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Abstract

In this paper, we identify the greatest common quotient (GCQ) of
the Borel–Serre compactification and the toroidal compactifications of
Hermitian locally symmetric spaces with a new compactification. Us-
ing this compactification, we completely settle a conjecture of Harris–
Zucker that this GCQ is equal to the Baily–Borel compactification.
We also show that the GCQ of the reductive Borel–Serre compact-
ification and the toroidal compactifications is the Baily–Borel com-
pactification. There are two key ingredients in the proof: ergodicity
of certain adjoint action on nilmanifolds and incompatibility between
the ambient linear structure and the intrinsic Riemannian structure
of homothety sections of symmetric cones.

1 Statement of Results

1.1 Introduction. Let X be a bounded symmetric domain in a com-
plex Euclidean space and Γ ⊂ Aut(X) a cofinite volume subgroup. Then
Γ\X is a Hermitian locally symmetric space of finite volume, and any such
Hermitian locally symmetric space is of this form. In the following, we
assume that Γ\X is noncompact.

Hermitian locally symmetric spaces play an important role in auto-
morphic forms [BBo], [S], cohomology theory of Γ [BoSe], [HaZ1,2] and
arithmetic algebraic geometry [AMuRT], [N], [CF]. Useful for these appli-
cations, Γ\X admits respectively the Baily–Borel compactification Γ\XBB

[BBo] (§3), the Borel–Serre compactification Γ\XBS
[BoSe] (§2), and the

toroidal compactifications Γ\XTor

Σ [AMuRT] (§5), where Σ is a Γ-admissible
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polyhedral cone decomposition (§5.2). In higher rank, there are, in general,
infinitely many Γ-admissible polyhedral cone decompositions and hence in-
finitely many toroidal compactifications.

The compactification Γ\XBB
is a singular projective variety, Γ\XBS

is
a manifold with corners (In fact, it is a real analytic manifold with corners as
shown recently in [BoJ].), and Γ\XTor

Σ are varieties with toric singularities,
many of which are smooth projective varieties. A natural problem is to
understand relations between these compactifications.

In the following, we say that one compactification Γ\X1
of Γ\X domi-

nates another compactification Γ\X2
if the identity map on Γ\X extends

to a continuous surjective map from Γ\X1
to Γ\X2

and that Γ\X1
strictly

dominates Γ\X2
if the extended map is not a homeomorphism.

It was shown by Zucker [Z2, Theorem 3.11] that Γ\XBS
dominates

Γ\XBB
(see 3.4.2 below); and it was shown in [AMuRT, Proposition on

p. 254] that all toroidal compactifications Γ\XTor

Σ dominate Γ\XBB
, and

hence smooth toroidal compactifications resolve the singularities of Γ\XBB
,

which was the motivation for introducing the toroidal compactifications in
[AMuRT].

If Γ\X is a Riemann surface, then Γ\XTor

Σ is unique and equal to

Γ\XBB
, which is obtained by adding one point to every cusp of Γ\X, while

Γ\XBS
is obtained by adding a circle to each cusp. Therefore, Γ\XBS

strictly dominates Γ\XTor

Σ by collapsing each boundary circle in Γ\XBS
to

a boundary point in Γ\XTor

Σ .

For other spaces Γ\X, it has been recognized for a long time that Γ\XBS

and Γ\XTor

Σ are not compatible. One way to measure the incompatibility
of these two compactifications is to study their greatest common quotient
(GCQ), denoted by Γ\XBS ∧ Γ\XTor

Σ (see §6.1 for its definition and ex-

istence). Since Γ\XBB
is a common quotient of Γ\XBS

and Γ\XTor

Σ as

mentioned earlier, Γ\XBS ∧Γ\XTor

Σ dominates Γ\XBB
. In [HaZ1, Conjec-

ture 1.5.8], Harris and Zucker made the following conjecture.

Conjecture 1.1.1. For every toroidal compactification Γ\XTor

Σ , the GCQ

Γ\XBS ∧ Γ\XTor

Σ of Γ\XBS
and Γ\XTor

Σ is equal to Γ\XBB
.
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1.2 Statements of results. In this paper, we identify Γ\XBS∧Γ\XTor

Σ
with a new compactification and determine the cases when Conjecture 1.1.1
holds.

For simplicity, we assume in the following that there exists a semisimple
algebraic group G which is Q-simple such that X = G(R)/K, where K is
a maximal compact subgroup of the real locus G(R), and Γ ⊂ G(Q) is a
neat arithmetic subgroup [Bo3, §17.1].

Theorem 1.2.1 (§7). For every toroidal compactification Γ\XTor

Σ , the

GCQ Γ\XBS∧Γ\XTor

Σ is equal to the intermediate compactification Γ\XInt

defined in Proposition 5.5.1 below and hence is independent of the choice
of Γ-admissible polyhedral cone decomposition Σ in the toroidal compact-
ification.

The fibers of Γ\XInt
over Γ\XBB

are described explicitly in Proposi-
tion 5.5.1. As a corollary of Theorem 1.2.1 and the description of Γ\XInt

,
we get the following results.
Theorem 1.2.2 (§8). If G is Q-simple but not absolutely simple, then
for every toroidal compactification Γ\XTor

Σ , the GCQ Γ\XBS ∧ Γ\XTor

Σ is

equal to Γ\XBB
and hence Conjecture 1.1.1 is true.

Hilbert modular varieties satisfy the condition in Theorem 1.2.2, and
hence Conjecture 1.1.1 holds for them.
Theorem 1.2.3 (§8). If G is Q-simple and Q-split but not equal to SL(2),
then for every toroidal compactification Γ\XTor

Σ , the GCQ Γ\XBS∧Γ\XTor

Σ

strictly dominates Γ\XBB
, and hence Conjecture 1.1.1 is not true.

Siegel modular varieties and Picard modular varieties satisfy the con-
ditions in Theorem 1.2.3, and hence Conjecture 1.1.1 fails for them. The
conditions that G is Q-simple and Q-split imply that G is absolutely sim-
ple. For other absolutely simple cases, see Theorem 8.2.1 below. Together
with Theorem 1.2.2 above, they cover all cases.

There is another compactification of Γ\X, called the reductive Borel–
Serre compactification Γ\XRBS

, which lies between Γ\XBS
and Γ\XBB

and which also plays an important role in cohomology of Γ [Z1, p. 190],
[HaZ1, 1.3(b)], [GHM]. Then the first step of the proof of Theorem 1.2.1
in §7 shows the following result.

Theorem 1.2.4 (§8). For every toroidal compactification Γ\XTor

Σ , the

GCQ Γ\XRBS ∧ Γ\XTor

Σ of the reductive Borel–Serre compactification
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Γ\XRBS
and Γ\XTor

Σ is equal to Γ\XBB
.

In [GT], Goresky and Tai study the least common refinement of Γ\XRBS

and Γ\XTor

Σ (see §6.1).

1.3 Idea of proof. If Γ\X is a Hilbert modular surface, then the
boundary ∂Γ\XBS

is a union of rank two torus bundles over a circle, one
bundle for each end of Γ\X; while ∂Γ\XTor

Σ is a union of cycles of rational
curves CP 1, one cycle for each end of Γ\X, whose length depends on Σ.
Then it is conceivable that Γ\XBS

is completely incompatible with Γ\XTor

Σ

at each end, and hence Γ\XBS∧Γ\XTor

Σ is the compactification obtained by

adding one point to every end of Γ\X, which is exactly Γ\XBB
. Therefore,

Conjecture 1.1.1 is true in this case.
On the other hand, for a Picard modular surface Γ\X = Γ\B2 [L],

where B2 is the unit ball in C2, Γ\XTor

Σ is unique and ∂Γ\XTor

Σ is a union

of elliptic curves, one for each end of Γ\X, while ∂Γ\XBS
is a union of

circle bundles over the elliptic curves which appear in ∂Γ\XTor

Σ . Since

Γ\XBB
is obtained by adding one point to each end of Γ\X, these three

compactifications fit into a tower

Γ\XBS −→
6=

Γ\XTor −→
6=

Γ\XBB
.

So the GCQ Γ\XBS∧Γ\XTor

Σ is equal to Γ\XTor

Σ , which strictly dominates

Γ\XBB
, and Conjecture 1.1.1 is false in this case.

In every case where Conjecture 1.1.1 fails, this phenomenon in the Pi-
card modular surface is present, i.e., Γ\XBS

dominates Γ\XTor

Σ near some

boundary components at infinity in Γ\XTor

Σ , but Γ\XTor

Σ is strictly bigger

than Γ\XBB
.

Besides this dominance and the fact that they both are bigger than
Γ\XBB

, the compactifications Γ\XBS
and Γ\XTor

Σ are incompatible.
To prove this incompatibility, we proceed in two steps. The fiber of

Γ\XBS
over Γ\XBB

is a family of nilmanifolds over a lower dimensional
locally symmetric space. Assume that the base has positive dimension.
We use the incompatibility between the geodesic action in Γ\XBS

and
the torus action in Γ\XTor

Σ to show that every horizontal section of this

bundle collapses to a point in any common quotient of Γ\XBS
and Γ\XTor

Σ ,
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using Lemma 6.2.1. Then we show that the fundamental group of the base
manifold acts ergodically on the fibers of the bundle, and hence the fibers
have to collapse also in any common quotient because of the Hausdorff
property. The possibility of carrying out this two step approach has been
suggested in [HaZ1, Note 1 added in proof, p. 308].

1.4 Organization. The rest of the paper is organized as follows. In
§2, we recall the Borel–Serre and reductive Borel–Serre compactifications,
emphasizing the point of view of the horospherical decomposition. In §3,
we recall the Baily–Borel compactification, in particular its connection with
the Borel–Serre compactification through the refined horospherical decom-
position. In §4, we recall the toroidal embedding, emphasizing the topology
as a partial compactification. In §5, we recall the toroidal compactifica-
tions and a new compactification lying between the toroidal compactifi-
cations and the Baily–Borel compactification. In §6, we define GCQ of
two compactifications and propose a general method to determine GCQ.
In §7, we prove Theorem 1.2.1 using the collapsing methods in §6. In §8,
we prove Theorems 1.2.2, 1.2.3 and 1.2.4, and a more general version of
Theorem 1.2.3.

In our presentation of the compactifications Γ\XBS
, Γ\XRBS

, Γ\XBB

and Γ\Xtor

Σ , we emphasize the geometric point of view, in particular the
horospherical decomposition. Such geometric descriptions are convenient
for studying relations between the compactifications. In fact, these descrip-
tions have also been used in [J] to study metric properties of compactifica-
tions of locally symmetric spaces.

