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Abstract

An important class of resonance problems involves the study of per-
turbations of systems having embedded eigenvalues in their contin-
uous spectrum. Problems with this mathematical structure arise in
the study of many physical systems, e.g. the coupling of an atom or
molecule to a photon-radiation field, and Auger states of the helium
atom, as well as in spectral geometry and number theory. We present
a dynamic (time-dependent) theory of such quantum resonances. The
key hypotheses are (i) a resonance condition which holds generically
(non-vanishing of the Fermi golden rule) and (ii) local decay esti-
mates for the unperturbed dynamics with initial data consisting of
continuum modes associated with an interval containing the embed-
ded eigenvalue of the unperturbed Hamiltonian. No assumption of
dilation analyticity of the potential is made. Our method explicitly
demonstrates the flow of energy from the resonant discrete mode to
continuum modes due to their coupling. The approach is also applica-
ble to nonautonomous linear problems and to nonlinear problems. We
derive the time behavior of the resonant states for intermediate and
long times. Examples and applications are presented. Among them
is a proof of the instability of an embedded eigenvalue at a threshold
energy under suitable hypotheses.

1 Introduction

The theory of resonances has its origins in attempts to explain the existence
of metastable states in physical systems. These are states which are local-
ized or coherent for some long time period, called the lifetime, and then
disintegrate. Examples abound and include unstable atoms and particles.

The mathematical analysis of resonance phenomena naturally leads to
the study of perturbations of self-adjoint operators which have embed-
ded eigenvalues in their continuous spectra. An example of this is in the
quantum theory of the helium atom, in which there are long-lived Auger
states [RSim]. The mathematical study of this problem proceeds by view-
ing as the unperturbed self-adjoint operator, the Hamiltonian governing
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two decoupled electron-proton systems. This system has many embedded
eigenvalues. The perturbed Hamiltonian is that which includes the effect
of electron-electron repulsion. In Examples 3 and 4 of section 6, we discuss
a class of problems with this structure. Another physical problem in which
resonances play an important role is in the setting of an atom coupled to
the photon-radiation field ([BFroSi], [JPi1,2], [Ki1,2]); see also Example 7
of section 6. Although initially inspired by the study of quantum phe-
nomena, questions involving embedded eigenvalues have been seen to arise,
quite naturally in spectral geometry and number theory [PhS]. The sys-
tematic mathematical study of the effects of perturbations on embedded
eigenvalues was initiated by Friedrichs [F].

The method of analyzing the resonance problem we develop here is re-
lated to our work on the large time behavior of nonlinear Schrödinger and
nonlinear wave equations [SoWei3-5].1 In these problems, certain states of
the system decay slowly as a result of resonant interactions generated by
nonlinearity in the equations of motion. The methods required are nec-
essarily time-dependent as the equations are nonlinear and nonintegrable.
They are based on a direct approach to the study of energy transfer from
discrete to continuum modes.2

We consider the following general problem. Suppose H0 is a self-adjoint
operator in a Hilbert space H = L2(Rn), such that H0 has a simple eigen-
value, λ0, which is embedded in its continuous spectrum, with associated
eigenfunction, ψ0:

H0ψ0 = λ0ψ0 , ||ψ0||2 = 1 .

We now consider the time-dependent Schrödinger equation, for the per-
turbed self-adjoint Hamiltonian, H = H0 +W ,

i∂tφ = Hφ (1.1)

where W is a perturbation which is small in a sense to be specified. The
choice of decomposition of H into an unperturbed part, H0, and a pertur-

1Some of the results of this paper were presented in the proceedings article [SoWe2]
and in the preprint [SoWe3].

2Related to this is the observation that many nonlinear phenomena can be regarded as
(generic) instabilities of embedded eigenvalues for suitable linear operators. This point
of view is taken by I.M. Sigal in [Si1,2], who studies the non-existence of bifurcating
time-periodic and spatially localized solutions of certain nonlinear wave and Schrödinger
equations. The problem of absence of small amplitude breathers for Hamiltonian pertur-
bations of the Sine-Gordon equation (see, for example, [SeKr] and [BiMWe]) can also be
viewed in this context [Si2]. Other nonlinear wave phenomena, in which resonances have
been shown to play a role, are studied in [PWe], [CrHi].
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bation, W , depends on the problem at hand; see, for example, [D].

Problem. Suppose we specify initial data, φ0 for (1.1) which are spectrally
localized (relative to H) in a small interval ∆ about λ0. Describe the time-
dynamics for t ∈ (−∞,∞).

We shall prove that under quite general assumptions on H0 and W that
for small perturbations W ,

(i) H has absolutely continuous spectrum in an interval about λ0,
(ii) the solution with such data decays algebraically as t → ±∞. For

the special case of initial conditions given by ψ0, the solution is char-
acterized by transient exponential decay. The exponential rate, Γ
(reciprocal of the lifetime), can be calculated.

On the more technical side, we have imposed fairly relaxed hypotheses
on the regularity of the perturbation, W ; in particular we do not require
any condition on its commutators. This may be useful in problems like the
radiation problem and problems where Dirichlet decoupling is used.

The decay of solutions due to resonant coupling to the continuum is
revealed by decomposing the solution of (1.1), with data spectrally localized
(relative to H) near λ0, in terms of the natural basis of the unperturbed
problem,

φ(t) = a(t)ψ0 + φ̃(t) ,
(
ψ0, φ̃(·, t)

)
= 0 . (1.2)

After isolating the key resonant contributions, the system of equations gov-
erning a(t) and φ̃ is seen to have the form

ia′ = (Λ− iΓ)a+ C1(a, φ̃)

i∂tφ̃ = H0φ̃+ C2(a, φ̃) , (1.3)

where the Cj , j = 1, 2, denote terms which couple the dynamics of a and φ̃,
and C2 lies in the continuous spectral part of H0. If these coupling terms
are neglected, then it is clear that a(t) is driven to zero provided Γ > 0.
The quantity, Γ, is displayed in (2.7) and is always nonnegative. Its explicit
formula, (2.7), is often referred to as the Fermi golden rule. Generically,
Γ is strictly positive. The exponential behavior suggested by these heuris-
tics is, in general, only a transient; in general, e−iH0t has dispersive wave
solutions, and coupling to these waves leads to (weaker) algebraic decay as
t → ±∞. At this stage, we wish to point out that although presented in
the setting of a Schrödinger type operator, acting in L2(Rn), our results
and the approach we develop below can be carried out in the setting of a
general Hilbert space, H, with appropriate modifications made in the hy-
potheses. These modifications are discussed in the remark following our
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main theorem, Theorem 2.1. Their implementation is discussed in several
of the examples presented in section 6.

Historically, motivated by experimental observations, the primary focus
of mathematical analyses of the resonance problem has been on establishing
exponential decay at intermediate times. However, viewed as an infinite
dimensional Hamiltonian system, the asymptotic (t → ±∞) behavior of
solutions is a fundamental question. Our methods address this question and
are adaptable to nonautonomous linear, and nonlinear problems [SoWei4,5].

The time decay of such solutions implies that the spectrum of the per-
turbed Hamiltonian, in a neighborhood of λ0, is absolutely continuous. This
implies the instability of the embedded eigenvalue. More precisely, under
perturbation the embedded eigenvalue moves off the real axis and becomes
a pole (“resonance pole” or “resonance energy”) of the resolvent analyt-
ically continued across the continuous spectrum onto a second Riemann
sheet [Hu]. We will also show that in a neighborhood of such embedded
eigenvalues, there are no new embedded eigenvalues which appear, and give
an estimate on the size of this neighborhood. Most importantly, we find
the time behavior of solutions of the associated Schrödinger type evolution
equation for short, intermediate and long time scales. The lifetime of the
resonant state naturally emerges from our analysis. These results are stated
precisely in Theorem 2.1.

Many different approaches to the resonance problem in quantum me-
chanics have been developed over the last 70 years and the various charac-
terizations of resonance energies are expected to be equivalent; see [HSj].
The first (formal) approach to the resonance problem, due to Weisskopf and
Wigner [WeiWi], was introduced in their study of the phenomena of spon-
taneous emission and the instability of excited states; see also [L]. Their
approach plays a central role in today’s physics literature; see for example
[AlE], [LaLi]. It is time-dependent and our approach is close in spirit to
this method.

Another approach, used both by physicists and mathematicians is based
on the analytic properties of the S-matrix in the energy variable; see
[LaxPh]. Other approaches concentrated on the behavior of a reduced
Green’s function, either by direct methods, or by studying its analytic
properties [Ho],[O].

The most commonly used approach is that of analytic dilation or, more
generally, analytic deformation [CyFKS], [HiSi]. This method is very gen-
eral, but requires a choice of deformation group adapted to the problem at
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hand, as well as technical analyticity conditions which do not appear to be
necessary. In this approach, the Hamiltonian of interest, H, is embedded
in a one-parameter family of unitarily equivalent operators, H(θ), θ ∈ R.
Under analytic continuation in θ the continuous spectrum of H is seen to
move and the eigenvalue, which was embedded in the continuum for the
unperturbed operator, is now “uncovered” and isolated. Thus Rayleigh-
Schrödinger perturbation theory for an isolated eigenvalue can be applied,
and used to conclude that the embedded eigenvalue generically perturbs to
a resonance. The nonvanishing of the Fermi golden rule, (2.7), arises as a
nondegeneracy condition ensuring that we can see the motion of the em-
bedded eigenvalue at second order in perturbation theory. In our work, it
arises as a condition, ensuring the “damping” of states which are spectrally
localized (with respect to H) about λ0. Analytic deformation techniques do
not directly address the time behavior, which require a separate argument
[GeSi], [Hu], [Sk].

Additionally, “thresholds” may not be “uncovered” and therefore the
method of analytic deformation is unable to address the perturbation the-
ory of such points. Our time-dependent method can yield information
about thresholds, though it may be problematic to check the local decay
assumptions in intervals containing such points; see however Example 5 in
section 7, concerning the instability of a threshold eigenvalue of −∆+V (x).
Finally, in many cases, previous approaches have required the potential to
be dilation analytic, where we only require C3 behavior; see the concluding
remarks of Appendix D for a discussion of this point.

The paper is structured as follows. In section 2 the mathematical frame-
work is explained and the main theorem (Theorem 2.1) is stated. In section
3 the solution is decomposed relative to the unperturbed operator, the key
resonance is isolated and a dynamical system of the form (1.3) is derived.
Sections 4 and 5 contained the detailed estimates of the large time behavior
of solutions. In section 6 we outline examples and applications. Sections
7-11 are appendices. Section 7 (Appendix A) concerns the proof of the
“singular” local decay estimate of Proposition 2.1, and section 10 (Appen-
dix D) outlines a general approach to obtaining local decay estimates of the
type assumed in the hypothesis (H4). In section 9 (Appendix C) we present
the details of our expansion of the complex frequency, ω∗ (see (2.12) and
Proposition 3.3). In section 11 (Appendix E) we give results on bounded-
ness of functions of self-adjoint operators in weighted function spaces which
may be of general interest.
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2 Mathematical Framework and Statement of the Main
Theorem

In this section we first introduce certain necessary terminology and no-
tation. We then state the hypotheses (H) and (W) on the unperturbed
Hamiltonian, H0, and on the perturbation, W . The section then concludes
with statements of the main results.

For an operator, L, ||L|| denotes its norm as an operator from L2 to
itself. We interpret functions of a self adjoint operator as being defined by
the spectral theorem. In the special case where the operator is H0, we omit
the argument, i.e. g(H0) = g.

For an open interval ∆, we denote an appropriate smoothed character-
istic function of ∆ by g∆(λ). In particular, we shall take g∆(λ) to be a
nonnegative C∞ function, which is equal to one on ∆ and zero outside a
neighborhood of ∆. The support of its derivative is furthermore chosen to
be small compared to the size of ∆, e.g. less than 1

10 |∆|. We further require
that |g(n)

∆ (λ)| ≤ cn |∆|−n, n ≥ 1.
P0 denotes the projection on ψ0, i.e. P0f = (ψ0, f)ψ0.
P1b denotes the spectral projection on Hpp∩{ψ0}⊥, the pure point spec-

tral part of H0 orthogonal to ψ0. That is, P1b projects onto the subspace
of H spanned by all eigenstates other than ψ0.

