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Abstract

We study the asymptotic behavior of L∞ weak-entropy solutions to the com-
pressible Euler equations with damping and vacuum. Previous works on this topic
are mainly concerned with the case away from the vacuum and small initial data.
In the present paper, we prove that the entropy-weak solution strongly converges
to the similarity solution of the porous media equations in Lp(R) (2 � p < ∞)
with decay rates. The initial data can contain vacuum and can be arbitrary large. A
new approach is introduced to control the singularity near vacuum for the desired
estimates.

1. Introduction

Compressible Euler equations with damping occur in the mathematical model-
ing of the motion for the compressible gas flow through a porous medium. The me-
dium induces a friction force, proportional to the linear momentum in the opposite
direction. Therefore, in a one-dimensional porous medium, the damped compress-
ible Euler equations express the conservation of mass and the momentum balance
as follows:

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P(ρ))x = −αρu, (1.1)

with the initial data

ρ(x, 0) = ρ0(x) � 0, m(x, 0) = m0(x), (1.2)

such that
(ρ0(x),m0(x)) → (ρ±,m±), as x → ±∞.
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Here ρ, u and P denote respectively the density, velocity, and pressure; m = ρu is
the momentum and the constant α > 0 models friction. In this paper, we consider
the polytropic perfect gas where P(ρ) = P0ρ

γ , 1 < γ < 3, with P0 a positive
constant, and γ the adiabatic gas exponent. Without loss of generality, α and P0 are
normalized to be 1 throughout this paper. It is known that (1.1) is of the hyperbolic
type with two characteristic speeds λ1 = u − √

P ′(ρ) and λ2 = u + √
P ′(ρ).

Furthermore, (1.1) is strictly hyperbolic at the point away from vacuum where two
characteristics coincide.

However, in the applications, Darcy’s law is used to approximate the momentum
equation in system (1.1), and thus we obtain

ρt = P(ρ)xx,

m = −P(ρ)x, (1.3)

where the second equation is the famous Darcy’s law and the first equation is the
well-known porous-medium equation. So, it is natural to expect some relationship
between system (1.1) and system (1.3). In fact, we have the following conjecture;
see [17].

Conjecture. Time asymptotically, the system (1.1) is equivalent to the system (1.3).

The main focus of this study is to prove this conjecture. In this paper, we prove
that the L∞ weak-entropy solution with vacuum, selected by the physical entropy-
flux pair, converge, strongly in Lp(R) with decay rates, to the similarity solution
of the porous-medium equation, determined uniquely by the end-states and the
mass distribution of the initial data. The restriction on the initial data is that both
end-states are away from vacuum; see Theorem 1 below for details.

In the case away from vacuum, system (1.1) can be transferred to the p-system
with damping by changing to the Lagrangian coordinates. The first result concern-
ing the above conjecture is due to Hsiao & Liu [9, 10] for small smooth solutions
away from vacuum based on the derivative estimates and the observation of [23].
Since then, this problem has attracted considerable attentions, see [8, 11, 12, 22,
24–26, 29]. However, all of these results are away from vacuum and/or require
small smooth initial data. For more references on the p-system with damping, we
refer to [3, 13, 14, 19, 31].

When a vacuum occurs in the solution, the difficulty of the problem is greatly
increased. The main difficulties come from the fact that such a problem involves
three mechanisms: nonlinear convection, lower-order dissipation of damping and
the resonance due to vacuum. The interaction of these three mechanisms makes this
problem of both mathematical and physical significance. In addition to the shock
formation, there is new singularity in our situation due to vacuum. In fact, Liu &
Yang [20, 21] observed that the local smooth solutions of (1.1) blow up in finite
time before shock formation. This implies the moving of the interface between the
vacuum and the gas. Due to this new singularity, it is very difficult to obtain the
solutions with any degree of regularity. This makes (1.1) difficult to understand ana-
lytically and makes the construction of effective numerical methods for computing
solutions a highly non-trivial problem. Indeed, the only global weak solutions are
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constructed in L∞ space by using the method of compensated compactness; see
Ding, Chen & Luo [5] for 1 < γ � 5

3 and Huang & Pan [15] for 1 � γ < 3.
Thus, to study the large-time behavior of solution of (1.1) with vacuum, it is suitable
to consider the L∞ weak solution.

Definition 1. We call (ρ,m)(x, t) ∈ L∞ an entropy-weak solution of (1.1)–(1.2),
if, for any non-negative test function φ ∈ D(R2+),∫∫

t>0
(ρφt +mφx) dxdt +

∫
R
ρ0(x)φ(x, 0) dx = 0,

∫∫
t>0

[
mφt +

(
m2

ρ
+ P(ρ)

)
φx −mφ

]
dxdt +

∫
R
m0(x)φ(x, 0) dx = 0,∫∫

t>0
(ηeφt + qeφx − ρu2φ) dxdt +

∫
R
ηe(x, 0)φ(x, 0) dx � 0.

Here, the entropy–flux pair (ηe, qe) is associated with mechanical energy:

ηe = 1

2
ρu2 + 1

(γ − 1)
ργ ,

qe = 1

2
ρu3 + γ

γ − 1
ργ u.

