 ∈ C∞(Θ, w∗
χ(TP )) are the vector fields

X1 = ∂φλ,s

∂λ

∣∣
λ,s=0

, X2 = ∂φλ,s

∂s

∣∣
λ,s=0

. (48)

Note that DomE;χ = DomEwχ ⊕R2, RangeE;χ = RangeEwχ , and

dim kerEwχ − dim cokerEwχ

= dim kerEu − dim cokerEu + dim kerEv − dim cokerEv

= dim kerEu + dim kerEv − 2
≥ dim kerEwχ − 2 .

The last inequality follows because equation (47) implies that

‖ ξ ‖p,k ≤ C
∥∥E;χ(ξ, 0, 0)

∥∥
p,k−1

= C‖Ewχ(ξ) ‖p,k−1

for any (ξ, 0, 0) ∈ A(wχ). Further note that equation (47) implies kerE;χ ⊂
ImLχ which converges to kerEwχ ; thus, dim kerEwχ = dim kerE;χ. E;χ is
therefore surjective because dim DomE;χ = dim DomEwχ + 2 and
dim cokerEwχ ≤ 2.

Let G;χ denote the right inverse of E;χ. Suppose G;χ(η)=ξ+µ1X1+µ2X2.
Then

‖G;χ(η) ‖p,k = ‖ ξ ‖p,k−1 + |µ1|+ |µ2| ≤ C
∥∥E;χ(ξ + µ1X1 + µ2X2)

∥∥
p,k−1

= C‖E;χG;χη ‖p,k−1 = C‖ η ‖p,k−1 .

This shows that Theorem 4.6 follows from equation (47). Now to prove
equation (47) by contradiction.

Consider a family χn = (un, ρn, v) and (ξn, µn, νn) ∈ T;χnP(x, z; Λ2)
such that ρn → ∞ and

‖ ξn ‖p,k + |µn|+ |νn| = 1 ,
∥∥E;χn(ξn + µnX1 + νnX2)

∥∥
p,k−1

→ 0 . (49)

By the finiteness of M̂1
(0,0)(x, y), pass to a subsequence and assume that

un = u. Lemma B.1 ensures that although dim coker Ev = 2, coker
E(v,0,0) = ∅.
Lemma B.1. Recall that at (λ, s) = (0, 0), there exists a super handle-
slide, v, connecting two intersection points of L and L′

(0,0) = L′. The two-
parameter family L′

(λ,s) can be generically perturbed in a neighborhood of

(0, 0) ∈ Λ2 and a neighborhood U ⊂ P of the image of the curve, fixing
L′
(0,0) (so that the super handle-slide, v, still appears isolated at (0, 0)), so

that E(v,0,0) is surjective.
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Proof. Given any w ∈ P(xλ,s, zλ,s), note that φ−1
λt,st(w(τ, t)) has bound-

ary values in L and L′
0,0. Redefine the parameterized Cauchy–Riemann

equation so that it has fixed boundary conditions. Let

g(w,λ,s) = ∂̄
(
φλt,st(w),λ,s

)
= ∂

∂τ

(
φλt,st(w)

)
+Jλ,s

(
φλt,st(w),t

)
∂
∂t

(
φλt,st(w)

)
.

Since φ0·t,0·t(w) = w, note that Dg(w,0,0)(ξ + 0X1 + 0X2) = Ew(ξ). On the
other hand,

Dg(w,0,0)(0 + µX1 + νX2)

= ∇τ (tµX1 + tνX2) + J0,0(w, t)∇t(tµX1 + tνX2)

+ (∇(tµX1+tνX2)J0,0)(w, t)
(
∂w
∂t

)
+
(

∂
∂λJ0,λ(w, t)

) ∣∣
λ=0

(
∂w
∂t

)
+
(
∂
∂sJs,0(w, t)

) ∣∣
s=0

(
∂w
∂t

)
= t
(∇τ (µX1 + νX2) + J0,0(w, t)∇t(µX1 + νX2)

+ (∇(µX1+νX2)J0,0)(w, t)
(
∂w
∂t

) )
+ Y + J0,0(w, t)(µX1 + νX2)

= tEu(µX1 + νX2) + Y + J0,0(w, t)(µX1 + νX2)

where Y =
(

∂
∂λJ0,λ(w, t)

)∣∣
λ=0

(
∂w
∂t

)
+
(
∂
∂sJs,0(w, t)

)∣∣
s=0

(
∂w
∂t

)
is a vector field

determined only by w and the family of almost complex structures, JΛ2 .
If w = v is the super handle-slide, then choose X1 and X2 such that

−Y + JX1 and −Y + JX2 span the two-dimensional cokerEv . (If this
were a proof of Theorem 4.4, choose each Xi such that −Y + JXi span
the two one-dimensional cokernels of the two handle-slides.) This choice is
consistent with a generic choice of φλ,s.