In our treatment, a central role is played by the subset of the spectrum
of the operator H0, T#, on which a sufficiently rapid local decay estimate
holds. For a decay estimate to hold for e−iH0t, one must certainly project
out the bound states of H0, but there may be other obstructions to rapid
decay. In scattering theory these are called threshold energies [CyFKS].
Examples of thresholds are: (i) points of stationary phase of a constant
coefficient principle symbol for two-body Hamiltonians; and (ii) for N -body
Hamiltonians, zero and the eigenvalues of subsystems. We will not give a
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precise definition of thresholds. For us it is sufficient to say that away from
thresholds the favourable local decay estimates for H0 hold.

Let ∆∗ be union of intervals, disjoint from ∆, containing all thresholds
of H0, and a neighborhood of infinity. We then let

P1 = P1b + g∆∗

where g∆∗ = g∆∗(H0) is a smoothed characteristic function of the set ∆∗.
We also define

〈x〉2 = 1 + |x|2,
Q = I −Q and

P#
c = I − P0 − P1 . (2.1)

Thus, P#
c is a smoothed out spectral projection of the set T# defined as

T# = σ(H0)− { eigenvalues, real neighborhoods
of thresholds and infinity} . (2.2)

We expect e−iH0t to satisfy good local decay estimates on the range of P#
c ;

see (H4) below.
Next we state our hypotheses on H0.

(H1) H0 is a self adjoint operator with dense domain D, in L2(Rn).
(H2) λ0 is a simple embedded eigenvalue of H0 with (normalized) eigen-

function ψ0.
(H3) There is an open interval ∆ containing λ0 and no other eigenvalue

of H0.
There exists σ > 0 such that

(H4) Local decay estimate: Let r ≥ 2 + ε and ε > 0. If 〈x〉σ f ∈ L2 then∥∥〈x〉−σe−iH0tP#
c f
∥∥

2 ≤ C〈t〉
−r∥∥〈x〉σf∥∥2 , (2.3)

(H5) By appropriate choice of a real number c, the L2 operator norm of
〈x〉σ(H0 + c)−1〈x〉−σ can be made sufficiently small.

Remarks. (i) We have assumed that λ0 is a simple eigenvalue to simplify
the presentation. Our methods can be easily adapted to the case of multiple
eigenvalues.

(ii) Note that ∆ does not have to be small and that ∆∗ can be chosen
as necessary, depending on H0.

(iii) In certain cases, the above local decay conditions can be proved
even when λ0 is a threshold; see Example 5 of section 6.

(iv) Regarding the verification of the local decay hypothesis, one ap-
proach is to use techniques based on the Mourre estimate [JeMouPe], [SiSo].
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If ∆ contains no threshold values then, quite generally, the bound (2.3)
holds with r arbitrary and positive. See Appendix D.

We shall require the following consequence of hypothesis (H4).
Proposition 2.1. Let r ≥ 2 + ε and ε > 0. Assume µ ∈ T#. Then, for
t ≥ 0 ∥∥〈x〉−σe−iH0t(H0 − µ− i0)−1P#

c f
∥∥

2 ≤ C〈t〉
−r+1∥∥〈x〉σf∥∥2 ,

(2.4)
For t < 0, estimate (2.4) holds with −i0 replaced by +i0.

The proof is given in Appendix A.
We now specify the conditions we require of the perturbation, W .

Conditions on W .

(W1) W is symmetric and H = H0 +W is self-adjoint on D and there exists
c ∈ R (which can be used in (H5)), such that c lies in the resolvent
sets of H0 and H.

(W2) For some σ, which can be chosen to be the same as in (H4) and (H5),
|||W ||| ≡

∥∥〈x〉2σWg∆(H0)
∥∥+

∥∥〈x〉σWg∆(H0)〈x〉σ
∥∥

+ ‖〈x〉σW (H0 + c)−1〈x〉−σ
∥∥ <∞ , (2.5)

and ∥∥〈x〉σW (H0 + c)−1〈x〉σ
∥∥ <∞ , (2.6)

(W3) Resonance condition – nonvanishing of the Fermi golden rule :
Γ ≡ π

(
Wψ0, δ(H0 − ω̃)(I − P0)Wψ0

)
6= 0 (2.7)

for ω̃ near λ0, and
Γ ≥ δ0|||W |||2 (2.8)

for some δ0 > 0.
(W4) |||W ||| < θ |∆| for some θ > 0, sufficiently small, depending on the

properties of H0, in particular the local decay constants, but not on
|∆|.

Remark. Let FH0
c denote the (generalized) Fourier transform with re-

spect to the continuous spectral part of H0. The resonance condition (2.7),
can then be expressed as

Γ ≡ π
∣∣FH0

c [Wψ0](λ0)
∣∣2 > 0 . (2.9)

We can now state the main result:

Theorem 2.1. Let H0 satisfy the conditions (H) and the perturbation W
satisfy the conditions (W). Then
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(a) H = H0 +W has no eigenvalues in ∆.
(b) The spectrum of H in ∆ is purely absolutely continuous; in particu-

lar local decay estimates hold for e−iHtg∆(H). Namely, for φ0 with
〈x〉σφ0 ∈ L2, as t→ ±∞,∥∥〈x〉−σe−iHtg∆(H)φ0

∥∥
2 = O

(
〈t〉−r+1) . (2.10)

(c) For φ0 in the range of g∆(H) we have (for t ≥ 0)
e−iHtφ0 = (I +AW )

(
e−iω∗ta(0)ψ0 + e−iH0tφd(0)

)
+R(t) .

(2.11)
Here, ‖AW‖B(L2) ≤ C|||W |||, a(0) is a complex number and φd(0) is
a complex function in the range of P#

c , which are determined by the
initial data; see (3.1)-(3.2).

The complex frequency, ω∗, is given by
ω∗ = ω − Λ− iΓ +O

(
|||W |||3

)
, where (2.12)

ω ≡ λ0 + (ψ0,Wψ0) , (2.13)

Λ ≡
(
Wψ0, P.V. (H0 − ω)−1Wψ0

)
, and (2.14)

Γ ≡ π
(
Wψ0, δ(H0 − ω)(I − P0)Wψ0

)
. (2.15)

We also have the estimates∥∥〈x〉−σR(t)
∥∥

2 ≤ C|||W ||| , t ≥ 0 (2.16)∥∥〈x〉−σR(t)
∥∥

2 ≤ C|||W |||
ε〈t〉−r+1 ,

t ≥ |||W |||−2(1+δ) , δ > 0 , ε = ε(δ) > 0 . (2.17)
Remark. Though phrased in the setting of the space L2(Rn), our ap-
proach is quite general and our results hold with L2(Rn) replaced by a
Hilbert space, H. In this general setting, the weight function, 〈x〉, is to be
replaced by a “weighting operator”, A, in the hypotheses (H), (W) and in
the definition of the norm of W , |||W |||. Additionally, P#

c can be taken to
be a smoothed out spectral projection onto the subspace of H where the
local decay estimate (H4) holds.

Given an eigenstate ψ0 associated with an embedded eigenvalue, λ0,
of the unperturbed Hamiltonian, H0, a quantity of physical interest is the
lifetime of the state ψ0 for the perturbed dynamics. To find the lifetime,
consider the quantum expectation value that the system is in the resonant
state, ψ0,

(ψ0, e
−itHψ0) . (2.18)

Note that
e−iHtψ0 = e−iHtg∆(H)ψ0 + e−iHt

(
g∆(H0)− g∆(H)

)
ψ0 .

(2.19)
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Theorem 2.1 and the techniques used in the proofs of Propositions 3.1 and
3.2 yield the following result concerning the lifetime of the state ψ0.

Corollary 2.1. Let

H∗ = H − Reω∗I . (2.20)

Then, for any T > 0 there is a constant CT > 0 such that for 0 ≤ t ≤
T |||W |||−2 ∣∣(ψ0, e

−iH∗tψ0)− e−Γt∣∣ ≤ CT |||W ||| , as |||W ||| → 0 .
(2.21)

3 Decomposition and Isolation of Resonant Terms

We begin with the following decomposition of the solution of (1.1):

e−iHtφ0 = φ(t) = a(t)ψ0 + φ̃(t) (3.1)(
ψ0, φ̃(t)

)
= 0 −∞ < t < +∞ . (3.2)

Substitution into (1.1) yields

i∂tφ̃ = H0φ̃+Wφ̃− (i∂ta− λ0a)ψ0 + aWψ0 . (3.3)

Recall now that I = P0 +P1 +P#
c . Taking the inner product of (3.3) with

ψ0 gives the amplitude equation,

i∂ta =
(
λ0 + (ψ0,Wψ0)

)
a+ (ψ0WP1φ̃) + (ψ0,Wφd) , (3.4)

where,

φd ≡ P#
c φ̃ . (3.5)

The following equation for φd is obtained by applying P#
c to equation

(3.3):

i∂tφd = H0φd + P#
c W (P1φ̃+ φd) + aP#

c Wψ0 . (3.6)

Our goal is to derive a closed system for φd(t) and a(t). To achieve this,
we now propose to obtain an expression for P1φ̃, to be used in equations
(3.4) and (3.6). Since g∆(H)φ(·, t) = φ(·, t), we find(

I − g∆(H)
)
φ =

(
I − g∆(H)

)
[aψ0 + P1φ̃+ P#

c φ̃] = 0 (3.7)

or (
I − g∆(H)gI(H0)

)
P1φ̃ = −g∆(H)[aψ0 + φd] , (3.8)

where gI(λ) is a smooth function, which is identically equal to one on the
support of P1(λ), and which has support disjoint from ∆. Therefore,

P1φ̃ = −Bg∆(H) (aψ0 + φd) , (3.9)
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where
B =

(
I − g∆(H)gI(H0)

)−1
.

This computation is justified by the following result which is proved in
Appendix B.
Proposition 3.1. The operator B = (I − g∆(H)gI(H0))−1 is a bounded
operator on H

From (3.9) we get
φ(t) = a(t)ψ0 + φd + P1φ̃

= g̃∆(H)
(
a(t)ψ0 + φd(t)

)
, (3.10)

with
g̃∆(H) ≡ I −Bg∆(H) = Bg∆(H)

(
I − gI(H0)

)
. (3.11)

Although g̃(H) is not really defined as a function of H, we indulge in this
mild abuse of notation to emphasize its dependence on H. In fact, we shall
prove that, in some sense, g̃∆(H) ∼ g∆(H) ∼ g∆(H0).

Substitution of the above expression (3.9) for P1φ̃ into (3.6) gives
i∂tφd = H0φd + aP#

c Wg̃∆(H)ψ0 + P#
c Wg̃∆(H)φd (3.12)

and
i∂ta =

[
λ0 + (ψ0,W g̃∆(H)ψ0)

]
a+

(
ψ0,W g̃∆(H)φd

)
= ωa+ (ω1 − ω)a+

(
ψ0,W g̃∆(H)φd

)
, (3.13)

where
ω = λ0 + (ψ0,Wψ0) , (3.14)
ω1 = λ0 +

(
ψ0,W g̃∆(H)ψ0

)
. (3.15)

The decay of a(t) and φd is driven by a resonance. From equation (3.13),
the second term on the right-hand side of (3.12) oscillates approximately
like e−iλ0t. Since λ0 lies in the continuous spectrum of H0, this term res-
onates with the continuous spectrum of H0. To make explicit the effect of
this resonance, we first write (3.12) as an equivalent integral equation.