Without regularity of the solutions, the framework given by Hsiao & Liu [9,
10] is no longer applicable. Recently, Huang & Pan [15] first proved the con-
jecture above with vacuum in some sense by using the theory of compensated
compactness, together with the entropy estimates and rescaling techniques. This
method was developed first by Serre & Xiao [28]. However, the result in [15] is
far from satisfactory. In fact, the results in [15] only give the Lq

loc(1 � q < ∞)

convergence of density in the solutions of (1.1) and (1.2) to the self-similar solu-
tion of the porous medium equation along the level curve of the diffusive similarity
profiles. The large-time behavior of the momentum is not known. Furthermore,
there are no decay rates in [15]. We will bridge these gaps in this current paper
under the restriction that ρ± are positive. For this purpose, the derivative estimates
are required. As our solutions live in L∞ space, it is hopeless to get derivative
estimates since the derivatives of solutions are undefined. The hopeful estimate is
an Lp estimate for the solutions themselves. However, the conservation of mass
in the system (1.1) indicates the existence of anti-derivatives for some quantities.
If we consider the equations for these anti-derivatives, the first-order estimates in
the original systems provide the derivative estimates for the new equations. With
the help of this idea, Zhu [31] obtained the convergence for a damped p-system
modeling the elastic materials, based on the energy method for wave equations in
[9] due to the parabolic structure of the equations. However, this approach fails to
solve our problem because of the degeneracy at vacuum. In the spirit of [31], we
explore the hyperbolicity of system (1.1) and employ the entropy analysis for (1.1)
itself rather than the energy estimate for the wave equation. Detailed analysis on
convection terms near vacuum helps us to establish the uniform estimates for the
solutions. This estimate gives the strong convergence results with decay rates.
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We state our main result now. Let (ρ(x, t),m(x, t)) be the L∞ weak-entropy
solution obtained by vanishing viscosity, and let ρ̄(η) (η = x√

t+1
) be the similarity

solution of

ρ̄t = P(ρ̄)xx,

ρ̄(±∞) = ρ±, ρ± > 0. (1.4)

We define

m̄ = −P(ρ̄)x,
ρ̂(x, t) = (m+ −m−)e−t θ(x),

m̂(x, t) = m−e−t + (m+ −m−)e−t
∫ x

−∞
θ(ξ) dξ, (1.5)

where θ(x) is a smooth function with compact support such that∫ ∞

−∞
θ(x) dx = 1,

and

y(x, t) = −
∫ x

−∞
(ρ(ξ, t)− ρ̄(ξ + x0, t)− ρ̂(ξ, t)) dξ,

z(x, t) = m(x, t)− m̄(x + x0, t)− m̂(x, t), (1.6)

y0 = −
∫ x

−∞
(ρ0(ξ)− ρ̄(ξ + x0)− ρ̂(ξ, 0)) dξ,

z(x, t) = m0(x)− m̄(x + x0)− m̂(x, 0). (1.7)

Here x0 is the constant uniquely determined by the following equation:∫ ∞

−∞
(ρ0(x)− ρ̄(x + x0))dx = m+ −m−. (1.8)

Then we have the following results.

Theorem 1. Suppose that y0(x) ∈ H 1, ρ0(x) − ρ̄(x + x0) − ρ̂(x, 0), m0(x) −
m̂(x, 0) ∈ L2 ∩ L∞. Then there exist constants C > 0 and β < 1

4 independent of
time such that∫ ∞

−∞
(y2 + y2

x + y2
t ) dx +

∫ ∞

0

∫ ∞

−∞
(y2

x + y2
t ) dxdt � C (1.9)

∫ ∞

−∞
(|yx |p + |yt |p) dx � C(1 + t)−β, 2 � p < ∞. (1.10)

Therefore,

‖ρ(x, t)− ρ̄(x + x0, t)‖Lp + ‖m(x, t)− m̄(x + x0, t)‖Lp
� C(1 + t)−β/p, 2 � p < ∞. (1.11)



Convergence Rate for Compressible Euler Equations 363

If in addition, ρ− = ρ+, then∫ ∞

−∞
(|yx |p + |yt |p) dx � C(1 + t)−1, 2 � p < ∞. (1.12)

and

‖ρ(x, t)− ρ̄(x + x0, t)‖Lp + ‖m(x, t)− m̄(x + x0, t)‖Lp
� C(1 + t)−1/p, 2 � p < ∞. (1.13)

Remark 1. (1) Theorem 1 implies that the weak-entropy solutionρ(x, t) converges
strongly in LP (R) towards the nonlinear diffusive profile ρ̄ as t → ∞. Further-
more, Theorem 1 also infers the strong convergence m(x, t) to m̄, which is not
clear in [15].

(2) Theorem 2 is valid for any L∞ weak entropy solutions of (1.1) obtained by
compensated compactness using a viscosity approximation. The estimates in The-
orem 1 are independent of the choice of subsequences of approximate solutions.
This is clear in our arguments.

Let us explain the basic ideas of this paper. First, we approximate the equations
(1.1) and (1.4) by adding an artificial viscosity to get the smooth approximate solu-
tions (ρε,mε), (ρ̄ε, m̄ε). Then, by careful entropy analysis and an energy method,
we get some uniformly estimates for (ρε − ρ̄ε, mε − m̄ε). Finally, letting ε → 0,
we get the desired results by the theory of compensated compactness.

The arrangement of the present paper is as follows. In Section 2, some knowl-
edge on the porous-media equation and its approximation are prepared. In Section 3,
the large-time asymptotic behavior is presented by an energy method, entropy anal-
ysis and the theory of compensated compactness.

2. Diffusive profiles and its approximation

Consider the following Cauchy problem for the porous-media equation (PME):

ρt = (ργ )xx, γ � 1, t > 0,

ρ(x, 0) = ρ0(x) = ρ−χ(x < 0)+ ρ+χ(x > 0), (2.1)

where, χ is the characteristic function and ρ± are positive constants. Without loss
of generality, we assume that 0 < ρ+ < ρ−.