To see that the surjectivity ofDg(u,0,0) implies that ofE(v,0,0) = D∂̄(v,0,0),
note that hλ,s(w) = φ−1

λt,st(w) is a local diffeomorphism. Because ∂̄(w, λ, s) =
g(hλ,s(w), λ, s), the chain rule says

D∂̄(v,0,0) = Dg(v,0,0) ·
 Dhλ,sv ∗ ∗

0 1 0
0 0 1


Dhλ,sv is invertible as the linearization of a diffeomorphism; thus, the larger
matrix is invertible as well. ✷

Let βn(τ) = β(τ−ρ′n) for some ρ′n ∈ [12ρn, ρn]. Let ηn(τ, t) = βn(τ)ξn(τ, t)
and Y n

i = βn(τ)Xi for i = 1, 2. Then∥∥E;χ(ηn + µnY
n
1 + νnY

n
2 )
∥∥
p,k−1

≤ ∥∥1 · E;χ(ξn + µnX1 + νnX2)
∥∥
p,k−1

+
∥∥β′

n(ξn + µnX1 + νnX2)
∥∥
p,k−1

≤ ε(n) +
∥∥2 · (ξn + µnX1 + νnX2)

∣∣
[ρ′n,ρ′n+1]×[0,1]

∥∥
p,k−1

.
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The first term converges to zero from equation (49), while the second
term converges to zero for some appropriate choice of ρ′n. Define η̂(τ, t) =
η(τ − ρn, t) and Ŷ n

i (τ, t) = Y n
i (τ − ρn, t) for i = 1, 2. These vector fields

can be considered as sections of v∗TP . Furthermore,∥∥E;χ(ηn + µnY
n
1 + νnY

n
2 )
∥∥
p,k−1

→ 0 =⇒∥∥E(v,0,0)(η̂n + µnŶ
n
1 + νnŶ

n
2 )
∥∥
p,k−1

→ 0 =⇒∥∥µnE(v,0,0)(Ŷ
n
1 )
∥∥
p,k−1

,
∥∥νnE(v,0,0)(Ŷ

n
2 )
∥∥
p,k−1

→ 0 =⇒ µn, νn → 0 . (50)

To get from the second convergence to the third one, note that the proof
of the surjectivity of E(v,0,0) ensures that E(v,0,0)(Ŷi) lies outside the range
of Ev. To get from the third one to the last, note that the reparameteriza-
tion keeps the support of Ŷ n

i in a fixed region.
Now that µn, νn → 0, the remainder of the proof is nearly identical

to Floer’s proof for the unparameterized gluing theorem. To be complete,
however, it is presented here with a few extra details.

The idea is to split ξn into three parts concentrated over u(Θ), y, and
v(Θ) and show that the (p, k)-norm on each vanishes. That fact, coupled
with equation (50) will contradict equation (49). Pick a small enough
neighborhood U ⊂ P of y such that for any w : Θ → U with Lagrangian
boundary conditions, there exists a section ζ of TyP satisfying w(τ, t) =
expy(t, ζ(τ, t)). Recall that the image of wχn converges to that of u ∪ v.
Furthermore, due to the increasing shifts towards y during the pregluing,
there exists a sequence of shrinking neighborhoods Un ⊂ U and sequence
of numbers rn → ∞, 3 < rn < ρn, such that wχn([−rn, rn]× [0, 1]) ⊂ Un.

Define vector fields ξ0n
D2 expy

(
t, ξ0n(τ, t)

)
= ξn(τ, t)

for −rn < τ < rn. Note that

‖ ξn ‖p,k ≤ 1 =⇒ ‖ξ0n|[−rn,rn]×[0,1]‖p,k ≤ c =⇒ ‖ξ0n|[−3,3]×[0,1]‖p,k ≤ c .

By Rellich’s theorem, passing to a subsequence, ξ0n|[−3,3]×[0,1] converges to
some ξ∞ in the Lp

k−1([−3, 3] × [0, 1])-norm.
For the sequence r′n → ∞, 3 < r′n < rn, define β̂n(τ) = 1− β(τ − r′n)−

β(−τ + r′n). Note that equations (49) and (50) imply

‖E;χ(ξn) ‖p,k−1 → 0.

Choose the sequence r′n appropriately to ensure that ‖ β̂nξ0n ‖p,k is bounded
uniformly and ‖E0n(β̂nξ0n) ‖p,k → 0. Since the β̂nξ0n are now defined on
all of Θ, and their Lp

k(Θ, TyP )-norms are uniformly bounded, by Alaoglu’s
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theorem, there exists some ξ′∞ ∈ Lp
k(Θ, TyP ) which is the weak* limit of ξ0n.

