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1 Introduction

In this paper we discuss hyperbolic holomorphic maps onP
2. Our aim is to

introduce invariant currents and measures which describe the dynamics.
The simplest model is the example (z2, w2) on C

2 which onP
2 can be written

as [z2 : w2 : t2].
Let f : P

2 → P
2 be a holomorphic self-map of degreed. In homogeneous

coordinates,f = [P : Q : R] where P,Q,R are homogenous polynomials of
degreed with no common zeros except for the origin, sof is a well defined
holomorphic map. The space of such maps is denoted byHd.

Some results on the dynamics of such maps have been obtained in ([FS1]),
([FS2]), ([FS3]). We recall a few notions.

Definition 1.1 The Fatou set F= Ff of f ∈ Hd is the largest open set on which
the iterates(f n) is a normal family. The Julia set J= Jf is the complement of Ff .

Definition 1.2 Let g : M → M be a continuous self map on a manifold. The non
wandering setΩ = Ωg is the set of points x∈ M such that for every neighborhood
U of x there is an n≥ 1 with f n(U ) ∩ U /= ∅.
We want to study the dynamics off ∈ Hd, under the assumption thatf is
prehyperbolic onΩf , see ([Ru]). The examples we have in mind are perturbations
of maps of the following type:

f ([z : w : t ]) = [P(z, t) : Q(w, t) : td]
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whereP,Q define polynomial maps onP1 which are hyperbolic on their non-
wandering set. It is well known that onP1 this is equivalent to the fact that all
critical points are in the basin of attraction of attracting cycles.

We study in this paper the class of mapsf ∈ Hd, which are strongly hy-
perbolic onΩf (s-hyperbolic), see definition 3.2. In particular we assume that
periodic points are dense inΩf . If f is prehyperbolic onΩf , thenΩf = S0∪S1∪S2

where the unstable dimension ofSj is j . In this case we show that eachSi is
nonempty (Theorem 3.4) and thatJ \S2 = ∪x∈S1Ws(x) whereWs(x) is the stable
manifold of x.

The setS2 is the support of a probability measureµ which is mixing and of
maximal entropy. It is a basic set ([FS2]).

The setS1 decomposes into a finite number of basic sets:S1 = ∪j S
j
1 . There

is an ordering among the basic sets:Sj
1 < Sk

1 if one can go fromSk
1 to Sj

1 see
the paragraph after Theorem 2.5 for a precise definition. We are interested in
describing dynamical objects related toSj

1 assumingSj
1 is minimal for this order.

More precisely, in order to describe the ”foliated” structure ofJ it is natural
to consider positive closed currents. It is shown in ([FS2]) thatJ is the support
of a positive closed currentT which is obtained as the limit of(f

n)∗ω
dn , whereω

is the standard Kahler form onP2.

We show that ifSj
1 is minimal andf is s-hyperbolic then the restriction of

the currentT to Ws(Sj
1) is laminar, i.e. nearSj

1 it is an integral of currents of
integration of local stable manifolds. IndeedWs(Sj

1) is open inJ . We prove that
the stable manifold of a pointx ∈ Sj

1 is dense inWs(Sj
1). The approach is to

obtain the result by proving a convergence result for the currents(f n)∗

dn [Ws
R(x)],

where x ∈ Sj
1 and [Ws

R(x)] is the current of integration on the local stable
manifold atx. The approach is similar to the one used by Bedford and Smillie
([BS2]) in the case of H́enon maps inC2, which are biholomorphisms.

The setS2 is the repelling part of the dynamics. By analogy with Hénon
maps, paragraph 4, we introduce an open set

U − = {z; {f −n(z)} converge locally uniformly near z to;S2}

andK − := P
2\U −. The setK −\S0 is the union of unstable manifoldsWu(x̃) with

x0 ∈ S1 (Proposition 4.2). Recall that for endomorphisms the unstable manifold
depends on the prehistory of a point.

We prove the existence of positive closed (1,1) currentsσ, supported onK −

and satisfying the functional equationf∗σ = dσ, whered is the algebraic degree
of f . WhenSj

1 is minimal we describe the structure of a currentσ satisfying the

previous equation and whose support isWu(Sj
1).

Indeed whenSj
1 is minimal the closure ofWu(Sj

1) is obtained by adding a
finite number of attracting cycles.

For this current we show thatν := T ∧ σ is an invariant probability measure
with support equal toSj

1 and f is mixing with respect toν (see Theorems 6.2
and 6.3).
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2 Hyperbolicity for endomorphisms

We first recall a few definitions and results on hyperbolic sets for smooth maps
on a compact Riemannian manifoldM . We refer to ([Ru]) for the general theory.

Let f : M → M a smooth map onM and supposeK is a compact forward
invariant set forf , i.e. f (K ) = K .

The first problem is to generalize the notion of hyperbolic set for diffeomor-
phisms to general smooth maps (endomorphisms).

We could say that (but as explained below we will not)K is hyperbolic if there
is a continuous splitting of the tangent bundleTxM = V s

x + V u
x for x ∈ K with

V s contracted andV u expanded underf ′. More precisely, there exist constants
C > 1, Θ > 1 such that for everyx ∈ K , f ′(V u

x ) ⊂ V u
f (x), f ′(V s

x ) ⊂ V s
f (x)

and |Df k(x)ξ| ≤ C
Θk |ξ| ∀ k = 1,2, ..., ξ ∈ V s

x and |Df k(x)ξ| ≥ Θk

C |ξ| ∀ k =
1,2, ..., ξ ∈ V u

x . If K is hyperbolic in this sense, there are associated local stable
manifolds Ws

x to each pointx ∈ K . These are smooth manifolds of the same
dimension asV s

x and f (Ws
x ) ⊂ Ws

f (x) as germs. MoreoverTxWs
x = V s

x .

However, if one tries to construct unstable manifolds, they are not necessarily
unique because preimages are not unique. Rather, an unstable manifold atx ∈
K depends on the prehistory chosen forx, i.e. one fixes any sequence ˜x =
(xk)k≤0, x0 = x, f (xk) = xk+1. Note that ˜x is not necessarily unique since points
can have several preimages. There is an unstable manifoldWu

x̃ through x of
the same dimension asV u

x , and these manifolds have the following invariance
property:f (Wu

(...,x−1)) ⊂ Wu
(...x0) as germs. Moreover,TxWu

x̃ = V u
x .

So all the possible unstable manifolds are tangent to each other, but depend
otherwise on the prehistory chosen.

The condition that all the unstable manifolds are tangent is too restrictive,
because the tangent space should depend on the prehistory.