φd(t) = e−iH0tφd(0)− i
∫ t

0
e−iH0(t−s)a(s)P#

c Wg̃∆(H)ψ0ds

− i
∫ t

0
e−iH0(t−s)P#

c Wg̃∆(H)φdds

≡ φ0(t) + φres(t) + φ1(t) . (3.16)
Our next goal is to obtain the leading order behavior of φres(t). For

ε > 0 introduce the following regularization:

φεres(t) = −i
∫ t

0
e−iH0(t−s)a(s)eεsP#

c Wg̃∆(H)ψ0ds . (3.17)
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Then, φεres(t) → φres(t). To extract the dominant oscillatory part of a(t),
we let

A(t) = eiωta(t) . (3.18)
We now expand φεres(t) using integration by parts,

φεres(t) = −i
∫ t

0
e−iH0tei(H0−iε)sa(s)P#

c Wg̃∆(H)ψ0ds

= −i
∫ t

0
e−iH0tei(H0−iε−ω)s[eiωsa(s)

]
P#
c Wg̃∆(H)ψ0ds

≡ −ie−iH0t

∫ t

0
ei(H0−iε−ω)sA(s)P#

c Wg̃∆(H)ψ0ds

= −e−iH0t
[
(H0 − ω − iε)−1ei(H0−iε−ω)sA(s)P#

c Wg̃∆(H)ψ0
∣∣s=t
s=0

+ e−iH0t

∫ t

0
(H0−ω−iε)−1ei(H0−iε−ω)s∂tA(s)P#

c Wg̃∆(H)ψ0ds .
(3.19)

With a view toward taking ε ↓ 0 we first note that by hypothesis (H),
since |||W ||| is assumed sufficiently small, we have that ω ∈ ∆. The limit is
therefore singular, and we’ll find a resonant, purely imaginary, contribution
coming from the boundary term at s = t. Furthermore, to study the last
term in (3.19) we will use the equation

∂tA = −ieiωt
(
ψ0,W g̃∆(H)φd

)
+ i(ω − ω1)A . (3.20)

Now, taking ε→ 0, we get in L2(〈x〉−2σ dx),
Proposition 3.2. The following expansion for φres(t) holds:

φres(t) = −a(t)(H0 − ω − i0)−1P#
c Wg̃∆(H)ψ0

+a(0)e−iH0t(H0 − ω − i0)−1P#
c Wg̃∆(H)ψ0

−i
∫ t

0
e−iH0(t−s)(H0 − ω − i0)−1P#

c Wg̃∆(H)ψ0 ·
(
ψ0,W g̃∆(H)φd(s)

)
ds

+i(ω − ω1)
∫ t

0
e−iH0(t−s)(H0 − ω − i0)−1P#

c Wg̃∆(H)ψ0 · a(s)ds

≡ −a(t)(H0 − ω − i0)−1P#
c Wg̃∆(H)ψ0 + φ2(t) + φ3(t) + φ4(t) .

(3.21)
Remark. To see that the terms in (3.21) are well defined we refer to the
proof of Proposition 2.1 in Appendix A. Localizing near and away from the
energy ω

(H − ω − i0)−1e−iH0tP#
c = (H − ω − i0)−1e−iH0tP#

c g∆

+ (H − ω − i0)−1e−iH0tg∆
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≡ T t∆,0 + St∆,0 .

In Appendix A it is proved that, for ε ≥ 0,

T t∆,ε, S
t
∆,ε : L2(〈x〉2σdx) 7→ L2(〈x〉−2σdx

)
, t ≥ 0 .

Substitution of (3.16) and (3.21) into (3.13) yields the following equation
for a(t):

i∂ta(t) = ω∗a(t) +
(
ψ0,W g̃∆(H){φ0(t) + φ1(t) + φ2(t) + φ3(t) + φ4(t)}

)
.

(3.22)
Here,

ω∗ = λ0 +
(
ψ0,W g̃∆(H)ψ0

)
−
(
ψ0,W g̃∆(H)(H0 − ω − i0)−1P#

c Wg̃∆(H)ψ0
)
. (3.23)

In order see the resonant decay we must first consider the behavior of the
complex frequency ω∗ for small |||W |||. The next proposition contains an
expression for ω∗ which depends explicitly on the “data” of the resonance
problem, H0 and W , plus a controllable error.

Proposition 3.3.

ω∗ = λ0 + (ψ0,Wψ0)− Λ− iΓ +E(W ) , (3.24)

where

Γ = π
(
Wψ0, δ(H0 − ω)(I − P0)Wψ0

)
,

Λ =
(
Wψ0,P.V. (H0 − ω)−1Wψ0

)
,

E(W ) ≤ C1|||W |||3 , (3.25)

where ω is given by (2.13).

The term, Γ, in (3.25) is the Fermi golden rule appearing in resonance
hypothesis (W3) (Γ 6= 0).

The proof of Proposition 3.3 is a lengthy computation which we present
in Appendix C.

We conclude this section with a summary of the coupled equations for
φd(t) and a(t).

Proposition 3.4.

i∂ta = ω∗a+
(
ψ0,W g̃∆(H){φ0 + φ1 + φ2 + φ3 + φ4}

)
, (3.26)

φd(t) = e−iH0tφd(0)− i
∫ t

0
e−iH0(t−s)a(s)P#

c Wg̃∆(H)ψ0ds

− i
∫ t

0
e−iH0(t−s)P#

c Wg̃∆(H)φd(s)ds , (3.27)
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where

φ0(t) = e−iH0tP#
c φd(0) (3.28)

φ1(t) = −i
∫ t

0
e−iH0(t−s)P#

c Wg̃∆(H)φd(s)ds (3.29)

φ2(t) = −a(0)e−iH0t(H0 − ω − i0)−1P#
c Wg̃∆(H)ψ0 (3.30)

φ3(t) = −i
∫ t

0
e−iH0(t−s)(H0 − ω − i0)−1P#

c Wg̃∆(H)ψ0

·
(
ψ0,W g̃∆(H)φd(s)

)
ds (3.31)

φ4(t) = i(ω−ω1)
∫ t

0
e−iH0(t−s)(H0−ω−i0)−1P#

c Wg̃∆(H)ψ0 · a(s)ds
(3.32)

To prove the main theorem we estimate a(t) and φd(t) from (3.26)-
(3.32). Note that since Imω∗ ∼ −Im Γ is negative, it is evident that this
resonant contribution has the effect of driving a(t) to zero.
Remark. Although we have the general result of Theorem 2.1, in a given
example it may prove beneficial to analyze the system (3.26)-(3.32) directly
in order to exploit special structure.

Remark. Using the above expansion and definitions, we have
φ(t) = e−iω∗ta(0)ψ0 + e−iH0t(I − P0)g∆φ0

+
[
g̃∆(H)− g∆(H0)

][
e−iω∗ta(0)ψ0 + e−iH0tP#

c φ0
]

+R(t) , (3.33)
where

R(t) = g̃(H)
[ 4∑
j=0

Rj(t)ψ0 + φres(t) + φ1(t)
]
. (3.34)

See (4.10) and (4.8) for the definition of Rj . The expansion in part (c)
of Theorem 2.1 is obtained by estimates of the terms in (3.33) and (3.34).
These estimates are carried out in sections 4 and 5.

In the next two sections we estimate the solution over various time
scales.

4 Local Decay of Solutions

In this section we begin our analysis of the large time behavior of solutions.
To prove local decay, we introduce the norms

[a](T ) ≡ sup
0≤s≤T

〈s〉α|a(s)| and [φd]LD(T ) ≡ sup
0≤s≤T

〈s〉α
∥∥〈x〉−σφd(s)∥∥2 ,
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for which we seek to obtain upper bounds that are uniform in T ∈ R.
Because of terms like φj(t), j = 2, 3, 4 (see Proposition 3.4) and the singular
local decay estimate of Proposition 2.1, it is natural study these norms with
α = r− 1. In this section, it turns out that we require the restriction on α,
1 < α < 3/2. Thus, throughout this section we shall assume the constraints

α ≡ r − 1 , 1 < α < 3/2 .
In section 5 we relax the upper bound on α.
Remark. In the estimates immediately below and in subsequent sections
we shall require bounds on the following quantities like ‖〈x〉aWg̃∆(H)〈x〉b‖
with a, b ∈ {0, σ}. That all these can be controlled in terms of the norm
|||W ||| is ensured by the following proposition, which is proved in Appen-
dix B.

Proposition 4.1. For a, b ∈ {0, σ},∥∥〈x〉aWg̃∆(H)〈x〉b
∥∥ ≤ Ca,b|||W ||| . (4.1)

We begin by estimating the local decay norm of φd.

Local decay estimates for φd(t). From equation (3.27)∥∥〈x〉−σφd(t)∥∥2 ≤
∥∥〈x〉−σe−iH0tφd(0)

∥∥
2

+
∫ t

0

∣∣a(s)
∣∣∥∥〈x〉−σe−iH0(t−s)P#

c Wg̃∆(H)ψ0
∥∥

2ds

+
∫ t

0

∥∥〈x〉−σe−iH0(t−s)P#
c Wg̃∆(H)φd(s)

∥∥
2ds

≤ C〈t〉−r
∥∥〈x〉σφd(0)

∥∥
2 + C

∥∥〈x〉σWg̃∆(H)ψ0
∥∥

2

∫ t

0
〈t− s〉−r

∣∣a(s)
∣∣ds

+
∥∥〈x〉σWg̃∆(H)〈x〉σ

∥∥∫ t

0
〈t− s〉−r

∥∥〈x〉−σφd(s)∥∥2ds . (4.2)

This implies, for 0 ≤ t ≤ T ,∥∥〈x〉−σφd(t)∥∥2 ≤ C〈t〉
−r∥∥〈x〉σφd(0)

∥∥
2

+ C〈t〉−α
(
‖〈x〉σWg̃∆(H)ψ0‖2[a](T ) +

∥∥〈x〉σWg̃∆(H)〈x〉σ
∥∥[φd]LD(T )

)
≤ C1〈t〉−r

∥∥〈x〉σφd(0)
∥∥

2 + C2|||W |||〈t〉−α
(
[a](T ) + [φd]LD(T )

)
. (4.3)

It follows that
[φd]LD(T ) ≤ C1

∥∥〈x〉σφd(0)
∥∥

2 + C2|||W |||
(
[a](T ) + [φd]LD(T )

)
,

(4.4)
and therefore(

1− C2|||W |||
)
[φd]LD(T ) ≤ C1

∥∥〈x〉σφd(0)
∥∥

2 + C2|||W |||[a](T ) .
(4.5)
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An additional simple consequence of (4.2) and the orthogonality of the
decomposition (3.10), is∥∥〈x〉−σφd(t)∥∥2 ≤ C〈t〉

−r∥∥〈x〉σφd(0)
∥∥

2 + C|||W |||‖φ0‖2 . (4.6)

Estimation of a(t). We estimate a(t) using equation (3.26). This
equation has the form

i∂ta = ω∗a+
4∑
j=0

Fj , (4.7)

where
Fj(t) ≡

(
ψ0,W g̃∆(H)φj

)
. (4.8)

Therefore,

a(t) = e−iω∗ta(0) +
4∑
j=0

Rj(t) , (4.9)

where

Rj(t) = −i
∫ t

0
e−iω∗(t−s)Fj(s)ds . (4.10)

We next estimate each Rj . In the course of carrying out the analysis
we shall frequently apply the following:
Lemma 4.1. Let Γ, α and β denote real numbers such that Γ > 0 and
β > 1. Define

Iα,β(t) = 〈t〉α
∫ t

0
e−Γ(t−s)〈s〉−βds . (4.11)

Then,
(i) Iα,β(t) ≤ C(〈t〉αe− 1

2 Γt + 〈t〉α−βΓ−1) .
(4.12)

(ii) If α ≤ β, we have

sup
t≥0

Iα,β(t) ≤ C(Γ−α + Γ−1) . (4.13)

To prove this lemma, note that

Iα,β(t) = 〈t〉α
(∫ t/2

0
+
∫ t

t/2

)
{· · ·}ds

≤ 〈t〉αe− 1
2 Γt
∫ t/2

0
〈s〉−βds+ C〈t〉α−β

∫ t

t/2
e−Γ(t−s)ds .

Part (i) follows by explicitly carrying out the integrals, using that β > 1,
and part (ii) follows by noting that the supremum over t ≥ 0 of the expres-
sion obtained in (i).
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Estimation of R0(t).