It is clear that the PME is strictly parabolic if ρ > 0. The problem (2.1) has
been extensively studied. We refer to [1, 2, 7, 16, 27]. In [15], Huang & Pan have
proved the uniqueness of weak solutions with L∞ initial data for PME. Since the
initial data is self-similar, the uniqueness theorem of [15] implies that ρ itself is
self-similar, i.e., ρ(x, t) = ρ̄(z)(z = x√

t
), which satisfies

(γ ρ̄γ−1ρ̄z)z + 1
2zρ̄z = 0,

ρ̄(−∞) = ρ−, ρ̄(+∞) = ρ+. (2.2)

The following propositions are due to [1] and [7].
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Proposition 2.1. There is one and only one solution ρ̄(z) ∈ C2 to (2.2) satisfying
the following:

(1) ρ+ � ρ̄(z) � ρ− is monotone decreasing on R.

(2) (|ρ̄x |, |ρ̄t |) � C(t1)(t
− 1

2 , t−1) for any t � t1 > 0.

Now let us approximate the equation (2.1) with viscosity

ρ̄εt = (ρ̄ε)
γ
xx + ερ̄εxx,

m̄ε = −P(ρ̄ε)x,
ρ̄ε(x, 0) = ρ−χ(x < 0)+ ρ+χ(x > 0). (2.3)

It is obvious that (2.3) has a unique solution which is self-similar and strictly
monotone. It is easy to see that the following properties hold.

Proposition 2.2. The self-similar solution ρ̄ε of (2.3) satisfies the following dissi-
pative estimates: ∫ ∞

−∞
|ρ̄εx |2 dx = O(1)t−

1
2 , (2.4)∫ ∞

−∞
|ρ̄εt |2 + |ρ̄εxx |2dx = O(1)t−

3
2 , (2.5)∫ ∞

−∞
|ρ̄εxt |2 dx = O(1)t−

5
2 , (2.6)

where O(1) is a positive constant independent of ε. Furthermore, ρ̄ε strongly con-
verges to ρ̄ as ε tends to zero, uniformly in % ⊂⊂ R × (0, T ).

3. Energy estimates and decay rates

This section is devoted to the proof of Theorem 1. First of all, we have the
following observations.

Lemma 3.1. Let 0 � ρ � M < ∞, 0 < a < ρ̄ � M < ∞, there are positive
constants C1 and C2 such that

(1) (ρ − ρ̄)(P (ρ)− P(ρ̄)) � C1(ρ − ρ̄)2,

(2) P(ρ)− P(ρ̄)− P ′(ρ̄)(ρ − ρ̄) � C2(ρ − ρ̄)2.

Proof. It is easy to check that Lemma 3.1 holds when ρ > b > 0, while C1 and
C2 depend on b. Thus, to prove Lemma 3.1, it is sufficient to prove it near vacuum.

Choose the constantσ = aP (a)

2M2 . LetF(ρ) = (ρ−ρ̄)(P (ρ)−P(ρ̄))−σ(ρ−ρ̄)2.
We have

F(0) = ρ̄P (ρ̄)− σ ρ̄2 � aP (a)

2
> 0.

On the other hand, |F ′(ρ)| � C. Therefore, there exists s > 0 such that the
first inequality holds for any 0 � ρ � s. This proves the first inequality.
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For the second inequality, we define H(ρ) = P(ρ)−P(ρ̄)−P ′(ρ̄)(ρ − ρ̄)−
µ(ρ − ρ̄)2 and choose the constant µ = (γ−1)P (a)

2M2 . Then, we have

H(0) = −ρ̄γ + γ ρ̄γ − µρ̄2 � (γ − 1)P (a)

2
> 0

since |H ′(ρ)| � C. Thus, there is r > 0 such that the second inequality holds for
any 0 � ρ � r . We complete the proof of the second inequality. ��

Let us approximate system (1.1) by adding artificial viscosity with parameter
ε > 0, i.e.,

ρεt +mε
x = ερεxx,

mε
t +

(
mε2

ρε
+ P(ρε)

)
x

= −mε + εmε
xx. (3.1)

with initial data

(ρε,mε)(x, 0) = (ρε0(x),m
ε
0(x)), (3.2)

such that

ρε0(x) > ε, ρε0(x) → ρ±, as x → ±∞,

ρε0(x) → ρ0(x), and mε
0(x) → m0(x), a.e., as ε → 0.

It is easy to check that there is a global smooth solution (ρε,mε) with ρε > 0
for (3.1), (3.2) due to Diperna [6]. We note that for the homogeneous case of (1.1),
the existence of weak-entropy solution is proved by Ding, Cheng & Luo [4] for
1 < γ � 5

3 and Lions, Perthame & Souganidis [18] for 5
3 < γ < 3. For the non-

homogeneous case of (1.1), Ding, Cheng & Luo [5] also have proved the global
existence of (1.1), (1.2) for 1 < γ � 5

3 by the Lax-Friedrichs scheme. Therefore,
by the convergence theorems of [4, 5, 18], we can assume that as ε → 0, (ρε,mε)

converges almost everywhere to (ρ,m) which is a weak-entropy solution of (1.1),
(1.2); see [15].

Let (ρ̄ε, m̄ε) be the smooth solution of (2.3) and

w = ρε − ρ̄ε,

z = mε − m̄ε.