Hence we introduce

K̃ := {x̃ = (xk) ∈ Πk≤0K ; f (xk−1) = xk}
and similarlyM̃ .

The mapf induces a map̃f : K̃ → K̃ , f̃ (x̃) := (f (xk)).
The tangent bundle of̃K is the set of ( ˜x, ξ) with ξ ∈ Tx0M . The setK is said

to be prehyperbolic forf if there is a continuous splitting of the tangent bundle
for K̃ , Tx̃ = V s

x0
+ V u

x̃ with V s
x0

contracted andV u
x̃ expanded underf ′. More

precisely there are constantsC > 1, Θ > 1 such that for every ˜x = (xk) ∈ K̃
there is a splitting ofTx0M = V s

x0
+ V u

x̃ and

|Df k(x0)ξ′| ≤ CΘ−k |ξ′|, ξ′ ∈ V s
x0

; |Df −k(x0)ξ′′| ≤ CΘ−k |ξ′′|, ξ′′ ∈ V u
x̃ .

We also assume thatDf (V s
x0

) ⊂ V s
f (x0) and (Df )(V u

x̃ ) = V u
f (x̃). Under these

assumptions the dimensions ofV s
x0

andV u
x̃ are locally constant. We will call the
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dimension ofV u
x̃ , the unstable dimension. Givenx ∈ K , for R sufficiently small

we define the local stable manifold

Ws
x,R := {y ∈ M ; d(f n(y), f n(x)) < R for n ≥ 0}

Given x0 ∈ K let x̃ = (xk) ∈ K̃ be a prehistory forx0. We define the local
unstable manifold for that prehistory as:

Wu
x̃,R := {y0 ∈ M ; ∃(yk)k≤0 ∈ M̃ andd(yk , xk) < R}

Similarly we define the global stable and unstable sets:

Ws
x := {y ∈ M ; lim

n→∞ d(f n(y), f n(x)) = 0}

Wu
x̃ := {y0 ∈ M ; ∃(yk)k≤0 ∈ M̃ d(yk , xk) → 0}.

These are tangent at ˜x to V s
x0

andV u
x̃ respectively. The mapsx → Ws

x,R and
x̃ → Wu

x̃,R are continuous for theC r topology on the space of parametrized
discs. Moreover there are constantsL > 0, λ > 1 such that ify, z ∈ Ws

x,R then

d(f n(y), f n(z)) ≤ Lλ−nd(y, z).

If ỹ = (yn), z̃ = (zn) are prehistories as in the definition ofWu
x̃,R, then

d(yn, zn) ≤ Lλ−|n|d(y0, z0).

Definition 2.1 The set K has local product structure if R can be chosen such that
for all x ∈ K , y ∈ K̃

Ws
x,R ∩ Wu

ỹ,R ⊂ K

and the intersection consists of at most one point.

In this case there is anε > 0 such that ifd(x, y) < 2ε then Ws
x,R ∩ Wu

ỹ,R
consists of exactly one point [x, y]. Moreover there is anL > 0 such that

d(x, [x, y]) ≤ Ld(x, y),

d(y, [x, y] ≤ Ld(x, y).

Definition 2.2 Let f : M → M be as above and letΩ be the non wandering set
for f . We say that f satisfies Axiom A if
i) Ω is a compact prehyperbolic set.
ii) Periodic points are dense inΩ.

Theorem 2.3 ([Ru p.160]) Let f : M → M be a smooth map with non wandering
setΩ. Assume f satisfies Axiom A. Then
i) Ω has local product structure.
ii) Ω = Ω1∪· · ·∪ΩN is a finite union of pairwise disjoint closed forward invariant
sets such that f is topologically transitive on eachΩi (i.e. f has a dense forward
orbit on eachΩi ). The above decomposition is unique, the setsΩi are called the
basic sets.
iii) Each basic setΩi is a finite unionΩi = Ωi ,1 ∪ · · · ∪Ωi ,Ni of smallest pairwise
disjoint closed sets which are permuted cyclically by f .
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Remark 2.4EachΩi is isolated in the nonwandering set, more precisely, there
exists a compact neighborhoodU of Ωi such that if{xn}n∈Z, f (xn) = xn+1 ∀n
andxn ∈ U ∀n, thenxn ∈ Ωi ∀n ([Ru p. 160], [Pz],[Mo]).

Recall the ordering among basic sets. We sayΩi > Ωj if and only if Wu(Ωi )∩
Ws(Ωj ) /= ∅, which means that it is possible to go fromΩi to Ωj . The No-cycle
condition means that one cannot find basic setsΩi1, . . . , Ωip , p > 1 such that
Ωi1 > Ωi2 > . . . Ωip > Ωi1.

The interest of hyperbolic maps on their nonwandering setΩ is their stability.
We have the following result ([Ru, p.168]), ([Pz]) and ([Mo, p. 182]).

Theorem 2.5 The set ofC r maps on M , satisfying Axiom A and the No-cycle
condition is open. In particular the non-wandering sets of such maps are close if
the maps are close.

If f is such a map, there exists a neighborhoodU (f ) ⊂ C r (M ,M ) such that
for g ∈ U (f ), f̃ is conjugate to ˜g on their prehyperbolic cover. More precisely,
there is a homeomorphismh : Ω̃(f ) → Ω̃(g) such that the following diagram is
commutative.

Ω̃(f ) →f̃ Ω̃(f )

h ↓ h ↓
Ω̃(g) →g̃ Ω̃(g)

We considerΩ̃(f ) and Ω̃(g) as subsets ofM̃ ⊂ (P2)N with the product
topology, so the fact that the conjugating homeomorphism is close to the identity
makes sense.

3 Holomorphic maps in P
2

Let f : P
2 → P

2, f ∈ Hd. Let ω be the K̈ahler form inP
2 normalized such

that
∫
ω ∧ ω = 1. It was shown in ([FS2]) that the sequence of positive closed

(1,1) forms (f n)∗ω
dn converges in the sense of currents to a positive closed current

T, whose support is equal to the Julia setJf and which satisfies the following
functional equation

f ∗T = dT

whered denotes the algebraic degree off .
It was shown in [FS2] thatµ := T ∧ T is a probability measure satisfying

f ∗µ = d2µ and hence is a measure of maximal entropy, lnd2, see ([Gr]). Observe
that by Bezout’s Theoremf is a d2 to 1 map.

