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Abstract
In this paper we prove that if M is a compact, hyperbolizable 3-
manifold, which is not a handlebody, then the Hausdorff dimension
of the limit set is continuous in the strong topology on the space
of marked hyperbolic 3-manifolds homotopy equivalent to M . We
similarly observe that for any compact hyperbolizable 3-manifold M
(including a handlebody), the bottom of the spectrum of the Lapla-
cian gives a continuous function in the strong topology on the space of
topologically tame hyperbolic 3-manifolds homotopy equivalent to M .

1 Introduction

Let M be a compact hyperbolizable 3-manifold and let D(π1(M)) denote
the space of discrete faithful representations of π1(M) into PSL2(C). Given
ρ ∈ D(π1(M)), let D(ρ) denote the Hausdorff dimension of the limit set
of ρ(π1(M)). A sequence {ρi} in D(π1(M)) converges to ρ in the strong
topology if and only if {ρi} converges to ρ in the compact-open topology
and {ρi(π1(M))} converges to ρ(π1(M)) geometrically.

The main result of this paper is the following theorem:

Main Theorem. Let M be a compact, hyperbolizable 3-manifold which
is not homeomorphic to a handlebody. Then D is continuous on D(π1(M))
in the strong topology.

One can also consider the function Λ on D(π1(M)) given by letting Λ(ρ)
be the bottom λ0(Nρ) of the spectrum of the Laplacian of the quotient
manifold Nρ = H3/ρ(π1(M)) associated to ρ. It follows from work of
Patterson [P], Sullivan [S1], Bishop-Jones [BiJo] and Canary [C], that if
ρ is topologically tame, then Λ(ρ) = D(ρ)(2 − D(ρ)) if D(ρ) ≥ 1 and
that Λ(ρ) = 1 otherwise. Let TT (π1(M)) denote the set of topologically

Research of the first author was supported in part by the National Science Foundation
and a fellowship from the Sloan Foundation.



284 R.D. CANARY AND E.C. TAYLOR GAFA

tame representations in D(π1(M)). Our main theorem will follow from the
following result and work of Bishop-Jones [BiJo], Canary [C] and Taylor [T].

Theorem 4.1. Let M be a compact, hyperbolizable 3-manifold. If {ρi} is
a sequence in D(π1(M)) converging strongly to ρ, where ρ is geometrically
finite, then {Λ(ρi)} converges to Λ(ρ).

By combining Theorem 4.1 with work of Canary [C] we obtain the
following corollary.

Corollary A. Let M be a compact, hyperbolizable 3-manifold. Then Λ
is continuous on TT (π1(M)) in the strong topology.

The Main Theorem also gives rise to the following characterization of
strong convergence in the case when the algebraic limit is geometrically
finite.

Corollary B. Let M be a compact hyperbolizable 3-manifold which is not
homeomorphic to a handlebody. Suppose that a sequence {ρi} in D(π1(M))
converges (in the compact-open topology) to ρ ∈ D(π1(M)) such that ρ is
geometrically finite. Then {ρi} converges strongly to ρ if and only if {D(ρi)}
converges to D(ρ).

It has previously been observed, see Taylor [T], Canary-Minsky [CMi] or
Bishop-Jones [BiJo], that D and Λ are not continuous in the compact-open
(or algebraic) topology on D(π1(M)). Canary and Minsky [CMi] proved
that Λ is continuous on the subset of purely hyperbolic representations in
TT (π1(M)) in the algebraic and the strong topologies. McMullen [Mc]
has recently proven that D is not continuous in the strong topology on
D(π1(M)) if M is a handlebody.

Bonahon [Bo] proved that D(π1(M)) = TT (π1(M)) if π1(M) is freely in-
decomposable. It is conjectured that TT (π1(M)) always equals D(π1(M))
(see Marden [M].) One conjectures that Λ is always continuous on
D(π1(M)) in the strong topology.

McMullen [Mc] has independently proven a generalization of Theo-
rem 4.1 and a variety of interesting related results. His proof makes use
of the language of Patterson-Sullivan measures, while ours uses spectral
theory. Related results have also been obtained by Comar-Taylor [ComT].

Acknowledgements. The authors would like to thank the University of
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2 Preliminaries

In this section, we recall the definitions of some of the terms used in the
introduction and introduce some necessary background material.

