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Topology and performance redesign of complex structures by
large admissible perturbations

D. Suryatama and M.M. Bernitsas

Abstract A methodology for topology redesign of com-
plex structures by LargE Admissible Perturbations
(LEAP) is developed. LEAP theory is extended to solve
topology redesign problems using 8-node solid elements.
The corresponding solution algorithm is developed as
well. The redesign problem is defined as a two-state
problem. State S1 has undesirable characteristics and/or
performance not satisfying certain designer specifica-
tions. The unknown State S2 has the desired structural
response and locally optimum topology. First, the gen-
eral nonlinear perturbation equations relating specific
response of States S1 and S2 are derived. Next, a LEAP
algorithm is developed which solves successfully two-state
problems for large structural changes (on the order of
100%–300%) of State S2, without repetitive finite elem-
ent analyses, based on the initial State S1 and the spe-
cifications for State S2. The solution algorithm is based
on an incremental predictor-corrector method. The op-
timization problems formulated in both the predictor
and corrector phases are solved using commercial non-
linear optimization solvers. Minimum change is used as
the optimality criterion. The designer specifications are
imposed as constraints on modal dynamic and/or static
displacement. The static displacement general perturba-
tion equation is improved by static mode compensation
thus reducing errors significantly. The moduli of elastic-
ity of solid elements are used as redesign variables. The
LEAP and optimization solvers are implemented in code
RESTRUCT (REdesign of STRUCTures) which postpro-
cesses finite element analyses results of MSC-NASTRAN.
Several topology redesign problems are solved success-
fully by code RESTRUCT to illustrate the methodology
and study its accuracy. Performance changes on the order
of 3300% with high accuracy are achieved with only 3–5
intermediate finite element analyses (iterations) to arrest
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the error. Numerical applications show significant topo-
logical differences for varying redesign constraints.
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1
Background

Inverse design of structures (also called redesign) can
be defined as a two-state problem. In a two-state prob-
lem, two structural states or designs are involved: the
known initial State S1 and the unknown objective State
S2. State S1 has undesirable performance which does
not satisfy certain designer specifications, while State S2
satisfies all specifications. The relation between the two
States S1 and S2 is highly nonlinear. The LargE Ad-
missible Perturbation (LEAP) theory was developed to
formulate and solve redesign problems (Bernitsas and
Kang 1991; Bernitsas and Tawekal 1991; Bernitsas and
Rim 1994; Beyko and Bernitsas 1993).
The theory and corresponding solution algorithm

have been developed at the University of Michigan since
1983 and have solved two-state problems without trial
and error or repetitive finite element analyses (Bernitsas
1994). LEAP can solve large change redesign problems
without resorting to sensitivity or linearization. LEAP
has been used successfully to solve various practical prob-
lems in structural analysis and design such as model
reduction (Kang et al. 1992), model correlation (cali-
bration) (Bernitsas and Tawekal 1991), and reliability
(Beyko and Bernitsas 1993) using static, dynamic, and/
or stress constraints. The changes between S1 and S2
can be as large as 100%–300%, depending on the scale
and characteristics of the finite element model. Code
RESTRUCT (REdesign of STRUCTures)—consisting of
more than 30000 FORTRAN commands—implements
LEAP theory and automates the redesign algorithm and
computations. RESTRUCT postprocesses data gener-
ated by MSC-NASTRAN and can perform a complete
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redesign process with only one finite element analysis run.
Postprocessing of data produced by other finite element
codes is possible.
In the past, LEAP and RESTRUCT have been de-

veloped to solve resizing problems in which only cross-
sectional properties of elements—not the basic finite
element mesh—are allowed to change. In resizing cases,
acceptable performance in terms of static deflection,
modal dynamic response, forced response amplitude or
stress can be achieved without changing the topology of
the structure. This may not be adequate, however, for
structural designs that can also require an optimum top-
ology to achieve their structural functions, conform with
the boundary conditions, and support all the external
loads.
Accordingly in this work, LEAP theory is extended

to solve structural topology redesign problems. First, the
general perturbation equations are developed for 8-node
solid finite elements. Minimum change criterion and non-
linear perturbation equations for static displacement
and modal dynamic response constraints are included.
Several numerical applications, including benchmarking
problems, are presented to illustrate the accuracy of the
methodology for changes on the order of 3300% with only
4–6 finite element runs (iterations).

1.1
Literature review

The problem of structural redesign by perturbation can
be formulated as an optimization problem. For linear
(small) perturbation analysis, sensitivity methods can
be used. Haug et al. (1986) and Choi et al. (1983)
have studied extensively sensitivity methods which are
efficient when analytical expressions for gradients are
available. Validity of linear perturbation and sensitivity
methods, however, is limited to small structural changes
between S1 and S2 (Stetson 1975; Stetson and Harrison
1981; Sandstrom and Anderson 1982). Nonlinear pertur-
bation methods were developed allowing for large struc-
tural changes—on the order of 100% to 300% from the
initial State S1—by implementing predictor-corrector so-
lution schemes (Bernitsas and Kang 1991; Bernitsas and
Tawekal 1991; Bernitsas 1994; Bernitsas and Rim 1994;
Beyko and Bernitsas 1993; Hoff and Bernitsas 1985; Kang
et al. 1992; Kang and Bernitsas 1994; Bernitsas et al.
1994; Kim and Bernitsas 1990; Hoff and Bernitsas 1986).
Development of LEAP (LargE Admissible Pertur-

bation) methods can be summarized as follows. Static
and modal dynamic redesign were introduced by Hoff
and Bernitsas (1985, 1986) and then integrated by Kim
and Bernitsas (1990) for solving redesign problems sat-
isfying both objectives simultaneously. Structural model
correlation for an offshore tower redesign were investi-
gated by Bernitsas and Tawekal (1991) and structural
redundancy by Kang and Bernitsas (1994). More compli-
cated finite elements such as stiffened or unstiffened plate