Let Ω = Ωf be the non wandering set off and assumeΩ is prehyperbolic.
ThenΩ can be decomposed into disjoint setsΩ =: S0 ∪ S1 ∪ S2 whereSj is of
unstable dimensionj . A priori some of theSj could be empty. However since
f (Ω) = Ω it is clear thatf (Sj ) = Sj j = 0,1,2. The following result is proved in
([FS2]).
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Theorem 3.1 Assume f∈ Hd is prehyperbolic onΩf . Then
i) Ωf /= Jf , Jf /= S2.
ii) S0 is the union of a finite number of attracting periodic orbits and the Fatou
components are preperiodic to attracting basins.
iii) S2 ⊃ Sµ := support ofµ, f −1(Sµ) = Sµ.

Definition 3.2 We will say that f∈ Hd is s− hyperbolic if
i) f is prehyperbolic onΩf

ii) f −1(S2) = S2

iii) There is an algebraic variety A of dimension1 such that A∩ S1 = ∅.
iv) Periodic points are dense inΩf .
v) There exists a neighborhood U of S1 such that f−1(S1) ∩ U = S1.

Because of i) and iv),s− hyperbolic maps satisfy Axiom A.

Remark 3.3Observe that ifDf is injective at every point ofS1, then condition
iii) is satisfied withA = C , the critical set.

Condition v) allows us to prove a shadowing Lemma and the following result,
see also ([Ru p. 103]) and ([Pz]).

Theorem 3.4 If K is prehyperbolic, satisfies v) above and has a local product
structure, there is a neighborhood U of K such that if fm(y) ∈ U for all m ≥ 0,
then y ∈ Ws

x for some x∈ K , in fact y is in the local stable manifold of x. If
ỹ = (yk) is a prehistory such that all yk ∈ U then y0 ∈ Wu

x̃ for somex̃ = (xk) ∈ K̃ .

If K satisfies only conditions i) to iv), thenWs(S1
1 ) = ∪x∈S1

1
Ws(x).

Remark 3.5The last statement is proved in a standard way ([Ru]) by using a
similar statement in the hyperbolic cover. We need condition v) only to prove
that a neighborhood ofS1

1 in Ws(S1
1 ) is contained in the union of local stable

manifolds centered onS1
1 .

Theorem 3.6 Assume f∈ Hd is s− hyperbolic. Then each of the Sj is nonempty.
Moreover J\ S2 = Ws(S1) := {y; limn→∞ d(f n(y),S1) = 0}, S1 has local product
structure. Furthermore, Ws(S1) = ∪x∈S1Ws

x , and more precisely, there is a1>>
ε > 0 and a1 >> R > 0 so that if an orbit{f n(y)}n≥0 remains at distance< ε
from S1, then y∈ Ws

R(x) for some x∈ S1.

Proof. We know by Theorem 3.1 thatS2 is nonempty. AssumeS1 is empty.
ThenΩ = S0 ∪S2. Let x ∈ J \S2. The Julia setJ is totally invariant and{f n(x)}
has to cluster somewhere onΩ. Hence{f n(x)} has to cluster onS2. But this is
impossible sincef −1(S2) = S2 andS2 is repelling. HenceS1 is nonempty.

AssumeS0 is empty. ThenΩ = S1 ∪ S2 and by Theorem 3.1, ii),J = P
2.

There is a neighborhoodU ⊃ S2 such thatf −1(U ) ⊂⊂ U . So orbits of points
in P

2 \ S2 cluster only atS1. Let S1 = ∪Sj
1 be the decomposition ofS1 in basic

sets given by Theorem 2.3. ForR small enough, let

Wj
R = {z; d({f n(z)},Sj

1) ≤ R}.
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EachWj
R is closed and∪n,j f −n(Wj

R) = P
2\S2. It follows that for somej0, Wj0

R

has nonempty interior. MoreoverWj0
R = ∪

x∈S
j0
1

(Ws(x) ∩ Wj0
R ) is a union of local

stable manifolds. Fixx ∈ Sj0
1 such that the local stable manifoldWs(x) ∩ Wj0

R

intersects the interior ofWj0
R . We can assume thatx is a periodic point. Let

x̃ be the prehistory ofx in S̃1 consisting of the periodic orbit ofx. Consider
Wu

x̃,R. Using the local product structure one sees thatWj0
R ∩ Wu

x̃,R ⊂ Sj0
1 and

contains a disc fromWu
x̃,R aboutx, because one can just follow a transverse disc

to Ws(x) contained in the interior ofWj0
R . Hence there is a ballB(x, r ) such that

B(x, r ) ∩ Wu
x̃,R ⊂ Sj0

1 . Sincef mapsSj0
1 to itself, it follows that

Wu
x̃ ⊂ Sj0

1 .

We can assume, using the result of Siu-Yeung ([SY]) thatP
2\A is Kobayashi

hyperbolic. Indeed, we can suppose thatA is of large degree and contained in a
Zariski open dense set of varietiesX such thatP2 \ X is Kobayashi hyperbolic.
This would imply thatf n restricted toB(x, r ) ∩ Wu

x̃,R is equicontinuous, which
is impossible. SoS0 is non empty.

Let y ∈ J \ S2. Let U be a neighborhood ofS2 such thatf −1(U ) ⊂⊂ U . We
can assumey /∈ U . We want to show thatf n(y) → S1. If not, f n(y) will also
cluster onS2, let m be the smallest integer such thatf m(y) ∈ U . This implies
that f m−1(y) ∈ U , a contradiction. SoJ \ S2 ⊂ Ws(S1). If y ∈ Ws(S1) it cannot
be in the Fatou set nor inS2, the other inclusion follows.

ThatS1 has local product structure follows from the density of periodic points
and Theorem D.2, in ([Ru] p.155). One deduces from the local product structure
that Ws(S1) = ∪x∈S1Ws(x) and that more precisely, there is an 0< ε << 1 and
an 0< R << 1 so that if an orbit{f n(y)}n≥0 remains closer toS1 thanε, then
y ∈ Ws

R(x) for somex ∈ S1. ut
Corollary 3.7 Assume f∈ Hd is s− hyperbolic onΩ. Then the Julia set has
empty interior.

Proof. Assume first that the interior ofS2 is non empty. Then
(f n)(int(S2)) → int(S2) and S2 ∩ [∪N

n=0f −nC ] = ∅ whereC denotes the critical
set, and this is still valid for any algebraic variety close toC . Since int(S2) is
Kobayashi hyperbolic, the family (f n) is normal, which contradicts the uniform
expansion off on S2.

As a consequence, if int(J ) is non empty, then the interior ofWs(S1) is not
empty. Let∆2 be a polydisc inWs(S1). Fix 0< ε << 1 small enough. Define

Fm := {z ∈ ∆2; dist(f n(z),S1) ≤ ε ∀n ≥ m.}
There is anm such thatFm has nonempty interior. By the last part of Theorem
3.4, f m(F m) is contained in the union of local stable manifolds ofS1.