R0(t) = −i
∫ t

0
e−iω∗(t−s)

(
ψ0,W g̃∆(H)e−iH0sP#

c φd(0)
)
ds .

(4.14)
Estimation of the integrand gives∣∣(ψ0,W g̃∆(H)e−iH0sφd(0))

∣∣ =
∣∣(〈x〉σg̃∆(H)Wψ0, 〈x〉−σe−iH0sφd(0))

∣∣
≤
∥∥〈x〉σg̃∆(H)Wψ0

∥∥
2

∥∥〈x〉−σe−iH0sφd(0)
∥∥

2

≤ C
∥∥〈x〉σg̃∆(H)Wψ0

∥∥
2

∥∥〈x〉σφd(0)
∥∥

2〈s〉
−r

≤ C|||W |||
∥∥〈x〉σφd(0)

∥∥
2〈s〉

−r . (4.15)
Use of (4.15) in (4.14) yields∣∣R0(t)

∣∣ ≤ C|||W |||∥∥〈x〉σφd(0)
∥∥

2

∫ t

0
e−Γ(t−s)〈s〉−rds .

(4.16)
Multiplication of (4.16) by 〈t〉α, use of Lemma 4.1 and the lower bound
for Γ, (2.8), yields the bound

〈t〉α
∣∣R0(t)

∣∣ ≤ C|||W |||1−2α∥∥〈x〉σφd(0)
∥∥

2 , t ≥ 0 . (4.17)
It also follows from (4.16), since r > 1, that∣∣R0(t)

∣∣ ≤ C|||W |||∥∥〈x〉σφd(0)
∥∥

2 . (4.18)

Estimation of R1(t). We must bound the expression

R1(t)=−
∫ t

0
e−iω∗(t−s)

(
ψ0,W g̃∆(H)

∫ s

0
e−iH0(s−τ)P#

c Wg̃∆(H)φd(τ)dτ
)
ds.

(4.19)
This can be rewritten as

R1(t) =
∫ t

0
e−iω∗(t−s)ds

(
〈x〉σg̃∆(H)Wψ0,∫ s

0
〈x〉−σe−iH0(s−τ)P#

c Wg̃∆(H)φd(τ)dτ
)
. (4.20)

which satisfies the bound∣∣R1(t)
∣∣ ≤ C∥∥〈x〉σg̃∆(H)Wψ0

∥∥
2

∫ t

0
e−Γ(t−s)ds

·
∫ s

0

∥∥〈x〉−σe−iH0(s−τ)P#
c Wg̃∆(H)φd(τ)

∥∥dτ . (4.21)

Use of the assumed local decay estimate (H4) gives that R1(t) is bounded
by

C
∥∥〈x〉σg̃∆(H)Wψ0

∥∥
2

∥∥〈x〉σWg̃∆(H)〈x〉σ
∥∥∫ t

0
e−Γ(t−s)ds

·
∫ s

0
〈s− τ〉−r

∥∥〈x〉−σφd(τ)
∥∥

2 dτ , (4.22)
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and therefore∣∣R1(t)
∣∣ ≤ C|||W |||2 ∫ t

0
e−Γ(t−s)ds

∫ s

0
〈s− τ〉−r〈τ〉−αdτ [φd]LD(T ) .

(4.23)

Using Lemma 4.1, we have

〈t〉α
∣∣R1(t)

∣∣ ≤ C(1 + |||W |||2−2α)[φd]LD(T ) . (4.24)

Furthermore, use of (4.6) in (4.22) gives∣∣R1(t)
∣∣ ≤ C|||W |||∥∥〈x〉σφ0

∥∥
2 , t ≥ 0 . (4.25)

Estimation of R2(t).

R2(t) = ia(0)
∫ t

0
e−iω∗(t−s)

·
(
ψ0,W g̃∆(H)e−iH0s(H0 − ω − i0)−1P#

c Wg̃∆(H)ψ0
)
ds . (4.26)

Therefore, by Proposition 2.1,∣∣R2(t)
∣∣ ≤ C∣∣a(0)

∣∣|||W |||2 ∫ t

0
e−Γ(t−s)〈s〉−r+1ds . (4.27)

A first simple consequence, since r > 2, is that∣∣R2(t)
∣∣ ≤ C∣∣a(0)

∣∣|||W |||2 . (4.28)

Next, multiplication of (4.27) by 〈t〉α, taking supremum over the interval
0 ≤ t ≤ T and applying Lemma 4.1 yields the bound

〈t〉α
∣∣R2(t)

∣∣ ≤ C1
∣∣a(0)

∣∣(1 + |||W |||2−2α) , (4.29)

Estimation of R3(t). We begin by recalling

R3(t) = −i
∫ t

0
e−iω∗(t−s)F3(s)ds . (4.30)

Therefore, ∣∣R3(t)
∣∣ ≤ C ∫ t

0
e−Γ(t−s)∣∣F3(s)

∣∣ds . (4.31)

F3(t) = (ψ0,W g̃∆(H)φ3(t)) is given explicitly by the expression

− i
∫ s

0
dτ
(
ψ0,W g̃∆(H)e−iH0(s−τ)(H0 − ω − i0)−1P#

c Wg̃∆(H)ψ0
)

×
(
ψ0,W g̃∆(H)φd(τ)

)
= −i

∫ s

0
dτ
(
〈x〉σg̃∆(H)Wψ0, 〈x〉−σe−iH0(s−τ)(H0 − ω − i0)−1P#

c 〈x〉−σ

· 〈x〉σWg̃∆(H)ψ0
)
×
(
〈x〉σg̃∆(H)Wψ0, 〈x〉−σφd(τ)

)
(4.32)
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Estimation of F3(t) yields the bound∣∣F3(t)
∣∣ ≤ CW ∫ s

0

∥∥〈x〉−σe−iH0(t−τ)(H0 − ω − i0)−1P#
c 〈x〉−σ

∥∥
·
∥∥〈x〉−σφd(τ)

∥∥
2 dτ , (4.33)

where
CW =

∥∥〈x〉σg̃∆(H)Wψ0
∥∥2

2 ·
∥∥〈x〉σWg̃∆(H)ψ0

∥∥
2 ≤ C|||W |||

3 .
(4.34)

By Proposition 2.1 and (4.33)-(4.34),∣∣F3(s)
∣∣ ≤ C|||W |||3 ∫ s

0
〈s− τ〉−r+1∥∥〈x〉−σφd(τ)

∥∥
2dτ .

(4.35)
If we bound ||〈x〉−σφd(τ)||2 simply by ||φ0||2 we obtain, from (4.35) and
(4.31), ∣∣R3(t)

∣∣ ≤ C|||W ||| ‖φ0‖2 . (4.36)
On the other hand, bounding ||〈x〉−σφd(τ)||2 by [φd]LD(T ) 〈τ〉−α (α = r−1)
in (4.35) we obtain ∣∣F3(s)

∣∣ ≤ C|||W |||3〈s〉−α[φd]LD(T ) . (4.37)
Finally, using (4.37) in (4.31) and applying Lemma 4.1 we have

〈t〉α
∣∣R3(t)

∣∣ ≤ C(|||W |||+ |||W |||3−2α)[φd]LD(T ) . (4.38)

Estimation of R4(t).

R4(t) = −i
∫ t

0
e−iω∗(t−s)

(
ψ0,W g̃∆(H)φ4(s)

)
ds

= (ω − ω1)
∫ t

0
e−iω∗(t−s)

(
g̃∆(H)Wψ0,∫ s

0
a(τ)e−iH0(s−τ)P#

c Wg̃∆(H)ψ0

)
dτ

By Proposition 2.1,∣∣R4(t)
∣∣ ≤ |ω − ω1| |||W |||2

∫ t

0
e−Γ(t−s)ds

∫ s

0
〈s− τ〉−r+1∣∣a(τ)

∣∣dτ
≤ |ω − ω1| |||W |||2

∫ t

0
e−Γ(t−s)〈s〉−αds[a](t) .

We now estimate the |ω − ω1|. By (3.14)-(3.15),
ω1 − ω =

(
ψ0,W g̃∆(H)ψ0

)
− (ψ0,Wψ0) ≡ β . (4.39)

An explicit expression, (9.6), is obtained for β in Appendix C,
β = −

(
Wψ0, Bḡ∆(H)(H − λ0)−1Wψ0

)
. (4.40)



Vol. 8, 1998 TIME DEPENDENT RESONANCE THEORY 1105

From Theorem 11.1 of Appendix E and an argument along the lines of the
proof of (4.1) we have |β| ≤ C|||W |||2. Therefore, using Lemma 4.1, we
find

〈t〉α
∣∣R4(t)

∣∣ ≤ C|||W |||4−2α[a](T ) . (4.41)
If α < 3/2, then

〈t〉α
∣∣R4(t)

∣∣ ≤ C|||W |||[a](T ) . (4.42)

Closing the estimates and completion of the proof. We can now
combine the upper bounds (4.17), (4.24), (4.29), (4.38) and (4.41) for the
Rj(t), 0 ≤ j ≤ 4 to obtain, via (4.9), the following upper bound for a(t)
provided |||W ||| < 1/2:

[a](T ) ≤ c1
∣∣a(0)

∣∣ |||W |||−2α + c2|||W |||1−2α∣∣〈x〉σφ0
∥∥

2

+ c3
(
1 + |||W |||2−2α)[φd]LD(T ) .

Substitution of this bound into (4.4) gives the following bound for φd:
[φd]LD(T ) ≤ C0

(
1 + |||W |||2−2α)∥∥〈x〉σφd(0)

∥∥
2 + c1|||W |||1−2α∣∣a(0)

∣∣
+ C3

(
|||W |||+ |||W |||3−2α)[φd]LD(T ) . (4.44)

Use of (4.44) as a bound for the last term in (4.43) yields a bound for
[a](T ),

[a](T ) ≤ c1
∣∣a(0)

∣∣ |||W |||−2α + c2|||W |||1−2α∥∥〈x〉σ φd(0)
∥∥

2 .
(4.45)

Finally, for |||W ||| sufficiently small and α < 3/2 we have
[φd]LD(T ) ≤ C

(
1 + |||W |||2−2α)∥∥〈x〉σφd(0)

∥∥
2 + C|||W |||1−2α∣∣a(0)

∣∣ .
(4.46)

Taking T → ∞ we conclude the decay of φ(t), with initial data φ0 in the
range of P∆(H), with rate 〈t〉−α, 0 < α < 3/2. It follows [RSim] that the
interval ∆ consists of absolutely continuous spectrum of H, as asserted in
parts (a) and (b) of Theorem 2.1.

5 Local Decay of Solutions for Large r

In the preceding subsection we proved the decay of solutions, φ(t, x), in
the local decay sense, with a slow rate of decay 〈t〉−α with 1 < α < 3/2;
α = r − 1. A consequence of this result is that, in the interval ∆, the spec-
trum of H is absolutely continuous. Now if ∆ contains no thresholds of H,
we expect decay as t → ∞ at a rate which is faster than any polynomial.
(For example, this is what one has for constant coefficient dispersive equa-
tions for energy intervals containing no points of stationary phase.) In this
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section we show that this result holds in the sense of (2.17) in Theorem 2.1.
This requires some adaptation of the methods of section 4. We shall indi-
cate here only the required modifications to the argument of the previous
section.

(1) The origin of the restriction α < 3/2 can be traced to our application
of part (ii) of Lemma 4.1. In particular, in obtaining (4.13) we use that

sup
t≥0
〈t〉αe−Γt = O(Γ−α) . (5.1)

It follows that certain coefficients are found to be large for |||W ||| small,
an obstruction to closing the system of estimates for [a] and [φd]LD, unless
α < 3/2. This is remedied by taking the supremum in (5.1) over t in the
interval [Γ−1−δ, T ], where δ > 0.
Lemma 5.1. Let M ≡ Γ−1−δ ∼ |||W |||−2(1+δ); see (W3). There exists
θ∗ > 0 such that if |||W ||| < θ∗ and t ≥M , then

(a) 〈t〉r−1 ∫ t
0 e
−Γ(t−s)〈s〉−rds ≤ CΓδ ∼ |||W |||2δ.