Then we have

wt + zx = εwxx

zt +
(
mε2

ρε

)
x

+ (P (ρε)− P(ρ̄ε))x + z = εzxx − m̄ε
t + εm̄ε

xx. (3.3)

Integrating the first equation of (3.3), we have

d

dt

∫ ∞

−∞
(ρε − ρ̄ε) dx = e−t (m+ −m−),
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due to the fact that mε(±∞, t) = e−tm±. This yields

d

dt

∫ ∞

−∞
(ρε(x, t)− ρ̄ε(x + xε0, t)− ρ̂(x, t)) dx = 0,

where xε0 is determined by∫ ∞

−∞
(ρε0(x)− ρ̄ε(x + xε0, 0)) dx = m+ −m−,

and satisfies xε0 → x0, as ε → 0.
We remark that ρ̂ and m̂ decay exponentially. For convenience, we only prove

the case for m+ = m− = 0 in this paper. Other cases can be easily treated in the
similar way.

Thus, we have ∫ ∞

−∞
(ρε0(x)− ρ̄ε(x + xε0, 0)) dx = 0,

and we can define y = − ∫ x−∞ w(r, t)dr so that

yx = −w, z = yt − εyxx.

Multiplying y with the second equation of (3.3), integrating over (−∞,∞)×
[0, t], by Lemma 3.1, we get∫ ∞

−∞
(
zy + 1

2y
2 + εy2

x

)
dx −

∫ t

0

∫ ∞

−∞
z2 dxdτ

+
∫ t

0

∫ ∞

−∞
2ε2y2

xx + (C1 + ε)y2
x dxdτ −

∫ t

0

∫ ∞

−∞
mε2

ρε
yx dxdτ

� C(‖y0‖2 + ‖z0‖2)+ ε‖y0x‖2

+C

∣∣∣∣
∫ t

0

∫ ∞

−∞
ρ̄εt yx dxdτ

∣∣∣∣+ C

∣∣∣∣
∫ t

0

∫ ∞

−∞
ρ̄εxxyx dxdτ

∣∣∣∣ . (3.4)

We compute∣∣∣∣
∫ t

0

∫ ∞

−∞
ρ̄εt yx dxdτ

∣∣∣∣+
∣∣∣∣
∫ t

0

∫ ∞

−∞
ρ̄εxxyx dxdτ

∣∣∣∣
�
∫ t

0

∫ ∞

−∞
((ρ̄εt )

2 + (ρ̄εxx)
2) dxdτ + δ

∫ t

0

∫ ∞

−∞
y2
x dxdτ

� C + δ

∫ t

0

∫ ∞

−∞
y2
x dxdτ. (3.5)

On the other hand, since

(mε)2

ρε
= (m̄ε)2

ρ̄ε
+ (mε)2 − (m̄ε)2

ρ̄ε
+ (mε)2

(
1

ρε
− 1

ρ̄ε

)

= (m̄ε)2

ρ̄ε
+ (mε)2

ρερ̄ε
yx + (z2 + 2m̄εz)

ρ̄ε
, (3.6)
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we have ∣∣∣∣∣
∫ t

0

∫ ∞

−∞
mε2

ρε
yx dxdτ

∣∣∣∣∣
�
∣∣∣∣
∫ t

0

∫ ∞

−∞
(m̄ε)2

ρ̄ε
yx dxdτ

∣∣∣∣+
∫ t

0

∫ ∞

−∞
mε2

ρερ̄ε
y2
x dxdτ

+
∣∣∣∣
∫ t

0

∫ ∞

−∞
(z2 + 2m̄εz)

ρ̄ε
yx dxdτ

∣∣∣∣
� C(δ)+ δ

∫ t

0

∫ ∞

−∞
y2
x dxdτ + C(δ)

∫ t

0

∫ ∞

−∞
z2 dxdτ

+C

∫ t

0

∫ ∞

−∞
|ρ̄εx |2y2

x dxdt

� C(δ)+ Cδ

∫ t

0

∫ ∞

−∞
y2
x dxdτ + C(δ)

∫ t

0

∫ ∞

−∞
z2 dxdτ, (3.7)

where we have used Propositions 2.1 and 2.2, Lemma 3.1, and the fact that

∫ t

0

∫ ∞

−∞
mε2

ρερ̄ε
y2
x dxdτ

� C

∫ t

0

∫ ∞

−∞

(
|z|y2

x + |m̄ε|y2
x

)
dxdτ

�
∫ t

0

∫ ∞

−∞

(
δy2

x + C(δ)z2
)
dxdτ +

∫ t

0

∫ ∞

−∞

(
δ|yx | 8

3 + C(δ)(ρ̄εx)
4
)
dxdτ

� C(δ)+ Cδ

∫ t

0

∫ ∞

−∞
y2
x dxdτ + C(δ)

∫ t

0

∫ ∞

−∞
z2 dxdτ. (3.8)

Thus, by choosing δ suitably small, we conclude that, from (3.4) and (3.7), there
are positive constants C4, C5 and C6 such that

∫ ∞

−∞
(
zy + 1

2y
2 + εy2

x

)
dx + C4

∫ t

0

∫ ∞

−∞
yx dxdτ − C5

∫ t

0

∫ ∞

−∞
z2 dxdτ

� C6. (3.9)

Let ηεe be the mechanical energy and qε the related flux. We denote by η∗ the
quantity

ηεe − 1

γ − 1
P ′(ρ̄ε)(ρε − ρ̄ε)− 1

γ − 1
P(ρ̄ε). (3.10)

It is easy to check that

1

γ − 1
P(ρ̄ε)x = − (m̄ε)2

ρ̄ε
,
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d

dt

∫ ∞

−∞
η∗(x, t) dx + d

dt

∫ ∞

−∞
1

γ − 1

[
P ′(ρ̄ε)(ρε − ρ̄ε)

]
dx

+
∫ ∞

−∞

(
mε2

ρε
− (m̄ε)2

ρ̄ε

)
dx � ε

∫ ∞

−∞
γ (ρ̄ε)γ−2(ρ̄εx)

