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Cytochrome c oxidase assembly factors with a
thioredoxin fold are conserved among prokaryotes

and eukaryotes

Abstract Cytochrome c oxidase
(COX) is amulti-subunit terminal oxi-
dase of the eukaryotic respiratory chain
involved in the reduction of oxygen to
water. Numerous lines of evidence sug-
gest that the assembly of COX isa
multi-step, assisted process that de-
pends on several assembly factors with
largely unknown functions. Scol/2
proteins have been isolated as high-
copy number suppressors of a deletion
of copper chaperone Cox17, implicat-
ing Scol/2 in copper transport to COX
subunits | or 11. Here | report the simi-
larity of Scol/2 assembly factorsto pe-
roxiredoxins and thiol:disulfide oxido-
reductases with athioredoxin fold, sug-
gesting that Sco-related proteins per-
form a catalytic rather than a copper
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transport function. Reported sequence
similarities, together with the function-
al role of bacterial Sco-related proteins
suggest that Sco-related proteins re-
present a new class of membrane-
anchored thiol:disulfide oxidoreduc-
tasesinvolved in COX maturation.
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Cytochrome ¢ oxidase (COX) isthe
terminal oxidase of the respiratory
chain catalyzing the reduction of mo-
lecular oxygen to water with concomi-
tant oxidation of cytochrome c. COX is
amulti-subunit complex localized in
the inner membrane of mitochondria or
aerobic bacteria. Subunits 111 are
conserved between prokaryotes and
eukaryotes, and at least two of them
(Iand I1) arerequired for catalytic ac-
tivity [1]. Additional eukaryotic sub-
units may be involved in the modula-
tion of activity, assembly, or tissue spe-
cific regulation of catalytic functions.
Despite the considerable progressin
elucidating the structural organization
of COX [1] littleis known about mech-
anisms of assembly of thislarge enzy-
matic complex. The presence of free
subunits and partially assembled com-
plexes suggests that COX assembly is
aslow, sequential, and possibly assist-
ed process[2, 3, 4]. More than 30 com-
plementation groups deficient in COX
activity have been identified in yeast.
Most of these do not associate with
known COX enzymatic activities, sug-
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gesting that assembly of mitochondrial
complexes is dependent on a number
of accessory proteins[5, 6]. Assembly
factors may be responsible for the
transport and insertion of heme
(Cox10p, Cox11p), copper (Cox17p),
or magnesium (Cox11p) into inactive
enzymes, intermembrane subunit trans-
port, and folding of COX subunits
[7,8,9, 10,11, 12].

Scolp and the related Sco2p were
originally identified as proteins re-
quired for COX assembly. Also, they
are capable of partial suppressing
COX17 deletion at elevated concentra-
tions of copper [7, 8, 9, 10, 11].
Cox17pisan 8-kDa protein containing
ahighly labile binuclear Cu (I)-thiolate
cluster, presumably involved in copper
delivery to COX |l subunit [4, 7]. De-
letion of SCOL, but not SCO2, in yeast
resultsin rapid degradation of both cat-
alytic subunits of COX. The presence
of CXXXC motif, similar to the Coxl|
copper binding site, led to the hypothe-
sisthat Scolp isalso directly involved
in copper transport [10, 12]. Substitu-
tion of either of these cysteine residues
resultsin the loss of active COX in
yeast [10], demonstrating the impor-
tance of these residues. However, the
requirement for elevated concentra-
tions of copper suggests possible alter-
native functions of Scol and Sco2 in
the assembly of COX.

PSI-BLAST [13] searches
(E<0.001) against a nonredundant pro-
tein database revealed a significant
similarity of Scolp and Sco2p to sever-
al peroxiredoxines with known three-
dimensional structures and bacteria
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Fig. 1 Multiple alignment of Scol-related proteins. A PSI BLAST search (E-value=0.001)
of NCBI nonredundant protein database with the C-terminal portion of Saccharomyces
cerevisae Scolp reveaed similarity to peroxiredoxins after the second iteration and bacte-
rial thiol:disulfide oxidoreductases after the third iteration. Representative members of
these groups were aligned using MULTALIN [14] with the following settings: symbol
comparison table— BLOSUM 62, gap penalty 8, gap penalty at extension 0.05. Aligned se-
quences were prepared for publication using GenDoc [31]. Conserved amino acids were
colored according to the following scheme: dark blue hydrophobic residues
(ACFGHIKLMVWY); light blue aliphatic residues (ILV); gray aromatic residues
(FHWY); red positively charged residues (KRH); purple DENQ; green polar
(CDEHKNQRST); yellow small (ACDGNPSTV). Left column SwissProt protein names or
GenBank identifier codes; right column amino acid positions are indicated for each pro-
tein; on the top of the alignment amino acid positions of aligned proteins; above the align-
ment with open rectangles secondary structure predicted with PSlpred [16], a-helixes;
open arrows B-strands. Secondary structure of human AOP2 (ORF6) and rat HBP23 is
assigned from respective crystal structures and is shown as following: black rectangles
a-helices; black arrows B-strands. The annotation of secondary structure elementsisasin
crystal structure of ORF6 [17, 18]. Orange circles residues of the putative active center
and Arg-119 of the ORF®6 active center; black stars above the alignment amino acid resi-
dues in the proposed Sco active center that are mutated in patients with infantile cardioen-
cephalomyopathy [23]