A compact, orientable 3-manifold is called hyperbolizable if there exists a
complete hyperbolic 3-manifold homeomorphic to the interior ofM . We will
assume throughout the remainder of the paper that π1(M) is non-abelian.
(If π1(M) is abelian, then both Λ and D are constant on D(π1(M)).)

A Kleinian group is a discrete subgroup of PSL2(C), which we regard
both as the group of conformal automorphisms of the Riemann sphere
and as the group of orientation-preserving isometries of H3. A sequence
{Γi} of Kleinian groups is said to converge geometrically to a Kleinian
group Γ if every element γ ∈ Γ is a limit of a sequence {γi ∈ Γi}, and
every accumulation point of such a sequence lies in Γ. A sequence {ρi} in
D(π1(M)) converges strongly to ρ if {ρi} converges to ρ in the compact-
open topology and {ρi(π1(M))} converges geometrically to ρ(π1(M)). The
resulting topology on D(π1(M)) is called the strong topology. (One may
explicitly exhibit a basis for the strong topology on D(π1(M)) by combining
open sets in the compact-open topology and open sets coming from the
Chabauty, or geometric, topology on the space of all Kleinian groups, see
section 3.1 of Canary-Epstein-Green [CEGr]. Since the resulting topology
is Hausdorff and first countable it will always suffice to discuss sequences.)

The limit set L(Γ) of a Kleinian group Γ (which is not virtually abelian)
is defined to be the smallest non-empty, closed subset of the Riemann sphere
which is invariant under Γ. We define a function D on D(π1(M)) by let-
ting D(ρ) denote the Hausdorff dimension of the limit set L(ρ(π1(M)) of
ρ(π1(M)).

If N is a complete hyperbolic 3-manifold, we let λ0(N) = infspec(−∆)
where ∆ = div(grad) is the Laplacian. We define the function Λ on
D(π1(M)) by setting Λ(ρ) = λ0(Nρ) where Nρ = H3/ρ(π1(M)).

The convex core C(N) of a hyperbolic 3-manifold N = H3/Γ is defined
to be the quotient of the convex hull CH(L(Γ)) of the limit set L(Γ) by Γ.
Given any K ≥ 0, let CK(N) denote the closed metric K-neighborhood
of C(N). There is a retraction rK of N onto CK(N) given by taking any
point in N to the unique point in CK(N) nearest to it. (This retraction is
discussed extensively in Epstein-Marden [EM].)

A hyperbolic 3-manifold N is said to be geometrically finite if CK(N)
has finite volume for all K ≥ 0. N is said to be topologically tame if it
is homeomorphic to the interior of a compact manifold. We will call a
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representation ρ ∈ D(π1(M)) geometrically finite (or topologically tame) if
Nρ = H3/ρ(π1(M)) is geometrically finite (or topologically tame).

If N is a hyperbolic 3-manifold then λ0(N) ≤ λ0(H3) = 1. If λ0(N) < 1
and N is geometrically finite, then there exists a unique C∞ positive eigen-
function φ of −∆ on N with L2-norm 1 and the eigenvalue of φ is λ0(N)
(see Lax-Phillips [LPh] or Sullivan [S2].) When it exists, we call φ the
normalized first eigenfunction. If N is geometrically finite and λ0(N) = 1,
then N does not carry any eigenfunctions of −∆ which lie in L2(N).

Patterson and Sullivan first observed that there is a deep relationship
between D and Λ if ρ is geometrically finite. In deriving the Main Theo-
rem from Theorem 4.1 we will use the following theorem, whose statement
combines results of Patterson [P], Sullivan [S1], Canary [C] and Bishop-
Jones [BiJo].

Theorem 2.1. Let M be a compact hyperbolizable 3-manifold. If ρ ∈
TT (π1(M)) then Λ(ρ) = D(ρ)(2 − D(ρ)) if D(ρ) ≥ 1, while Λ(ρ) = 1
otherwise.

One may combine the main results of Canary [C] and Bishop-Jones
[BiJo] to show that the volume of the convex core of a hyperbolic 3-manifold
provides a lower bound for the Hausdorff dimension of its limit set.

Theorem 2.2. Let M be a compact hyperbolizable 3-manifold. There
exists a constant K so that if ρ ∈ D(π1(M)), then D(ρ) ≥ 2− K

vol(C(Nρ)) .