2 dx � Cε, (3.11)

due to the convexity of ηεe and entropy inequality. Integrating (3.11) over [0, t], we
have ∫ ∞

−∞
η∗(x, t) dx +

∫ t

0

∫ ∞

−∞

(
mε2

ρε
− (m̄ε)2

ρ̄ε

)
dxdτ

� C + δ

∫ ∞

−∞
y2(x, t) dx + Cεt, (3.12)

where we have used∣∣∣∣
∫ ∞

−∞
1

γ − 1
[P ′(ρ̄ε)(ρε − ρ̄ε)] dx

∣∣∣∣ � C

∣∣∣∣
∫ ∞

−∞
ρ̄εxy dx

∣∣∣∣
� C(δ)+ δ

∫ ∞

−∞
y2(x, t) dx.

We now make the Taylor’s expansion of (mε)2

ρε
around (m̄ε)2

ρ̄ε
as follows:

mε2

ρε
= (m̄ε)2

ρ̄ε
+ 2m̄ε

ρ̄ε
z − (m̄ε)2

(ρ̄ε)2
(ρε − ρ̄ε)+Q, (3.13)

where

Q = (mε)2

ρε
− 2m̄ε

ρ̄ε
m+ (m̄ε)2

(ρ̄ε)2
ρ � 0,

due to the convexity of mε2

ρε
. Therefore we have

mε2

ρε
− (m̄ε)2

ρ̄ε
= Q+ 2m̄ε

ρ̄ε
z + (m̄ε)2

(ρ̄ε)2
yx. (3.14)

Since ∣∣∣∣ (m̄ε)2

(ρ̄ε)2
yx

∣∣∣∣ � δy2
x + C(δ)(ρ̄εx)

4,

and

m̄ε

ρ̄ε
z = f (ρ̄ε)x(yt − εyxx)

= −(fty + εfxyx)x + (fxy)t + ftyx + εyxfxx , (3.15)

we have∫ ∞

−∞
η∗(x, t) dx +

∫ t

0

∫ ∞

−∞
Q dxdτ

� C(δ)+ Cδ

∫ t

0

∫ ∞

−∞
y2
x dxdτ + Cδ

∫ ∞

−∞
y2(x, t) dx + Cεt. (3.16)
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On the other hand, (3.14) implies

(mε)2

ρε
− (m̄ε)2

ρ̄ε
= (mε)2

ρερ̄ε
yx + 1

ρ̄ε

(
(mε)2 − (m̄ε)2

)

= z2

ρ̄ε
+ 2zm̄ε

ρ̄ε
+O(1)

(
Q+ ρ̄εxzyx + (ρ̄εx)

2yx

)
. (3.17)

Note that

ρ̄εxzyx � z2

2ρ̄ε
+ δy4

x + C(δ)(ρ̄εx)
4.

Thus, by(3.12), (3.15), (3.16) and Lemma 3.1, we have

∫ ∞

−∞

(
mε2

2ρε
+ y2

x

)
dx +

∫ t

0

∫ ∞

−∞
z2 dxdτ

� C(δ)+ Cδ

∫ t

0

∫ ∞

−∞
y2
x + Cδ

∫ ∞

−∞
y2(x, t) dx + Cεt. (3.18)

Now (3.6) implies

∫ ∞

−∞
z2

2ρ̄ε
dx � C

∫ ∞

−∞

(
(mε)2

ρε
+ (m̄ε)2

ρ̄ε

)
dx +

∫ ∞

−∞
(mε)2

ρερ̄ε
|yx | dx

+
∣∣∣∣
∫ ∞

−∞
2zm̄ε

ρ̄ε
dx

∣∣∣∣
� C + C

∫ ∞

−∞
(mε)2

ρε
dx + 1

2

∫ ∞

−∞
z2

2ρ̄ε
dx,

hence ∫ ∞

−∞
z2 dx � C + C

∫ ∞

−∞
(mε)2

ρε
dx.

Thus, from (3.18), we have

∫ ∞

−∞
(z2 + y2

x ) dx +
∫ t

0

∫ ∞

−∞
z2 dxdt

� C(δ)+ Cδ

∫ t

0

∫ ∞

−∞
y2
x + Cδ

∫ ∞

−∞
y2(x, t) dx + Cεt. (3.19)

We multiply (3.19) by N = 2(C4 + C5 + 1) and add the result to (3.9), by
choosing δ suitably small, we arrive at

Lemma 3.2. Let the assumptions in Theorem 1 hold. Then

‖(y, yx, z)(·, t)‖2 +
∫ t

0
‖(yx, z)(·, τ )‖2 dτ � C + Cεt. (3.20)
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Lemma 3.3. Under the conditions of Theorem 1, there is a positive constant C
independent of time such that, for any t � 0,

‖(ρ − ρ̄, m− m̄)(·, t)‖2 +
∫ t

0
‖(ρ − ρ̄, m− m̄)(·, τ )‖2 dτ � C.

Proof. Due to the proof of Lemma 3.2, for any fixed T > 0, we know that, for
0 < t � T ,

‖(y, yx, z)(·, t)‖2 +
∫ t

0
‖(yx, z)(·, τ )‖2 dτ � C + CεT .

Since yx = −(ρε − ρ̄ε), z = (mε − m̄ε), due to the convergence of ρε, ρ̄ε, mε and
m̄ε, we have, letting ε → 0,

‖(ρ − ρ̄, m− m̄)(·, t)‖2 +
∫ t

0
‖(ρ − ρ̄, m− m̄)(·, τ )‖2 dτ � C

for any 0 � t � T . Then, a standard continuity argument implies Lemma 3.3. ��

We now prove the decay estimates. In fact, we have the following Lemma.