Since (Lp
k)

∗∗ = Lp
k, ξ

′∞ is in fact a weak limit. As wχn([−rn, rn] × [0, 1])
converges to y, the (coefficients of the) operators E0,n converge smoothly
to (the constant ones of) ∂̄0, the standard Cauchy Riemann operator. And
so, for any test function f ∈ (Lp

k(Θ, TyP ))∗ = Lq
k(Θ, TyP ),∫ ∣∣E0n(β̂nξ0n)f

∣∣ ≤ ∥∥E0n(β̂nξ0n)
∥∥
p
· ‖ f ‖q → 0

by Holder’s inequality. But at the same time,∫
E0n(β̂nξ0n)f =

∫
β̂nξ0nE

∗
0n(f) =

∫
β̂nξ0n(E∗

0n − ∂̄∗0)(f)+
∫
β̂nξ0n∂̄

∗
0(f)

→
∫
ξ′∞∂̄

∗
0(f) by the (L∞)-convergence of operators

=
∫
∂̄0(ξ′∞)f .

The standard Cauchy–Riemann equation with these boundary condi-
tions has no non-zero solutions. To see this invertibility, note that by ellip-
ticity, the kernel is finite-dimensional; however, any non-constant solution
provides an infinite-dimensional space of solutions by translation. And so,

∂̄0(ξ′∞) = 0 weakly =⇒ ∂̄0(ξ′∞) = 0 strongly =⇒ ξ′∞ = 0 .
The inclusion map i : Lp

k ↪→ Lp
k−1 induces an embedding of i∗ :

(Lp
k−1)

∗ ↪→ (Lp
k)

∗. Restricting the sequence to the subset [−3, 3] × [0, 1],
β̂n ξ0n|[−3,3]×[0,1] = ξ0n|[−3,3]×[0,1] converges weakly to ξ′∞|[−3,3]×[0,1] = 0.
‘Weak’ here means tested against functions in (Lp

k−1)
∗. Because a strong

limit is also a weak one, and weak limits are unique, ξ0n|[−3,3]×[0,1] con-
verges to 0 in the Lp

k−1([−3, 3] × [0, 1], TyP )-norm. Similarly, since these
sections sit above a fixed neighborhood U , ξn|[−3,3]×[0,1] converges to 0 in
the Lp

k−1([−3, 3] × [0, 1], TP )-norm.
Consider the portion of ξn supported in the middle. Let β̃1(τ) =

β(−τ +2), β̃3(τ) = β(τ − 2), and β̃2(τ) = 1− β̃1(τ)− β̃3(τ). Let ξin(τ, t) =
β̃i(τ)ξn(τ, t); thus, ξn =

∑
ξin. Then

‖ ξ2n ‖p,k = ‖ β̃2ξn ‖p,k ≤ k1‖ β̃2ξ0n ‖p,k
≤ k2‖ ∂̄0(β̃2ξ0n) ‖p,k−1 + k2‖ β̃2ξ0n ‖p,k−1

≤ k2‖ ∂̄0(ξ0n) ‖p,k−1 + k2‖ β̃′
2ξ0n ‖p,k−1 + k2‖ β̃2ξ0n ‖p,k−1

≤ k3‖E0n(ξ0n) ‖p,k−1 + 10k2‖ ξ0n|[−3,3]×[0,1] ‖p,k−1 → 0 .

The third step is from the ellipticity of ∂̄0 while the last step is from the
(L∞)-convergence of operators and properties of β̃i and β̃′

i.
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Next consider the right and left portions of ξn. Define ξ̂1n ∈ W p
k (u) and

ξ̂3n ∈ W p
k (v) by ξ̂1n(τ, t) = ξ1n(τ − ρn, t) and ξ̂3n(τ, t) = ξ3n(τ + ρn, t). Since

(ξn, µ1, ν1) ∈ A(wχn), ξ̂1n(τ, t) and ξ̂3n(τ, t) lie away from the kernels of Eu

and Ev, respectively. Since Eu and Ev are uniformly invertible away from
their kernels,

‖ ξ1n ‖p,k = ‖ ξ̂1n ‖p,k ≤ c‖Eu(ξ̂1n) ‖p,k−1 = c‖Ewχn
(ξ1n) ‖p,k−1

= c‖ β̃1Ewχn
(ξn) ‖p,k−1 + c‖ β̃′

1ξn ‖p,k−1

= c‖Ewχn
(ξn) ‖p,k−1 + 2c‖ ξn|[−3,3]×[0,1] ‖p,k−1 → 0 .

Similarly, ‖ ξ3n ‖p,k → 0.
The contradiction needed to prove the uniform bound on the right in-

verses now arises:

1 = ‖ ξn+µnX1+νnX2 ‖p,k ≤ ‖ ξ1n ‖p,k+‖ ξ2n ‖p,k+‖ ξ3n ‖p,k+|µn|+|νn| → 0 .
�
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