cysteine residues and hydrophaobic resi-
duesin the active center (Fig. 1, resi-
dues 10-30). Representative proteins
were aligned with MULTALIN [14].
The secondary structure predictions of

thiol:disulfide oxidoreductases (Fig. 1).
Although overall similarity islow, sev-
era regionsin Scol-related proteins
and peroxiredoxin/thiol:disulfide oxi-
doreductase are conserved, including
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yeast Scolp using PHD and PSlpred
algorithms[15, 16] are very similar to
that of peroxiredoxins (hORF6 and rat
HBP23in Fig. 1) determined by X-ray
crystallography [17, 18]. The con-
served regions include B-strand 3,
a-helix 2, and aloop between them
encompassing active center, 3-strand 4,
and hydrophobic residues of 3-strand 6.
Peroxiredoxins and thiol:disulfide
oxidoreductases reduce a wide range of
substrates, including hydrogen perox-
ide, various organic peroxides, and di-
sulfide bonds in proteins and low mo-
lecular weight compounds. The mecha-
nism of substrate reduction involves an
initial ionization of a cysteine residue
in the active center (Fig. 1, Cys-25),
followed by a nucleophilic attack of a
substrate and formation of either mixed
disulfide bonds or sulfenic acid [17,
19, 20]. The reduction of a mixed di-
sulfide bond intermediate involves an
attack by the second cysteine residue in
the active center leading to the release
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of areduced substrate and formation of
intramolecular (thiol:disulfide oxidore-
ductase) or intermolecular (2-Cys pero-
xiredoxins) disulfide bond. Regenera-
tion of the catalytically active reduced
form of an enzyme probably involves a
thioredoxin/thyoredoxin reductase
system. In peroxiredoxins conserved
Arg-119 (Fig. 1) abstracts a proton
from the catalytic sulfhydryl group
[17]. In hORF6 His-17 stabilizes the
ionized sulfhydryl group. This position
is occupied by an aromatic residuein
most analyzed peroxiredoxins and Sco-
related proteins, suggesting an alterna-
tive mechanism of thiolate intermedi-
ate stabilization [18]. In HBP23 inter-
actions between Arg-119, Glu-28, and
Asp-137 coordinating a putative Cl an-
ionin aclose proximity to catalytic
cysteine are implied in the activation of
Cys-25 and stabilization of areactive
thiolate intermediate [18]. Although a
position equivalent to Arg-119 is not
conserved among Sco-related proteins,
a conserved histidine residue located
nearby (Fig. 1, His-117) may bein-
volved in the activation of a sulfhydryl
group in a predicted active center. Acti-
vation of the catalytic sufhydryl group
by a histidine has been previously de-
scribed for papain and Yersinia PTPase
[21, 22]. Glu-28 and Asp-137 are con-
served in amost al analyzed Sco-
related proteins. Recent findings have
implicated the substitution of Glu-28 to
lysine in human Sco2 as a cause of fa-
tal infantile cardioencepha omyopathy
[23]. A second patient with mutated
Sco? in this study had Ser-118 substi-
tuted by phenylalanine. Similarly to
yeast with deleted Scol, both patients
displayed marked reduction in COX
activity in heart and muscles and re-
duction in content of mtDNA-encoded
COXI and COXII subunits[23]. Thus
mutations at or near residues in the pre-
dicted Sco active center detrimentally
affect Sco2 function and cytochrome c
oxidase assembly in human.

Severa bacterial thiol:disulfide
oxydoreductase, including Rhodobac-
ter capsulatus hel X, Bradyrhizobium
japonicumu cycX, and Bradyrhizobium
japonicum TIpA (Fig. 1), have been
implicated in cytochrome ¢ and COX
biogenesis, presumably maintaining
cysteine residues of the apocytochrome
¢ heme-attachment site in reduced state

[24, 25, 26]. Since cytochrome ¢ bio-
genesisis not affected in scol or sco2
mutants, the primary target of Sco must
be elsewhere. The ability of Scol to
suppress cox17 deficiency of copper
transport suggests a possible function
downstream in the COX assembly
pathway, probably on the step concom-
itant or immediately preceding copper
insertion. Physical interactions of
Cox17p and Scol/2p were recently
demonstrated in a high throughoutput
two-hybrid screening for interacting
yeast proteins [27]. Although spontane-
ous incorporation of copper into Coxl|
CUA center is possible, it requires high
concentrations of copper and rather
nonphysiological pH [28, 29, 30]. The
formation of Cox17p/Scol/2p could fa-
cilitate a coordinated reduction of cys-
teine residues in the CoxIl metal-bind-
ing center with copper insertion.
Therefore, when the delivery of copper
to copper-binding centers of Cox Il is
impaired due to Cox17p deficiency,
overexpressed Scolp increasesthe
probability of either spontaneous cop-
per incorporation or utilization of alter-
native copper transporters. The ubig-
uity of Sco-related proteins and sug-
gests that the mechanism of COX
assembly is well-conserved between
kingdoms.
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