Acknowledgements. First, I would like to thank Professor S. Zucker
for explaining to me Conjecture 1.1.1 above and encouraging conversations
and Professor R. Spatzier for pointing out Lemma 6.2.3 and outlining the
proof of Lemma 7.5.2. I would like to thank Professors A. Borel and M.
Goresky for careful reading of the manuscript and Professors G. Prasad and
D. Burns for helpful conversations. I would also like to thank my wife, Lan
Wang, for information about cyclotomic fields, in particular the reference
[W]. Finally, I would like to thank the referee for very careful reading and
numerous helpful suggestions, in particular, for suggesting Lemma 5.1.1
and the references [P] (see Remark 7.5.3) and [Sp].
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2 Borel–Serre Compactification

In this section, we recall the Langlands decomposition of a parabolic sub-
group (2.1) and the induced horospherical decomposition of X (2.2). Then
we recall the Borel–Serre compactification Γ\XBS

(2.3) and point out a
simple but important property of convergence of geodesics in the com-
pactification Γ\XBS

(2.3.2). In (2.4), we recall the reductive Borel–Serre
compactification Γ\XRBS

.

2.1 Langlands decomposition. Let x0 = K be the basepoint in X =
G/K corresponding to the maximal compact subgroup K in G = G(R) cho-
sen in §1.2. For any rational parabolic subgroup P, let NP be its unipotent
radical. Then the Levi quotient LP = P/NP has a unique lift LP(x0) in P
which is stable under the Cartan involution associated with x0 [BoSe, §1.6,
§1.9], and P = NPLP(x0).

Let SP be the maximal Q–split torus in the center of LP. Then LP =
MPSP, where MP =

⋂
χ∈XQ(LP) Ker(χ2). Denote the lifts of MP and SP

in LP(x0) still by MP and SP.
Let NP = NP(R), MP = MP(R), and AP be the connected component

of SP(R). These subgroups induce the Langlands decomposition of P =
P(R):

P = NPMPAP , g = n(g)m(g)a(g) , (1)

where n(g) ∈ NP , m(g) ∈MP , a(g) ∈ AP are uniquely determined by g.
Let aP be the Lie algebra of AP , and nP be the Lie algebra of NP .

Then aP acts on nP , and the set of roots is denoted by Φ+(P,AP ). Define
a positive cone a

+
P by

a
+
P =

{
H ∈ aP | β(H) > 0 , for all β ∈ Φ+(P,AP )} .

2.2 Horospherical Decomposition Through the identification X =
G/K and the Cartan decomposition of the Lie algebra g of G, the Killing
form on the Lie algebra g defines a G-invariant Riemannian metric on X.
In the following, we fix this metric on X.

The Langlands decomposition of a parabolic subgroup P above induces
a horospherical decomposition of X. Define KP = MP ∩K. Then KP is a
maximal compact subgroup of MP , and the quotient XP = MP/KP is the
product of a symmetric space of noncompact type and a possible Euclidean
space, and hence is called the boundary symmetric space associated with P .

Since P acts transitively on X, the Langlands decomposition induces
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the following horospherical decomposition of X:
X = NP ×XP ×AP , x = n(x)a(x)z(x), (1)

where n(x) ∈ NP , z(x) ∈ XP , and a(x) ∈ AP are uniquely determined
by x.

If G has R-rank one, then XP consists of one point, and the orbits
under NP are horospheres associated with the point at infinity determined
by P . Because of this, the above decomposition is called the horospherical
decomposition of X determined by P . This decomposition also play an
important role in [K] and [GuJTa].

For convenience, we identify (n, z, a) ∈ NP ×XP × AP with the point
x = naz ∈ X.
Lemma 2.2.1 [Bo2, Proposition 1.6]. For any n ∈ NP and z ∈ XP , nAP z
is a totally geodesic flat submanifold; for any n ∈ NP and a ∈ AP , naXP

is a totally geodesic submanifold; and nAP z is perpendicular to naXP and
NPaz at (n, z, a). In particular, for any n ∈ NP , z ∈ XP , H ∈ a

+
P , and

|H| = 1, the curve c(t) = (n, z, exp(tH)), t ∈ R, is a unit speed geodesic
in X.

The horospherical decomposition and Lemma 2.2.1 are illustrated in
Figure 2.2.

XP NP

AP

Figure 2.2

2.3 Boundary components and Γ\XBS
The Borel–Serre compact-

ification Γ\XBS
[BoSe] is constructed in three steps:

1. Define a boundary component for every proper rational parabolic
subgroup of G.

2. Define a partial compactification XBS of X by adding these (rational)
boundary components.

3. Show that Γ acts continuously on X
BS with a compact Hausdorff

quotient, which is the compactification.
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For any rational parabolic subgroup P, its boundary component e(P)
is defined by e(P) = NP × XP . The boundary component e(P) is added
at infinity of X through the horospherical decomposition (Eq. (1) in §2.2).
More precisely, for any sequence xj = (nj , zj , expHj) in X, xj converges
to (n∞, z∞) ∈ e(P) if and only if n∞ = limj→∞ nj , z∞ = limj→∞ zj , and
for any β ∈ Φ+(P,AP ), β(Hj)→ +∞ as j → +∞.

This gluing of e(P) to X at infinity can be represented by Figure 2.3.

XP NP

Add e(P) at 
infinity

XP NP

APAP

XP
NP

Figure 2.3

By adding all the boundary components e(P) to X as above, we get a
partial compactification X

BS = X ∪
∐

P e(P) of X, where the union over
P is over all proper rational parabolic subgroups of G.
Proposition 2.3.1 [BoSe, Theorem 9.3]. The arithmetic subgroup Γ acts
continuously on X

BS with a compact quotient. The quotient Γ\XBS is
called the Borel–Serre compactification and denoted by Γ\XBS

.
Let P1, . . . ,Pl be representatives of Γ-conjugacy classes of proper ra-

tional parabolic subgroups of G. Then

Γ\XBS
= Γ\X ∪

l∐
i=1

ΓPi\e(Pi) , (1)

where ΓPi = Γ ∩ Pi.
Lemma 2.3.2. For any Pi, let cj(t) be the projection in Γ\X of the geodesic
c̃j(t) = (nj , zj , exp(tHj)) inX, where nj ∈ NP , zj ∈ XP , Hj ∈ a

+
P , |Hj | = 1,

and j = 1, 2. Then c1(t) and c2(t) converge to the same boundary point in
Γ\XBS

as t → +∞ if and only if (n1, z1) and (n2, z2) project to the same
point in ΓPi\e(Pi).

Proof. From the definition, it is clear that c̃i(t) converges to (ni, zi) ∈
e(P) ⊂ XBS. Then the lemma is clear.

2.4 Reductive Borel–Serre compactification. The reductive Borel–
Serre compactification Γ\XRBS

is constructed similarly as Γ\XBS
[Z1,

p. 190], [HaZ1, 1.3(b)], [GHM, §8].
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For any rational parabolic subgroup P, its boundary component ê(P)
is defined by ê(P) = XP . The boundary component ê(P) is added at
infinity of X also through the horospherical decomposition (Eq. (1) in §2.2).
More precisely, for any sequence xj = (nj , zj , expHj) in X, xj converges
to z∞ ∈ ê(P) if and only if z∞ = limj→∞ zj , and for any β ∈ Φ+(P,AP ),
β(Hj) → +∞ as j → +∞. Intuitively, the nilpotent factor NP shrinks to
a point, and only XP is added at infinity as illustrated in Figure 2.4.

X
N

A
N

X X
P

P

P

P

P

P

Figure 2.4

Adding all the (rational) boundary components ê(P) to X, we get a
partial compactification X

RBS = X ∪
∐

P ê(P) of X.

Lemma 2.4.1 [Z1, Proposition 4.2]. The arithmetic subgroup Γ acts contin-
uously on XRBS with a compact Hausdorff quotient, which is the reductive
Borel–Serre compactification Γ\XRBS

.

3 Baily–Borel Compactification

In this section, we recall the root structure of Hermitian symmetric spaces
(3.1) and a refined horospherical decomposition of X (3.2). Then we re-
call the Baily–Borel compactification Γ\XBB

(3.3) and its connection with
Γ\XBS

and Γ\XRBS
(3.4), following the philosophy of [Z2].

3.1 Root structure of Hermitian symmetric spaces. Let S ⊂ G
be a maximal Q-split torus, and Φ(G,S) the set of Q-roots of G with
respect to S. Choose an order on S, and denote the set of positive roots
by Φ+(G,S) and the set of simple roots by ∆(G,S). Since G is Q-simple,
Φ(G,S) is irreducible. By [BBo, Proposition 2.9], the root system Φ(G,S)
is either of type BCr or of type Cr, where r = rkQ(G). Denote the simple
roots by β1, . . . , βr such that βi is not orthogonal to βi+1, and βr is the
short root in case of BCr type and the long root in case of Cr type. The



Vol. 8, 1998 GCQ TOROIDAL COMPACTIFICATIONS 987

root βr is called the distinguished root of ∆(G,S).

3.2 Refined horospherical decomposition. The set of positive roots
Φ+(G,S) determines a unique minimal rational parabolic subgroup P whose
radical NP is spanned by the root spaces of the positive roots. Any rational
parabolic subgroup Q containing P is called a standard rational parabolic
subgroup and is of the form PI , where I is a proper subset of ∆(G,S), and
PI is generated by the centralizer of SI = {s ∈ S | sβ = 1, β ∈ I} and NP.

A subset of ∆(G,S) is called connected if it is not a union of two
orthogonal disjoint subsets with respect to the Killing form. For every
standard parabolic subgroup PI , let ∆I,h be the connected component of
I containing the distinguished root βr. If I does not contain βr, ∆I,h is
defined to be empty.

Then ∆I,h spans a subroot system in Φ(G,S), whose root spaces gen-
erate a semisimple algebraic subgroup GI,h of G. Let GI,l be the nor-
mal Q-subgroup in the Levi group LPI (x0) complementary to GI,h, i.e.,
LPI (x0) = GI,hGI,l is an almost direct product. Define KI,h = K ∩GI,h,
and KI,l = K ∩GI,l, where GI,h = GI,h(R), GI,l = GP,l(R).

Lemma 3.2.1. The space XI,h = GI,h/KI,h is a Hermitian symmetric
space of noncompact type. And XI,l = GI,l/KI,lAPI is a symmetric space
of noncompact type. If PI is a maximal rational parabolic subgroup, then
CPI = GI,l/KI,l is a symmetric cone in the center of the nilpotent radical
of PI .

Proof. The first statement follows from the fact that ∆I,h spans a root
system of type either BC or C. If PI is maximal, the second and the third
statements follows from [AMuRT, Theorem 1, p. 227]; and the nonmaximal
cases are similar.

Lemma 3.2.2. The boundary symmetric space XI associated with PI in
§2.2 can be decomposed as a Riemannian product XI = XI,h ×XI,l.

Proof. Since MPI = GI,hGI,l/API and GI,h commutes with GI,l, the lemma
follows from the definition of XI,h and XI,l.

Since every rational parabolic subgroup Q is conjugate to a standard
parabolic subgroup PI , we also get subgroups GQ,h, GQ,l of MQ, and the
boundary spaces XQ,h,XQ,l.

Lemma 3.2.3. With the above notation, the space X has the following
refined horospherical decomposition with respect to the parabolic subgroup
Q: X = NQ ×XQ,h ×XQ,l ×AQ.
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Proof. It follows from the horospherical decomposition X = NQ×XQ×AQ
(Eq. (1) in §2.2) and the decomposition XQ = XQ,h×XQ,l in Lemma 3.2.2.

This refined horospherical decomposition of X is illustrated in Figure 3.2.