Proof of 2.2. If vol(C(Nρ)) is infinite, then Nρ is geometrically infinite,
so the main theorem of Bishop and Jones [BiJo] implies that D(ρ) = 2. If
vol(C(Nρ)) is finite, then the main result of Canary [C] (see also Corollary
B of Burger-Canary [BuC]) implies that D(ρ) ≥ 2 − 4π|χ(∂C(Nρ))|

vol(C(Nρ)) where
χ(∂C(Nρ)) denote the Euler characteristic of the boundary of C(Nρ). Since
χ(∂C(Nρ)) = χ(∂M) if Nρ is geometrically finite (see Bowditch [Bow]), the
theorem holds with K = 4π|χ(∂M)|. �

It is useful to divide a hyperbolic 3-manifold N up into thick and thin
parts. Given ε > 0 we define Nthin(ε) to be the set of points in N with
injectivity radius at most ε and Nthick(ε) to be the set of points with in-
jectivity radius at least ε. The Margulis lemma (see Benedetti-Petronio
[BPe] for example) implies that there exists M3 > 0 such that if ε <M3
then every component of Nthin(ε) is either a solid torus neighborhood of a
closed geodesic or the quotient of a horoball in H3 by a discrete group of
parabolic elements preserving the horoball. If T is a component of Nthin(ε)
we let S(T ) denote the neighborhood of radius 1 of ∂T in T . We will often



Vol. 9, 1999 HAUSDORFF DIMENSION AND LIMITS OF KLEINIAN GROUPS 287

consider the submanifold NS
ε which is taken to be Nthick(ε) ∪ S(Nthin(ε)).

Outline of paper. In the next two sections we will assemble the proof
of Theorem 4.1 (which asserts that the lowest eigenvalue of the Laplacian
is continuous on a strongly convergent sequence with a geometrically finite
limit) and in section 5 we observe that the Main Theorem and its corollaries
follow from Theorem 4.1 and previously known results. In a final section
we describe a conjecture concerning the relationship between geometric
convergence and the behavior of Λ.

As the next section is spent proving the technical lemmas used in the
proof of Theorem 4.1, we will provide a brief outline of the proof here.
A theorem of Taylor [T] insures us, since Nρ is geometrically finite, that
we may assume that Ni = Nρi is geometrically finite for all i. Since Λ is
upper semicontinuous, we can reduce to the case that lim λ0(Ni) exists and
is less than 1. Let {φi} be the sequence of normalized first eigenfunctions
associated to {ρi}. We observe that most of the support of each φi lies
on a definite neighborhood CK(Ni) of the convex core (see Lemma 3.5))
and that a definite portion of the support of each φi lies in the thick part
(Ni)Sε (see Lemma 3.3.) It then follows that there is a definite portion
of the support contained in CK(Ni) ∩ (Ni)Sε for all i. We then show (see
Lemma 3.6) that there is a definite bound on the diameter, and hence the
volume, of CK(Ni)∩(Ni)Sε . Putting this together we find a point in each Ni

at which φi is at least some definite value. This will imply that the limit of
a subsequence of {φi} is a non-zero, positive, L2 eigenfunction of −∆ on Nρ

whose eigenvalue is equal to limλ0(Ni), and hence that λ0(N) = limλ0(Ni).

3 The Lemmas

We first prove that if N is geometrically finite and λ0(N) 6= 1, then some
definite proportion of the normalized eigenfunction is supported on the
thick part of the manifold. The proof relies on the following generalization
of Lemma 2 in Dodziuk-Randol [DR]. The proof of Lemma 3.1, which relies
on the fact that if T is a component of Nthin(ε) then λ0(T ) ≥ 1, is the same
as that of Lemma 2 in [DR].

Lemma 3.1 (Dodziuk-Randol [DR]). Let 0 < ε <M3 and δ > 0. There
exists a constant α > 0 such that if N is a hyperbolic 3-manifold, T is a
component of Nthin(ε), T 6= S(T ), and f ∈ C1(N) ∩ L2(N) such that

1.
∫
T f

2 ≥ c,
2.

∫
S(T ) |5f |2 ≤ αc, and
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3.
∫
S(T ) f

2 ≤ αc,
then ∫

T
|5f |2 ≥ (1− δ)c .

We will also make repeated use of Yau’s Harnack inequality (see [Y])
which we state in the restricted setting in which we use it.