(b) 〈t〉r−1 ∫ t
0 e
−Γ(t−s)〈s〉−αds ≤ CΓ−1.

(2) Assume r > 2 (α > 1). The analysis of section 4 yields a coupled
system of integral inequalities for the functions a(t) and

L(t) ≡
∥∥〈x〉−σφd(t)∥∥2 . (5.2)

The precise form of these inequalities can be seen as follows. Let

Ir{L}(t) =
∫ t

0
〈t− s〉−rL(s)ds . (5.3)

Then, by (4.2), (4.9) and the estimates for Rj(t), j = 0, 1, 2, 3, 4, the in-
equalities for L(t) and a(t) take the form

L(t) ≤ C0〈t〉−r + C1|||W |||Ir{|a|}(t) + C2|||W |||Ir{L}(t)
|a(t)| ≤ A0e

−Γt +A1|||W |||Ir{e−Γs}(t) +A2|||W |||2Ir−1{e−Γs}(t)

+A3|||W |||2
∫ t

0
e−Γ(t−s)Ir{L}(s)ds

+A4|||W |||3
∫ t

0
e−Γ(t−s)Ir−1{L}(s)ds

+A5|||W |||4
∫ t

0
e−Γ(t−s)Ir−1{|a|}(s)ds , (5.4)

where the Cj and Aj denote positive constants.
(3) The procedure is first to consider the functions L(t) and a(t) on

a large but finite time interval, 0 ≤ t ≤ Γ−1−δ ≡ M , where δ is positive
and suitably chosen. An explicit bound for L(t) and a(t) can be found by
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iteration of the inequalities (5.4). For this, we use the following estimate
of Ir{e−Γs}, which is proved using integration by parts,

Ir{e−Γs} ≤ c0e−Γt +
r−2∑
k=1

ck Γk−1〈t〉−r+k−1 + cr−1Γr−2−ρ〈t〉−1 ,
(5.5)

where ρ > 0 is arbitrary.
(4) To show decay for arbitrary, in particular, large α = r − 1, and the

estimates of R(t) of Theorem 2.1, we introduce the norms

[a]Γ(T ) ≡ sup
M≤t≤T

〈t〉α
∣∣a(t)

∣∣ (5.6)

and

[φd]ΓLD(T ) ≡ sup
M≤t≤T

〈t〉α
∥∥〈x〉−σφd(t)∥∥ . (5.7)

We now reexpress the system (5.4) for L(t) and a(t) by breaking the time
integrals in (5.4) into a part over the interval [0,M ] and a part over the
interval [M, t]. Using the estimate of part (3) above, the integrals over
[0,M ] are estimated to be of order |||W |||ε〈t〉−r+1 for some ε = ε(δ).

In this way, the resulting system for L(t) and a(t) is now reduced to one
which can be studied using Lemma 5.1 and the approach of section 4. Using
this approach estimates for the norms (5.6) and (5.7), and consequently of
R(t) can be obtained.

6 Examples and Applications

In this section we sketch examples and applications of Theorem 2.1. Most
of these examples have been previously studied, under more stringent hy-
potheses on H0 and W , e.g. some type of analyticity: dilation analyticity
for the Helium atom, translation analyticity for the Stark Hamiltonian; see
[CyFKS] and references cited therein. Theorem 2.1 enables us to relax this
requirement and gives the detailed time-behavior of solutions near the res-
onant energy at all time-scales. Example 5 concerns the instability of an
eigenvalue embedded at a threshold, a result which we believe is new and
not tractable by techniques of dilation analyticity.

We begin with the remark that in the examples below, one can often
replace the operator, −∆ by H1 ≡ ω(p), where p = −i∇. The necessary
hypothesis on local decay, (H4), is reduced to its verification for H1 + V .
By the general discussion of local decay estimates of Appendix D (see also
[Si3]), we have
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Theorem 6.1. The operator H = H1 +V satisfies the required local decay
estimates of (H4) under the following hypotheses:

Hypotheses on ω(p):
(i) ω(p) is real valued and ω(p)→∞ as |p| → ∞.

(ii) ω(p) is Cm function, m ≥ 4.
(iii) ∇pω = 0 on at most finitely many points, in any compact domain.

Hypotheses on V (x): V (x) is real valued and such that
(V1) V (x), x ·∇V , (x ·∇)2V , (x ·∇)3V are all g(H1) bounded for g ∈ C∞0 .
(V2) |V (x)| = 0(〈x〉−ε), ε > 0, |x| → ∞.
(V3) χRV , χR(x ·∇)mV , m=1, 2, 3 are g(H1)-compact, for χR≡χ[R,∞)(|x|)

with some R > 0.
The proof of this result follows from the procedure outlined in Appen-

dix D where we use the hypotheses on ω(p) and V and the choice for the
operator A is

A = 1
2(x · ∇pω +∇pω · x) .

Remark. Due to lack of assumptions on analyticity of ω(p) or V (x) one
cannot simply apply the technique of analytic deformation used in other
approaches.

Example 1: Dispersive Hamiltonian. With the above assumptions on
ω(p) and V (x), Theorem 2.1 applies directly to the operator H0 ≡ ω(p) +
V (x).

Example 2: Direct Sum. Let

H0 =
(
−∆x 0

0 −∆x + q(x)

)
acting on C2⊗L2(Rn), where q(x) is a well behaved potential having some
positive discrete eigenvalues. An example of this type is considered in [W].

Consider, for example, the case where q(x) = P (x), is a polynomial
which is bounded below. In this case, the spectrum of−∆x+P (x) is discrete
and consists of an infinite set of eigenvalues λ1 < λ2 · · · with corresponding
eigenfunctions ψ1, ψ2, . . . . The spectrum of H is then{

eigenvalues of −∆x + P (x)
}
∪ [0,∞)

and therefore H0 has nonnegative eigenvalues embedded in its continuous
spectrum.

Let

W =
(

0 W (x)
W (x) 0

)
with W satisfying conditions (W).
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Theorem 6.2. For H0 and W as above, if for some strictly positive simple
eigenvalue λ > 0 the resonance condition (Fermi golden rule) (2.7) holds,
then in an interval ∆ around λ, the spectrum of H is absolutely continuous
and the other conclusions of Theorem 2.1 hold. Furthermore, if n > 4,
Theorem 2.1 holds even when λ = 0 is an eigenvalue.

Proof. In this case local decay must be proved for −∆x, with r > 2. This
is well known. What is more, if the spatial dimension is larger than four,
n > 4, then λ = 0 is also allowed, since in this case we use∥∥〈x〉−n2−εei∆xtψ

∥∥
2 ≤

∥∥〈x〉−n2−ε∥∥2‖e
i∆xtψ‖∞

≤ Ct−n/2‖ψ‖1 .
Hence, for ψ ∈ D(〈x〉(n/2)+ε), and n > 4 we have the necessary decay,∥∥〈x〉−n2−εei∆xt〈x〉−n2−ε

∥∥ ≤ Ct−n/2
with r = n/2 > 2.
Example 3: Tensor Products. Let H0 = 1 ⊗ h1 + h2 ⊗ 1 act on
L2(Rnx1

)⊗ L2(Rnx2
), where
h1 = −∆x1 and h2 = −∆x2 + q(x2) . (6.1)

Then,
σ(H0) = {λ : λ = λ1 + λ2 , λ1 ∈ σ(−∆x1) and λ2 ∈ σ(−∆x2 + q(x2))} .

(6.2)

LetW (x1, x2) act on L2⊗L2, satisfying (W), with 〈x〉2 ≡ 1+|x1|2+|x2|2.
Then we have

Theorem 6.3. The embedded eigenvalues of H0 are unstable and Theo-
rem 2.1 holds.

Example 4: Helium Type Hamiltonians [RSim]. Consider H0 as in
Example 3 with

h1 = −∆x1 − |x1|−1 , h2 = −∆x2 − |x2|−1 . (6.3)
Also, let W be of the form

W (x1, x2) = W (x1 − x2) .
In this case the weight 〈x〉2 = 1+ |x1|2 + |x2|2. We now discuss the hypoth-
esis (W).

H0 has infinitely many negative eigenvalues embedded in the continuous
spectrum [CyFKS]. If ∆ is a subinterval of the negative real line containing
exactly one negative eigenvalue, E, then g∆ is a sum of terms of the form

gc∆−E(h1)⊗P and P⊗ gc∆−E(h2) . (6.4)
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Here, gc∆−E(hj) is a spectral projection onto the continuous spectral part
associated with an interval ∆−E, the translate of ∆ by −E, and P denotes
a (negative) bound state projection. Thus, g∆ localizes either the x1 or the
x2 variable, and so while 〈x〉2σW is not bounded we do have that

〈x〉2σWg∆(H0)
is bounded provided, for example, W is short range.

In the case, where W is long range, i.e.
W (x1 − x2) = O

(
〈x1 − x2〉−1) (6.5)

we first prove a minimal velocity bound and then use it to get local decay.
Going back to (3.27) we estimate∥∥∥F( |x|t ≤ η)φd(t)∥∥∥2

(6.6)

using the known propagation and minimal velocity estimates for H0 [SiSo].
The problematic term, which is the last term on the right-hand side of
(3.27) is then bounded by

c1

∫ t

0
〈t− s〉−1−ε∥∥〈x〉 1

2 +δWg̃∆(H)
∥∥

2

∥∥∥F( |x|s ≤ η)φd(s)∥∥∥2
ds

+ c2

∫ t

0
〈t− s〉−1−ε

∥∥∥〈x〉 1
2 +δWg̃∆(H)F

(
|x|
s ≥ η

)∥∥∥∥∥φd(s)∥∥2ds .

Since ∥∥∥〈x〉 1
2 +δWg̃∆(H)F

(
|x|
s ≥ η

)∥∥∥ ≤ c3|||W |||〈s〉− 1
2 +δ , (6.7)

we can close the inequalities and obtain

〈t〉 1
2−δ

∥∥∥F( |x|t ≤ η)φd(t)∥∥∥ ≤ c0 + c1 sup
0≤s≤t

∣∣〈s〉 1
2−δa(s)

∣∣ .
(6.8)

The above estimate, together with the estimates for a(t) lead to local
decay with a rate 〈t〉−(1/2)+δ. This rate is not sufficient to preclude singular
continuous spectrum. However, the Mourre estimate holds in this interval
for H0 + W which implies local decay and absence of singular continuous
spectrum; see Theorem 10.1 and Theorem 10.2 in Appendix D.
Example 5: Threshold Eigenvalues. Let H0 = −∆ + V (x) in L2(Rn),
n > 4. Assume V (x) is smooth and rapidly decaying for simplicity. Then,
under certain conditions on the spectrum of H0, and the behavior of its
resolvent at zero energy, one can prove local decay and L∞ decay with a
rate r > 2; see [JeK], [JoSoSog].

In such cases, it follows by Theorem 2.1 that a threshold eigenvalue at
λ = 0, if it exists, is unstable with respect to small and generic perturba-
tions, W .
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Example 6: Stark Effect - an atom in a uniform electric field. The Stark
Hamiltonian is given by

H = −∆ + V (x) + ~E · x (6.9)

acting on L2(Rn). If V (x) is real valued and not too singular, then for ~E 6= 0
the continuous spectrum of H is (−∞,∞). To see this apply Theorem 9.1
with A ≡ ~E · p, p = −i∇. Thus, if H has an eigenvalue, it is necessarily
embedded in the continuous spectrum.

Our results can be used to show that any embedded eigenvalue is gener-
ically unstable (i.e. provided the Fermi golden rule resonance condition
(W3) holds) and perturbs to a resonance.

To see this, one can proceed by a decoupling argument; see [CHi]. This
reduces the problem to a direct sum of Hamiltonians, as in Example 2, with
Hamiltonians of the form

H1 = −∆ + ~E · x+ Ṽ (x,−i∇) ,
H2 = −∆ + Vb(x) ,

W = W̃ (x,−i∇) .

The strategy is then to use the techniques of Appendix B to verify hy-
potheses (W) and the techniques of Appendix D to prove the necessary
local decay estimates in (H) for the the operator H0 = diag(H1,H2).