X
NXQ,lQ,h

Q

AQ

Figure 3.2
To compare Γ\XBS

and Γ\XBB
, we need the following lemma.

Lemma 3.2.4. For any proper rational parabolic subgroup Q, there exists
a unique maximal rational parabolic subgroup Q′ containing Q such that
XQ,h = XQ′,h.

Proof. Without loss of generality, assume that Q = PI . If I does not
contain the distinguished root βr, then XQ,h consists of one point, and Q′ =
P∆−{βr} is the unique maximal standard parabolic subgroup containing Q
such that XQ′,h is trivial. Otherwise, I contains βr. Let {βi, . . . , βr} be
the connected component of I containing βr. Then P∆−{βi−1} is the unique
maximal standard parabolic subgroup containing Q such that XQ′,h=XQ,h.

3.3 Boundary components and Γ\XBB
. The construction of the

Baily–Borel compactification Γ\XBB
[BBo] is similar to Γ\XBS

in §2.3
except that only proper maximal rational parabolic subgroups contribute
to the boundary ∂Γ\XBB

, i.e., the boundary components of the partial
compactification XBB of X is parametrized by maximal rational parabolic
subgroups of G.

For each maximal rational parabolic subgroup Q, define its boundary
component ẽ(Q) by ẽ(Q) = XQ,h. This boundary component can be real-
ized as a maximal analytic subset in the boundary of the closure of X in
the complex Euclidean space when X is realized canonically as a bounded
symmetric domain [BBo].

These rational boundary components ẽ(Q) can be added to X according
to the refined horospherical decomposition in Lemma 3.2.3 to form the
partial compactification X

BB = X ∪
∐

Q ẽ(Q), where the union over Q
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is over all maximal rational parabolic subgroups. More precisely, for any
sequence xj = (nj , zj,h, zj,l, expHj) ∈ NQ×XQ,h×XQ,l×AQ, the sequence
xj converges to z∞,h ∈ ẽ(Q) if and only if z∞,h = limj→∞ zj,h in XQ,h, and
for any β ∈ Φ+(Q,AQ), limj→+∞ β(Hj) = +∞.

This gluing procedure is illustrated in Figure 3.3, where XQ,l and NQ

shrink to one point at infinity, and only the Hermitian factor is added at
infinity.

X
NXQ,lQ,h

Q

AQ
XQ,l NQ

XQ,h XQ,h
Figure 3.3

Lemma 3.3.1 [BBo, Corollary 4.11]. The arithmetic group Γ acts continu-
ously on X

BB with a compact Hausdorff quotient. This quotient is called
the Baily–Borel compactification of Γ\X and denoted by Γ\XBB

.

Remark 3.3.2. By Lemma 3.2.4, non-maximal rational parabolic sub-
groups do not give rise to new boundary components for XBB. This is
the reason that the boundary components of XBB are parametrized by
maximal rational parabolic subgroups.

3.4 The fibers of Γ\XBS
over Γ\XBB

. To determine the GCQ
Γ\XBS ∧ Γ\XTor

Σ and understand its relation with Γ\XBB
, we need to

describe the fibers of Γ\XBS
over Γ\XBB

explicitly.
Lemma 3.4.1. The identity map on X extends to a continuous Γ-equivar-
iant map from X

BS to XBB; i.e., the partial compactification X
BS domi-

nates XBB.

Proof. From the description in §2.3 and §3.3 above, it is clear that a con-
vergent sequence in XBS with limit (n∞, z∞) ∈ NQ×XQ is also convergent
in X

BB with limit z∞,h ∈ XQ′,h, where Q′ is the unique maximal rational
parabolic subgroup containing Q such that XQ′,h = XQ,h (Lemma 3.2.4),
and z∞ = (z∞,h, z∞,l) ∈ XQ,h ×XQ,l = XQ. This implies that the identity
map on X extends to a well-defined continuous map from X

BS to XBB.
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Since Γ acts on the set of rational parabolic subgroups by conjugation
and preserves the horospherical decomposition and the refined horospheri-
cal decomposition, the extended map is Γ equivariant.

Lemma 3.4.2 [Z2, Theorem 3.11]. The Borel–Serre compactification Γ\XBS

dominates the Baily–Borel compactification Γ\XBB
.

Proof. Since the map from X
BS to X

BB is Γ-equivariant, we get a con-
tinuous map from Γ\XBS

to Γ\XBB
which restricts to the identity map

on X. Therefore, Γ\XBS
dominates Γ\XBB

.
Let P1, . . . ,Pn be representatives of Γ-conjugacy classes of maximal

rational parabolic subgroups. Then

Γ\XBB
= Γ\X ∪

n∐
i=1

ΓPi,h\ẽ(Pi) = Γ\X ∪
n∐
i=1

ΓPi,h\XPi,h ,

where ΓPi,h is the image of ΓPi = Γ ∩ Pi under the projection Pi =
NPiGPi,hGPi,lAPi → GPi,h and defines a lattice subgroup in GPi,h.

For each Pi, let Pi,j , j = 1, . . . , ni, be representatives of Γ-conjugacy
classes of rational parabolic subgroups which are contained in Pi and which
satisfy XPi,j ,h = XPi,h. Then by Lemma 3.2.4, Pi,j , i = 1, . . . , n, j =
1, . . . , ni, are representatives of Γ-conjugacy classes of all proper rational
parabolic subgroups of G, and

Γ\XBS
= Γ\X ∪

n∐
i=1

ni∐
j=1

ΓPi,j\e(Pi,j) = Γ\X ∪
n∐
i=1

ni∐
j=1

ΓPi,j\NPi,j ×XPi,j .

Lemma 3.4.3 [Z3, pp. 350–351]. For any z ∈ ΓPi,h\XPi,h ⊂ ∂Γ\XBB
, the

fiber in Γ\XBS
over z is equal to

ni∐
j=1

Γ′′Pi,j\NPi,j ×XPi,j ,l ,

where Γ′′Pi,j is the kernel in ΓPi,j under the projection Pi,j =
NPi,jGPi,j ,lGPi,j ,hAPi,j → GPi,j ,h.

Proof. It follows from the proof of Lemma 3.4.1 that the fiber in XBS over
a boundary component ẽ(Pi) is equal to

∐ni
j=1NPi,j ×XPi,j ,l. By passing

to the quotient, we get Lemma 3.4.3.
Lemma 3.4.4. Let Pi,1 = Pi be the unique maximal parabolic subgroup
in the collection Pi,1, . . . ,Pi,ni . Then Γ′′Pi,\NPi ×XPi,l is a dense subset of
the total fiber

∐ni
j=1 Γ′′Pi,j\NPi,j ×XPi,j ,l over z.
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Proof. We note that XBS has the structure of a manifold with corners,∐ni
j=1 e(Pi,j) =

∐ni
j=1(NPi,j × XPi,j ,l) × XPi,h, and e(Pi) is a maximal

boundary face and other boundary components e(Pi,j) are contained in
the closure of e(Pi) [BoSe, §7]. This implies that NPi × XPi,l is dense in∐ni
j=1(NPi,j ×XPi,j ,l). Passing to the quotient, we get Lemma 3.4.4.

Similarly, we get the following description of the fibers of Γ\XRBS
over

Γ\XBB
.

Lemma 3.4.5. The reductive Borel-Serre compactification Γ\XRBS
domi-

nates Γ\XBB
. For any z ∈ ΓPi,h\XPi,h ⊂ ∂Γ\XBB

, the fiber in Γ\XRBS

over z is equal to
∐ni
j=1 ΓPi,j ,l\XPi,j ,l, where ΓPi,j ,l is the image of ΓPi,j in

GPi,j ,l under the projection Pi,j = NPi,jGPi,j ,lGPi,j ,hAPi,j → GPi,j ,l.

4 Toroidal Embeddings

In this section, we recall the toroidal embeddings. For details, see [AMuRT,
§1.1], [O], [N, §6]. In the following, we emphasize the topological aspect of
the toroidal embeddings and ignore their algebraic structure.

4.1 Rational partial polyhedral decomposition. Let N be a lattice
in Rn. Then T = Cn/N is equal to (C×)n, a complex torus. The lattice N
defines a rational structure on N ⊗R ∼= Rn.

A subset σ of N⊗R is called a strongly convex rational polyhedral cone
if there exist a finite number of elements n1, . . . , ns in N such that

σ = {a1n1 + · · ·+ asns | ai ≥ 0, i = 1, . . . , s} .
Then Span(σ) = σ + (−σ) is a linear subspace of N ⊗ R, and the interior
of σ considered as a subset of Span(σ) is an open cone and denoted by

o
σ.

For any such cone σ, there exist finitely many linear functionals l1, . . . , lk
on N ⊗R and p ≤ k such that
σ = {n ∈ N ⊗ R | l1(n) ≥ 0, . . . , lp(n) ≥ 0; lp+1(n) = 0, . . . , lk(n) = 0} ,

and
o
σ = {n ∈ N ⊗ R | l1(n) > 0, . . . , lp(n) > 0; lp+1(n) = 0, . . . , lk(n) = 0} .

(1)
A rational partial polyhedral cone decomposition of N⊗R is a collection

Σ of strongly convex rational polyhedral cones in N ⊗ R satisfying the
following conditions:

1. Every face of any σ ∈ Σ is also a cone in Σ.
2. For any σ, σ′ ∈ Σ, the intersection σ ∩ σ′ is a face of both σ and σ′.
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4.2 Boundary components of cones. A rational partial polyhedral
cone decomposition Σ in N ⊗ R defines a partial compactification of the
torus T , called the toroidal embedding of T associated with Σ and denoted
by TΣ.

For any σ ∈ Σ, the complex subspace SpanC(σ) = Span(σ)⊗C acts on
T by translation. Define the boundary component O(σ) associated with
σ to be the quotient T/SpanC(σ), which is equal to (Cr/SpanC(σ))/N , a
complex torus of smaller dimension.

Then the toroidal embedding TΣ is defined by

TΣ = T ∪
∐

σ∈Σ,σ 6={0}
O(σ) , (1)

with the following topology: A sequence zj = xj + iyj in T converges to
a point z∞ ∈ O(σ) for some σ ∈ Σ if and only if for the defining linear
functionals l1, . . . , lk of σ in Eq. (1) in §4.1, the following conditions are
satisfied:

1. l1(xj)→ +∞, . . . , lp(xj)→ +∞ as j → +∞, while lp+1(xj), . . . , lk(xj)
are bounded.

2. The projection of zj in O(σ) converges to the point z∞.

Lemma 4.2.1. Write T = N ⊗R/N + iN ⊗R. For any point x ∈ N ⊗R/N
and a ray c(t) in N ⊗ R which starts from the origin and is contained in
the interior

o
σ of a cone σ ∈ Σ, then the ray x + ic(t) in T converges to a

boundary point in O(σ) ⊂ TΣ as t → +∞. If σ has codimension zero in
N ⊗R, then any two such rays whose imaginary parts are contained in the
interior

o
σ converge to the same boundary point.

Proof. It is clear that both conditions above are satisfied and hence the ray
x + ic(t) converges to a point in O(σ) as t → +∞. If σ has codimension
zero in N ⊗ R, then O(σ) consists of one point, and the second statement
follows immediately.