Lemma 3.2 (Yau’s Harnack Inequality). There exists a constant R
such that if N is a complete hyperbolic 3-manifold and φ is a positive
C∞-eigenfunction of −∆ with eigenvalue between 0 and 1, then
|5φ(x)| ≤ Rφ(x) for all x ∈ N .

We are now prepared to prove that the L2-norm of the restriction of the
normalized first eigenfunction to the thick part is bounded from below.

Lemma 3.3. Given 0 < ε <M3 and δ1 > 0, there exists C > 0 such that
if N is a geometrically finite hyperbolic 3-manifold, λ0(N) ≤ 1− δ1, and φ
is its normalized first eigenfunction, then∫

NS
ε

φ2 ≥ C .

Proof of 3.3. Since λ0(N) ≥ 0, δ1 ≤ 1. Lemma 3.1 assures that we
can choose α > 0 such that if f ∈ C1(N) ∩ L2(N),

∫
Nthin(ε)

f2 ≥ c,∫
S(Nthin(ε))

|5f |2≤αc, and
∫
S(Nthin(ε)))

f2≤αc, then
∫
Nthin(ε)

|5f |2≥
(
1− δ1

2

)
c.

Let C = min =
{
δ1
2 ,

α
2R2

}
where R is the constant in Yau’s Harnack in-

equality. If
∫
NS
ε
φ2 ≤ C, then the above inequalities hold with c = 1 − δ1

2 .
Therefore, ∫

Nthin(ε)

|5φ|2 ≥
(

1− δ1
2

)2
> 1− δ1 ≥ λ0(N)

which contradicts the fact that
∫
N |5φ|2 = λ0(N). This establishes our

claim. �

We next observe that a definite portion of the support of the normalized
first eigenfunction of a geometrically finite hyperbolic 3-manifold lies in a
definite radius neighborhood of the convex core. We first obtain the follow-
ing generalization of Proposition 4.2 in Burger-Canary [BuC] which asserts
that outside a definite neighborhood of the convex core the normalized first
eigenfunction decays exponentially at a definite rate.

Lemma 3.4. Given δ1 > 0 there exists B > 0 and δ2 > 0 such that
if N is a geometrically finite hyperbolic 3-manifold with λ0(N) < 1− δ1,
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φ is its normalized first eigenfunction, and d(x,C(N)) > B, then
φ(x) ≤ e−(1+δ2)d(x,rB(x))φ(rB(x)).

Proof of 3.4. Let N = H3/Γ. We will work in the ball model for H3. Given
ξ ∈ S2 = ∂H3, let fξ : H3 → R be given by fξ(x) = 1−|x|2

|x−ξ|2 . For any x ∈ H3,
the geodesic ray determined by 5fξ(x) ends at ξ and |5fξ(x)| = fξ(x) for
all x.

Patterson and Sullivan (see [S2]) proved that if N is geometrically finite,
λ0(N) < 1 and φ is its normalized first eigenfunction, then there exists a
measure µ on S2 which is supported on the limit set of Γ such that if we
define

φ̃(x) =
∫
S2

(
fξ(x)

)δ(N)
dµ ,

for all x ∈ H3 (where λ0(N) = δ(N)(2 − δ(N)) and δ(N) > 1), then φ̃
descends to the map φ. In particular, there exists 1 > d > 0 such that if
λ0(N) < 1− δ1, then δ(N) > 1 + d.

We may choose B large enough so that if y lies on the positive portion
of the x3-axis and d(0, y) ≥ B, then if u and v are any two unit vectors
in Ty(H3) whose associated geodesic rays end in the southern hemisphere
then u · v ≥ 1− d

2 .
We now claim that if we choose B in this manner then the above state-

ment is true with δ2 = d
2 −

d2

2 . Given x ∈ N − CB(N), let x′ denote a
point in the preimage of x in H3. We may normalize so that x′ lies on the
positive x3-axis and r̃0(x′) = 0 (where r̃K is the nearest point retraction
of H3 onto the closed neighborhood of radius K of CH(L(Γ))). In this
normalization, L(Γ) lies entirely in the southern hemisphere.

If y is a point on the x3-axis between x′ and r̃B(x′) and ξ ∈ L(Γ), then

5
(
fξ(y)δ(N)) · ~uy ≥ (1 + d)

(
1− d

2

)
fξ(y)δ(N) = (1 + δ2)fξ(y)δ(N)

where ~uy is the unit vector in Ty(H3) pointing towards the origin. There-
fore,

5φ̃(y) · ~uy ≥ (1 + δ2)φ̃(y) .