and shell were introduced by Bernitsas and Rim (1994)
and Alzahabi and Bernitsas (1992). Beyko and Berni-
tsas (1993) solved a stochastic problem by defining the
failure state of a structure by the general perturbation
equation. Kang and Bernitsas (1994) formulated pertur-
bation equations for stress redesign. At this stage, large
admissible perturbation methods implemented in code
RESTRUCT have been applied successfully to solve var-
ious redesign problems using spring, truss, bar, beam,
plate, shell elements as well as combinations of redesign
constraints or objectives such as static deflection, modal
dynamic, and stress.
A first step toward solving topology redesign prob-

lems has been presented by Bernitsas et al. (1994).
Static and dynamic topology redesign problems were in-
vestigated to find the optimum topology configuration
of a cantilever plate. Results are consistent with those
published in the literature (Yang and Chuang 1992).
Shape and topology optimization have been studied ex-
tensively (Haber et al. 1995; Lipton and Diaz 1995;
Bendsøe and Kikuchi 1988; Bremicker et al. 1991; Berni-
tsas and Suryatama 1999). Bendsøe and Kikuchi (1988)
and Bremicker et al. (1991) developed the method of
homogenization for topology and shape optimization.
The method formulated a homogenized elasticity ten-
sor of microstructure level to model a unit cell with
a rectangular hole. The dimensions and orientation an-
gles of the holes are used as the design variables for
the optimization problem to minimize the compliance
of a structure subject to a volume constraint. Yang
and Chuang (1992) used linear programming to solve
topology optimization problems minimizing the com-
pliance subject to a volume constraint. In place of ho-
mogenization, they used a relationship between density
and modulus of elasticity developed from an empiri-
cal formula to force the material density to be either
zero or one.
Haber et al. (1995) presented the variable-topology

shape optimization of elastic structures in 2D using
the perimeter method. This imposes an upper bound
constraint on the perimeter of the solid region to get
a smooth design shape and to formulate a well-posed opti-
mization problem for which solutions, comprised of solid
and void materials, always exist. Hence, they minimized
the compliance of a structure subject to an upper bound
constraint on the volume and geometric constraints on
the perimeter of the solid region.
The minimum compliance optimality criterion is also

used by Lipton and Diaz (1995) to find the optimum
layout of structures in 3D. In this case, the optimiza-
tion problem is decomposed into local and global opti-
mization problems. In the local optimization level, the
strain energy density of the structure is maximized, sub-
ject to a parameterization of orthotropic stiffness ten-
sors of laminar microstructures in a prescribed volume
fraction. In the global level, the minimum compliance is
minimized subject to the material density within a fixed
microstructure.
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In general, shape/topology optimization problems are
solved using repeated finite element analysis runs. In this
paper, finite element analysis (FEA) is performed only
once for changes on the order of 100%–300%. Interme-
diate FEA’s may be needed to control the error in the
redesign process for higher performance changes. Also,
structural performance constraints such as static deflec-
tions and natural frequencies are used to obtain the de-
sired structural response instead for just using volume or
material density as constraints. Thus, in the process of
optimizing topology, the LEAP algorithm produces a re-
design which satisfies performance specifications.

2
Structural perturbation equations

The general perturbation equations express the perform-
ance of the unknown State S2 in terms of properties of
S1 and redesign variables. Those equations for static dis-
placement and frequency constraints are derived in this
section. Unprimed and primed symbols refer to States S1
and S2, respectively. Information for mathematical sym-
bols on this paper can be found in the nomenclature.
In the initial State S1, the static and modal dynamic

equilibrium equations for finite element analysis are

ku= f , (1)

(k−ω2m)Φ=000 . (2)

For State S2, the counterpart equilibrium equations are

k′u′ = f ′ , (3)

(k′−ω′2m′)Φ′ =000 . (4)

States S1 and S2 quantities are related as follows:
stiffness matrix:

k′ = k+∆k , (5)

mass matrix:

m′ =m+∆m , (6)

mode shape:

Φ′ =Φ+∆Φ , (7)

displacement:

u′ = u+∆u , (8)

where ∆ represents change between the initial State S1
and the unknown State S2. Such changes obviously de-
pend on the redesign variables. Substituting (5)–(8) into
(3) and (4), we obtain

∆u=−u+(k+∆k)−1f ′ , (9)

Φ′T (∆k−ω′2∆m′)Φ′ =−Φ′T (k−ω′2m′)Φ′ . (10)

Here ∆k and ∆m are functions of redesign variables
(identified by the designer) and can be computed based
on S2 performance specified by the designer, such as,
a few components of u′,ω′, and/orΦ′, as well as the prop-
erties of the initial State S1.
Let us assume that there are p elements or groups

of elements which the designer allows to change in the
structure. Now, define αe as a fractional change of a prop-
erty of element group in State S1. In a single element
or group, αe may represent one property change such
as torsion, bending, or stretching. Then, (5)–(6) can be
expressed as

∆k=

p∑
e=1

∆ke =

p∑
e=1

keαe , (11)

∆m=

p∑
e=1

∆me =

p∑
e=1

meαe , (12)

in case of linear dependence of ke on αe. For instance,
linear is the dependence of the beam element stiffness
ke on the cross-section moment of inertia I; and of the
element mass me on the cross-section area A (Kang and
Bernitsas 1994). On the contrary, the plate element de-
pendence of ke on the plate thickness is cubic (Bernitsas
and Rim 1994).