Example 7: The Radiation Problem. The radiation problem is the
fundamental problem which motivated work on quantum resonances. See
the work of Weisskopf and Wigner [WeiWi], following Dirac [Di] and Landau
[L]. We present here a very brief description of the problem and the relation
to our methods. For a more detailed discussion of the formulation see
[BFroSi].

The free Hamiltonian, H0, is the direct sum operator acting on
Ha ⊕ Hphoton. Here, Ha is the Hilbert space associated with an atom
or molecule. Hphoton is the Fock space of free photons. H0 is then the
Hamiltonian of a decoupled particle and free photon system

H0 = Ha ⊗ I + I ⊗Hphoton . (6.10)

The next step is to introduce the interaction term W that couples the
photon-radiation field to the atom. In quantum electrodynamics, this cou-
pling is given by the standard minimal coupling, but in general it is suf-
ficient to consider a simple approximation e.g. the dipole approximation
[AlE]. The goal is to show that all eigenvalues of the original atom, except
the ground state, are destabilized by the coupling and become resonances.
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This is the phenomenon of spontaneous emission. One is also interested in
the computation of the lifetime and the transition probabilities.

A simplified Hamiltonian which incorporates the essential mathematical
features of the radiation problem is

H = Ha ⊗ I + I ⊗Hphoton + λW , (6.11)

where Ha = −∆ + V (x) acting on L2(Rn) describes the atom, and the
coupling is given by

W =
∫ (

ω(~k)
)−1/2(

g(~k)ei~kxa~k + g(~k)e−i~k·~xa†~k
)
d~k . (6.12)

The Hamiltonian associated with the photon field is given by

Hphoton =
∫
ω(~k)a†~ka~kd

~k , (6.13)

the second quantization of multiplication in Fourier space by ω(~k) in L2(Rn).
Hence, Hphoton acts on the Fock space of bosons,

F = ⊕∞m=1 ⊗msym L2(R3) , (6.14)

where ⊗msym denotes the m-fold symmetric tensor product of L2(R3). The
operator a†~k is the creation operator on F and a~k, its adjoint.

For realistic photons, we must have g ≡ 1 and ω(~k) ∼ |~k| for ~k near
zero. However, to make mathematical sense of the above Hamiltonian we
need to introduce the ultraviolet cutoff ;

g = 0 for |~k| � 1 . (6.15)

When the coupling constant λ is zero, and so H = H0, it is fairly easy to ver-
ify our conditions (H) for H0, even in the massless photon case, ω(~k) = |~k|
[BFroSi],[BFSS]. The conditions (W) however fail when ω(k) = |~k| since
in this case the interaction λW is not localized. On the other hand, in the

massive case
(
ω(~k) =

√
m2 + |~k|2, m 6= 0

)
, the interaction is localized for

quite general g(~k); see [Ge]. In this case, our conditions (W) can be verified
and therefore the results of Theorem 2.1 can be applied.

7 Appendix A: Proof of Local Decay Proposition 2.1

Our aim is to prove local decay estimates for e−iH0t(H0 − Λ − i0)−1P#
c

using the given local decay estimates for e−iH0tP#
c , where Λ ∈ T#. The

proof is split into two parts: analysis near Λ and analysis away from Λ.



Vol. 8, 1998 TIME DEPENDENT RESONANCE THEORY 1113

Let ∆ be a small interval about Λ and g∆ denote a smoothed out char-
acteristic function of ∆ and g∆ = 1− g∆. We write

e−iH0t(H0 − Λ− i0)−1P#
c = e−iH0t(H0 − Λ− i0)−1P#

c (g∆ + g∆)
≡ T t∆ + St∆ .

We first estimate the operator T t∆. Let ε > 0 and set

T t∆,ε = e−i(H0−Λ−iε)t(H0 − Λ− iε)−1P#
c g∆ .

Then, by (H4),

T t∆,ε = i

∫ ∞
t

e−i(H0−Λ−iε)sP#
c g∆ ds .

Let 〈x〉σh ∈ L2. Then,∥∥〈x〉−σT t∆,εh∥∥2 ≤
∫ ∞
t

∥∥〈x〉−σe−i(H0−Λ−iε)s P#
c g∆h

∥∥
2ds

≤
∫ ∞
t

e−εs
∥∥〈x〉−σe−iH0sP#

c g∆h
∥∥

2ds

≤
∫ ∞
t

e−εs〈s〉−r
∥∥〈x〉σh∥∥2ds

≤ C〈t〉1−r
∥∥〈x〉σh∥∥2 .

Therefore, taking ε ↓ 0, we get∥∥〈x〉−σT t∆h∥∥2 ≤ C〈t〉
1−r∥∥〈x〉σh∥∥2 .

To estimate St∆, we exploit that the energy is localized away from Λ,
and so the resolvent (H0 − Λ)−1 is bounded,
〈x〉−σSt∆〈x〉−σ = 〈x〉−σe−iH0t(H0 − Λ− i0)−1P#

c g∆〈x〉−σ

= 〈x〉−σe−iH0tP#
c 〈x〉−σ · 〈x〉σ(H0 − Λ− i0)−1g∆〈x〉−σ .

(7.1)
For the operator norm we then have the bound∥∥〈x〉−σSt∆〈x〉−σ∥∥ ≤ ∥∥〈x〉−σe−iH0tP#

c 〈x〉−σ
∥∥

·
∥∥〈x〉σ(H0 − Λ− i0)−1g∆〈x〉−σ

∥∥ . (7.2)
We bound the first factor in (7.2) using the assumed local decay estimate
(H4). The second factor is controlled as follows. Note that
〈x〉σ(H0 − Λ− i0)−1g∆〈x〉−σ = 〈x〉σ(H0 + c)−1g∆〈x〉−σ

+ (Λ + c)〈x〉σ(H0 + c)−1〈x〉−σ · 〈x〉σ(H0 − Λ− i0)−1g∆〈x〉−σ . (7.3)
Taking operator norms and using hypothesis (H5) and Theorem 11.2 of
Appendix E we obtain the following bound on the second factor in (7.2)(

1− |Λ + c|‖〈x〉σ(H0 + c)−1〈x〉−σ‖
)∥∥〈x〉σ(H0 − Λ− i0)−1g∆〈x〉−σ

∥∥ ≤
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∥∥ ≤ (1+‖〈x〉σg∆〈x〉−σ‖

)∥∥〈x〉σ(H0+c)−1〈x〉−σ
∥∥ .

This completes the proof.

8 Appendix B: Operator Norm Estimates Involving g∆(H)

In this section we prove Propositions 3.1 and 4.1. These propositions require
some operator calculus.

Let ĥ(λ) denote the Fourier transform of the function g, with the nor-
malization,

ĥ(µ) = (2π)−1
∫
eiµλh(µ)dµ .

Proof of Proposition 3.1. Recall that λ0 denotes an embedded eigenvalue of
the unperturbed operator, H0, g∆ is a smoothed out characteristic function
of the interval ∆, and I is an open set which contains the support of P1
and is disjoint from ∆.

We need to show that

B =
(
I − g∆(H)gI(H0)

)−1 (8.1)

is bounded and we do this by showing that ‖g∆(H)gI(H0)‖ has small norm.
We use techniques of [SiSo].

Let ∆̃ be an interval which contains and is slightly larger than ∆. Then

g∆(H)gI(H0) = g∆(H)
(
I − g∆̃(H0)

)
gI(H0)

= g∆(H)g∆′(H0)gI(H0)
= g∆(H)

(
g∆′(H0)− g∆′(H)

)
gI(H0) , (8.2)

where ∆ and ∆′ are disjoint.
We now obtain, an expression for the above difference, which is easily

estimated. Using the Fourier transform we have that

g∆′(H0)− g∆′(H) =
∫

(eiµH0 − eiµH)ĝ∆′(µ)dµ . (8.3)

Furthermore,

eiµH0 − eiµH = (I − eiµHe−iµH0)eiµH0

= −
∫ µ

0

d
dse

isHe−isH0ds eiµH0

= −
∫ µ

0
eisHi(H −H0)e−isH0ds eiµH0

= −i
∫ µ

0
eisHWe−isH0ds eiµH0 . (8.4)
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Substitution of (8.4) into (8.3) yields

g∆′(H0)− g∆′(H) = −i
∫
ĝ∆′(µ)eiµHdµ

∫ µ

0
e−isHWeisH0ds .

(8.5)
We now apply the operator g∆(H) to the expression in (8.5) and estimate∥∥g∆(H)(g∆′(H0)− g∆′(H)

∥∥ ≤ ∫ ∣∣ĝ∆′(µ)
∣∣ ∫ µ

0

∥∥g∆(H)W
∥∥ds dµ

≤
∫ ∣∣ĝ∆′(µ)

∣∣|µ|dµ∥∥g∆(H)W
∥∥

≤ C|∆|−1∥∥g∆(H)W
∥∥ ≤ C|∆|−1|||W ||| . (8.6)

Therefore, ∥∥g∆(H)gI(H0)
∥∥ ≤ C|∆|−1|||W ||| .

and (I − g∆(H)gI(H0))−1 is bounded provided |∆|−1|||W ||| < θ is suffi-
ciently small; see (W4).
Proof of Proposition 4.1. We estimate the norm of the operator

G = 〈x〉σWg̃∆(H)〈x〉σ (8.7)
in terms of |||W |||, defined in (W2).

Recall that by (3.11)

g̃∆(H) = g∆(H)
(
I − g∆(H)gI(H0)

)−1
gI(H0) . (8.8)

Using (8.8) we express G as the product of operators
〈x〉σWg̃∆(H)〈x〉σ = G1 · G2 · G3

≡ 〈x〉σWg∆(H)〈x〉σ · 〈x〉−σ
[
I − g∆(H)gI(H0)

]−1〈x〉σ · 〈x〉−σgI(H0)〈x〉σ .
(8.9)

Therefore it suffices to obtain upper bounds for ‖Gj‖, j = 1, 2, 3. We
shall use some general operator calculus estimates of Appendix E, especially
Theorem 11.1.

Bound on G3: This follows from Theorem 11.1 of Appendix E, with
A = H0 and ϕ = gI , a function which is smooth and rapidly decaying at
infinity.

Bound on G2: By our hypotheses and the proof of Proposition 3.1,
‖g∆(H)gI(H0)‖ is small and(

I − g∆(H)gI(H0)
)−1 =

∞∑
n=0

(
g∆(H)gI(H0)

)n (8.10)

converges in the norm. We need to show this in the weighted norms. For
this, we will show that the norm of g∆(H)gI(H0) is small in the weighted
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norm, i.e.

〈x〉σg∆(H)gI(H0)〈x〉−σ = O
(
|||W |||

)
. (8.11)

Since the supports of g∆ and gI are disjoint

〈x〉σg∆(H)gI(H0)〈x〉−σ = 〈x〉σ
(
g∆(H)− g∆(H0)

)
gI(H0)〈x〉−σ

= 〈x〉σ
(
g∆(H)− g∆(H0)

)
〈x〉−σ · 〈x〉σgI(H0)〈x〉−σ .

By parts (a) and (b), respectively, of Theorem 11.1 both∥∥〈x〉σgI(H0)〈x〉−σ
∥∥ <∞ and

〈x〉σ
(
g∆(H)− g∆(H0)

)
〈x〉−σ = O

(
|||W |||

)
. (8.12)

Bound on G1: Expanding about the unperturbed operator, H0, we
have

G1 = 〈x〉σWg∆(H)〈x〉σ

= 〈x〉σW (H + c)−1〈x〉σ · 〈x〉−σ(H + c)g∆(H0)〈x〉σ .
(8.13)

Taking norms, we get

‖G1‖ ≤
∥∥〈x〉σW (H + c)−1〈x〉σ

∥∥ · ∥∥〈x〉−σ(H + c)g∆(H0)〈x〉σ
∥∥

(8.14)
Consider the first factor in (8.14). We show that it is of order |||W ||| as
|||W ||| → 0. Note that

〈x〉σW (H + c)−1〈x〉σ = 〈x〉σW (H0 + c)−1〈x〉σ − 〈x〉σW (H0 + c)−1〈x〉−σ

· 〈x〉σW (H + c)−1〈x〉σ .
Taking norms we obtain(

1− ‖〈x〉σW (H0 + c)−1〈x〉−σ‖
)∥∥〈x〉σW (H + c)−1〈x〉σ

∥∥
≤
∥∥〈x〉σW (H0 + c)−1〈x〉σ

∥∥ . (8.15)

Therefore, if |||W ||| < 1/2 the first factor of (8.14) is bounded by 2|||W |||.
The second factor of (8.14) is bounded by Theorem 11.1.