Remark 4.2.2. The decomposition in Eq. (1) above is the T -orbit decom-
position of TΣ. The reason why we call O(σ) the boundary component is
to emphasize TΣ as a partial compactification in analogue with the partial
compactification X

BS.

4.3 Examples. If dimN ⊗ R = 1 and Σ = {{0}, the positive half
line}, then TΣ is represented by Figure 4.3.1. In this figure, the circle
N ⊗ R/N shrinks to one point at infinity, and TΣ is the complex plane. If
dimN⊗R = 2 and Σ is the product of the polyhedral cone decomposition in
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dimension 1 above, then Σ consists of four elements and TΣ is represented
geometrically in Figure 4.3.2. In this figure, the two dimensional compact
torus N ⊗ R/N shrinks to either a circle or a point depending on the
direction at infinity. Any two rays in T whose imaginary parts are rays in
the positive quadrant converge to the distinguished corner point.

.

Figure 4.3.1

.

.

. .

Figure 4.3.2

5 Toroidal and Intermediate Compactifications

In this section, we recall the toroidal compactifications Γ\XTor

Σ of Γ\X
(5.4) and a new compactification Γ\XInt

, which lies between Γ\XTor

Σ and

Γ\XBB
and is hence called the intermediate compactification (5.5).

A key point in understanding the toroidal compactifications is to vi-
sualize the complex torus needed to define the toroidal embeddings (5.3).
The realization of X as a Siegel domain of the third kind and its connec-
tion with the horospherical decomposition in (5.1) show clearly how the
complex torus arises.

5.1 Siegel domains of the third kind. For every maximal rational
parabolic subgroup Q, let UQ be the center of the nilpotent radical NQ

of Q, and let VQ = NQ/UQ. Then VQ is a vector group, i.e., abelian and
diffeomorphic to its Lie algebra vQ. Since NQ is a UQ-principal bundle over
VQ, we get that, as differential manifolds, NQ = UQ × VQ.

Lemma 5.1.1. The Lie algebra vQ of the quotient group VQ = NQ/UQ
can be identified with a subspace of the algebra nQ of NQ which is com-
plementary to the Lie algebra uQ of UQ. The adjoint action of GQ,l on nQ
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preserves this subspace, which is denoted also by vQ.

Proof. By [BBo, Corollary 2.10], Q is also a maximal real parabolic sub-
group. For simplicity, we assume that Q is the normalizer of a standard
boundary component Fs in the notation of [AMuRT, §4.1]. Then the third
equation on [AMuRT, p. 224] shows that the Lie algebra uQ is the direct
sum of some of the root spaces which appear in nQ, and hence vQ can nat-
urally identified with the direct sum of the other root spaces in nQ, given
by the second equation on [AMuRT, p. 224]. This equation also shows that
this complementary subspace of uQ in nQ is an abelian subalgebra. The
root space decomposition of the Lie algebra gQ,l of GQ,l on [AMuRT, p. 226]
shows that the adjoint action of GQ,l on nQ leaves both subspaces uQ and
vQ invariant. This completes the proof.

This lemma shows that the adjoint action of GQ,l on the quotient group
VQ and its Lie algebra vQ can be studied by the restriction of the adjoint
action of GQ,l on nQ to the invariant subspace vQ (see Lemma 7.5.1). In
§7.4 and §7.5, we will show that the adjoint (or holonomy) action of ΓQ,l
on the compact nilmanifold ΓVQ\VQ is ergodic, where ΓVQ = ΓNQ/ΓUQ ,
ΓNQ = Γ ∩NQ, ΓUQ = Γ ∩ UQ. This ergodicity result plays an important
role in this paper.

Recall from Lemma 3.2.1 that XQ,h is the boundary Hermitian symmet-
ric space and CQ is the symmetric cone in UQ with XQ,h as a homothety
section. Then we have the following realization of X as a Siegel domain of
the third kind over XQ,h

Proposition 5.1.2 [WoKo, Theorem 7.7], [AMuRT, §3.4, pp. 238-239], [N,
§5]. With the above notation, there exists an injective holomorphic map
π : X → XQ,h ×Cn × (UQ ⊗C) such that
π(X) =

{
(z, v, u1 + iu2) | z ∈ XQ,h, v ∈ Cn, u1 ∈ UQ, u2 ∈ hz(v, v) + CQ

}
,

where n = 1
2 dimVQ and hz(v, v) ∈ CQ is a quadratic form in v depending

holomorphically on z.
This realization represents X as a family of tube domains UQ+iCQ over

XQ,h×Cn and is closely related to the refined horospherical decomposition
in Lemma 3.2.3.

Using the decomposition NQ = UQ × VQ explained above, we can write
the refined horospherical decomposition of X in Lemma 3.2.3 as follows:

X = UQ × VQ ×XQ,h ×XQ,l ×AQ . (1)
Then the relation between the horospherical decomposition and the re-

alization as a Siegel domain of the third kind is as follows.
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Lemma 5.1.3. For any x = (u, v, z, xl, a) ∈ UQ×VQ×XQ,h×XQ,l×AQ =
X, denote the image π(x) of x under the map π in Proposition 5.1.2 by
(z′, v′, u′1 + iu′2) ∈ XQ,h × Cn × (UQ ⊗ C). Then z′ = z, the map v → v′

defines a R-linear isomorphism from VQ to Cn, the map u → u′1 is a R-
linear transformation on UQ, and u′2 ∈ hz(v′, v′) + CQ. Furthermore, for
any u ∈ UQ, v ∈ VQ, and z ∈ XQ,h, the image of {u}×{v}×{z}×XQ,l×AQ
is exactly the shifted cone u′1 + i(hz(v′, v′) + CQ) over the point (z, v′) ∈
XQ,h ×Cn.

Proof. It follows from the discussions in [AMuRT, pp. 235-238]; in particu-
lar, the linear isomorphisms v → v′ and u→ u′ come from trivialization of
the two principal bundles.

This relation in Lemma 5.1.3 can be represented by Figure 5.1.1. The
left-hand side represents the fivefold decomposition of X in Eq. (1) above,
while the right-hand side represents the structure of X as a family of tube
domains over XQ,h × Cn ∼= XQ,h × VQ (we only draw the fibers of the
fibrations).

X XQ,lQ,h

AQ

XQ,h

VQ

XQ,l

AQ
UQ

V UQQ

Figure 5.1.1

Since it is easier to visualize the horospherical decomposition, this figure
is helpful in understanding the realization of X as a Siegel domain of the
third kind.

Lemma 5.1.4. For any u ∈ UQ, v ∈ VQ, z ∈ XQ,h, xl ∈ XQ,l, and H ∈ a
+
Q,

|H| = 1, the curve c(t) = (u, v, z, xl, exp(tH)), t ∈ R, is a geodesic in X.
In the realization of X as a Siegel domain of the third kind, c(t) becomes
a ray in the tube domain UQ + i(hz(v′, v′) + CQ) whose imaginary part is
a ray starting from the vertex hz(v′, v′).

Proof. By Lemma 2.2.1, c(t) is a geodesic in X. By Lemma 5.1.3, the
geodesic c(t), t ∈ R, is mapped into the cone u′1 + i(hz(v′, v′) + CQ) over
the point (z, v′) ∈ XQ,h × Cn. Since XQ,h is a section of the symmetric
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cone CQ, any geodesic in the cone u′1 + i(hz(v′, v′) + CQ) with respect to
the invariant metric is a ray from the vertex.

This lemma shows that when xl varies in XQ,l, the family of parallel
geodesics (u, v, z, xl, exp(tH)) in X are mapped to a family of rays in the
cone hz(v′, v′) + CQ issued from the vertex, as illustrated in Figure 5.1.2

AQ AQ

XXQ,l Q
Figure 5.1.2

5.2 Γ-admissible family of polyhedral cone decomposition. As
in the case of toroidal embeddings, the toroidal compactifications Γ\XTor

Σ
of Γ\X depend on polyhedral decompositions Σ.

For any maximal rational parabolic subgroup Q, let ΓQ,l be the image
of ΓQ in GQ,l under the projection Q = NQGQ,hGQ,lAQ → GQ,l. Then ΓQ,l
is a torsion free lattice subgroup acting on XQ,l. Denote the intersection
ΓQ∩UQ by ΓUQ . Then ΓUQ is a torsion free lattice in the vector group UQ.

Recall from [AMuRT, p. 117, 252], [N, p. 59-60] that a ΓQ,l-admissible
polyhedral decomposition of CQ is a collection ΣQ of polyhedral cones sat-
isfying the following conditions:

1. Each cone in ΣQ is a strongly convex rational polyhedral cone in
CQ ⊂ UQ with respect to the rational structure on UQ induced by
the lattice ΓUQ .

2. Every face of any σ ∈ ΣQ is also an element in ΣQ.
3. For any σ, σ′ ∈ ΣQ, the intersection σ ∩ σ′ is a face of both σ and σ′.
4. For any γ ∈ ΓQ,l and σ ∈ ΣQ, γσ is also a cone in ΣQ.
5. There are only finitely many classes of cones in ΣQ modulo ΓQ,l.
6. CQ ⊂ ∪σ∈ΣQσ, and hence CQ = ∪σ∈ΣQCQ ∩ σ.
A Γ-admissible family of polyhedral cone decomposition Σ = {ΣQ} is a

union of ΓQ,l-admissible polyhedral cone decompositions ΣQ of CQ over all
maximal rational parabolic subgroups satisfying the following compatibility
conditions:

1. If Q1 = γQ2γ
−1, then γΣQ1 = ΣQ2 .
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2. If CQ1 is contained in the boundary of CQ2 , then ΣQ1 = {σ ∩ CQ1 |
σ ∈ ΣQ2}.

5.3 Partial toroidal compactifications. For any maximal rational
parabolic subgroup Q, ΓUQ is a lattice in UQ, and ΓUQ\UQ⊗C is a complex
torus. Using Proposition 5.1.2, identify X with the subset π(X) in XQ,h ×
Cn × (UQ ⊗ C). Then ΓUQ\X is contained in a bundle ΓUQ\XQ,h × Cn ×
(UQ ⊗ C) over XQ,h × Cn with fiber ΓUQ\UQ ⊗ C, which is denoted by
ΓUQ\X(Q).

A ΓQ,l-admissible polyhedral cone decomposition ΣQ of CQ ⊂ UQ de-
fines a partial compactification (a toroidal embedding) ΓUQ\UQ ⊗ CΣQ

of
every fiber ΓUQ\UQ⊗C in ΓUQ\X(Q) (§4.2). Putting all these partial com-
pactifications together, we get a partial compactification ΓUQ\X(Q)ΣQ

of

the bundle ΓUQ\X(Q). The interior of the closure of ΓUQ\X in ΓUQ\X(Q)ΣQ

defines a partial compactification ΓUQ\XΣQ
of ΓUQ\X, which is a bundle

over XQ,h × Cn [AMuRT, pp. 249–250].

This partial compactification ΓUQ\XΣQ
can be represented by Fig-

ure 5.3.

XQ,l

AQ

.

.

.