Let Ws(p) be such a manifold. We can assume thatp is periodic. We show
thatWu

R (p̃) is contained inS1 for the prehistory ˜p consisting of the periodic orbit
of p.
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Any Ws
R(x) close enough toWs

R(p) is going to intersectWu
R (p̃). So a disc

in Wu(p̃) aboutp is contained inS1, by the local product structure. SinceS1 is
forward invariant it follows thatWu(p̃) ⊂ S1. Let k be the period ofp. Then f k

mapsWu(p̃) to itself. Clearly the sequence{(f k
|Wu(p̃))

m}m is not a normal family.
SinceS1 is contained in the Kobayashi hyperbolic complement of a perturbation
of A, ([SY]) this leads to a contradiction. ut

We discuss now the decomposition ofΩ = S0 ∪ S1 ∪ S2 into basic sets, i.e.
closed disjoint sets with dense orbit as given in the abstract setting by Theorem
2.3.

We study the special case off ∈ Hd which is assumed to bes− hyperbolic
on Ω. We have already seen that the basic sets forS0 are just finitely many at-
tracting periodic orbits. The corresponding stable sets are the basins of attraction.
We next show thatS2 is a basic set.

Theorem 3.8 Suppose that f∈ Hd is s− hyperbolic. The set S2 of unstable
dimension2 is a basic set and S2 = Sµ. The unstable set of S2 is open with locally
pluripolar complement.

Proof. We know from Theorem 3.1 thatS2 contains the supportSµ of µ. Let
σ2 := S2 \ Sµ. We claim thatσ2 is closed. LetV be a neighborhood ofSµ such
that f −k(V ) ⊂⊂ V for somek ≥ 1, recall thatf −1(Sµ) = Sµ. Observe that points
in V \ f −nk(V ) are wandering. HenceS2 \ Sµ cannot intersect that set. SoV ∩σ2

is empty, henceσ2 is closed.
Let C be the critical set off . Clearly C ∩ S2 = ∅. DefineC := ∪n≥0f n(C).

Since f is s− hyperbolic, f −1(S2) = S2. Using thatf −`(W) ⊂⊂ W for some
small neighborhoodW of S2, and somè ≥ 1, it follows that C ∩ S2 = ∅.
Locally in P

2 \ C one can define holomorphic local branches of inverses off n

f −n
i . A theorem of Ueda ([U]) asserts that they are equicontinuous.

For any continuous functionφ on P
2, defineAn

φ(x) = 1
d2n

∑d2n

i =1φ(f −n
i (x)).

By the above result it is clear that for any givenφ, the sequence of functions
(An
φ) is locally equicontinuous inP2 \ C . On the other hand it is shown in

([FS3]) that there exists a locally pluripolar setE (independent ofφ) such that
for x ∈ P

2 \ E , An
φ(x) → µ(φ), in particular the limit does not depend onx. As

a consequenceAn
φ(x) → µ(φ) uniformly on compact sets of the nonempty open

setP2 \ C .
Observe thatσ2 is also totally invariant. Letφ = 1 in a neighborhood ofSµ

and 0 in a neighborhood ofσ2. SinceAn
φ(x) → 1, for x ∈ σ2, this implies that

σ2 is empty.
It is shown in ([FS2]) that the measureµ is ergodic. Henceµ almost every

point has a dense orbit. As a consequence,S2 = Sµ is a basic set.
Recall that

Wu(S2) = {y; ∃ ỹ = (yn) y0 = y, f (yn−1) = yn and d(yn,S2) → 0}.
We have already mentioned that except on a pluripolar set

E , 1
d2n

∑d2n

i =1 εxn
i

→ µ.
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SoP
2\E ⊂ Wu(S2). Since there is an open setU ⊃ S2 such thatf −1(U ) ⊂⊂

U , thenWu(S2) is open with locally pluripolar complement. ut

4 The inverse Julia setJ −

We recall first a few facts about invariant currents for Hénon maps.
Let f be a H́enon map inC2, for examplef (z, w) = (z2 + c + aw, z), c ∈ C,

a /= 0. Considerf̃ [z : w : t ] = [z2 + ct2 + awt : zt : t2], the rational extension of
f to P

2. Let ω denote the standard Kähler form ofP2.

It is shown in ([FS5]) that(f̃
n)∗ω
2n converges to a positive current ˜µ+ on P

2.
The restrictionµ+ of µ̃+ to C

2 has been considered in ([BS1]), ([BS2]) where it
was extensively studied.

It is proved in ([FS3]) that the current ˜µ+ ∧ µ̃+ is well defined and that this
measure is equal to the Dirac massδp− at the point of indeterminacy of̃f i.e.
p− = [0 : 1 : 0]. The pointp− appears as the only ”repelling” point forf̃ . (For
any small neighborhoodU (p) and any pointq ∈ U (p), q /= p, there is an integer
m(q) so thatf̃ n(q) /∈ U (p) ∀n ≥ m(q).)

Similarly it is possible to define ˜µ− for the map̃f −1 (the extension toP2 of the
automorphismf −1 of C

2) and to consider the probability measure ˜µ− ∧ µ̃+ =: ν,
which is an invariant measure of maximal entropy supported on a compact subset
of C

2. The properties of the measureν are studied in ([BS1]), ([BS2]), ([BLS]).
When f is a holomorphic map onP2 of degreed ≥ 2, the analogue of the

currentµ̃+ is what we have calledT. So T = lim (f n)∗ω
dn . The probability measure

µ := T ∧ T is well defined. Iff is prehyperbolic on its nonwandering setΩ, then
Sµ := suppµ is contained in the repelling partS2, see Theorem 3.1.

For any holomorphic mapf : P
2 → P

2 of degreed ≥ 2 the probability
measureµ is mixing and of maximal entropy ([FS2]).

In the case of H́enon maps,K − is defined as the set of pointsz such that
{f −n(z)} is bounded. Equivalently we can consider

U − = {z; {f −n(z)} converges top, the support ofδp−}
and defineK − := C

2 \ U −. The convergence top− is always uniform in a small
neighborhood , soU − is open. By analogy with the previous definition we define
U −

f for f ∈ Hd as follows:
For any setV , setVn := {f −n(z); z ∈ V }.

U −
f := {z0; ∃ a neighbhV of z0 with dist{Vn,Suppµ} → 0 whenn → ∞}

ThenK −
f := P

2 \ U −
f .