Finally, we note that the above bounds on Gj complete the proof of
Proposition 4.1.

9 Appendix C: Expansion of the Complex Frequency, ω∗

In this section we prove Proposition 3.3, in which an expansion of the
complex frequency, ω∗, is presented. In particular, our goal will be to obtain
an expansion of ω∗ which is explicit to second order in the perturbation,
W , with an error term of order |||W |||3.
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Recall that
ω∗ = λ0 + ωA − ωB , (9.1)

where
ωA =

(
ψ0,W g̃∆(H)ψ0

)
= ω1 − λ0 (see (3.15)) , (9.2)

and
ωB =

(
Wψ0, g̃∆(H)RH0(ω + i0)P#

c Wg̃∆(H)ψ0
)
. (9.3)

Expansion of ωA:
ωA ≡

(
ψ0,W g̃∆(H)ψ0

)
= (ψ0,Wψ0) +

(
Wψ0, B[g∆(H)− g∆(H0)]ψ0

)
≡ (ψ0,Wψ0) + β . (9.4)

In what follows, we shall frequently use the notation (H − λ)−1 and 1
H−λ

interchangeably.
Proposition 9.1.[

g∆(H)− g∆(H0)
]
ψ0 = −ḡ∆(H − λ0)−1Wψ0 (9.5)

Proof. Noting that H −H0 = W , we have the expansion formula

g∆(H)− g∆(H0) =
∫
ĝ∆(λ)(eiλH − eiλH0)dλ

=
∫
ĝ∆(λ)eiλH(1− e−iλHeiλH0)dλ

= i

∫
ĝ∆(λ)eiλH

∫ λ

0
e−isHWeisH0ds dλ .

We next apply this expansion to ψ0, where H0ψ0 = λ0ψ0 and obtain(
g∆(H)− g∆(H0)

)
ψ0 = i

∫
ĝ∆(λ)eiλH

∫ λ

0
e−isHWeisλ0ψ0ds dλ

= i

∫
ĝ∆(λ)eiλH

∫ λ

0
e−isH+isλ0Wψ0ds dλ

= i

∫
ĝ∆(λ)eiλH

e−iλH+iλλ0 − 1
−iH + iλ0

Wψ0dλ

= −
∫
ĝ∆

eiλλ0

H − λ0
dλWψ0 +

∫
ĝ∆(λ)

eiλH

H − λ0
Wψ0dλ

= −g∆(λ0)
1

H − λ0
Wψ0 + g∆(H)

1
H − λ0

Wψ0

= −
(
1− g∆(H)

) 1
H − λ0

Wψ0 ,
(
g∆(λ0) = 1

)
≡ −ḡ∆(H)(H − λ0)−1Wψ0 .
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This completes the proof of the proposition.
Substitution of (9.5) into the above expression for β yields

β = −
(
Wψ0, Bḡ∆(H)(H − λ0)−1Wψ0

)
. (9.6)

Let h(λ) be a function which is equal to one on the support of ḡ∆ and
is zero outside a small neighborhood of the support of ḡ∆. Therefore,
(H0 − λ0)−1h(H0) is bounded. A computation yields

Proposition 9.2.

ωA = (ψ0,Wψ0) + β

= (ψ0,Wψ0)−
(
Wψ0, ḡ∆(H0)(H0 − λ0)−1 Wψ0

)
(9.7)

−
(
Wψ0, ḡ∆(H)(H − λ0)−1(h(H)− I)Wψ0

)
−
(
Wψ0, ḡ∆(H0)(H0 − λ0)−1[h(H)− h(H0)]Wψ0

)
+
(
Wψ0, [g∆(H)− g∆(H0)]h(H)(H − λ0)−1Wψ0

)
+
(
Wψ0, ḡ∆(H0)(H0 − λ0)−1W (H − λ0)−1h(H)Wψ0

)
−
(
Wψ0, Bg∆(H)gI(H0)ḡ∆(H)(H − λ0)−1Wψ0

)
. (9.8)

Note also that the second term in (9.7) can be expressed as(
Wψ0, ḡ∆(H0)(H0 − λ0)−1Wψ0

)
=
(
Wψ0, ḡ∆(H0)(H0 − ω)−1Wψ0

)
− (Wψ0, ψ0) ·

(
Wψ0, ḡ∆(H0)(H0 − λ0)−1(H0 − ω)−1Wψ0

)
(9.9)

Expansion of ωB . Let RH(λ) ≡ (H − λ)−1. Recall that ωB is given
by the expression

ωB =
(
Wψ0, g̃∆(H)RH0(ω + i0)P#

c Wg̃∆(H)ψ0
)
,

and g̃∆(H) = Bg∆(H)(I − P1). We find after some computation

Proposition 9.3.

ωB =
(
Wψ0, g∆(H0)RH0(ω + i0)P#

c Wψ0
)

+
(
Wψ0, [B − I]g∆(H0)RH0(ω + i0)P#

c WBg∆(H)ψ0
)

+
(
Wψ0, [g∆(H)− g∆(H0)]RH0(ω + i0)P#

c Wg̃∆(H)ψ0
)

+
(
Wψ0, g∆(H0)RH0(ω + i0)P#

c WB[g∆(H)− g∆(H0)]ψ0
)

+
(
Wψ0, (B− I)[g∆(H)− g∆(H0)]gI(H0)RH0(ω+ i0)P#

c WBg∆(H)ψ0
)
.

(9.10)

Here, we have used that Bψ0 = ψ0. More generally, (B − I)g∆(H0) =
Bg∆(H)gI(H0)g∆(H0) = 0, and therefore the second term in (9.10) is zero.

It follows from (9.4), (9.9) and (9.10) that

ω∗ = λ0 + ωA − ωB
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≡ λ0 + (ψ0,Wψ0)− (Λ + iΓ) +
9∑
j=1

Ej , (9.11)

where
Λ + iΓ =

(
Wψ0, ḡ∆(H0)(H0 − ω)−1Wψ0

)
+
(
Wψ0, g∆(H0)(H0 − ω − i0)−1P#

c Wψ0
)
. (9.12)

and
E1 = (Wψ0, ψ0) ·

(
Wψ0, ḡ∆(H0 − λ0)−1(H0 − ω)−1Wψ0

)
E2 =

(
Wψ0, (H − λ0)−1(h(H)− I

)
ḡ∆(H)Wψ0

)
E3 = −

(
Wψ0, ḡ∆(H0)(H0 − λ0)−1[h(H)− h(H0)]Wψ0

)
E4 =

(
Wψ0, [g∆(H)− g∆(H0)]h(H)(H − λ0)−1Wψ0

)
E5 =

(
Wψ0, ḡ∆(H0)(H0 − λ0)−1W (H − λ0)−1h(H)Wψ0

)
E6 =

(
Wψ0, Bg∆(H)gI(H0)[g∆(H0)

− g∆(H)]ḡI(H0)RH0(ω + i0)P#
c WBg∆(H)ψ0

)
E7 =

(
Wψ0, g∆(H0)RH0(ω + i0)P#

c WB[g∆(H0)− g∆(H)]ψ0
)

E8 =
(
Wψ0, [g∆(H0)− g∆(H)]RH0(ω + i0)P#

c WBg∆(H)ψ0
)

E9 =
(
Wψ0, B[g∆(H0)− g∆(H)]gI(H0)ḡ∆(H)(H − λ0)−1Wψ0

)
We now claim that the terms Ej , j = 1, . . . , 9, are all of order |||W |||3.

Consider first E1 = Ea1 ·Eb1. Estimation of the first factor gives
|Ea1 | ≤ C|||W ||| , (9.13)

by Proposition 4.1.
Estimation of the second factor gives

|Eb1| =
∣∣(Wg∆(H0)ψ0, g∆(H0)(H0 − λ0)−1(H0 − ω)−1Wg∆(H0)ψ0)

∣∣
≤
∥∥〈x〉σWg∆(H0)ψ0

∥∥2
2

∥∥〈x〉−σg∆(H0)(H0 − λ0)−1(H0 − ω)−1〈x〉−σ
∥∥

≤ C|||W |||2
∥∥〈x〉−σg∆(H0)(H0 − λ0)−1(H0 − ω)−1〈x〉−σ

∥∥ ≤ C|||W |||2 ,
by Theorem 11.1. Therefore, |E1| ≤ C|||W |||3.

The term E2 is zero; (h− 1)ḡ∆ ≡ 0 since h ≡ 1 on the support of ḡ∆.
The term E5 can be treated by the same type of estimates as E1. The

remaining terms are Ej , j = 2, 3, 4, 6, 7, 8, 9. Each of these expressions has
two explicit occurrences of the perturbation, W , as well as a difference of
operators: g∆(H)− g∆(H0) or h(H)− h(H0). By (8.12), these differences
are O(|||W |||), so we expect each of these terms to be O(|||W |||3). We
carry this argument out for the term E7. The other terms are similarly
estimated.
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Consider E7. Let ∆̃ be an interval properly containing ∆ so restricted
to the interval ∆, g∆̃ ≡ 1 and g∆ = g∆g∆̃. Then,

|E7| =
∣∣(〈x〉σg∆(H)Wψ0, 〈x〉−σg∆̃(H)R0(ω + i0)P#

c 〈x〉−σ

· 〈x〉σWB[g∆(H0)− g∆(H)]ψ0)
∣∣

≤
∣∣(〈x〉σg∆(H)Wψ0, 〈x〉−σg∆̃(H0)R0(ω + i0)P#

c 〈x〉−σ

· 〈x〉σWB[g∆(H0)− g∆(H)]ψ0)
∣∣

+
∣∣(〈x〉σg∆(H)Wψ0, 〈x〉−σ[g∆̃(H)− g∆̃(H0)]〈x〉σ〈x〉−σR0(ω + i0)P#

c 〈x〉−σ

· 〈x〉σWB[g∆(H0)− g∆(H)]ψ0)
∣∣ . (9.14)

Using Proposition 4.1, Theorem 11.1 and (8.12) we have that
|E7| ≤ C|||W |||3

∥∥〈x〉−σ(H0 − ω − i0)−1P#
c 〈x〉−σ

∥∥ . (9.15)
That the term ‖〈x〉−σ(H0 − ω − i0)−1〈x〉−σ‖ is finite is a consequence of
Proposition 2.1 with t = 0. Thus we have the following proposition from
which Proposition 3.4 follows.
Proposition 9.4.

(1) Λ + iΓ =
(
Wψ0,P.V.(H0 − ω)−1Wψ0

)
+ iπ

(
Wψ0, δ(H0 − ω)(I − P0)Wψ0

)
,

(2) |Ej | ≤ C|||W |||3 , 1 ≤ j ≤ 9 ,

(3) ω∗ = λ0 + (ψ0,Wψ0)− Λ− iΓ +E(W ) , where |E(W )| ≤ C|||W |||3 .
(9.16)

It remains to verify part (1). This follows from an application of the
well-known distributional identity

(x∓ i0)−1 ≡ lim
ε→0+

(x∓ iε)−1 = P.V. x−1 ± iπδ(x) (9.17)

to the second term in equation (9.12) and the identity g∆(H0)P#
c = I−P0.