VQ

XQ,h

Figure 5.3

5.4 Toroidal compactification Γ\XT or

Σ . For every Γ-admissible fam-
ily of polyhedral cone decomposition Σ = {ΣQ} in §5.2, we get a family of
partially compactified spaces ΓUQ\XΣQ

.



998 L. JI GAFA

Proposition 5.4.1 [AMuRT, Main Theorem I, p. 252] [N, Main Theorem
7.10]. For any Γ-admissible family of polyhedral cone decomposition Σ,
there exists a unique compact Hausdorff analytic compactification Γ\XTor

Σ
satisfying the following conditions:

1. For every maximal rational parabolic subgroup Q, the projection map
πQ : ΓUQ\X → Γ\X extends to an open holomorphic map πQ :

ΓUQ\XΣQ
→ Γ\XTor

Σ .

2. The images πQ(ΓUQ\XΣQ
) for all maximal rational parabolic sub-

groups Q cover Γ\XTor

Σ .

This compactification Γ\XTor

Σ is called the toroidal compactification of
Γ\X associated with the polyhedral cone decomposition Σ. For any such Σ,
there always exists a refinement of Σ such that the corresponding toroidal
compactification is a smooth projective variety. This is the motivation for
defining the toroidal compactifications in [AMuRT].

To describe the boundary of Γ\XTor

Σ , we first construct essential bound-
ary components in (ΓQ/ΓUQ)\ΓUQ\XΣQ

. Let σ1, . . . , σm be representatives
of ΓQ,l-classes of cones in ΣQ whose interiors are contained in the cone CQ.
These classes of cones in ΣQ are called the essential cones for Q. For each
such cone σj , its boundary component O(σj) in the toroidal embedding
TΣQ of the torus T = ΓUQ\UQ ⊗ C (4.2) defines a subbundle of ΓUQ\XΣQ
whose fiber over XQ,h ×Cn is O(σj). Denote this bundle by O(σj) also.

Lemma 5.4.2 [AMuRT, p. 274] [N, p. 66]. Let Γ′Q be the kernel of the
projection ΓQ → ΓQ,l. Then Γ′Q/ΓUQ acts properly discontinuously on
O(σj) and the quotient (Γ′Q/ΓUQ)\O(σj) is a fiber bundle over ΓQ,h\XQ,h.
The union

∐m
j=1(Γ′Q/ΓUQ)\O(σj) is mapped injectively into the boundary

of (ΓQ/ΓUQ)\ΓUQ\XΣQ
, and is called the essential boundary from Q.

Lemma 5.4.3 [N, Corollary 7.13]. The map πQ : ΓUQ\XΣQ
→ Γ\XTor

Σ

factors through the map

πQ : (ΓQ/ΓUQ)\ΓUQ\XΣQ
→ Γ\XTor

Σ ,

and the map πQ is injective on the essential boundary of (ΓQ/ΓUQ)\ΓUQ\XΣQ
.

Proof. Since Σ is Γ-admissible, ΓQ acts on ΓUQ\XΣQ
. Clearly ΓUQ acts

trivially on ΓUQ\XΣQ
. Therefore, ΓQ/ΓUQ acts on ΓUQ\XΣQ

. Since the
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map ΓUQ\X → Γ\X factors through the map (ΓQ/ΓUQ)\ΓUQ\X → Γ\X
and Γ\XTor

Σ is Hausdorff, the map πQ : ΓUQ\XΣQ
→ Γ\XTor

Σ also factors
through the map πQ.

On the other hand, by the reduction theory, two points on the essential
boundary of ΓUQ\XΣQ

are mapped to the same point in Γ\XTor

Σ if and
only if they are identified under ΓQ/ΓUQ . This implies that πQ is injective
on the boundary of (ΓQ/ΓUQ)\ΓUQ\XΣQ

.

Let P1, . . . ,Pn be representatives of Γ-conjugacy classes of maximal
rational parabolic subgroups of G. For each Pi, let σi,1, . . . , σi,mi be rep-
resentatives of ΓPi,l-classes of essential cones in ΣPi . By the definition of
Σ in §5.2, every cone in Σ is essential with respect to some Pi. Therefore,
we get from Proposition 5.4.1(2) the following description of the boundary
∂Γ\XTor

Σ of the toroidal compactification Γ\XTor

Σ :

∂Γ\XTor

Σ =
n∐
i=1

mi∐
j=1

(Γ′Pi/ΓUPi )\O(σi,j) . (1)

Lemma 5.4.4 [AMuRT, Proposition, p. 254], [N, pp. 63-64]. Every toroidal
compactification Γ\XTor

Σ dominates Γ\XBB
. For any boundary point z ∈

ΓPi,h\XPi,h ⊂ ∂Γ\XBB
, the fiber in Γ\XTor

Σ over z is a union
∐mi
j=1 π

−1
σi,j (z),

where πσi,j is the projection map from the fiber bundle (Γ′Pi/ΓUPi )\O(σj)
to ΓPi,h\XPi,h.

Proof. From the proof of [AMuRT, Lemma 2, p. 255] and the definition of
the map Γ\XTor

Σ → Γ\XBB
, we get that among all the boundary compo-

nents in Eq. (1), only the essential boundary components of Pi are mapped
to ΓPi,h\XPi,h. Then the lemma follows easily.

5.5 Intermediate compactification Γ\XInt
. Using the above de-

scription of the fibers of Γ\XTor

Σ over Γ\XBB
, we introduce a new com-

pactification Γ\XInt
, which will be shown to be equal to the GCQ Γ\XBS∧

Γ\XTor

Σ in §7.

Proposition 5.5.1. For every toroidal compactification Γ\XTor

Σ , there
exists a compactification of Γ\X satisfying the following properties:

1. It dominates Γ\XBB
and is dominated by Γ\XTor

Σ .
2. Let ΓP,h\XP,h be a boundary component of Γ\XBB

. For any z ∈
ΓP,h\XP,h ⊂ ∂Γ\XBB

, if dimXP,l ≥ 1, then the fiber over z in
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Γ\XInt
consists of only one point.

3. If dimXP,l = 0, then the fiber over z in Γ\XInt
is ΓVP \VP , a compact

torus, which is also the fiber in Γ\XTor

Σ over z, where ΓVP = ΓNP /ΓUP
is a lattice in VP .

This compactification is called the intermediate compactification of Γ\X
and denoted by Γ\XInt

.

Proof. In Γ\XBB
, let

∐′ ΓPi,h\XPi,h be the union of those boundary
components such that dimXPi,l ≥ 1. Since the boundary components
ΓPi,h\XPi,h with dimXPi,l = 0 are of higher dimension than the compo-
nents in the union above and the closure of each boundary component
in Γ\XBB

is a union of the boundary itself and some other components of
lower dimension, this union

∐′ ΓPi,h\XPi,h is a compact subset of ∂Γ\XBB
.

The fiber in Γ\XTor

Σ over z in
∐′ ΓPi,h\XPi,h is compact. Then it follows

that the following relation is closed: Two boundary points in Γ\XTor

Σ are
equivalent if and only if they belong to the fiber over the same point in∐′ ΓPi,h\XPi,h. Therefore, the quotient of Γ\XTor

Σ by this relation defines
a Hausdorff compactification of Γ\X.

This compactification clearly dominates Γ\XBB
, and the fiber over a

point z ∈ ΓPi,h\XPi,h ⊂ Γ\XBB
is trivial if dimXPi,l ≥ 1. On the other

hand, if dimXPi,l = 0, the fiber is the same as the fiber in Γ\XTor

Σ , which
is equal to ΓVPi\VPi by Lemma 5.4.4.

Proposition 5.5.2. The intermediate compactification Γ\XInt
is inde-

pendent of the choice of Γ-admissible polyhedral cone decomposition Σ in
Γ\XTor

Σ , and is dominated by Γ\XBS
; in particular, Γ\XInt

is a common

quotient of Γ\XBS
and every toroidal compactification Γ\XTor

Σ .

Proof. From its definition, ∂Γ\XInt
=
∐′ ΓPi,h\XPi,h∪

∐′′(Γ′Pi/ΓUPi )\XPi,h

×VPi , where the union
∐′ is over Pi with dimXPi,l ≥ 1, and

∐′′ is over Pi
with dimXPi,l = 0. So as a set, Γ\XInt

is independent of Σ.

We need to show that the topology of Γ\XInt
is also independent

of Σ. Notice that
∐′ ΓPi,h\XPi,h is a part of the boundary ∂Γ\XBB

, and∐′′(Γ′Pi/ΓUPi )\XPi,h × VPi is a part of the boundary ∂Γ\XTor

Σ . Then the

topology of Γ\XInt
can be described as follows:
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1. A sequence xj in Γ\X converges to a point x∞ ∈
∐′ ΓPi,h\XPi,h in the

compactification Γ\XInt
if and only if xj converges to x∞ in Γ\XBB

.
2. A sequence xn in Γ\X converges to a point x∞∈

∐′′(Γ′Pi/ΓUPi )\XPi,h×
VPi in Γ\XInt

if and only if xn converges to x∞ in Γ\XTor

Σ .
The convergence of a sequence to a point in

∐′ clearly does not depend
on Σ. We show that it is also the case with the convergence to a point
in
∐′′.
It follows from the construction of Γ\XTor

Σ , in particular, the reduction
theory (see [AMuRT, p. 247, last paragraph] and [N, p. 69, first paragraph])
that the following important fact holds: If dimXPi,l = 0, then a small neigh-
borhood of the boundary (Γ′Pi/ΓUPi )\XPi,h×VPi in (ΓPi/ΓUPi )\(ΓUPi\XΣPi

)

is also a small neighborhood of the boundary component (Γ′Pi/ΓUPi )\XPi,h×
VPi in Γ\XTor

Σ .
Since dimCPi = 1, the ΓPi,l-admissible polyhedral cone decomposition

ΣPi is unique (consisting of the origin and CPi), the convergence to bound-
ary points in (ΓPi/ΓUPi )\(ΓUPi\XΣPi

) is independent of Σ. Then the above

fact implies that the convergence to boundary points in
∐′′ in the com-

pactification Γ\XTor

Σ does not depend on Σ either. This proves that the

compactification Γ\XInt
is independent of Σ.

To prove the second statement, we need to show that any convergent
sequence xj in Γ\XBS

also converges in Γ\XInt
. Use the notation in §3.4.

Let Pi,j be the unique representative such that the limit x∞ of xj belongs
to ΓPi,j\e(Pi,j).

If dimXPi,l ≥ 1, then Lemmas 3.4.2 and 3.4.3 show that xj converges to

the image of x∞ in ΓPi,h\XPi,h in the compactification Γ\XBB
. The above

discussion shows that xj also converges in the compactification Γ\XInt
.

On the other hand, if dimXPi,l = 0, we claim that any rational parabolic
subgroup Q contained in Pi with XQ,h = XPi,h is equal to Pi. In other

words, there is only one boundary component ΓPi\e(Pi) in Γ\XBS
lying

above the boundary component ΓPi,h\XPi,h in Γ\XBB
.

In fact, by the root structure of G in §3.1, Pi is conjugate to the stan-
dard parabolic subgroup P∆−{β1}. Since ∆−{β1} is connected, the condi-
tion XQ,h = XPi,h forces Q to be equal to Pi (see Lemma 3.2.4).