Definition 4.1 The backward Julia set J− = J−
f is defined to be∂K − = ∂K −

f .
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It is clear thatf (K −) = K −, f −1(K −) ⊃ K −, f (J−) ⊃ J−, f (U −) ⊃ U −

and f −1(U −) ⊂ U −.
Assume thatf is s− hyperbolic. Let (Sk

1 ), 1 ≤ k ≤ `, be the basic sets in
S1. We will consider the corresponding unstable sets

Wu(Sk
1 ) = {y; ∃ỹ = (yn)n≤0, a prehistory ofy = y0, such thatd(yn,S

k
1 ) → 0}.

Proposition 4.2 Suppose f is s− hyperbolic. Then K− = ∪x̃∈S̃1
Wu(x̃) ∪ S0 =

Wu(S1) ∪ S0. More precisely, for arbitarily small R> 0, ∪x̃∈S̃1
Wu

R (x̃) contains a
neighborhood of S1 in Wu(S1). In particular, K− ∩ S2 = ∅.
Proof. Let x /∈ Wu(S1) ∪ S0. Then no prehistory ofx converges toS1. So all
prehistories cluster only onS2 ∪ S0. Therefore sinceS2 is attracting forf −1,
they converge toS2. And the same holds in a neighborhood ofx. HenceK − is
contained inWu(S1) ∪ S0. The inclusionWu(S1) ∪ S0 ⊂ K − is clear.

Since S1 has the local product structure, see Theorem 3.5, Theorem 2.5
implies that Wu(S1) = ∪x̃∈S̃1

Wu(x̃). Indeed S2 is completely invariant so
K − ∩ S2 = ∅. ut
Corollary 4.3 Assume f is s− hyperbolic. Then the complement of K− in P

2 is
a domain of holomorphy. So K− is connected.

Proof. Except for a finite set of points inS0, there is a possibly singular holomor-
phic disc (a piece of someWu(x̃)) through any point inK −, which is contained
in K −. It follows from the solution of the Levi Problem inP2 that P2 \ K − is a
domain of holomorphy. HenceK − is connected. ut

We want to describe more precisely the setsWs(Sj
1). Recall that we have an

ordering among the (Sj
1).

Theorem 4.4 Assume f is an s− hyperbolic map. Then Ws(Sj
1) ∩ Wu(Sj

1) = Sj
1 .

If Sj
1 is minimal, then Wu(Sj

1) \ Sj
1 is contained in the region of attraction of S0,

Wu(Sj
1)\Wu(Sj

1) ⊂ S0. The set Ws(Sj
1) is relatively open in J.Also∪x∈Sj

1
Ws

R(x) =:

JR, the union of local stable manifolds, R<< 1 contains a neighborhood of Sj
1

in J .

Proof. We know by Theorem 3.4 and Proposition 4.2 thatWs(S1) = ∪x∈S1Ws(x)
and Wu(S1) = ∪x̃∈S̃1

Wu(x̃). Hence for eachj , Ws(Sj
1) = ∪p∈Sj

1
Ws(p) and

Wu(Sj
1) = ∪x̃∈S̃j

1
Wu(x̃). Let p ∈ Sj

1 and q̃ ∈ S̃j
1 . Assumex ∈ Ws(p) ∩ Wu(q̃).

Notice that we can replacex by a forward iterate ofx. Hence we can assume
that x ∈ Ws

R(p), the local stable manifold ofp. We want to show first thatx is
recurrent.

Let B be a ball containingx. Then B will contain a disc∆ intersecting
Ws

R(p) transversally. Since periodic orbits are dense inSj
1, (see Definition 3.2)

we have that∆ will also intersectWs
R(p′) transversally, wherep′ is a periodic

point in Sj
1 . By topological transitivity and expansion, we can assume thatf m(∆)
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is close toWu
q̃k ,R for arbitrarily largem for any k. On the other hand, we have

a prehistory ofx, x̃ for which the distance betweenxk andqk approaches 0. By
the contraction in the stable direction it then follows that for somek, f k+m(∆)
will intersectB. So x is recurrent. This proves thatWs(Sj

1) ∩ Wu(Sj
1) = Sj

1 .

SupposeSj
1 is minimal for the ordering>, andp ∈ Wu(Sj

1) \ Sj
1 . We want to

show thatp is in the domain of attraction ofS0. Let C denote the set of cluster
points of the forward orbit ofp. ThenC is contained in the nonwandering set,C
cannot intersectS2. If C intersects two separateSk

1 , C must contain points that
are not inS1 ∪ S0. HenceC can only intersect oneSk

1 . If k /= j , this contradicts
that Sj

1 is minimal, if k = j , this contradicts thatWs(Sj
1) ∩ Wu(Sj

1) = Sj
1 . So

necessarilyC ⊂ S0. Hencep is in the region of attraction forS0.

Next, supposep0 ∈ Wu(Sj
1) \ (S0 ∪ Wu(Sj

1)). Note that any such point must
have a preimage in the same set. Hence we can find a prehistory{pn}n≤0 of p0

in this set. The cluster points must be nonwandering and cannot intersectS0, so
must be in someSk

1 .

If k /= j , then Wu(Sj
1) clusters atSk

1 . This contradicts that for smallR, an
arbitrarily small neighborhoodU of Sj

1, ∪x̃∈S̃j
1
Wu

R (x̃) \ U is a compact subset of

the region of attraction ofS0 and that∪x̃∈S̃j
1
Wu(x̃) contains a neighborhood ofSj

1

in Wu(Sj
1). (See Proposition 4.2.) Hencek = j , so p0 ∈ Wu(Sj

1), a contradiction.

By Proposition 4.2.p0 ∈ Wu
x̃ for some ˜x ∈ S̃k

1 .

We prove next that ifSj
1 is minimal, thenWs(Sj

1) is open inJ . Consider
∪x∈Sj

1
Ws

R(x) = F , the union of local stable manifoldsR<< 1. ThenF is closed

and we want to show it contains a neighborhood ofS1
j in J . If not there is

x ∈ J arbitrarily close toSj
1 , not in F , say x ∈ Ws(p), p ∈ Sk

1 . By Theorem
3.5, the orbit{f n(x)} cannot remain close toSj

1 . The distance fromf n(x) to S1
j

can increase only if the orbit follows an unstable manifold of a point inSj
1. But

we have seen thatWu(Sj
1) enters immediately into a basin of attraction. This is

impossible for{f n(x)}. ut

Proposition 4.5 Assume f is s− hyperbolic. The set K− is an attractor for f in
P

2 \ S2, i.e. {f n} converges uniformly on compact set inP
2 \ S2 to K−.