2.1
Modal dynamic perturbation equations

By substituting (5)–(8) and (11)–(12) into (10) (see Ap-
pendix A), the dynamic perturbation equations can be
derived in terms of design variables αe’s as

p∑
e=1

(Φ′Tj keΦ
′
i−ω

′2
iΦ
′T
j meΦ

′
i)αe =

ω′2iΦ
′T
j mΦ

′
i−Φ

′T
j kΦ

′
i , i, j = 1, 2, . . . , n , (13)

where n is the number of degrees of freedom of the finite
element model in State S1.
In the objective State S2, the n modal dynamic equa-

tions (13) can be separated into two categories. Diagonal,
that is i= j terms, which represent the Rayleigh quotient
for mode i

p∑
e=1

(Φ′Ti keΦ
′
i−ω

′2
iΦ
′T
i meΦ

′
i)αe =

ω′2iΦ
′T
i mΦ

′
i−Φ

′T
i kΦ

′
i , (14)
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and the off-diagonal terms, that is i �= j terms. These
represent the orthogonality conditions in (13). Theoret-
ically, orthogonality of modes with respect to one of k′

or m′ implies orthogonality with respect to the other.
Numerically however, both conditions must be forced if
Φ′j , for j = 1, 2, . . . , n are to represent modes of a real
structure. These orthogonality conditions can be written
as

p∑
e=1

Φ′Tj keΦ
′
iαe =−Φ

′T
j kΦ

′
i , (15)

p∑
e=1

Φ′Tj meΦ
′
iαe =−Φ

′T
j mΦ

′
i , (16)

for i = 1, 2, . . . , n, and j = i+1, i+2, . . . , n. Equations
(14), (15), and (16) are the general perturbation equa-
tions for modal dynamics.

2.2
Static perturbation equations

Substituting (11) into (9), we derive the static general
perturbation equation in terms of αe’s.

∆u=

(
k+

p∑
e=1

keαe

)−1
f −u . (17)

The assumption was made that f ′ = f . If this is not the
case, as in hydrodynamic loading on offshore platforms,
an iteration is required within each increment to update
the load. This case was studied by Tawekal and Ber-
nitsas (1992). Expanding (17) and applying the linear
relation between u′ and f ′ introduced by Kim and Ber-
nitsas (1990) (see Appendix B), we obtain the desired
nodal point displacement of the i-th d.o.f. with respect
to the nr extracted modes as a function of the redesign
variables αe’s

u′i =

nr∑
m=1

Ψ ′imAm

Bm+
p∑
e=1
Cmeαe

, (18)

where

Am =

nr∑
j=1

Ψ ′jmfj , Bm =Φ
′T
mkeΦ

′
m ,

Cme =Φ
′T
mkeΦ

′
m ,

and Ψ ′jm represents the amplitude of j-th d.o.f. of modem.
Fully nonlinear terms, as defined in (18), express

the desired displacement u′i in terms of the redesign
variables αe. This approach gives more accurate results
than previous static displacement equations which lin-
earized the right-hand side of (18) using binomial expan-
sion (Kim and Bernitsas 1990).

A modified static perturbation equation has been de-
veloped using static mode shape compensation (Berni-
tsas and Suryatama 1999). The new relation includes the
static deflection shape as the zero-th mode in the modal
expansion of nondimensional properties and static deflec-
tion in particular. The modified static perturbation equa-
tion improves the accuracy of the static redesign goals
significantly and results are presented also in this paper.
The new relations can be written as follows:

u′i = ubi−
nr∑
m−1

Ψ ′im

p∑
e=1
Φ′Tmkeubαe

Φ′TmkΦ
′
m+

p∑
e=1
Φ′TmkeΦ

′
mαe

, (19)

which is the general perturbation equation for static de-
flection taking into account the static mode of the initial
structure.

2.3
LargE Admissible Perturbation (LEAP) algorithm

Redesign by LargE Admissible Perturbation theory can
be viewed as a two-step process. In the first step, the re-
design problem is formulated as a two-state problem. In
the first step, called Perturbation Approach to Redesign
(PAR), the relationships between the response of the ini-
tial State S1 and the objective State S2 are derived. In
the second step, a LEAP algorithm is developed to solve
the implicit general perturbation equations derived in the
first step. Thus, the values of the redesign variables that
specify the objective design are obtained.
Since these general perturbation equations, e.g. the

static and dynamic perturbation equations (14) and (18),
are implicit nonlinear equations with respect to αe, they
can not be solved directly. An incremental method, con-
sisting of a predictor and a corrector phase in each incre-
ment, has been developed to solve these equations (Berni-
tsas and Kang 1991; Bernitsas and Tawekal 1991; Berni-
tsas 1994; Bernitsas and Rim 1994; Beyko and Bernitsas
1993; Hoff and Bernitsas 1985; Kang et al. 1992; Kang
and Bernitsas 1994; Bernitsas et al. 1994; Kim and Ber-
nitsas 1990; Hoff and Bernitsas 1986). In the predictor
phase, the redesign variables αe’s are predicted from (14)
and/or (18). In the corrector phase, the objective eigen-
vectors Φ′i are calculated. The redesign variables from
the predictor phase are corrected using the predicted
modes Φ′i to satisfy (14)–(16) and (18).
The objective goal is achieved by incrementally chang-

ing the design of the initial structure until the objective
state is achieved. In each increment, specified perturba-
tions, on the order of 7%–30%, are made until the ob-
jective response targets are achieved. At each increment,
in both the predictor and corrector phases, the problem
is formulated as an optimization problem and is solved
using optimization solvers (Gill et al. 1983a,b; Tits and
Zhou 1993).
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3
Topology redesign

3.1
Formulation of topology redesign problem using solid
elements

In topology redesign, the initial State S1 is a solid con-
tinuum. Accordingly, it is modeled in finite element anal-
ysis by solid elements. 8-node solid elements, designated
in MSC-NASTRAN as CHEXA elements, are utilized for
our finite element models. The density and the elastic
modulus of each element are used as redesign variables.
The two variables are not related theoretically in the fi-
nite element method but a relation for porous materials is
used in the next section.
In terms of the density variables, the consistent mass

matrix of an isotropic elementme can be written as

me = �e

∫
V

NTeNe dVe , (20)

where �e is the element density, Ve is the element vol-
ume, andNe represents the interpolation function matrix
for each element. The relation between the αe fractional
changes of an element or a group of elements and its elem-
ent massme was provided in (12). For the entire structure
that is composed of ne elements, the mass matrix is

m=

ne∑
e=1

�eVe , (21)

which shows that structural mass change can be achieved
by changing the element density only.
Similarly, the stiffness equation ke of an isotropic solid

element is

ke =Ee

∫
V

BTeDeBe dVe , (22)

where Ee is the elastic modulus, De is the constitutive
law matrix, and Be is the strain-nodal displacement ma-
trix. Since Ee is constant for each element the stiffness
of an element can be modified by changing Ee. The re-
lation between the αe fractional changes of an element
or a group of elements and its element stiffness ke is
provided in (11).