Using the realization of X as a Siegel domain of the third kind in Prop.
5.1.2, ΓUPi\X can be realized as a subset of XPi,h × Cn × (ΓUPi\UPi)× UPi ,
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where n = 1
2 dimR VPi . For any sequence xj in ΓUPi\X, write xj =

(zj , vj , u1,j , u2,j) according to this decomposition. Since dimXPi,l = 0,
UPi
∼= APi , dimUPi = dimAPi = 1; and a sequence xj in ΓUPi\X con-

verges to a boundary point in ΓUPi\XΣPi
if and only if the following con-

ditions are satisfied: limj→∞ zj exists, limj→∞ vj exists, and limj→∞ u2,j =
+∞ (i.e., under the identification UPi

∼= APi , for any α ∈ Φ+(Pi, APi),
limj→+∞ uα2,j = +∞).

From the relation between the horospherical decomposition and the real-
ization as a Siegel domain in Lemma 5.1.3, we get that if a sequence xj in X
converges to a point in the boundary component e(Pi) in XBS, then in the
realization ofX as a Siegel domain of the third kind, xj = (zj , vj , u1,j+iu2,j)
∈ XQ,h×Cn× (UQ⊗C), the limits limj→+∞ zj , limj→+∞ vj , limj→+∞ u1,j
all exist, and limj→+∞ u2,j = +∞. It follows from the previous paragraph
that the projection of xj in ΓUPi\X also converges to a boundary point in
ΓUPi\XΣPi

in §5.3. We note that every sequence xj in Γ\X converging to a

point in ΓUPi\e(Pi) in Γ\XBS
has a lift in X which converges to a point in

e(Pi) ⊂ X
BS. Then the above discussions on relation between ΓUPi\XΣPi

and Γ\XTor

Σ imply that if a sequence xj in Γ\X converges to a boundary

point in ΓUPi\e(Pi) in the compactification Γ\XBS
, then xj also converges

to point in Γ\XTor

Σ and hence in Γ\XInt
. This completes the proof the

second statement.

Remark 5.5.3. If rkR(G) ≥ 2, then Γ\XInt
is strictly dominated by the

eccentric Borel–Serre compactification Γ\Xexc
defined in [HaZ1, 1.4(b)],

which lies between Γ\XBS
and Γ\XRBS

. If rkR(G) = 1, then Γ\XInt
is

equal to Γ\Xexc
.

6 GCQ of Two Compactifications of a Topological Space

In this section, we define the GCQ of two compactifications of a topological
space and explain two useful techniques for determining the GCQ. In the
following, all the topological spaces are Hausdorff.

6.1 Existence of GCQ. In this subsection, we follow closely §1.1 of
[HaZ1]. Let Y be a noncompact topological space. Recall that a compacti-
fication Y1 of Y dominates another compactification Y2 if the identity map
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on Y extends to a continuous map from Y1 to Y2.

Definition 6.1.1. Let Y1, Y2 be two compactifications of Y .

1. A compactification of Y is called a common quotient of Y1, Y2 if it is
dominated by both Y1 and Y2. A common quotient of Y1, Y2 is called
the greatest common quotient (GCQ) if it dominates any other com-
mon quotient of Y1, Y2. The GCQ of Y1, Y2 is unique and is denoted
by Y1 ∧ Y2.

2. A compactification of Y is called a common refinement of Y1, Y2 if it
dominates both Y1, Y2. A common refinement of Y1, Y2 is called the
least common refinement (LCR) if it is dominated by any other com-
mon refinement of Y1, Y2. The LCR of Y1, Y2 is unique and denoted
by Y1 ∨ Y2.

The LCR Y1∨Y2 can be constructed easily. In fact, let d : X → Y1×Y2
be the diagonal embedding. Then the closure d(X) in Y1 × Y2 is Y1 ∨ Y2.

On the other hand, there does not seem to be an explicit method to
construct Y1 ∧ Y2.

Lemma 6.1.2. For any two compactifications Y1, Y2 of Y , the GCQ Y1∧Y2
exists and is unique.

Proof. The uniqueness follows from the definition. To prove the existence,
consider the set C of all compactifications of Y which are dominated by
both Y1 and Y2. This set is clearly nonempty since the one point com-
pactification is dominated by both Y1 and Y2. We claim that any ordered
set in C has an upper bound in C. In fact, for any ordered set Yα, α ∈ I,
the closure of the diagonal embedding of Y in the product

∏
α∈I Yα is a

compactification which is dominated by both Y1 and Y2, and dominates ev-
ery compactification Yα, α ∈ I. By Zorn’s lemma, there exists a maximal
element Z in C.

We claim that Z = Y1 ∧ Y2. If not, there exists a common quotient Y ′

of Y1 and Y2 which is not dominated by Z. Since Y ′ belongs to C, this
contradicts the fact that Z is maximal.

6.2 Determination of GCQ. By Lemma 6.1.2, Y1 ∧ Y2 always exists.
A natural question is how to construct Y1∧Y2 from Y1 and Y2. One approach
is as follows:

1. Find a common quotient Z of Y1 and Y2.
2. Show that for every boundary point in Z, its fiber in Y1 (or Y2) has

to collapse to one point in any common quotient of Y1 and Y2.
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Then Z is equal to Y1 ∧ Y2.

By Proposition 5.5.2, Γ\XInt
is a candidate of Γ\XBS ∧ Γ\XTor

Σ . The

problem is to use some incompatibility between Γ\XBS
and Γ\XTor

Σ to

collapse their fibers over Γ\XInt
.

In the following, we introduce two collapsing methods, each being re-
sponsible for half of the collapsing that is needed to prove that Γ\XInt

is
the GCQ Γ\XBS ∧ Γ\XTor

Σ .

Lemma 6.2.1. Let Y1, Y2 be two compactifications of Y . Let A ⊂ ∂Y1 be
a boundary subset. Suppose every point a ∈ A is the limit of a sequence
in Y which is also convergent in Y2, and the limit of this sequence in Y2 is
the same for all choices of a in A. Then the closure A of A in Y1 collapses
to one point in any common quotient of Y1 and Y2.

Proof. Let a, a′ ∈ A be any two points, and xj , x′j be sequences in Y which
converge to a, a′ in Y1 respectively and converge to the same point in Y2.
Define a new sequence yj as follows: yj = xj/2 if j is even, yj = x′j+1/2 if j
is odd. Then yj is convergent in Y2 and hence in any common quotient Z
in Y1 and Y2. This implies that a, a′ are mapped to the same point in Z.
Since the map from Y1 to Z is continuous, A is mapped to one point in Z.

This lemma can be illustrated by the following example. Take Y = R2.
Let Y1 be the compactification obtained by adding the unit circle S1 at
infinity with the following topology: a sequence xj converges to v ∈ S1 if
and only if xj/|xj | → v. The circle S1 can also be interpreted as the set of
equivalence classes of geodesics in R2. Let Y2 be the closure of the imagi-
nary part R2 of the complex torus C2/Z2 in the toroidal compactification
C2/Z2

Σ, where Σ is determined by the coordinate quadrants and their sides
(see §4). These two compactifications are illustrated in Figure 6.2.

Let A = {(cos θ, sin θ) | 0 < θ < π/2} ⊂ ∂Y1. For any v ∈ A, the
ray tv, t ≥ 0, converges to v in Y1 as t → +∞. On the other hand, tv
converges to the distinguished right upper corner point in Y2 as t → +∞,
which clearly does not depend on v. Lemma 6.2.1 implies that A ⊂ Y1 is
mapped to one point in Y1∧Y2. Similarly, other parts of the boundary ∂Y1
are also mapped to a single point in Y1 ∧ Y2. Since the closures of these
boundary parts of ∂Y1 are connected, the whole boundary ∂Y1 is mapped
to one point. Therefore, Y1 ∧ Y2 is the one point compactification. We can
also apply Lemma 6.2.1 to show that every line in Y2 is mapped to one
point in Y1 ∧ Y2, and hence Y1 ∧ Y2 is the one point compactification.
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Y1 Y2

A

Figure 6.2

This example lies behind the incompatibility of Γ\XBS
and Γ\XTor

Σ .

Briefly, Γ\XBS
is a geodesic compactification, resembling Y1; while Γ\XTor

Σ
is similar to Y2.

Lemma 6.2.2. Let Y1, Y2 be two compactifications of Y . Suppose ∂Y1
contains a fiber bundle B over a base manifold Z with fiber V . Assume
that the bundle B has a flat connection. If every horizontal section in B is
mapped to one point in Y1 ∧ Y2 and the holonomy action of π1(Z) on V is
ergodic, then the whole fiber bundle B is mapped to one point in Y1 ∧ Y2.

Proof. Let Z̃ be the universal covering space of Z. Then B = π1(Z)\Z̃×V .
By assumption, for any v ∈ V , the image of Z̃×{v} in B is mapped to one
point Y1∧Y2. This implies that the map from B to Y1∧Y2 factors through
the quotient π1(Z)\V . Since π1(Z) acts ergodically on V , π1(Z) has dense
orbits in V [H, Lemma, p. 26]. The only Hausdorff space which is an image
of π1(Z)\V is the one point space. This implies that B is mapped to one
point in Y1 ∧ Y2.

The fiber in Γ\XBS
over Γ\XInt

contains nilpotent bundles over locally
symmetric spaces of lower dimension (see §7.1). This is the example in this
paper to which we apply this lemma.

The collapsing of the horizontal sections is achieved by Lemma 6.2.1.
To get the ergodicity of the holonomy action, we use the following classical
result.

Lemma 6.2.3 [H, Automorphism Theorem, p. 53]. Let Λ be a lattice in
a real vector space V . An element g ∈ SL(V,R) preserving Λ induces an
action on Λ\V . This action of g on Λ\V is ergodic if and only if g has no
eigenvalue which is a root of unity.
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7 GCQ of the Borel–Serre and the Toroidal
Compactifications

In this section, we identify Γ\XBS ∧Γ\XTor

Σ with Γ\XInt
and hence prove

Theorem 1.2.1. The idea is to show the fibers in Γ\XBS
over Γ\XInt

have
to collapse to a point in Γ\XBS ∧ Γ\XTor

Σ . In §7.1, we reduce the proof
of Theorem 1.2.1 to Proposition 7.1.1. In §7.2–§7.5, we prove Proposition
7.1.1 in four steps.

7.1 Reduction of the proof of Theorem 1.2.1. Let P1, . . . ,Pn be
representatives of Γ-conjugacy classes of maximal rational parabolic sub-
groups of G. Recall from Lemma 3.4.3 that for any z ∈ ΓPi,h\XPi,h ⊂
∂Γ\XBB

, the fiber in Γ\XBS
over z contains Γ′′Pi\NPi ×XPi,l.

Proposition 7.1.1. If dimXPi,l ≥ 1, then for any z ∈ ΓPi,h\XPi,h ⊂
∂Γ\XBB

, the subset Γ′′Pi\NPi×XPi,l in the fiber in Γ\XBS
over z is mapped

to one point in Γ\XBS ∧ Γ\XTor

Σ .