Lemma 3.4. Under the conditions of Theorem 1, there is a constant 0 < α < 1
4 ,

such that

(1 + t)α‖(yx, z)(·, t)‖2 � C + Cε(1 + t)1+α.

Proof. Multiplying (3.11) by (1 + t)α , with 0 < α < 1
4 , we have

(1 + t)α
d

dt

∫ ∞

−∞
η∗(x, t) dx + (1 + t)α

d

dt

∫ ∞

−∞
1

γ − 1

[
P ′(ρ̄ε)(ρε − ρ̄ε)

]
dx

+ (1 + t)α
∫ ∞

−∞

(
mε2

ρε
− (m̄ε)2

ρ̄ε

)
dx � Cε(1 + t)α. (3.21)

This gives

d

dt

∫ ∞

−∞
(1 + t)αη∗(x, t) dx − α(1 + t)α−1

∫ ∞

−∞
η∗(x, t)

+ d

dt

∫ ∞

−∞
(1 + t)α

1

γ − 1

[
P ′(ρ̄ε)(ρε − ρ̄ε)

]
dx

−α

∫ ∞

−∞
(1 + t)α−1 1

γ − 1

[
P ′(ρ̄ε)(ρε − ρ̄ε)

]
dx

+
∫ ∞

−∞
(1 + t)α

(
mε2

ρε
− (m̄ε)2

ρ̄ε

)
dx � Cε(1 + t)α. (3.22)
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Integrating (3.22) over (0, t), we have∫ ∞

−∞
(1 + t)αη∗(x, t) dx +

∫ ∞

−∞
(1 + t)α

1

γ − 1

[
P ′(ρ̄ε)(ρε − ρ̄ε)

]
dx

+
∫ ∞

−∞
(1 + τ)α

(
(mε)2

ρε
− (m̄ε)2

ρ̄ε

)
dxdτ

� C + Cε(1 + t)α+1 + α

∫ t

0

∫ ∞

−∞
(1 + τ)α−1η∗(x, t) dxdτ

+ α

γ − 1

∫ t

0

∫ ∞

−∞
(1 + τ)α−1 [P ′(ρ̄ε)(ρε − ρ̄ε)

]
dxdτ. (3.23)

Since α < 1
4 , we have∣∣∣∣
∫ ∞

−∞
(1 + t)αρ̄εxy dx

∣∣∣∣ �
∫ ∞

−∞
(1 + t)2α(ρ̄εx)

2 dx +
∫ ∞

−∞
y2 dx

� C + Cεt, (3.24)

and ∫ t

0

∫ ∞

−∞
(1 + τ)α−1ρ̄εxy dxdt

�
∫ t

0

∫ ∞

−∞
(1 + τ)2α−2+1+δ(ρ̄εx)2dxdt +

∫ t

0
(1 + τ)−1−δ‖y‖2

L2 dx

� C

∫ t

0
(1 + t)2α−1+ε− 1

2 dt + C

∫ t

0
(1 + t)−1−δ(1 + Cεt) dt

� C + Cεt. (3.25)

By Lemma 3.2, we have, for sufficiently small δ,∫ ∞

−∞
(1 + t)αη∗dx +

∫ t

0

∫ ∞

−∞
(1 + τ)α

(
mε2

ρε
− m̄ε2

ρ̄ε

)
dxdτ

� C + α

∫ t

0

∫ ∞

−∞
(1 + τ)α−1η∗ dxdτ + Cε(1 + t)α+1

� C + α

∫ t

0

∫ ∞

−∞
(1 + τ)α−1

(
(mε)2

2ρε
+ C7y

2
x

)
dxdτ + Cε(1 + t)α+1

� C + α

∫ t

0

∫ ∞

−∞
(1 + τ)α−1 (m

ε)2

2ρε
dxdτ + Cε(1 + t)α+1, (3.26)

and ∫ t

0

∫ ∞

−∞
(1 + t)α−1 (m̄

ε)2

2ρ̄ε
dxdτ � C

∫ t

0
(1 + τ)α−1− 1

2 dτ � C.

By (3.13) and Lemma 3.2, we get∫ ∞

−∞
(1 + t)αη∗dx +

∫ t

0

∫ ∞

−∞
(1 + τ)α

(
(mε)2

ρε
− (m̄ε)2

ρ̄ε

)
dxdτ

� C + Cε(1 + t)α+1. (3.27)
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To obtain the decay rates, we need to analyze carefully the term∫ t

0

∫ ∞

−∞
(1 + t)α

(
(mε)2

ρε
− (m̄ε)2

ρ̄ε

)
dxdτ. (3.28)

We note that

(mε)2

ρε
− (m̄ε)2

ρ̄ε
= Q+ 2m̄εz

ρ̄ε
+ (m̄ε)2

(ρ̄ε)2
yx. (3.29)

It is easy to see that∫ t

0

∫ ∞

−∞
(1 + τ)α(m̄ε)2yx dxdτ � C

∫ t

0

∫ ∞

−∞
(1 + τ)2α(m̄ε)4 dxdτ

+C

∫ t

0

∫ ∞

−∞
y2
x dxdτ � C + Cεt. (3.30)

We compute

(1 + t)α
m̄ε

ρ̄ε
z = (1 + t)α

m̄ε

ρ̄ε
(yt − εyxx)

= ε(1 + t)α
(
m̄ε

ρ̄ε

)
x

yx +
(
(1 + t)α

m̄ε

ρ̄ε
y

)
t

− (1 + t)α
(
m̄ε

ρ̄ε

)
t

y − α(1 + t)α−1 m̄
ε

ρ̄ε
y + (· · · )x. (3.31)