We then establish the desired inequality by integrating 5φ̃ along the posi-
tive x3-axis from x′ to r̃B(x′) and noticing that r̃B(x′) covers rB(x). �

We use this to prove

Lemma 3.5. Given δ1 > 0 and δ3 > 0, there exists K > 0 such that if N
is a geometrically finite hyperbolic 3-manifold, λ0(N) ≤ 1− δ1, and φ is its
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normalized first eigenfunction then∫
CK(N)

φ2 ≥ 1− δ3 .

Proof of 3.5. Choose B and δ2 as given by Lemma 3.4. Let h : N − CB(N)
→ ∂CB(N)×(0,∞) be given by h(x) = (rB(x), d(x, rB(x)). As in the proof
of Theorem 2.3.1 of Epstein-Marden [EM], we see that h is Lipschitz and
that there exist constants D > 0 and D′ > 0 so that

De2d(x,rB(x)) ≤ 1
|dh(x)| ≤ D

′e2d(x,rB(x))

almost everywhere. Therefore, for all T > S ≥ 0,∫
CB+T (N)−CB+S(N)

φ2 ≤ D′
∫
∂CB(N)

∫ T

S
e−2δ2tφ2(x)dAdt

(where dA denotes the area measure on ∂CB(N)) which implies that∫
CB+T (N)−CB+S(N)

φ2 ≤ D′

2δ2
(e−2δ2S − e−2δ2T )

∫
∂CB(N)

φ2dA.

On the other hand, applying Yau’s Harnack inequality we see that if x ∈
N − CB(N), then φ(x) ≥ e−Rd(x,rB(x))φ(rB(x)). Hence,∫

CB+1(N)−CB(N)
φ2 ≥ D

∫
∂CB(N)

∫ 1

0
e−2Rtφ2(x)dAdt

≥ D

2R
(1− e−2R)

∫
∂CB(N)

φ2dA .

Since,
∫
CB+1(N)−CB(N) φ

2 ≤ 1, we see that∫
∂CB(N)

φ2dA ≤ 2R
D(1− e−2R)

.

Therefore, if we set

S =
log(D′R)− log(δ2δ3D(1− e−2R))

2δ2
,

then ∫
N−CB+S(N)

φ2 ≤ δ3 .

Let K = B + S and the claim is established. �

We now need to know some basic facts about the convergence of the
convex cores in our sequence. The following argument is a generalization
of arguments given in Taylor’s paper [T].
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Lemma 3.6. Let M be a compact hyperbolizable 3-manifold, 0 < ε <M3
and K > 0. Let {ρi} be a sequence of representations in D(π1(M)) converg-
ing strongly to a geometrically finite representation ρ. Then there exists a
constant A > 0 such that the diameter of (Ni)Sε ∩ CK(Ni) is less than A
for all sufficiently large i.

In the proof of Lemma 3.6, and later in the proof of Theorem 4.1, we will
make use of the following alternative characterization of geometric conver-
gence (see Canary-Epstein-Green [CEGr] or Benedetti-Petronio [BPe] for
a proof.)
Lemma 3.7. Let {Γi} be a sequence of Kleinian groups converging geo-
metrically to Γ. Let Ni = H3/Γi and N = H3/Γ. There exists a sequence
{(ri, ki)} and a sequence of maps f̃i : Bri(0)→ H3 such that

1. ri 7→ ∞ and ki 7→ 1,
2. the map f̃i is a ki-biLipschitz diffeomorphism onto its image, f̃i(0) = 0,

and {f̃i|A} converges to the identity on any compact set A, and
3. f̃i descends to an embedding fi : Vi → N where Vi = Bri(0)/Γi is a

submanifold of Ni.
Proof of 3.6. Let Ni = Nρi and N = Nρ, and let {fi : Vi → N} be the
sequence of biLipschitz embeddings given by Lemma 3.7. Proposition 3.3 in
Canary-Minsky [CMi] implies that for all large enough i, (fi)∗ is conjugate
to ρ ◦ ρi−1 ◦ (ji)∗ where ji : Vi → Ni is the inclusion map.