Corollary 7.1.2. If dimXPi,l ≥ 1, then for any z ∈ ΓPi,h\XPi,h ⊂
∂Γ\XInt

, the fiber over z in Γ\XBS
is mapped to one point in Γ\XBS ∧

Γ\XTor

Σ .

Proof. According to its definition in Proposition 5.5.1, if dimXPi,l ≥ 1,

ΓPi,h\XPi,h is contained in ∂Γ\XInt
. Since the topologies of Γ\XBB

and

Γ\XInt
are the same near ΓPi,h\XPi,h, the fibers of the maps Γ\XBS →

Γ\XBB
and Γ\XBS → Γ\XInt

over z are the same. By Lemma 3.4.4,
Γ′′Pi\NPi × XPi,l is dense in the fiber over z. Therefore, Proposition 7.1.1

implies that this fiber is mapped to one point in Γ\XBS ∧ Γ\XTor

Σ .

Proof of Theorem 1.2.1. Assuming Proposition 7.1.1 first, we prove
Theorem 1.2.1. Let Pi be any maximal rational parabolic subgroup. If
dimXPi,l ≥ 1, ΓPi,h\XPi,h ⊂ ∂Γ\XInt

. Corollary 7.1.2 shows that any se-

quence xj in Γ\X which converges to a point in ΓPi,h\XPi,h ⊂ Γ\XInt
also

converges to a point in Γ\XBS ∧ Γ\XTor

Σ .
On the other hand, if dimXPi,l = 0, by Proposition 5.5.1 and its proof,

the boundary component in Γ\XInt
associated with Pi is the same as the

boundary component of Pi in Γ\XTor

Σ , and the topologies of Γ\XInt
and

Γ\XTor

Σ are the same near this boundary component; in particular, if a
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sequence xj in Γ\X converges to a point in this boundary component in

Γ\XInt
, then xj also converges in Γ\XTor

Σ and hence in Γ\XBS ∧ Γ\XTor

Σ .

Together with the previous paragraph, this shows that Γ\XInt
dominates

Γ\XBS ∧ Γ\XTor

Σ .

According to Proposition 5.5.2, Γ\XInt
is a common quotient of Γ\XBS

and Γ\XTor

Σ . Therefore, Γ\XInt
= Γ\XBS ∧ Γ\XTor

Σ , and Theorem 1.2.1
is proved.

Outline of the proof of Proposition 7.1.1. In the rest of this section,
we prove Proposition 7.1.1. We want to explore the fibration structure of
Γ′′Pi\NPi ×XPi,l over ΓPi,l\XPi,l, in particular, the flat connection, to show

that it collapses to a point in Γ\XBS ∧ Γ\XTor

Σ .
For simplicity, we drop the subindex i. The subset Γ′′P\NP × XP,l is

a bundle over ΓP,l\XP,l with fiber ΓNP \NP . This bundle has a flat con-
nection, and the horizontal sections are images of {n} ×XP,l, n ∈ NP . In
fact, the trivial fibration NP × XP,l → XP,l has a flat connection whose
horizontal sections are {n} × XP,l. Since the action of Γ′′P preserves the
distribution of the horizontal subspaces of the tangent space of NP ×XP,l

defined by the submanifolds {n}×XP,l, this connection induces a flat con-
nection on the nilmanifold fibration Γ′′P\NP ×XP,l → ΓP,l\XP,l. (For more
detailed discussions about the flat connection on nilmanifold fibrations, see
[GHM, §7].) The fiber ΓNP \NP is itself a bundle whose base is ΓVP \VP
and whose fiber is ΓUP \UP .

We prove Proposition 7.1.1 in the following four steps:
1. Collapsing the horizontal sections XP,l in Γ′′P\NP ×XP,l.
2. Collapsing the fiber ΓUP \UP in ΓNP \NP .
3. Collapsing the fiber ΓVP \VP in the reduced fiber bundle Γ′′PUP \NP ×
XP,l when G is not absolutely simple.

4. Collapsing ΓVP \VP when G is absolutely simple.
The collapsing in (1) and (2) comes from Lemma 6.2.1, and the collaps-

ing in (3) and (4) comes from Lemma 6.2.2.
The above collapsing can be viewed using Figure 5.1.1: The factors

XP,l, UP , VP shrink to a point at infinity, only the factor XP,h remains. We

can also show similarly that the fibers in Γ\XTor

Σ over Γ\XInt
collapse to

a point in Γ\XBS ∧ Γ\XTor

Σ .
A good example to keep in mind while reading the proof below is the

Hilbert modular surface since all the collapsing phenomena can be seen
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clearly here. In this example, only Steps 1 and 2 are required, but the
collapsing in Step 2 can also be achieved by the method in Step 3.

7.2 Step 1. Collapsing the horizontal sections XP,l. Recall the
refined horospherical decomposition X = UP × VP × XP,h × XP,l × AP
(Eq. (1) in §5.1). Then dimAP = 1. Let H ∈ a

+
P be the unique unit

vector. Fix any u ∈ UP , v ∈ VP , z ∈ XP,h. Then for any two points
xl,1, xl,2 ∈ XP,l, the two geodesics c̃j(t) = (u, v, z, xl,j , exp(tH)) converge
to (u, v, z, xl,j) ∈ e(P) in X

BS respectively as t → +∞, j = 1, 2. By
Lemma 2.3.2, their projections cj(t) in Γ\X converge to the same point in

Γ\XBS
if and only if (u, v, z, xl,j) project to the same point in ΓP \e(P).

Since ΓP acts properly discontinuously on e(P), c1(t) and c2(t) converge to
different points as t→ +∞ if xl,1 and xl,2 are close but different.

On the other hand, in the realization of X as a Siegel domain of the
third kind, the set {u} × {v} × {z} ×XP,l × AP is mapped to the shifted
cone hz(v, v) +CP in UP (Lemma 5.1.3). The two geodesics c̃1(t) and c̃2(t)
become two rays starting from the vertex, i.e., limt→−∞ c̃j(t) = hz(v, v)
(see Lemma 5.1.4 and Figure 5.1.2).

If xl,1, xl,2 are generic and close, then the two rays belong to the interior
of one polyhedral cone in ΣP of codimension zero in UP . By Lemma 4.2.1,
in particular, the examples in §4.3, the two rays c̃1(t) and c̃2(t) converge to
the same point in the partial compactification ΓUp\XΣP

in §5.3 as t→ +∞.

Then it follows from the definition of Γ\XTor

Σ that c1(t), c2(t) converge to

the same point in Γ\XTor

Σ as t→ +∞.
By Lemma 6.2.1, the points (u, v, z, xl,j) ∈ ΓP \e(P) are mapped to

the same point in Γ\XBS ∧ Γ\XTor

Σ . This implies that for n = uv, the
horizontal section in Γ′P\NP × XP,l determined by {n} × XP,l is mapped

to one point in Γ\XBS ∧ Γ\XTor

Σ .

7.3 Step 2. Collapsing the fiber ΓUP \UP in ΓNP \NP . For any
v ∈ VP , z ∈ XP,h, xl ∈ XP,l, as u varies in UP , c̃u(t) = (u, v, z, xl, exp(tH))
defines a family of geodesics in X. As t→ +∞, their limits in X

BS cover
the subset UP ×{v}×{z}×{xl} ⊂ e(P), and the limits of their projections
cu(t) in Γ\X cover the fiber ΓUP \UP in Γ′′P \NP × XP,l over the points
xl ∈ ΓP,l\XP,l, v ∈ ΓVP \VP . (As explained in §7.1, ΓUP \UP is the top fiber
in a two step fibration.)

On the other hand, as in §7.2, in the realization of X as a Siegel domain
of the third kind, this family of geodesics c̃u(t) becomes a family of rays in
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the tube domain UP + i(hz(v, v)+CP ) whose imaginary parts are the same
ray from the vertex.

If xl is generic, i.e., the ray in the cone hz(v, v) +CP is contained in the
interior of a polyhedral cone of codimension zero, we can show as in §7.2
that this family of geodesics cu(t) converge to the same point in Γ\XTor

Σ as
t → +∞. Then Lemma 6.2.1 shows that this fiber ΓUP \UP is mapped to
one point in Γ\XBS ∧ Γ\XTor

Σ .
Since the fibers ΓUP \UP over any xl can be approximated by the fibers

over generic xl, it follows from §7.2 that any fiber ΓUP \UP is mapped to

one point in Γ\XBS ∧ Γ\XTor

Σ .

7.4 Step 3. Collapsing ΓVP \VP when G is not absolutely simple.
By §7.3, any fiber ΓUP \UP in the bundle ΓNp\NP is mapped to one point

in Γ\XBS ∧ Γ\XTor

Σ , and hence the map from the bundle Γ′′P\NP × XP,l

to Γ\XBS ∧Γ\XTor

Σ factors through the reduced bundle Γ′′PUP \NP ×XP,l,
which is a bundle over ΓP,l\XP,l with fiber ΓVP \VP .

By §7.2, every horizontal section of this reduced bundle collapses to
a point in Γ\XBS ∧ Γ\XTor

Σ . Therefore, by Lemma 6.2.2, to prove the
collapsing of the fibers ΓVP \VP , we need to show that ΓP,l acts ergodically
on ΓVP \VP .

Recall from §5.1 that VP is a vector group, and ΓP,l acts on VP by
conjugation. If we identify VP with its Lie algebra vP , then ΓVP becomes
a lattice in vP , still denoted by ΓVP , and ΓVP \VP = ΓVP \vP . By Lemma
6.2.3, to prove the ergodicity of the action of ΓP,l on ΓVP \vP , it suffices to
show the following result.

Lemma 7.4.1. With the above notation and the assumption in Proposition
7.1.1, there exists an element γ ∈ ΓP,l such that the restriction of the adjoint
action Ad(γ) to vP has no eigenvalue which is a root of unity.

The above discussions show that Lemma 7.4.1 finishes the proof of The-
orem 1.2.1. The rest of this section is devoted to the proof of Lemma 7.4.1.

We first prove Lemma 7.4.1 when G is not absolutely simple. In the next
subsection, we prove the absolutely simple case. Since G is not absolutely
simple, i.e., G(C) is not simple, there exists a totally real number field
k 6= Q and an absolutely simple k group G′ such that G = Rk/QG′, where
Rk/Q is the functor of restriction of the ground fields (see [BBo, Lemma
3.2, p. 469]).
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Let V be the set of Archimedean valuations of k. Then

G(R) =
∏
v∈V

G′(kv) =
∏
v∈V

G′(R) ,

and P = P(R) is a product
∏
v∈V Pv, where Pv is a proper maximal

parabolic subgroup of G′(R). Let APv be the split component of Pv. Then
AP ⊂

∏
v∈V APv . Denote the orthogonal complement of AP in

∏
v∈V APv

by A⊥P . Since k 6= Q, dimA⊥P ≥ 1. Then A⊥P can be identified with a
subset of XP,l. Since the image of A⊥P in ΓP,l\XP,l is compact, ΓP,l induces
a lattice Λ in A⊥P .