The terms on the right-hand side of (3.31) can be controlled as follows:

ε

∫ t

0

∫ ∞

−∞
(1 + τ)α

(
m̄ε

ρ̄ε

)
x

yx dxdτ

� Cε

∫ t

0

∫ ∞

−∞
(1 + τ)2α(ρ̄εx)

2 dxdτ + ε

∫ t

0

∫ ∞

−∞
y2
x dxdτ

� C + Cεt. (3.32)

For the third term, we have∫ t

0

∫ ∞

−∞
(1 + τ)α

(
m̄ε

ρ̄ε

)
t

y dxdτ

�
∫ t

0

∫ ∞

−∞
(1 + t)2α+1+δ(ρ̄εxt )2 dxdτ +

∫ t

0

∫ ∞

−∞
(1 + τ)−1−δy2 dxdτ

� C +
∫ t

0
(1 + τ)2α+1+δ−2− 1

2 dτ + Cεt

� C + Cεt, if 0 < δ < 1
2 − 2α. (3.33)

For the fourth term, we get∫ t

0

∫ ∞

−∞
(1 + τ)α−1 m̄

ε

ρ̄ε
y dxdτ �

∫ t

0
(1 + τ)2α−2+1+δ− 1

2 dτ + C + Cεt

� C + Cεt, if 0 < δ < 1
2 − 2α. (3.34)
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For the second term, we use (3.24) to derive the following estimate∫ t

0

∫ ∞

−∞

(
(1 + τ)α

m̄ε

ρ̄ε
y

)
t

dxdτ

� C + Cεt +
∫ ∞

−∞
(1 + t)2α

(
ρ̄εx
)2

dx � C + Cεt. (3.35)

Therefore, from (3.28)–(3.35), we have

(1 + t)α
∫ ∞

−∞
η∗ dx +

∫ t

0

∫ ∞

−∞
(1 + t)αQ dxdτ � C + Cε(1 + t)α+1, (3.36)

which implies

(1 + t)α
∫ ∞

−∞
η∗ dx � C + Cε(1 + t)α+1 (3.37)

because Q � 0. Notice that

η∗ � mε2

2ρε
+ σy2

x , (3.38)

and we have

(1 + t)α
∫ ∞

−∞
mε2

ρε
dx � C + Cε(1 + t)α+1. (3.39)

On the other hand, by (3.6), we calculate

(1 + t)α
∫ ∞

−∞
z2

ρ̄ε
dx

� C(1 + t)α
∫ ∞

−∞
(mε)2

ρε
dx + (1 + t)α

∫ ∞

−∞
(m̄ε)2

ρ̄ε
dx,

+
∫ ∞

−∞
2m̄ε

ρ̄ε
z(1 + t)α dx

� C + Cε(1 + t)α+1. (3.40)

Due to the fact that 0 < C1 � ρ̄ε � C2, we have

(1 + t)α
∫ ∞

−∞
z2 dx � C + Cε(1 + t)α+1. (3.41)

This, together with (3.36), yields

(1 + t)α
∫ ∞

−∞
(z2 + y2

x ) dx � C + Cε(1 + t)α+1. (3.42)

��
Similar to Lemma 3.3, we have
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Lemma 3.5. Under the conditions of Theorem 1, there is a positive constant C and
an α < 1

4 independent of time such that, for any t � 0,

(1 + t)α
∫ ∞

−∞

[
(ρ − ρ̄)2 + (m− m̄)2

]
dx � C. (3.43)

Since |ρ − ρ̄| and |m− m̄| are uniformly bounded, it follows that

(1 + t)α
∫ ∞

−∞
|ρ − ρ̄|p + |m− m̄|p dx � C. (3.44)

When ρ− = ρ+ > 0, we can get a better convergence rate. In fact, by the
uniqueness theorem of strictly parabolic equation, the solution ρ̄ε = ρ−, and
m̄ε = −P(ρ̄ε)x = 0. Thus, (3.11) becomes

d

dt

∫ ∞

−∞
η∗(x, t) dx +

∫ ∞

−∞
mε2

ρε
dx � 0, (3.45)

due to
∫∞
−∞ P ′(ρ−)(ρε − ρ−) dx = 0.

Multiplying (3.45) by 1 + t , we have

(1 + t)
d

dt

∫ ∞

−∞
η∗(x, t) dx + (1 + t)

∫ ∞

−∞
mε2

ρε
dx � 0. (3.46)

By the argument above, (3.27) is changed into

∫ ∞

−∞
(1 + t)η∗ dx +

∫ t

0

∫ ∞

−∞
(1 + τ)

(mε)2

ρε
dxdτ � C, (3.47)

which implies

(1 + t)

∫ ∞

−∞
η∗ dx � C. (3.48)

This, together with Lemma 3.1 and (3.40), implies

(1 + t)

∫ ∞

−∞
(z2 + y2

x ) dx � C. (3.49)

Hence we have

Lemma 3.6. Under the conditions of Theorem 1, if ρ− = ρ+ > 0, then there is a
positive constant C independent of time such that, for any t � 0,

(1 + t)

∫ ∞

−∞
(z2 + y2

x ) dx � C.

Therefore Theorem 1 is proved by Lemmas 3.5 and 3.6.