3.2
Optimization problem formulation

In previous work done on structural redesign using the
large admissible perturbation theory, minimum change
has been used as the optimality criterion for computa-
tions of the optimal redesign. This function is selected

to produce minimal structural change from State S1 to
State S2 to achieve the designer’s performance specifi-
cations. It gives satisfactory results not only for resiz-
ing/reshaping problems using truss, beam, and plate
elements, but also for topology redesign using solid elem-
ents. This optimality criterion is

minimize

p∑
e=1

α2e . (23)

The objective function will be subjected to one or
more of the following equality/inequality constraints.
There are nω natural frequency constraints, nu displace-
ment constraints, na admissibility constraints, and 2p
lower and upper bounds on redesign variables. The opti-
mization problem can be formulated as

minimize f(αe) , (24)

subject to nω natural frequency constraints (14), nu dis-
placement constraints (19), na admissibility constraints
(15)–(16) and 2p lower and upper bounds on the redesign
variables

−1< α−e ≤ αe ≤ α
+
e , e= 1, 2, . . . , p . (25)

In each increment, the optimality criterion is given
by (23). The criterion used in each increment, however,
depends on the advance towards the optimum made to
that increment. This is shown by Bernitsas and Kang
(1991); Bernitsas and Tawekal (1991); Bernitsas (1994);
Bernitsas and Rim (1994); Beyko and Bernitsas (1993);
Hoff and Bernitsas (1985); Kang et al. (1992); Kang and
Bernitsas (1994); Kim and Bernitsas (1990); Hoff and
Bernitsas (1986); Alzahabi and Bernitsas (1992); Berni-
tsas and Suryatama (1999).

3.3
Algorithm for finding the optimum topology

Following a complete iteration of redesign which includes
a finite element run by MSC/NASTRAN and redesign
by RESTRUCT, automated post-processing to define
the new topology of a structure is carried out. The ob-
jective is to modify the input redesign data for RE-
STRUCT by freezing elements with low strain energy
density. Since the external work is equal to the inter-
nal strain energy, by excluding elements which have low
strain energy density in a structure, we only concentrate
on modifying principal elements that carry the external
load. Thus, stiffening only the principal elements leads to
a gothic arc structure. The stiffened elements are iden-
tified as elements with high strain energy. A modified
structural topology is based on these high strain energy
density elements as shown in the numerical applications
in Figs. 2–5.
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This process is repeated until redesign objectives are
achieved and a satisfactory topology is obtained. For
changes on the order of 3300% in structural performance
the developed methodology requires only 4–6 FEA’s (it-
erations). The following steps summarize this process.

Step 1. Perform a finite element analysis by MSC-NA-
STRAN; generate the RESTRUCT database for re-
design.

Step 2. Redesign the structure byRESTRUCT to achieve
the specified goals.

Step 3. Perform a finite element analysis by MSC-NAS-
TRAN; generate the RESTRUCTdatabase and strain
energy density distribution on the structure.

Step 4. Does the new topology satisfy the specified struc-
tural performance goals? If yes, stop; otherwise go to
Step 5.

Step 5. Modify RESTRUCT input data by eliminat-
ing redesign variables of elements that absorb strain
energy density below a defined cut-off point (e.g.
6%–7%) of the maximum element strain energy dens-
ity. This step freezes elements from being redesigned
in the next iteration. In subsequent iteration, frozen
elements may be reactivated. Go to Step 2.

In one complete cycle from Step 1 to Step 5, the struc-
ture achieves the desired response specified by the de-
signer as summarized in Tables 1–4 for the numerical
applications in Section 4. Improved topologies of can-
tilever plate redesigns with minimum change objective
are achieved in four to six topology redesign iterations as
shown in Figs. 2–5.

4
Numerical implementation

The first step towards redesigning for topology changes is
to implement solid elements in code RESTRUCT. A solid
hexahedron with 8 nodes is selected. This element uses
isoparametric shape functions to interpolate between the
8 nodal points using linear relations. Element sides can
perform only translational movements (degrees of free-
dom), not rotations. The element is called CHEXA in
MSC-NASTRAN and is considered more accurate for fi-
nite element analysis than a tetrahedron or a pentahe-
dron element with the same type of nodal points (i.e.
nodes at the element’s apexes only).
The second step requires implementation of a nonlin-

ear optimization solver at both the prediction and cor-
rection phases. Several optimization programs have been
implemented in code RESTRUCT and have solved suc-
cessfully many redesign applications. First, QPSOL (Gill
et al. 1983a) was used when the general perturbation
equations were linearized. Results from this optimizer
are quite accurate for resizing problems and for approxi-
mately 40 redesign variables. Linearizations, however,
contribute to inaccuracies for larger number of redesign

variables. Thus, a nonlinear programming solver NPSOL
(Gill et al. 1983b) or FSQP (Tits and Zhou 1993; Schitt-
kowski 1986) is required to solve the problem with the
nonlinear perturbation equations.