Proof. Fix a neighborhoodU (K −) and a neighborhoodV (S2). There exists an
integerN > 1 so that isx ∈ P

2\(U (K −)) andn ≥ N , then all preimagesf −n(x)
are inV (S2). Hence for anyx ∈ P

2 \ V (S2), n ≥ N , f n(x) ∈ U (K −). ut

Remark 4.6The Julia setJ is also an attractor forf −1 in P
2\S0, in the following

sense. IfB(x, r ) is a ball disjoint fromS0 then (f −n)(B(x, r )) converge uniformly
to J . The analogy with H́enon maps can be continued. The attracting point at
infinity, p = [1 : 0 : 0] for the H́enon maph = [z2 + ct2 + awt : zt : t2], plays the
role of S0.
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5 Positive closed currents onJ and K −.

5.1 Invariant currents on K−

We first introduce a class of invariant currents supported onK − and study their
intersection withT.

We recall first the definition of the direct image or push forward of a current.
Let R be a current on a smooth manifoldM . Assumeg : M → N is a smooth
proper map,N a smooth manifold. The direct imageg∗R of R is defined by

< g∗R, φ >:=< R, g∗φ > (1)

for any test formφ. Observe thatg∗ preserves the dimension of the current, i.e.
the type of the formsφ, g∗φ.

Similarly we would like to to define the pull-back of the currentR on N by
the equation

< g∗R, φ >=< R, g∗φ > (2)

whereφ is a smooth test form andg∗φ is the current defined in (1). This works
if g is a diffeomorphism, in factg∗φ = (g−1)∗φ, so is a smooth test form also.

This works also well ifg is a finitely sheeted unbranched covering. In this
case

g∗φ =
k∑

j =1

(g−1
j )∗φ

whereg−1
1 , . . . , g−1

k are the local inverses ofg, so is also a smooth test form
which can hence be paired withR.

Unfortunately, we will use mapsg : P
2 → P

2 which are holomorphic of
degreed ≥ 2 and are always branched.

If R is a closed, positive (1,1) current onP
2, then π∗R = ddcu where u

is a plurisubharmonic function onC3. We definef ∗R by the equationπ∗f ∗R =
ddc(u ◦ F ) ([FS3]). Let Z = f (C) be the branch locus off , hereC denotes the
critical set. Then

f : P
2 \ f −1(Z) → P

2 \ (Z)

is a finitely sheeted covering map andf ∗R is classically defined as a current on
P

2 \ f −1(Z) using the relation

< f ∗R, φ >=< R, f∗R> .

The two definitions coincide onP2 \ f −1(Z). When R gives no mass toZ then
f ∗R as defined inP2 is just the trivial extension toP2 \ f −1(Z).

For a positive currentR on P
2 we have suppf∗R = f (suppR) : The fact that

suppf∗(R) ⊂ f (suppR) is valid for all currents. Supposex = f (y) ∈ f (suppR)
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and letφ be a positive form supported in a neighborhood ofx. Then f ∗φ > 0
neary and< f∗R, φ >=< R, f ∗φ >> 0. So x is in the support off∗R.

Recall also that for a positive closed (1,1) currentR on P
2 the mass‖R‖ of

R is given by

‖R‖ =
∫

R ∧ ω.
It is possible to choose a plurisubharmonic functionu in C

3 satisfyingu(λz) =
c ln |λ| + u(z), with c = ‖R‖ andddcu = π∗R. See [FS3].

Claim 5.1 A potentialv for π∗(f∗R) is given by
v(z) = 1

d

∑
F (zi )=z u(zi ) counted with multiplicity.

Proof. Obvious. ut
Observe that for a positive currentR on P

2 we have the formula

f∗f ∗R = d2R. (3)

Given f ∈ Hd. We assumef is s− hyperbolic onΩ. We consider the set
S of positive closed (1,1) currentsS on P

2 with ‖S‖ = 1 such thatf∗S = dS
and support ofS is disjoint from the support ofµ which is equal toS2 (sincef
is s− hyperbolic).

Theorem 5.2 Assume that f is s− hyperbolic. The setS is a nonempty convex
weakly compact set. The currents inS are supported in K−.

Proof. Let R be any positive closed current,‖R‖ = 1, with support disjoint
from S2. Such currents exist. For exampleR = [C ]

‖C‖ where [C ] is the current
of integration on the critical set off . We can assume that suppR is disjoint
from an open setU ⊃ S2 such thatf −k(U ) ⊂⊂ U for some positive integer
k. ConsiderσN := 1

N

∑N−1
n=0

f n
∗ R
dn . Let σ be any limit point of the sequenceσN .

SinceσN − f∗σN

d = O( 1
N ) it follows that f∗σ = dσ. Sincef (P2 \ U ) ⊂ P

2 \ U the
support ofσ is disjoint fromU . If R is a positive closed (1,1) current, then the
mass off∗R is the same asd∗ the mass ofR:

∫
f∗R ∧ ω =

∫
R ∧ f ∗ω

and f ∗ω = (degree of f)ω + ddcu whereu is a C ∞ function onP
2. SinceR

is closed,
∫

R ∧ ddcu = 0.
We prove next that the support of any elementS in S is contained inK −.
Fix x0 /∈ K − ∪ S2. All prehistories ofx0 cluster only onS2. Defineφn(x) :=

maxg∈f −n
i (x)dist(S2, y). Given ε > 0,dist(x0,S2) > 2ε, there is ann0 such that

for n ≥ n0, φn(x0) < ε. By continuity there is anε > r > 0 such that for
x ∈ B(x0, r ), φn(x) < ε. If Θ is a test form with support inB(x0, r ), S has no
mass on supp(f n)∗(Θ) when n ≥ n0, hence< (f n)∗S, Θ >=< S, (f n)∗Θ >= 0
so< S, θ >= 0 since (f n)∗S = dnS. It follows that suppS ⊂ K −. Consequently
S is compact.

The convexity is clear. ut
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Example 5.1 f0[z : w : t ] = [zd : wd : td]. ThenK − = {zwt = 0}.
The only positive closed (1,1) currents supported byK − are of the form

α[z = 0] + β[w = 0] + γ[t = 0] ([Fe]). So the elements ofS are of the form
above, withα ≥ 0, β ≥ 0, γ ≥ 0, α+β +γ = 1. We will need some estimates for
the mass of the push forward of a current.