Convergence Rate for Compressible Euler Equations 375

References

1. Aronson, D.G.: The porous media equations. In Nonlinear Diffusion Problem. Lecture
Notes in Math., Vol. 1224, (A. Fasano, M. Primicerio, Eds) Springer-Verlag, Berlin,
1986

2. Brezis, H., Crandall, M.: Uniqueness of solutions of the initial-value problem for
ut −3φ(u) = 0. J. Math. pures et. appl. 58, 153–163 (1979)

3. Dafermos, C.M.: A system of hyperbolic conservation laws with frictional damping.
Z. Angew. Math. Phys. 46, 294–307 (1995)

4. Ding, X., Chen, G., Luo, P.: Convergence of the Lax-Friedrichs scheme for isentropic
gas dynamics (I)(II). Acta Math. Sci 5, 483–500, 501–540 (1985)

5. Ding, X., Chen, G., Luo, P.: Convergence of the fractional step Lax-Friedrichs and
Godunov scheme for isentropic system of gas dynamics. Commun. Math. Phys 121,
63–84 (1989)

6. DiPerna, R.J.: Convergence of approximate solutions of conservation laws. Arch.
Rational Mech. Anal. 82, 27–70 (1983)

7. Duyn, C.J., Peletier, L.A.: A class of similary solutions of the nonlinear diffusion
equations. Nonlinear Analysis, TMA 1, 223–233 (1977)

8. Hsiao, L.: Quasilinear hyperbolic systems and dissipative mechanisms.World Scientific
1997

9. Hsiao, L., Liu, T.P.: Convergence to nonlinear diffusion waves for solutions of a sys-
tem of hyperbolic conservation laws with damping. Comm. Math. Phys. 143, 599–605
(1992)

10. Hsiao, L., Liu, T.P.: Nonlinear diffusive phenomena of nonlinear hyperbolic systems.
Chin. Ann. of Math. Ser. B 14, 465–480 (1993)

11. Hsiao, L., Luo, T.: Nonlinear diffusive phenomena of entropy weak solutions for a
system of quasilinear hyperbolic conservation laws with damping. Q. Appl. Math. 56,
173–198 (1998)

12. Hsiao, L., Pan, R.H.: The damped p-system with boundary effects. Contemporary
Mathematics 255, 109–123 (2000)

13. Hsiao, L., Tang, S.Q.: Construction and qualitative behavior of solutions for a system
of nonlinear hyperbolic conservation laws with damping. Q. Appl. Math. 53, 487–505
(1995)

14. Hsiao, L., Tang, S.Q.: Construction and qualitative behavior of solutions of perturbat-
ed Riemann problem for the system of one-dimensional isentropic flow with damping.
J. Differential Equations 123, 480–503 (1995)

15. Huang, F.M., Pan, R.H.: Asymptotic behavior of the solutions to the damped com-
pressible Euler equations with vacuum. Preprint (2000)

16. Kamin, S.: Source-type solutions for equations of nonstationary filtration. J. Math. Anal.
Appl. 64, 263–276 (1978)

17. Liu, T.P.: Compressible flow with damping and vacuum Japan. J. Appl. Math 13, 25–32
(1996)

18. Lions, P.L., Perthame, B., Souganidis, P.E.: Existence of entropy of solutions for the
hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates.
Comm. Pure Appl. Math. 49, 599–638 (1996)

19. Luskin, M., Temple, B.: The existence of a global weak solution to the nonlinear
water-hammer problem. Comm. Pure Appl. Math. 35, 697–735 (1982)

20. Liu, T.P., Yang, T.: Compressible Euler equations with vacuum. J. Differential Equa-
tions 140, 223–237 (1997)

21. Liu, T.P., Yang, T.: Compressible flow with vacuum and physical singularity. Methods
Appl. Anal. 7, 495–509 (2000)

22. Luo, T., Yang, T.: Interaction of elementary waves for compressible Euler equations
with frictional damping. J. Differential Equations 161, 42–86 (2000)

23. Nishida, T.: Nonlinear hyperbolic equations and related topics in fluid dynamics. Publ.
Math. D’Orsay 46–53 (1978)



376 Feimin Huang & Ronghua Pan

24. Nishihara, K.: Convergence rates to nonlinear diffusion waves for solutions of system
of hyperbolic conservation laws with damping. J. Differential Equations 131, 171–188
(1996)

25. Nishihara, K., Wang, W.,Yang, T.:Lp-convergence rate to nonlinear diffusion waves
for p-system with damping. J. Differential Equations 161, 191–218 (2000)

26. Nishihara, K., Yang, T.: Boundary effect on asymptotic behavior of solutions to the
p-system with damping. J. Differential Equations 156, 439–458 (1999)

27. Pierre, M.: Uniqueness of solutions of ut − 3φ(u) = 0 with inital datum a measure.
Nonlinear Analysis, TMA 6, 175–187 (1982)

28. Serre, D., Xiao, L.:Asymptotic behavior of large weak entropy solutions of the damped
p-system. J. P. Diff. Eqns. 10, 355–368 (1997)

29. Zhao, H.J.: Convergence to strong nonlinear diffusion waves for solutions of p-system
with damping. J. Differential Equations 174, 200–236 (2001)

30. Zheng, Y.S.: Global smooth solutions to the adiabatic gas dynamics system with dissi-
pation terms Chinese. Ann. of Math. 17A, 155–162 (1996)

31. Zhu, C.J.: Convergence Rates to Nonlinear Diffusion Waves for Weak Entropy Solu-
tions to p-System with Damping. Preprint (2000)

Institute of Applied Mathematics
Academia Sinica

Beijing, China

and

Department of Mathematics
University of Michigan

Ann Arbor, MI 48109-1109
e-mail: panrh@umich.edu

(Accepted August 31, 2002)
Published online January 9, 2003 – © Springer-Verlag (2003)