We first note that NS
δ ∩C(N) has bounded diameter for all δ, since N is

geometrically finite (see Bowditch [Bow].) We first choose 0 < ε′′ < ε′ < ε
such that every closed geodesic γ in N either lies entirely in NS

ε′ or entirely
in Nthin(ε′), in which case we set γ′ = γ, or has a homotopic representative
γ′ lying entirely in NS

ε′′ ∩C(N) all of whose segments are of length at least
L and are either geodesic subarcs of γ ending in ∂Nthin(ε′) or lie entirely
in ∂Nthin(ε′) and are geodesics in the induced metric on ∂Nthin(ε′). (By
choosing ε′ and ε′′ sufficiently small, we can make L as large as we like.) Let
X be obtained from NS

ε′′ ∩ C(N) by appending every compact component
of Nthin(ε′′). Then every representative γ′ constructed as above lies in X.

We assume that we have chosen i large enough so that ki ≤ 2 and
X ⊂ fi(Vi). Given a closed geodesic γ in N , let γi denote the closed
geodesic inNi in the homotopy class of f−1

i (γ′). One shows using hyperbolic
trigonometry, as in Taylor [T], that there existsD > 0 such that for all large
enough i and all γ, γi lies in ND(f−1

i (γ′)) ∪ (Ni)thin(ε). For large enough i,
every closed geodesic in Ni either lies entirely in (Ni)thin(ε) or is homotopic
to f−1

i (γ′) for some closed geodesic γ in N . Hence, every closed geodesic
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in Ni lies in ND(f−1
i (X)) ∪ (Ni)thin(ε) for all large enough i. Since there

exists a uniform constant E > 0 such that any point in the convex core
of any hyperbolic 3-manifold lies within E of a closed geodesic, it follows
that (Ni)Sε ∩C(Ni) lies in ND+E(f−1

i (X)) for all large enough i. Since the
diameter of f−1

i (X) is at most twice the diameter of X for large enough
i, it follows that (Ni)Sε ∩ C(Ni) has diameter at most 2diam(X) + (D +
E) for all sufficiently large i. It is easy to check that (Ni)Sε ∩ CK(Ni) is
contained in N2K((Ni)Sε ∩C(Ni)), so (Ni)Sε ∩CK(Ni) has diameter at most
2diam(X) +D +E + 2K for all sufficiently large i. �

4 The Proof of Theorem 4.1

Theorem 4.1. Let M be a compact hyperbolizable 3-manifold. If {ρi} is
a sequence in D(π1(M)) converging strongly to ρ so that ρ is geometrically
finite. Then {Λ(ρi)} converges to Λ(ρ).

Proof of 4.1. The main theorem of Taylor [T] assures us that ρi(π1(M))
is geometrically finite for all large enough i. It is well known, see for
example Lemma 5.2 in Canary-Minsky-Taylor [CMiT], that if {Γi} con-
verges geometrically to Γ, then λ0(H3/Γ) ≥ lim supλ0(H3/Γi). Thus,
Λ(ρ) ≥ lim sup Λ(ρi). We may pass to a subsequence {ρj} of {ρi} such
that {Λ(ρj)} converges to L = lim inf Λ(ρi) and ρj is geometrically finite
for all j. We will prove that Λ(ρ) = L which will suffice to establish the
theorem. If L = 1, then by upper semicontinuity of Λ and the fact that
Λ(ρ) ≤ λ0(H3) = 1, we see that Λ(ρ) = 1 and we are done. Thus, we may
assume that L < 1 and hence that Λ(ρj) ≤ 1 − δ1 < 1 for all sufficiently
large j and some δ1 > 0.

Let Nj = Nρj and N = Nρ and let {fj : Vj → N} be the sequence of
biLipschitz embeddings given by Lemma 3.7. Let φj be the normalized first
eigenfunction associated to λ0(Nj) and let pj : H3 → Nj be the covering
map. Choose M3 > ε > 0. We may assume, without loss of generality,
that bj = pj(0) ∈ (Nj)Sε ∩ C(Nj) for all j.

Lemma 3.3 implies that there exists C > 0 such that
∫

(Nj)Sε
φ2
j ≥ C for

all j. Lemma 3.5 implies that there existsK>0 such that
∫
CK(Nj)

φ2
j ≥ 1−C

2
for all j. Therefore, ∫

CK(Nj)∩(Nj)Sε
φ2
j ≥ C

2

for all j.
Lemma 3.6 implies that there exists A > 0 such that CK(Nj) ∩ (Nj)Sε
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has diameter less than A, for all sufficiently large j, and hence has volume
less than the volume, say V , of the ball of radius A in H3. Hence, for all
sufficiently large j, there exists a point xj ∈ CK(Nj) ∩ (Nj)Sε such that

φj(xj) ≥
√

C
2 /V .