Proposition 5.3 Let τ be a positive closed(1,1) current in an open set U ofP2.
Letχ ∈ C ∞

0 (U ). Then there is a constant A (depending onχ) and a constant C
depending on f such that

‖ (f n)∗χτ
dn

‖ ≤ ‖χτ‖ + AC‖τ‖.

Moreover‖ f n
∗χτ
dn ‖ → ∫

χτ∧T. If τ is a relatively compact region in a Riemann

surface R and T|R has no mass on∂τ , then‖ f n
∗ τ
dn ‖ → ∫

τ ∧ T.

Proof. Let F be a pull back off to C
3. There is a constantC such that

log |z| − C ≤ 1
dn

log |F n| ≤ log |z| + C .

So

(f n)∗ω
dn

= ω + ddcun

with −C ≤ un ≤ C . Hence

<
f n
∗ (χτ )

dn
, ω > = < χτ,

(f n)∗ω
dn

>

= < χτ, ω > + < χτ,ddcun >

= < χτ, ω > + < ddcχτ,un > .

The estimate follows.
The second statment follows from

‖ f n
∗ (χτ )

dn
‖ = <

f n
∗ (χτ )

dn
, ω >

= < χτ,
(f n)∗ω

dn
>

= < χτ,ddcGn >

= < ddc(χτ ),Gn >

and sinceχ has compact support,ddc(χτ ) has measure coefficients. Hence
‖ f n

∗ (χτ )
dn ‖ →< ddc(χτ ),G >=< χτ,ddcG > . HereGn,G are local potentials.

The last statement follows easily. ut
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Proposition 5.4 Let f ∈ Hd, d ≥ 2, and let R be a positive closed(1,1) current
in an open set U⊂ P

2. Let ψ ∈ C ∞
0 (U ), ψ ≥ 0. Define Rn := (f n)∗(ψR)

dn . The
sequence Rn → 0 if and only if c :=

∫
ψR ∧ T = 0. If c /= 0, all subsequences

have limit points and all the limit points are nonzero positive closed currents of
mass c. If U∩ Sµ = ∅, then the limits are supported on K−. Moreover∂Rn and
∂∂Rn converge to zero in the strong sense of measures.

Proof. We show first that‖Rn‖ converge to< ψR,T >=: c. By definition,
‖Rn‖ =< Rn, ω >=< ψR, (f n)∗ω

dn > . We know from Proposition 5.3 that‖Rn‖
will be bounded. We can assume thatU is contained in a canonical coordinate
chart. So(f n)∗ω

dn = ddcun whereun are smooth plurisubharmonic functions con-
verging uniformly on compact sets to a functionu, satisfyingddcu = T ([FS3]).
We have

< ψR,
(f n)∗ω

dn
> = < ψR,ddcun >

= < ddcψ ∧ R,un >

→ < ddcψ ∧ R,u >

= < ψR,ddcu >

= < ψR,T > .

Hence any weak limit of{Rn} has massc. In particular,Rn → 0 if and only
if c = 0.

Assumec /= 0.
Let σ be a cluster point of{Rn}, σ = limk→∞ Rnk . We prove next thatσ

is closed. It suffices to show that∂σ = 0. Let φ be a (0,1) test form and let
χ ∈ C ∞

0 (U ) be a nonnegative function,χ ≡ 1 on supp(ψ).
Then

< ∂σ, φ > := < σ, ∂φ >

= lim
k→∞

< Rnk , ∂φ >

= lim
k→∞

< ∂Rnk , φ >

Using that∂ commutes withf ∗ and Schwarz’ inequality, as for H́enon maps
([BS2]), we get

|
∫
∂Rn ∧ φ| = |

∫
Rn ∧ ∂φ|

= |
∫

f n
∗ (ψR)

dn
∧ ∂φ|

= |
∫
ψR ∧ (f n)∗(∂φ)

dn
|
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=
1

dn
|
∫
ψR ∧ ∂(f n)∗φ|

=
1

dn
|
∫
∂(ψR) ∧ (f n)∗φ|

=
1

dn
|
∫
∂ψ ∧ R ∧ (f n)∗φ|

≤ 1
dn

|
∫

R ∧ ∂ψ ∧ i ∂ψ|1/2

∗ |
∫

supp(ψ)
χR ∧ (f n)∗φ ∧ (f n)∗φ|1/2

=
1

dn/2
|
∫

R ∧ ∂ψ ∧ i ∂ψ|1/2|
∫

(f n)∗(χR)
dn

∧ φ ∧ φ|1/2

We have seen that the mass of(f n)∗(χR)
dn is uniformly bounded, (Proposition 5.3).

Hence we have shown that∂σ = 0. Notice that the above inequality holds
uniformly in φ. Hence we also have shown that‖∂Rn‖ = O( 1

dn/2 ), hence goes to
zero whenn → ∞.

If θ is a test function,< ∂∂Rn, θ >= 1
dn < ∂∂ψ ∧ R, θ(f n) > .

Hence‖∂∂Rn‖ = O( 1
dn ) → 0 asn → ∞.

AssumeU ∩ Sµ = ∅. If x0 /∈ K − andθ is supported nearx0, support(f n)∗θ is
arbitrarily close toSµ, so< (f n)∗(ψR), θ >= 0, for largen and if σ is any limit
point of Rn, we have< σ, θ >= 0. ut

Remark 5.5If ψR∧ T gives no mass toSµ, then cluster points ofRn := (f n)∗(ψR)
dn

are supported onK −.

Proof. Let ε > 0. Then there existsψ1 ∈ C ∞(P2), ψ1 ≥ 0, ψ1 ≡ 1 on a
neighborhood ofSµ so that< ψ1ψR,T >< ε. Using Proposition 5.4 it follows

that any weak limit of{ f n
∗ (ψ1ψR)

dn } has mass< ε.

On the other hand, by Proposition 5.4, any weak limit of{ f n
∗ ((1−ψ1)ψR)

dn } is
supported onK −.

Hence any weak limit off
n
∗ (ψR)

dn has no mass onP2 \ K −. ut

Corollary 5.6 Let R be a positive closed(1,1) current in an open set U ofP2.
Let ψ ∈ C ∞

0 (U ), ψ ≥ 0. Assume{σi = (f ni )∗(ψR)
dni } converges to S. Then if

θ ∈ C ∞
0 (V ) is a test function and u is a continuous plurisubharmonic function

on V , some open set,< θddcu, σi >→< θddcu,S > .

Proof.