10 Appendix D: General Approach to Local Decay
Estimates

Hypothesis (H4) for our main theorem is one requiring that our unper-
turbed operator, H0, satisfy a suitable local decay estimate, (2.3). In this
section we give an outline to a very general approach to obtaining such
estimates based on a technique originating in the work of Mourre [Mou];
see also [PeSiSim]. In the following general discussion we shall let H de-
note self-adjoint operator on a Hilbert space, H, keeping in mind that our
application is to the unperturbed operator H0. Let E ∈ σ(H), and assume
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that an operator A can be found such that A is self-adjoint and D(A) ∩H
is dense in H. Let ∆ denote an open interval with compact closure. We
shall use the notation

adnA(H) =
[
· · · [H,A], A, · · ·A

]
, (10.1)

for the n-fold commutator.
Assume the two conditions

(M1) The operators
g∆(H)adnA(H)g∆(H) , 1 ≤ n ≤ N (10.2)

can all be extended to a bounded operator on H.
(M2) Mourre estimate:

g∆(H)i[H,A]g∆(H) ≥ θg∆(H)2 +K (10.3)
for some θ > 0 and compact operator, K.

Theorem 10.1 (Mourre; see [CyFKS, Theorem 4.9]). Assume conditions
(M1)-(M2), with N = 2. Then, in the interval ∆, H can only have abso-
lutely continuous spectrum with finitely many eigenvalues of finite multi-
plicity. Moreover, the operator

〈A〉−1g∆(H)(H − z)−1〈A〉−1 (10.4)
is uniformly bounded in z, as an operator on H. If K = 0, then there are
no eigenvalues in the interval ∆.

Theorem 10.2 (Sigal–Soffer; see [SiSo],[GeSi], [HuSi]). Assume conditions
(M1)-(M2) with N ≥ 2 and K = 0. Then, for all ε > 0∥∥∥F( |A|t < θ

)
e−iHtg∆(H)ψ

∥∥∥
2
≤ C〈t〉−N2 +ε∥∥|A|N2 ψ∥∥2 ,

(10.5)
and therefore ∥∥〈A〉−σe−iHtg∆(H)ψ

∥∥
2 ≤ C〈t〉

−σ∥∥|A|N/2ψ∥∥2 , (10.6)
for σ < N/2. Here, F is a smoothed out characteristic function, and
F (|A|/t < θ) is defined by the spectral theorem.

Let ∆1 denote an open interval containing the closure of ∆.
Corollary 10.1. Assume that 〈x〉−σg∆1(H)〈A〉σ is bounded. Then, in
the above theorems we can replace the weight 〈A〉−σ by 〈x〉−σ.

The strategy for using the above results to prove local decay estimates
like that in (H4) is as follows. Then∥∥〈x〉−σe−iHtg∆(H)ψ

∥∥
2 =

∥∥〈x〉−σg∆1(H)e−iHtg∆(H)ψ
∥∥

2

=
∥∥〈x〉−σg∆1(H)〈A〉σ · 〈A〉−σe−iHtg∆(H)ψ

∥∥
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≤
∥∥〈x〉−σg∆1(H)〈A〉σ

∥∥ · ∥∥〈A〉−σe−iHtg∆(H)ψ
∥∥

≤ C
∥∥〈A〉−σe−iHtg∆(H)ψ

∥∥
≤ C1

∥∥∥F( |A|t < θ
)
〈A〉−σe−iHtg∆(H)ψ

∥∥∥
2

+ C2

∥∥∥F( |A|t ≥ θ)〈A〉−σe−iHtg∆(H)ψ
∥∥∥

2
.
(10.7)

Theorem 10.2 is used to obtain the decay of the first term on the right-hand
side of (10.7), while we can replace |A| by θt in the second term.
Remark. Here we return to our comment in the introduction on the
relation between our assumption (H4) (local decay for e−iH0t) and the hy-
pothesis of dilation analyticity, used in previous works. Dilation analyticity
or its generalization, analytic deformation, is the requirement that the map,

d(θ) : θ 7→ ( eiθAH0e
−iθAf, f) , (10.8)

has analytic continuation to a strip, for f in a dense subset of H. Since the
nth derivative of d(θ) at θ = 0 is (adnA(H0)f, f), by the above local decay
result, the assumption (H4) is the requirement that the mapping, d(θ) be
of class C3.

11 Appendix E: Weighted Norm Estimates for Functions
of Operators

In Appendices A, B and C we frequently require facts and estimates of
functions of a self-adjoint operator. In this section we give some basic
definitions and provide the statements and proofs of such estimates. We
shall refer to certain known results and our basic references are [RSim] and
[AmMoG].

Let A denote a self-adjoint operator with domain D which is dense in a
Hilbert space H. Then we have that for any bounded continuous complex-
valued function, ϕ ∈ L1(R),

ϕ(A) = weak− lim
ε↓0

π−1
∫
ϕ(λ)=RA(λ+ iε)−1dλ , (11.1)

where RA(λ) = (A − λ)−1 denotes the resolvent of A. Here and through-
out this section all regions of integration are assumed to be over R unless
explicitly stated otherwise.
Theorem 11.1. Let Ã and B̃ denote bounded self-adjoint operators, and
let Γ be a contour in the complex plane, not passing through the origin,
surrounding σ(Ã) ∪ σ(B̃) and lying in the strip |=ζ| < 1.
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(a) Let ψ : R→ C be a W 2,1 function. Suppose
ηÃ ≡

∥∥〈x〉σÃ〈x〉−σ∥∥ < 1
2 min

[
distance(Γ, 0), 1

]
.

(11.2)
Then, there exists a positive number C1 = C1(‖ψ‖W 2,1 , ηÃ) such that∥∥〈x〉σψ(Ã) 〈x〉−σ

∥∥ < C1 . (11.3)

(b) Let ψ be as in part (a). Assume that Ã and B̃ both satisfy condition
(11.2). Then, there is a constant C2 = C2(‖ψ‖W 2,1 , ηÃ, ηB̃) such that∥∥〈x〉σ[ψ(Ã)− ψ(B̃)]〈x〉−σ

∥∥ ≤ C2
∥∥〈x〉σ(Ã− B̃)〈x〉−σ

∥∥ .
(11.4)

The following result shows that the case of unbounded self-adjoint op-
erators is reducible to Theorem 11.1.
Theorem 11.2. Suppose that Theorem 11.1 holds, and let Γ and ϕ be
as in Theorem 11.1. Furthermore, assume that x2ϕ′′(x) and xϕ′(x) are L1

functions. Let A and B be densely defined self-adjoint operators for which
(A + c)−1 and (B + c)−1 are bounded for some real number c and satisfy
the estimate (11.2). Then,∥∥〈x〉σϕ(A)〈x〉−σ

∥∥ < C1(ψ) . (11.5)
and ∥∥〈x〉σ[ϕ(A)− ϕ(B)]〈x〉−σ

∥∥ ≤ C2(ψ)
∥∥〈x〉σ(A−B)〈x〉−σ

∥∥ ,
(11.6)

where the constants C1(ψ) and C2(ψ) are as in Theorem 11.1, with ψ(x) ≡
ϕ(x−1 − c).

Proof. Let Ã = (A + c)−1 and note that ϕ(A) = ϕ(Ã−1 − c) = ψ(Ã).
It suffices to show that ψ(x) = ϕ(x−1 − c) satisfies the hypotheses of
Theorem 11.1. It is simple to check that ∂jxψ(x) ∈ L1, for j = 0, 1, 2.
This proves Theorem 11.2.

We now embark on the proof of Theorem 11.1. A key tool is an expan-
sion formula for ϕ(A); see Proposition 6.1.4 on page 239 of [AmMoG].
Theorem 11.3. Let A be a densely defined self-adjoint operator and ϕ be
as in the statement of Theorem 11.1. Then,

ϕ(A) = 1
π

∫
ϕ(λ)=RA(λ+ i)dλ+ 1

π

∫
ϕ′(λ)=iRA(λ+ i)dλ

+ 1
π

∫ 1

0
τ dτ

∫
ϕ′′(λ)=i2RA(λ+ iτ)dλ

≡ ϕ1 + ϕ2 + ϕ3 . (11.7)
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where all integrals exist in the norm of the space of bounded operators
on H.

To prove Theorem 11.1 we first obtain a simple expression for the third
summand in (11.7) by interchanging order of integration. We begin with a
calculation of the τ -integral∫ 1

0
τ dτ=

(
i2 RA(λ+ iτ)

)
= −

∫ 1

0
τ 1

2i

(
RA(λ+ iτ)−RA(λ− iτ)

)
= −

∫ 1

0
dτ τ2[(A− λ)2 + τ2]−1

= f(A;λ)− 1 ,
where

f(z;λ) = (z − λ)
∫ 1

z−λ

0
(1 + µ2)−1dµ . (11.8)

For each λ in the support of ϕ, the function f(z;λ) is analytic in the strip
|=z| < 1; this corresponds to choice an appropriate branch of the function
z 7→ (z − λ) arctan (z − λ)−1. By (11.7)

ϕ3(A) = 1
π

∫
ϕ′′(λ)f(A;λ)dλ . (11.9)

The strategy is as follows:
First, we observe that 〈x〉σϕj(Ã)〈x〉−σ is bounded for j = 1, 2. This is

true because ϕ,ϕ′ ∈ L1 and (11.2) can be used to bound the weighted norm
of the resolvent by a convergent geometric series. Therefore, it remains to
bound the operator ϕ3(Ã), where ϕ3 is given explicitly (11.9).
Lemma 11.1. Let Ã and B̃ denote bounded self-adjoint operators and
f(ζ) be a function which is defined and analytic in a neighborhood of
σ(Ã) ∪ σ(B̃). Let Γ be a smooth contour in the domain of analyticity
of f , surrounding σ(Ã) ∪ σ(B̃), not passing through the origin and such
that the estimate, ∥∥〈x〉σM〈x〉−σ∥∥ ≤ 1

2 min
ζ∈Γ
|ζ| , (11.10)

holds with M = Ã and M = B̃. Then, there exist positive constants C1
and C2 such that ∥∥〈x〉σf(Ã)〈x〉−σ

∥∥ ≤ C1 (11.11)∥∥〈x〉σ[f(Ã)− f(B̃)]〈x〉−σ
∥∥ ≤ C2

∥∥〈x〉σ(Ã− B̃)〈x〉−σ
∥∥

(11.12)
Proof. By the Cauchy integral formula we have

f(Ã) = (2πi)−1
∫

Γ
f(ζ)(Ã− ζI)−1dζ . (11.13)
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Part (a) follows by use of (11.10) to expand the resolvent in a geometric
series and by termwise estimation in the weighted norm.

Part (b) follows by the same method; by (11.13) applied to B̃ and
computation of the difference, we get

f(Ã)− f(B̃) = (2πi)−1
∫

Γ
f(ζ)

[
(Ã− ζI)−1 − (B̃ − ζI)−1]dζ

= (2πi)−1
∫

Γ
f(ζ)

[
(Ã− ζI)−1(Ã− B̃)(B̃ − ζI)−1]dζ .

Estimation in the weighted space yields (11.12). This completes the proof
of the lemma.

To complete the proofs of Theorems 11.1 and Theorem 11.2, we need to
estimate the operator 〈x〉σϕ3(Ã)〈x〉−σ, where Ã is the bounded self-adjoint
operator defined by Ã = (A + c)−1. We accomplish this by applying the
previous lemma to the function f(ζ;λ) defined in (11.8), where λ is in the
support of ϕ. The function f(ζ;λ) is analytic in the strip |=ζ| < 1, and Γ
is, by hypothesis, a contour in its domain of analyticity, surrounding σ(Ã)
(respectively, σ(Ã) ∪ σ(B̃),) and so that (11.10) holds. Then, by Lemma
11.1 we have that f(Ã;λ) and f(B̃;λ) satisfy (11.11) and (11.12). Finally,
using the representation formula for ϕ3, (11.9), we have∥∥〈x〉σϕ3(Ã)〈x〉−σ

∥∥ ≤ C1‖ϕ′′‖L1 ,∥∥〈x〉σ[ϕ3(Ã)− ϕ3(B̃)]〈x〉−σ
∥∥ ≤ C2‖ϕ′′‖L1

∥∥〈x〉σ[Ã− B̃]〈x〉−σ
∥∥ .
(11.14)

This completes the proof.
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