4.1
Structural redesign for resizing

Results of various redesigns of a solid plate cantilever
are presented in this section. The original structure is
shown in Fig. 1 and is modeled using 160 solid elem-
ents. It is a cantilever plate structure with an inplane
load of 300N at the tip of the cantilever. Static, dy-
namic, and combination of static and dynamic redesigns
are performed with the minimum change optimality cri-
terion. The structure is redesigned to reduce or increase
maximum vertical deflection of the loaded node which
in State S1 is 0.0106mm. The structure is redesigned
also to shift the second natural frequency of the verti-
cal bending mode shape. A combination of these two
objectives in redesign is used as well. Best results are
achieved by using FSQP as the nonlinear optimization
solver and implementing an improved LEAP algorithm
for static redesign which includes static mode compen-
sation. In order to put into perspective the accuracy
of the developed algorithm, several examples are shown
using NPSOL and QPSOL as well as the LEAP static
redesign algorithm without static compensation. Results
are shown in Tables 1–5. Cases e1–e4 of Table 5 imple-
ment the static compensation redesign algorithm using
FSQP and show very high accuracies for 100% changes
in redesign objectives with only a single finite element
analysis. Redesigns for structural changes as well as for
structural/topology changes are computed using the San
Diego Cray-90 Supercomputer.
Table 1 shows results of redesigns using QPSOL or

NPSOL. Cases a1 and a3 show that the nonlinear static
prediction of equation (18) used by NPSOL gives smaller
error than the linearized version of (18) used by QPSOL.
The error of NPSOL results can still be reduced by se-
lecting more extracted modes nr in the static pertur-
bation equations as shown in cases a6 and a7. In these
two cases, 40 extracted modal dynamic modes are used
compared to 20 used in cases a1–a5. The difference be-
tween cases a6 and a7 is that an active admissible cognate
space is used in case a6. An active admissible cognate
space is defined as the set of modes selected from the ex-
tracted modal dynamic modes to be used for solving the
general perturbation equations on the basis of nontrivial
admixture coefficients. Those coefficients define the mu-
tual interaction between changes of modes (Bernitsas and
Tawekal 1991).
Cases a2 and a5 show that dynamic redesign always

produces accurate results, regardless of the optimization
solver being used. This accuracy is due to the fact that the
desired natural frequency of the dynamic perturbation
(14) is linear with respect to the redesign variables αe’s.
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Fig. 1 Initial Structure S1: 3D cantilever plate. Properties: E = 2.07×105Mpa; � = 7.833×10−9 Nsec2/mm4; ν = 0.3. Re-
sponse: f1 = 9702.04 Hz, f2 = 26147.6 Hz, v289 = v102 = 0.01 mm. Elements: 160 solid hexa elements, 1122 d.o.f.’s

Table 1 Comparison between QPSOL and NPSOL results

Case Static redesign Dynamic redesign # of nr Incr. # of Solver CPU2

u′289/u289 Error (%)1 ω′2
2/ω22 Error (%) αe (%) Incr. (sec)

a1 0.755 −16.556 80 20 7 4 QPSOL N/A
a2 0.755 −16.566 1.500 1.400 80 20 7 6 QPSOL N/A
a3 0.755 −11.126 80 20 7 4 NPSOL 148
a4 0.755 −10.331 80 20 4 7 NPSOL 392
a5 1.500 0.000 80 20 4 11 NPSOL 468
a6 0.755 −7.751 80 40 7 4 NPSOL 831
a7 0.755 −7.577 80 40 7 4 NPSOL 787

1 No static compensation
2 CPU time of CRAY-90 at San Diego Super Computer

In Table 2, results obtained by NPSOL and FSQP
are compared. The two optimizers have comparable lev-
els of accuracy as shown in cases b1 and b2. In case
b4, the convergence tolerance for nonlinear equality con-
straints is set equal to 10−7. This provides more ac-
curate results compared to case b3 with the conver-
gence tolerance for nonlinear equality constraints set
equal to 10−4. Results of cases b3 and b4 are satis-
factory, even though more redesign variables are used.
In cases b3 and b4, elastic moduli of each element are
used as the redesign variables while in cases b1 and
b2 only elastic moduli are used. Cases b1–b4 show
that the accuracy of the general perturbation equa-
tion for static redesign objective is less than the equa-
tion for modal dynamic objective. Thus, improvements
are required for the static general perturbation equa-
tion by using static mode compensation techniques
(see Section 2.2).

Redesign with large structural changes on the order of
100% to 200% are solved successfully using RESTRUCT
with the FSQP solver. In Table 3, case c1 shows a reduc-
tion of the maximum static deflection and case c2 shows
the combination of a reduction of the static deflection
and an increase in the second natural frequency. In all
of these cases, the resulting errors are acceptable and in
case c5 the error is negligible. These results show that
RESTRUCT can solve highly nonlinear redesign prob-
lems for large structural changes. It should be noted, how-
ever, that some redesign problems where the structure
deteriorates (large reduction stiffness) should be studied
more carefully. In case c3, the maximum static deflection
is increased and in case c4 the second natural frequency is
reduced. These problems result in higher errors and need
further investigation to understand better cases where
the extracted modes do not represent a high enough cu-
mulative level of strain energy.
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Table 2 Redesign results of NPSOL and FSQP

Case Static redesign Dynamic redesign # of nr Incr. # of Solver CPU2

u′289/u289 Error (%)1 ω′2
2/ω22 Error (%) αe (%) Incr. (sec)

b1 0.934 −6.278 80 40 7 1 NPSOL 70
b2 0.934 −6.362 80 40 7 1 FSQP 51
b3 0.932 −5.251 1.070 2.078 160 80 7 1 FSQP 229
b4 0.932 −4.963 1.070 2.062 160 80 7 1 FSQP 319

1 No static compensation
2 CPU time of CRAY-90 at San Diego Super Computer

Table 3 Large structural changes of the solid cantilever

Case Static redesign Dynamic redesign # of nr Incr. # of Solver CPU2

u′289/u289 Error (%)1 ω′2
2/ω22 Error (%) αe (%) Incr. (sec)

c1 0.500 −6.050 80 80 15 15 FSQP 2762
c2 0.500 −6.549 2.000 7.608 160 80 25 4 FSQP 1094
c3 1.7515 −12.749 80 80 15 4 FSQP 752
c4 0.500 6.154 80 80 15 5 FSQP 664
c5 3.000 0.065 80 20 15 8 FSQP 100