Let {φ̃j : H3 → R} denote the lifts of {φj} to H3. Yau’s Harnack

inequality implies that φ̃j(0) = φj(bj) ≥
√
C/2

V eRA
for all sufficiently large j.

Basic elliptic theory and Yau’s Harnack inequality, then imply that a subse-
quence, still called {φ̃j}, of {φ̃j} converges (uniformly on compact sets) to a
non-zero, positive function φ̃ on H3 which is an eigenfunction for −∆ with
eigenvalue L. Since {ρj(π1(M))} converges geometrically to ρ(π1(M)), φ̃
descends to a function φ on N . Since {φj ◦ f−1

j } converges (uniformly on
compact sets) to φ, it is easy to check that

∫
N φ

2 ≤ 1. Thus, φ is a multiple
of the normalized first eigenfunction of N . Therefore, λ0(N) = Λ(ρ) = L
which completes the proof. �

Remarks. (1) The above proof can be easily generalized to obtain an
analogous result in any dimension. It may also be generalized to yield
McMullen’s analogue of Theorem 4.1 which allows for a weaker notion of
strong convergence.

(2) One might similarly ask if the discrete spectra of Nρi converge to the
discrete spectrum of Nρ. See Colbois-Courtois [CoCou], Chavel-Dodziuk
[ChD] and Ji [J] for related work on finite volume hyperbolic 3-manifolds.

5 The Proofs of the Main Theorem and Corollaries

We first use Theorem 4.1 to prove the Main Theorem.

Main Theorem. Let M be a compact, hyperbolizable 3-manifold which
is not homeomorphic to a handlebody. Then D is continuous on D(π1(M))
in the strong topology.

Proof of Main Theorem. First suppose that M is not an I-bundle and
that the sequence {ρi} ⊂ D(π1(M)) converges to ρ in the strong topology.

If ρ is geometrically finite, then the main result of [CT] implies that
Λ(ρ) 6= 1. Theorem 4.1 then implies that {Λ(ρi)} converges to Λ(ρ). One
then applies Theorem 2.1 to see that {D(ρi)} converges to D(ρ).

If ρ is not geometrically finite then D(ρ) = 2 and vol(C(N)) = ∞.
Since the volume of the convex core is a continuous function in the strong
topology (see Taylor [T]) lim vol(C(Ni)) = ∞. (One may also argue more
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directly in the geometrically infinite setting, as in the proof of Lemma 7.1
in Canary-Minsky [CMi], that lim vol(C(Ni)) = ∞.) Theorem 2.2 then
implies that {D(ρi)} converges to 2. Therefore, D is continuous in the
strong topology on D(π1(M)) if M is not an I-bundle.

Suppose that M is an I-bundle over a closed surface and {ρi} converges
to ρ in the strong topology. If ρ is geometrically finite and Λ(ρ) < 1, or
ρ is geometrically infinite, then the proof that {D(ρi)} converges to D(ρ)
is just as above. If Λ(ρ) = 1 and ρ is geometrically finite, then the main
result of Canary-Taylor [CT] implies that ρ is convex cocompact. (In fact,
ρ(π1(M)) contains a Fuchsian subgroup of index at most 2.) Marden’s Sta-
bility Theorem [M] then implies that there is an open neighborhood W of ρ
in D(π1(M)) consisting of representations quasiconformally conjugate to ρ.
It is then a standard consequence of results of Gehring and Väisälä [GV],
see for example the proof of Corollary D in Canary-Minsky [CMi], that D is
continuous on W . (In fact, Corollary D in [CMi] implies immediately that
D is continuous on W .) In particular, {D(ρi)} converges to D(ρ) in this
case as well. Therefore, D is a continuous function in the strong topology
of D(π1(M)) if M is an I-bundle over a closed surface. �

Corollary A follows immediately from the Main Theorem and Theo-
rem 2.1 if M is not a handlebody. We will give a self-contained proof.

Corollary A. Let M be a compact, hyperbolizable 3-manifold. Then Λ
is continuous on TT (π1(M)) in the strong topology.