We claim that there exists an element λ in Λ such that none of the eigen-
values of Ad(λ) acting on the Lie algebra nP of NP has absolute value 1.
This claim implies Lemma 7.4.1, since, by Lemma 5.1.1, vP can be identi-
fied with a subspace of nP and the adjoint action on vP is the restriction
of the adjoint action on nP .

In fact, NP =
∏
v∈V NPv , nP =

∑
v∈V nPv . For any a ∈ APv , a 6= Id,

none of the eigenvalues of Ad(a) on nPv has absolute value equal to 1, since
dimAPv = 1 and the eigenvalue of Ad(a) on a root space gα in nPv is a−α;
while for v′ 6= v, Ad(a) acts trivially on nPv′ . Since Λ is a lattice in A⊥P and
none of the factors APv is equal to AP , there exists an element λ ∈ Λ ∈ A⊥P
such that none of its components in

∏
v∈V APv is equal to the identity. For

such a λ, Ad(λ) has no eigenvalue on nP which has absolute value equal
to 1. This proves the claim, and hence Lemma 7.4.1 in this non-simple
case.

7.5 Step 4. Collapsing the reduced bundle Γ′′PUP \NP × XP,l

when G is absolutely simple. In this subsection, we prove Lemma 7.4.1
when G is absolutely simple. Then by the discussions at the beginning of
§7.4, this will finish the proof that the reduced bundle Γ′′PUP \NP×XP,l col-

lapses to a point in Γ\XBS∧Γ\XTor

Σ , and hence the proof of Theorem 1.2.1.
Since G is absolutely simple, G(R) is simple. Let T be a maximal

R-split torus of G containing the maximal Q-split torus S. Let RΦ(G,T)
be the set of R-roots of G with respect to T. Then RΦ(G,T) is of either
type BCs or type Cs, where s = rkR(G). Choose an order on T which is
compatible with the order on S, i.e., a positive root in RΦ(G,T) restricts
to either a positive root in Φ(G,S) or zero. Denote the simple roots in
RΦ(G,T) by R∆(G,T) = {α1, . . . , αs} such that αi is not orthogonal to
αi+1, and αs is the short root in case of type BCs or the long root in case
of type Cs. Then each Q-simple root βi in Φ(G,S) is the restriction of a
unique simple R-root αc(i) for some 1 ≤ c(i) ≤ s (see [BBo, Prop. 2.9]).
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Assume the maximal rational parabolic subgroup P is standard and
hence of the form P∆−{βi}. Since P is also a maximal real parabolic
subgroup [BBo, Corollary 2.10], the real locus P = P(R) is standard
with respect to the set of R-simple roots RΦ(G,T) and hence of the form
PR∆−{αc(i)}, where αc(i) restricts to βi as above. From the assumption in
Proposition 7.1.1 that dimXP,l ≥ 1, we get c(i) ≥ 2.

For each α ∈ RΦ(G,T), let Hα denote its root vector defined by α(H) =
〈H,Hα〉 for allH ∈ t, where 〈·, ·〉 is the Killing form. Then Hα1 , . . . ,Hαc(i)−1

generate a subalgebra of t, the Lie algebra of T = T(R). Denote this
subalgebra by ti.

Then Lemma 7.4.1 follows from the following two lemmas.

Lemma 7.5.1. Assume that G is absolutely simple and dimXP,l ≥ 1. For
any nonzero vector V ∈ vP , there exists H ∈ ti such that [H,V ] 6= 0.

Proof. Since P = PR∆−{αc(i)}, the Lie algebra of nP of NP is generated
by the R-root spaces of the positive roots which are not linear combina-
tions of the simple roots in R∆ − {αc(i)}. This implies that any root α
appearing in nP contains a positive multiple of αc(i), i.e., α =

∑s
j=1mjαj ,

where mj ≥ 0, and mc(i) > 0. Since αj(Hαj−1) = 〈αj , αj−1〉 6= 0 and
αj(Hαj ) = 〈αj , αj〉 6= 0, it follows that α(Hαj−1) 6= 0 and α(Hαj ) 6= 0,
where j ≤ c(i) is the first index such that mj > 0. Because mc(i) > 0
and c(i) ≥ 2 (see above), there exists j ≤ c(i) such that mj > 0. Since
Hαj−1 ∈ ti if j > 1 and Hαj ∈ ti if j = 1, the above discussions imply that
the root α does not vanish on ti. By Lemma 5.1.1, vP can identified with a
subspace of nP and the action of ti ⊂ gP,l on vP is equal to the restriction
to vP of the adjoint action on nP . Then Lemma 7.5.1 follows immediately.

Lemma 7.5.2. Assume that G is absolutely simple and dimXP,l ≥ 1. If
Lemma 7.4.1 is not true, then there exists a nonzero vector V ∈ vP such
that for any H ∈ ti, [H,V ] = 0.

Proof. Recall that XP,l = oGP,l/KP,l, where oGP,l = GP,l/AP . Let ogP,l be
the Lie algebra of oGP,l.

By assumption, for every γ ∈ Γ, Ad(γ) acting on vP has an eigenvalue
which is a root of unit exp i2πp

q , where p, q are coprime integers. The degree
of the characteristic polynomial of Ad(γ) is bounded by dim vP . By a basic
fact of cyclotomic fields [W, Theorem 2.5] that the degree of Q(exp i2πp

q )
over Q goes to infinity as q → +∞, it follows that the denominator q is
bounded. Therefore, there exists an integer n independent of γ such that
(exp i2πp

q )n = 1.
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For any g ∈ oGP,l, let λ1(g), . . . , λd(g) be the eigenvalues of Ad(g) acting
on vP , where d = dim vP . Let Sd be the symmetry group on d elements,
and Cd/Sd be the quotient space, which is an algebraic variety. Then the
map Λ : g ∈ oGP,l → (λ1(g), . . . , λd(g)) ∈ Cd/Sd is a well-defined algebraic
map. In fact, let χ : GL(vP ) → Cd/Sd be the adjoint quotient map as
defined in [Sp, §2, pp. 178–179], then the map Λ is the composition of the
map Ad : oGP,l → GL(vP ) with χ.

The above discussion shows that for every γ ∈ ΓP,l, Λ(γ) belongs to the
proper subvariety{

(λ1, . . . , λd) ∈ Cd/Sd
∣∣ (λn1 − 1) . . . (λnd − 1) = 0

}
⊂ Cd/Sd .

By the Borel density theorem [Bo1], the image Λ(oGP,l) is also contained in
this subvariety. This means that for any g ∈ oGP,l, Ad(g) has an eigenvalue
on vP whose nth power is equal to one. So for any X ∈ ogP,l, Ad(enX)
has an eigenvalue equal to 1. Differentiating the eigen-equation, we get
that for any X ∈ ogP,l, there exists a nonzero vector in V ∈ vP such that
[X,V ] = 0. Since ti is a subalgebra of t, the action of ti on vP can be
diagonalized, and hence there exists a nonzero vector V ∈ vP such that for
any H ∈ ti, [H,V ] = 0. This proves Lemma 7.5.2.

Proof of Lemma 7.4.1 in the absolutely simple case. If Lemma 7.4.1 is
not true, then by Lemma 7.5.2, there exists a nonzero V ∈ vP such that
[H,V ] = 0 for all H ∈ ti. But this contradicts Lemma 7.5.1. Therefore,
Lemma 7.4.1 holds, and the proof of Theorem 1.2.1 is now complete.

Remark 7.5.3. As pointed out by the referee, the result of Parry in [P]
shows that the ergodicity of the ΓP,l-action on ΓVP implies the holonomy
action of ΓP,l on the full nilmanifold ΓNP \NP is also ergodic. Since ΓNP \NP

is a fiber bundle over ΓVP \VP with fiber ΓUP \UP , the collapsing of the fiber
ΓUP \UP in §7.3 could be combined with the collapsing of the space ΓVP \VP
in §7.4 and §7.5.

8 Proof of Theorems 1.2.2, 1.2.3 and 1.2.4

In this section, we prove Theorems 1.2.2, 1.2.3 and 1.2.4 and determine
when Conjecture 1.1.1 is true if G is absolutely simple (8.2.1) and hence
cover all cases.

8.1 Proofs of the theorems. First we reformulate Theorem 1.2.1 as
follows.

Lemma 8.1.1. Let G be a simple Q-group, and P1, . . . ,Pn be representa-
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tives of Γ-conjugacy classes of proper maximal rational parabolic subgroups
of G. Then Γ\XBS ∧ Γ\XTor

Σ = Γ\XBB
if and only if for every Pi, either

dimXPi,l ≥ 1, or dimXPi,l = 0 and dimVPi = 0.

Proof. It follows from Propositions 5.5.1 and 5.5.2 that Γ\XInt
= Γ\XBB

if and only if for every Pi, either dimXPi,l ≥ 1, or dimXPi,l = 0 and
dimVPi = 0. Then Lemma 8.1.1 follows from Theorem 1.2.1.

Proof of Theorem 1.2.2. By assumption, G is not absolutely simple. The
proof in §7.4 shows that for any rational maximal parabolic subgroup P,
dimXP,l ≥ dimA⊥P ≥ 1. Then Theorem 1.2.2 follows from Lemma 8.1.1.

Proof of Theorem 1.2.3. Since G is Q-split, S is also a maximal R-split
torus, and hence β1, . . . , βr are all the R-simple roots. Then the maximal
rational parabolic subgroup P = P∆−{β1} satisfies dimXP,l = 0. If G 6=
SL(2), then dimVP ≥ 1, and Lemma 8.1.1 implies that Γ\XBS ∧Γ\XTor

Σ 6=
Γ\XBB

.

Proof of Theorem 1.2.4. It follows from the description of the fibers
in Γ\XRBS

over Γ\XBB
in Lemma 3.4.5 and the collapsing in §7.2 that

all these fibers in Γ\XRBS
collapse to one point in Γ\XRBS ∧ Γ\XTor

Σ .

Therefore Γ\XRBS ∧ Γ\XTor

Σ = Γ\XBB
.

8.2 The absolutely simple case. Theorem 1.2.2 shows that Conjec-
ture 1.1.1 always holds in the case that G is not absolutely simple. On the
other hand, Theorem 1.2.3 shows that Conjecture 1.1.1 fails in that special
absolutely simple case. We now deal with the general absolutely simple
case.

Assume that G is absolutely simple. Let α1, . . . , αs be the set of R-
simple roots ordered as in §7.5. Then eachQ-simple root βi is the restriction
of a unique R-root αc(i), and the sequence c(i) is strictly increasing (see §7.5
above and [BBo, p. 471]).

Theorem 8.2.1. Suppose that G is an absolutely simple Q-group and not
equal to SL(2). Then in the above notation, Conjecture 1.1.1 holds if and
only if c(1) ≥ 2.

Proof. In the notation of §7.5, the noncompact part of 0gPi,l is generated
by the root spaces of roots which are linear combinations of α1, . . . , αc(i)−1.
Then dimXPi,l ≥ 1 if and only if c(i) ≥ 2. On the other hand, the assump-
tion that G 6= SL(2) implies that if dimXPi,l = 0, dimVPi ≥ 1. Since c(i)
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is strictly increasing, Lemma 8.1.1 implies that Conjecture 1.1.1 holds if
and only if c(1) ≥ 2.
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