1 No static compensation
2 CPU time of CRAY-90 at San Diego Super Computer

Results for static redesign presented in the previous
applications are derived based on a LEAP static per-
turbation algorithm implementing equation (18). The
accuracy of that algorithm is less than the dynamic re-
design algorithm. Static mode compensation techniques
were used in developing equation (19) and the results
presented in Tables 4–5 show improved accuracy of the
corresponding LEAP algorithm.
In case d1 of Table 4, the plate cantilever is redesigned

for a reduction of the maximum static deflection at
the loaded node by a factor of two. This case is per-
formed using 80 extracted dynamic modes of the free
vibration analysis and it has a relatively low error of
−6.050% without any intermediate finite element ana-
lyses or static mode compensation. The same problem,
solved using the newly developed algorithm as shown
in case e2 in Table 5, produces a lower error of 2.7499%
using only 20 extracted modes. Note that in this case
the reduction of the extracted modes is very signifi-
cant in terms of the computational time. Here the total
CPU time of case e2 is reduced by a factor of 4 with
respect to the CPU in case d1. Cases e1 and e3 are
similar to case d1. Redesign e1 is performed using 7%
fractional changes at each increment of the predictor-
corrector algorithm and, thus, requires higher number
of increments. Case e2 is performed with only 5 ex-
tracted dynamic modes and still has a slightly lower error
than case d1.
In case d2 in Table 4, concurrent static and dynamic

objectives are imposed. In this case, the maximum static
deflection is reduced by a factor of two at the loaded

node and the second bending natural frequency at the
vertical direction is increased by a factor of two. The
accuracy, as shown in Table 4, is nearly equal to the
static only redesign problem in case d1 with static re-
design error of −6.549% and dynamic redesign error of
7.608%. The dynamic redesign error, in this case, is rather
high as the general perturbation equation for natural
frequency is very accurate. This error is due to the in-
accuracies of the static perturbation equation (18) which
affect the prediction of the correct natural frequency.
Using newly developed LEAP algorithm based on pertur-
bation equation (19) which includes static mode compen-
sation, this problem is remedied and results in low errors
for both the static and dynamic objectives as shown in
case e4 in Table 5.

4.2
Topology redesign of the solid cantilever plate

The solid cantilever plate shown in Fig. 1 is redesigned
in this section for structural performance and topological
changes. The structure is analyzed by two finite elem-
ent models with 160 and 640 solid hexa elements. The
two finite element models are used to redesign the bench-
marking problem solved by Haber et al. (1995); Lipton
and Diaz (1995); Bendsøe and Kikuchi (1988); Bremicker
et al. (1991); Bernitsas and Suryatama (1999). The pro-
duced topologies are compared to the uniqueness of the
solution algorithm. Topological evolution during the re-
design process is discussed to understand how the struc-
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Table 4 160 solid elements, 1122 d.o.f.’s, solid plate cantilever w/o using static mode compensation

Case Static redesign Dynamic redesign # of # of red. # of Incr. CPU2

u′289/u289 Error (%)1 ω′2
2/ω22 Error (%) increments variables modes (%) (sec)

d1 0.500 −6.050 15 80 80 15 2762
d2 0.500 −6.549 2.000 7.608 4 160 80 25 1094
d3 3.000 0.065 8 80 20 15 100

1 No static compensation
2 CPU time of CRAY-90 at San Diego Super Computer

Table 5 160 solid elements, 1122 d.o.f.’s, solid plate cantilever using static mode compensation

Case Static redesign Dynamic redesign # of # of red. # of Incr. CPU2

u′289/u289 Error (%)1 ω′2
2/ω22 Error (%) increments variables modes (%) (sec)

e1 0.5000 2.6130 10 80 20 7 1465
e2 0.5000 2.7499 5 80 20 15 678
e3 0.5000 −5.8858 5 80 5 15 420
e4 0.5000 2.5676 2.0000 −0.9320 5 80 20 15 706

1 With static compensation
2 CPU time of CRAY-90 at San Diego Super Computer

ture evolves from a solid plate cantilever to a gothic arc
like structure. In both cases, the accuracy of the LEAP
algorithm in predicting large structural changes on the
order of 3300% with 4–6 intermediate finite element ana-
lyses is also discussed.
The algorithm developed in this work based on LEAP

theory and explained in Section 2.3 achieves both struc-
tural performance and topological objectives simultan-
eously. Each redesign case requires 4–6 iterations and in
each iteration the following steps are carried out: a finite
element run, a redesign by RESTRUCT and a strain en-
ergy density post-processing. The iterations required by
the LEAP algorithm are significantly fewer than those
specified by Haber et al. (1995); Lipton and Diaz (1995);
Bendsøe andKikuchi (1988); Bremicker et al. (1991); Ber-
nitsas and Suryatama (1999). In addition to these advan-
tages, structural performance and topological objectives
are achieved.
Redesigns for structural performance and topological

objectives are studied below for static, modal dynamic,
and simultaneous static and modal dynamic objectives.
Results for redesign of the cantilever plate to reduce the
maximum static displacement are listed in Tables 6 and 7.
The baseline structure, as shown in Fig. 1, has maximum
deflection of 0.0106mm at two nodes where the loads
are applied. Both finite element models are subjected
to large structural changes using the elastic modulus of
all elements as redesign variables. The maximum dis-
placement is reduced by a factor of 33 from 0.0106mm
to 0.000321mm at the end of iteration 6. In each itera-
tion, large topological changes are achieved as shown in
Figs. 2 and 3. A finite element run carried out after each
iteration is required in order to modify the RESTRUCT

input data. Thus, error is not allowed to propagate and
elements with low strain energy density are not used as re-
design variables in the next iteration. These intermediate
finite element runs are not needed if only structural per-
formance changes are being sought. The LEAP algorithm
has been successfully applied to compute large structural
changes with only one finite element run and satisfactory
accuracy for static and/or modal dynamic objectives as
shown in Section 4.1.
Topological changes at each iteration based on the