Proof of Corollary A. Let {ρi} be a sequence in D(π1(M)) converging
strongly to ρ ∈ TT (π1(M)). If ρ is geometrically finite, then Theorem 4.1
implies immediately that {Λ(ρi)} converges to Λ(ρ). If ρ is not geometri-
cally finite, then it is shown in Canary [C] that Λ(ρ) = 0. As above, this
implies that lim vol(C(Nρi)) = ∞. It then follows from the main result of
Canary [C] that {Λ(ρi)} converges to Λ(ρ). �

Corollary B follows from the Main Theorem and results of Bishop-Jones
[BiJo] and Canary-Taylor [CT].

Corollary B. Let M be a compact hyperbolizable 3-manifold which is not
homeomorphic to a handlebody. Suppose that a sequence {ρi} in D(π1(M))
converges (in the compact-open topology) to ρ ∈ D(π1(M)) such that ρ is
geometrically finite. Then {ρi} converges strongly to ρ if and only if {D(ρi)}
converges to D(ρ).

Proof of Corollary B. If {ρi} converges strongly to ρ, then it follows im-
mediately from the Main Theorem that {D(ρi)} converges to D(ρ).
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In order to complete the proof we will suppose that {ρi} does not con-
verge strongly to ρ and show that {D(ρi)} does not converge to D(ρ).

If ρi is geometrically infinite for infinitely many i, then, by work of
Bishop and Jones [BiJo], D(ρi)=2 for infinitely many i, so lim supD(ρi)=2.
However, since ρ is geometrically finite, Sullivan [S1] and Tukia [Tu] showed
that D(ρ) < 2. So, in this case, {D(ρi)} does not converge to D(ρ).

We may now assume that ρi is geometrically finite for all i. We first
pass to a subsequence, {ρj}, so that {ρj(π1(M))} converges geometrically
to a torsion-free Kleinian group Γ̂ which contains ρ(π1(M)) as an infinite
index subgroup (see Jørgensen-Marden [JøM].) Notice that since M is not a
handlebody, the main result of Canary-Taylor [CT] implies that D(ρi) ≥ 1
for all i and that D(ρ) ≥ 1. Lemma 5.2 in Canary-Minsky-Taylor [CMiT]
implies that λ0(N̂) ≥ lim sup Λ(ρj) where N̂ = H3/Γ̂. Since D(ρ) ≥ 1,
Theorem 1 of Canary-Taylor [CT] implies that Λ(ρ) > λ0(N̂). Hence,
Λ(ρ) > lim sup Λ(ρj). Since ρj is geometrically finite for all j, Theorem 2.1
implies that D(ρ) < lim inf D(ρj), which implies that {D(ρj)} does not
converge to D(ρ) and hence that {D(ρi)} does not converge to D(ρ). �

6 A Conjecture

There are many examples in which a sequence {Γi} of Kleinian groups con-
verges geometrically to a Kleinian group Γ, yet {λ0(H3/Γi)} does not con-
verge to λ0(H3/Γ). (See, for instance, Taylor [T] or Comar-Taylor [ComT].)
The easiest way to construct such examples is to let Θ be a fixed Kleinian
group such that λ0(H3/Θ) 6= 1, and let γ be an element of PSL2(C) neither
of whose fixed points lie in the limit set L(Θ). If we let Γj = γjΘγ−j, then
λ0(H3/Γj) = λ0(H3/Θ) for all j, but {Γj} converges to the trivial group
Γ = {1}, and λ0(H3/Γ) = 1. Moreover, in all the examples known to us
there exists (up to subsequence) a sequence {γi} of elements of PSL2(C)
such that {γiΓiγ−1

i } converges to a Kleinian group Γ′ and {λ0(H3/Γi)}
converges to λ0(Γ′). This leads us to make the following conjecture.

Conjecture. Let {Γi} be a sequence of Kleinian groups such that each Γi
is generated by at most K elements. Then there exists a subsequence {Γj}
of {Γi} and a sequence of elements {γj ∈ PSL2(C)} such that {γjΓjγ−1

j }
converges geometrically to Γ and λ0(H3/Γ) = limλ0(H3/Γj).

As evidence we notice that the argument used to establish Theorem 4.1,
also establishes the above conjecture in the case that there exists a uniform
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bound on the diameter of C(Ni) ∩ (Ni)Sε where Ni = H3/Γi.
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