strain energy density distribution are illustrated in Figs. 2
and 3. In these figures, elements with low strain energy
density are shown in blue or dark blue colors. Elements in
other colors (red, yellow, and cyan) reflect high strain en-
ergy density elements. These elements become gradually
stiffer in the redesign process. We can see also from Iter-
ation 1 in Figs. 2 and 3 that the stiffening process starts
at the nodes where the load is and at the corners of the
clamped end. In the stiffening process, more high strain
energy density elements are formed to connect the stiff-
ened areas as shown in Iteration 2 in Figs. 2 and 3. Stiff-
ening in the centre of the plate creates the cross brac-
ing progressively until Iteration 6 in Figs. 2 and 3. It is
worth noting that the produced structure does not have
straight elements like a truss but curved like a Gothic arc
structure.
Since Figs. 2 and 3 show the redesign process for the

two different models with 160 and 640 elements, respec-
tively. Within the resolution error, these two figures show
the uniqueness of the redesign process. Iterations 2 and
3 of the two figures show that stiffening starts at the
same area and progresses to the centre structural re-
gion. The slight difference of the cross bracing is due
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Fig. 2 Static strain energy after static redesign (160 solid element cantilever plate); u′102/u102=0.0303

to chattering as more finite elements are used in Fig. 3.
Topology and structural redesign for changing the sec-
ond natural frequency is performed next. The structure
shown in Fig. 1 is redesigned to increase its second nat-
ural frequency of 26147.6 Hz. The redesign goals are
shown in terms of the ratios of eigenvalues ω′2

2/ω22 in
Table 8. Results are very accurate with errors of less
than about 2.5% for 180% changes in the eigenvalue
at each iteration. The total change in ω22 is 1089% of
the baseline structural response. Topological changes are
shown in Fig. 4.
Simultaneous static and modal dynamic redesigns

are performed next. The solid plate cantilever is re-
designed to reduce its maximum static displacement
and at the same time increase its second natural fre-

quency. The results of the structural performance changes
are shown in Table 9 while the topological changes are
shown in Fig. 5. Figure 5 shows the normalized com-
bination of static and dynamic strain energy density
distributions. The plots of Fig. 5 are constructed by
normalizing each element strain energy density with re-
spect to the maximum value in each analysis. Then, the
normalized results from the static and modal dynamic
analyses are added up to show the influence of both
redesign objectives.
In Fig. 5, the plots of iterations 3 and 4 show the

influence of modal dynamic and static redesign objec-
tives. The left side of each plot—closer to the fixed end—
exhibits the significant features of the modal dynamic
redesign in which cross bracing is formed similar to Fig. 4.
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Fig. 3 Static strain energy after static redesign (640 solid element cantilever plate); u′1137/u1137=0.0286

Table 6 Results of the 160 element (1122 d.o.f.’s) model at each iteration for static redesign objective

Iter Static redesign # of # of redesign # of Increment
# u′289/u289 Error (%)∗ increments variables modes size (%)

1 0.937 −0.402 1 80 10 15
2 0.523 2.456 4 58 30 15
3 0.523 6.043 4 62 30 15
4 0.523 6.419 4 50 30 15
5 0.523 5.171 4 47 80 15
6 0.523 0.358 1 30 80 15

∗ Error is not cumulative since it is arrested by each FEA
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Table 7 Results of the 640 element (4158 d.o.f.’s) model at each iteration for static redesign objective

Iter Static redesign # of # of redesign # of Increment
# u′1137/u1137 Error (%)∗ increments variables modes size (%)

1 0.937 0.000 1 320 30 15
2 0.507 2.980 4 152 30 15
3 0.526 3.565 4 224 40 15
4 0.516 −5.078 4 37 40 15
5 0.443 2.195 4 220 40 15
6 0.500 0.054 4 176 40 15

∗ Error is not cumulative since it is arrested by each FEA

Fig. 4 Modal dynamic strain energy distribution after dynamic redesign (160 solid elements cantilever plate); ω′2
2/ω22 = 10.895;

strain energy normalized in the range 0–1

Table 8 Results of the 160 elements model at each iteration for modal dynamic redesign objective

Iter Dynamic redesign # of # of redesign # of Increment

# ω′2
2/ω22 Error (%)∗ increments variables modes size (%)

1 1.871 0.778 5 80 30 15
2 1.845 1.702 5 20 30 15
3 1.696 2.534 4 40 30 15
4 1.861 1.928 5 54 30 15

∗ Error is not cumulative since it is arrested by each FEA
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Table 9 Results of the 160 elements model (1122 d.o.f.’s) at each iteration for static and dynamic redesign objectives

Iter Static redesign Dynamic redesign # of # of redesign # of Increment

# u′289/u289 Error (%)∗ ω′2
2/ω22 Error (%)∗ increments variables modes size (%)

1 0.492 2.813 1.871 0.380 5 160 30 15
2 0.494 6.840 1.831 1.911 5 142 30 15
3 0.535 −1.462 1.706 −0.259 4 132 30 15
4 0.508 4.721 1.783 2.564 5 134 30 15

∗ Error is not cumulative since it is arrested by each FEA

Subcase - 1
Strain Energy

Subcase - 1
Strain Energy

Subcase - 1
Strain Energy

Subcase - 1
Strain Energy

y

x

y

x

y

x

y

x

Fig. 5 Static/modal dynamic strain energy distribution after static/dynamic redesign (160 solid elements cantilever plate);

ω′2
2/ω22 = 10.421; u′289/u289 = 0.0661; strain energy normalized in the range 0–1

The cross bracing from the modal dynamic redesign has
more openings in it and is distinctively different, as shown
in Figs. 2 and 3. Near the free end, the influence of static
redesign is apparent with the evolution of the Gothic
arc structure. The modal dynamic strain energy density
shows very low strain energy density near the free end.
Thus, static strain energy density dominates the redesign
evolution.

5
Conclusions

A LargE Admissible Perturbations (LEAP) methodol-
ogy has been developed to perform integrated topology

and structural performance redesign. The topological re-
design evolves from a solid block using the modulus of
elasticity of elements as redesign variables with a mini-
mum change optimality criterion. Strain energy density
levels are used to freeze low energy elements from the re-
design process in a specific iteration. Elements frozen in
a specific iteration may be reactivated in subsequent it-
erations. At the end, elements of no consequence may be
removed. Compared to other topology redesign methods,
the method developed in this paper makes it possible to
work in continuous design space instead of “binary” de-
sign space. Thus, adequate resolution is achieved using
far fewer elements.
Structural performance specifications may be im-

posed by the designer on static deflections and for modal



151

dynamic properties. The developed LEAP methodol-
ogy and solution algorithm can perform integrated top-
ology and structural performance redesign with satis-
factory accuracy in a single iteration (no FEA’s) for
performance changes on the order of 100%–300% with-
out trial and error. For larger changes, on the order of
3300%, four to six iterations are used to achieve the
same level of accuracy. One FEA is used per itera-
tion without trial and error. The benchmarking prob-
lem of redesigning a solid plate cantilever has been
solved for integrated topology and performance with
the addition of static deflection and/or natural fre-
quency constraints. Numerical results show the accu-
racy and efficiency of the LEAP algorithm particu-
larly after introduction of the static mode compensa-
tion in the static deflection general perturbation equa-
tions. Use of two finite element models with different
resolution—1122 d.o.f.’s and 4158 d.o.f.’s—produce simi-
lar topologies indicating uniqueness of solution. Struc-
tural performance constraints have a strong effect on
the final topology producing significantly different solu-
tion. Prevailing however, in the redesigned topology is
the feature of gothic arc bracing. The latter is different
from the straight truss bracings observed in many so-
lutions of the benchmarking problems published in the
literature.
All redesign sequences shown in Figs. 2–5 show the

structural evolution during the redesign process. The
final shape in each figure indicates where stiffening is
required. From the results of the redesign process, we
get also the values of element property changes and
therefore physical modifications can be done accord-
ingly. Stiffening is proportional to the calculated energy
density.
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6
Appendix A: General perturbation equation for
modal dynamics

The counterpart of (2) for the objective structure in
State S2 is

K′ =M′ω′2 , (26)

where the primed quantities refer to State S2. K′ is the
generalized stiffness matrix of the objective structure

K′ =Φ′Tk′Φ′ , (27)

and M′ is the generalized mass matrix of the objective
structure

M′ =Φ′Tm′Φ′ . (28)

Substituting relationships (5)–(8) and (11)–(12) into
(26) the dynamic general perturbation equation is de-
veloped as

Φ′T∆kΦ′−Φ′T∆mΦ′ω′2 =Φ′TmΦ′ω′2−Φ′TkΦ′ .
(29)

(29) consists of n2 scalar equations of the following form:

p∑
e=1

(
Ψ ′j
TkeΨ

′
i−ω

′
i
2Ψ ′j

TmeΨ
′
i

)
αe =

ω′i
2Ψ ′j

TmΨ ′i−Ψ
′
j
TkΨ ′i , i, j = 1, 2, . . . , n . (30)

7
Appendix B: General perturbation equation for static
deflection

The derivation of the general perturbation equation for
static deflection without static mode compensation is
presented in this appendix. Development of this general
perturbation equation using static mode compensation
can be seen in the paper by Bernitsas and Suryatama
(1999).
The counterpart of (4) can be written as

k′u′ = f , (31)

where it is assumed that f ′ = f . For f ′ �= f , see Tawekal
and Bernitsas (1992). Let Q′ be the transformed dis-
placement vector which is defined—without static mode
compensation—as

u′ =Φ′Q′ . (32)

Substituting (32) into (31) gives

k′Φ′Q′ = f . (33)

Premultiplying (33) by Φ′T yields

Φ′Tk′Φ′Q′ =Φ′T f . (34)

SinceK′ =Φ′Tk′Φ′, (34) becomes

K′Q′ =Φ′T f , (35)

or

Q′ =−
1

K′
Φ′T f . (36)

Applying (36) to (32) gives

u′ =Φ′
1

K′
Φ′T f . (37)

Then, the components of vector u′ can be obtained as

u′i =

nr∑
m=1

Ψ ′imAm

Bm+
p∑
e=1
Cmeαe

, (38)

where

Am =
nr∑
j=1

Ψ ′jmfj ,

Bm = Ψ
′
m
TkeΨ

′
m ,

Cme = Ψ
′
m
TkeΨ

′
m ,

and Ψ ′jm represents the amplitude of the j-th d.o.f. of
modem.
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8
Nomenclature

Be element strain-nodal displacement matrix
De element constitutive law matrix
d.o.f.(’s) degree(s) of freedom
E Young’s modulus
Ee element Young’s modulus
FSQP Feasible Sequential Quadratic Programming solver
fi natural frequency of the i-th mode
k,K global and generalized stiffness matrix
ke stiffness matrix of element or group of elements re-

lated to property e
LEAP LargE Admissible Perturbation
m,M global and generalized mass matrix
me mass matrix of element or group of elements re-

lated to property e
n number of degrees of freedom of structural model
na number of admissibility equations used in redesign
ne number of elements of structural model
Ne interpolation function matrix for each element
NPSOL Nonlinear Programming SOLver
nr number of the extracted modal dynamic modes
nu number of displacement constraints
nω number natural frequency constraints
p number of redesign variables
PAR Perturbation approach to redesign

Q′ transformed displacement vector
QPSOL Quadratic Programming SOLver
RESTRUCT program for Redesign of STRUCTures
S1 the baseline state of the structure to be designed;

the structural performance is known but does sat-
isfy designer specifications

S2 the unknown objective structural state; structure
should have satisfied designer specifications after
completing this state

u nodal static displacement vector

ub nodal static displacement vector of the baseline
structure or the structure at the previous incre-
ment

Ve the element volume

8.1
Greek symbols

αe fractional change of an element or group of element
∆ changes between the initial State S1 and the un-

known State S2
Φ dynamic mode shape matrix
Ψ i i-th dynamic mode shape vector
ω2i i-th modal dynamic eigenvalue
ρe element density