< θddcu, σi > = < u,ddc(θσi ) >

= < u,ddcθ ∧ σi > + < u, θddcσi > +2< u,dcθ ∧ dσi >

so
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lim < θddcu, σi > = < u,ddcθ ∧ σ >
= < θddcu, σ > ut

Corollary 5.7 Assume f∈ Hd is s− hyperbolic. Let S11 be a minimal set. There
is a positive closed(1,1) currentσ supported on Wu(S1

1 ) ∪ S0, ‖σ‖ = 1, f∗σ =
d · σ. In fact σ can be taken to be a multiple of a cluster point of the sequence
σN := 1

N

∑N−1
0

f n
∗ [ψD ]

dn where D is any local unstable disc centered at x for some
x̃ ∈ S̃1

1 andψ ≥ 0 is a test function vanishing in a neighborhood of∂D,ψ(x) > 0,

Proof. We can apply Proposition 5.5 to the currentR = [D ]. Let G be a contin-
uous local potential forT, i.e. ddcG = T. Then< T, ψ[D ] >=

∫
D ψddcG. This

integral is not zero because ifG were harmonic onD , then by ([FS2]),f n
|D will

be normal, butD is an unstable disc and this is impossible. SinceWu(S1
1 ) ∪ S0

is closed, see Theorem 4.4, we get a currentσ with the required properties.

5.2 Laminar structure on J for s−hyperbolic maps

We want to show that locally onJ the currentT is an integral of currents of
integration on stable varieties (a laminar current). For that purpose we first show
that T admits a transverse measure on the stable set of a basic setSj

1 , i.e. on
Ws(Sj

1).
We introduce some notation and recall some notions.
Let f ∈ Hd, d ≥ 2, be ans− hyperbolic map andSj

1 a basic set of unstable
dimension 1. LetB ⊂ Sj

1 be a flow box centered at a pointp of a minimal basic
setSj

1 . It can be described as follows:
We can assume thatB is relatively open inWs(Sj

1) and is homeomorphic to
E ∗∆2 whereE is contained in a holomorphic disc∆1 and∆2 is a holomorphic
disc. There is a homeomorphismπ = (π1, π2), π : B → E ∗ ∆2, such that for
x ∈ E ⊂ ∆1, π

−1
1 (x) is a local stable manifold of a point inSj

1 which is a
holomorphic graph over∆2. We can assume thatπ2 is the restriction toB of a
holomorphic projection and hence is defined on a neighborhood ofB, but π1 is
just continuous, we will identifyB andE ∗∆2.

Given two pointsζ, ζ ′ ∈ ∆2, there is a natural mapχζ′,ζ : π−1
2 (ζ) → π−1

2 (ζ ′).
The pointχζ′,ζ(y) is determined by the relationπ1(χζ′,ζ(y)) = π1(y).

Assume that for eachζ ∈ ∆2, µζ is a Radon measure onπ−1
2 (ζ). Such a

family is said to be a transverse measure if and only ifµζ′ = (χζ′,ζ)∗µζ i.e. µζ′

is equal to the direct image ofµζ under the mapχζ′,ζ .
Given a positive closed (1,1) currentτ on a neighborhood of a flow box, we

define for almost everyζ ∈ ∆2 the slice ofτ for π2 onπ−1
2 (ζ), i.e.< τ, π2, ζ > as

follows. If u is a potential forτ, then< τ, π2, ζ >= ddc(u|π−1
2 (ζ)). It is a positive

measure. The slice is defined for thoseζ for which u|π−1
2 (ζ) is not identically

−∞. If u is continuous, which is the case for the currentT, then the slice is
always defined. The slicing formula ([Fe]) in this context asserts that for a test
function θ
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< τ ∧ idζ ∧ dζ, θ >=
∫
< θ,< τ, π2, ζ >> dλ(ζ)

whereλ denotes the Lebesgue measure on∆2.

Theorem 5.8 Let f ∈ Hd, d ≥ 2, be an s−hyperbolic map onP2. If B is a flow
box around a point in a minimal Sj1 as described above, thenµζ :=< T, π2, ζ >
is a transverse measure on B and

(1) T|B =
∫

[Vy]dµζ0(y)

where[Vy] denotes the current of integration on the local stable manifoldπ−1
1 (y) =

[Vy] andζ0 is any point in∆2.

Proof. We prove thatµζ :=< T, π2, ζ > is a transverse measure.
Let D ,D ′ be two relatively compact open sets in transverse discs,∆, ∆′, and

corresponding to each other under the mapχζ′, ζ i.e. D ⊂ π−1
2 (ζ), D ′ ⊂ π−1

2 (ζ ′)
andD ′ ∩B = χζ′,ζ(D)∩B. The mapχζ′,ζ is not defined on the whole disc, only
on the intersection withWs(Sj

1). We want to show that

µζ(D) = µζ′ (D ′).

The idea is to use the fact that if one restricts toWs(Sj
1), f n(D) =: Dn and

f n(D ′) =: D ′
n are very close though they have been expanded in the unstable

direction. We can writeDn = ∪Dn
i wheref −n

i : Dn
i → Di ⊂ D is well defined

and theDn
i are disjoint.

We know that ifG is the Green function forπ∗T then G(F n) = dnG. We
identify D with a section overD in C

3. We lift Dn by applyingF n to the lift
of D and identifying withf n. So if f −n

i is defined we getG(f −n
i ) = G/dn. It

follows, using the change of variables formula, that

1
dn

∫
Dn

i

ddcG =
∫

Dn
i

(f −n
i )∗(ddcG) =

∫
Di

ddcG.

Summing overi , we get

1
dn

∫
f n(D)

(ddcG) =
∫

D
ddcG.

Let µζ :=< T, π2, ζ >.
Let Σn := f n(∆), Σ′

n := f n(∆′). Let χ be a test function onΣn with value
one onDn and supported on a small neighborhood ofDn ∩ Ws(Sj

1) in Σn. Since
(Dn, Σn) and (D ′

n, Σ
′
n) are close and we have uniform expansion, we can assume

that there is a functionχ′ close toχ in C 2 norm with the same properties with
respect to (D ′

n, Σ
′
n). Because
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∫
Dn

ddcG ≤
∫
χddcG

=
∫

ddcχG

=
∫

ddcχ′G + εvol(D ′
n)

=
∫
χ′ddcG + εvol(D ′

n)

≤
∫

D′
n

ddcG + 2εvol(D ′
n)

if χ has support close enough toDn. Hencednµζ(D ′
n) = dnµζ(D ′

n) + 2εvol(D ′
n).

So since vol(D ′
n) = O(dn), (see Proposition 5.4) we getµζ(D) = µζ(D ′) + o(1).

But n can be chosen arbitrarily large, henceµζ(D) = µζ(D ′).
i.e. {µζ} is a transverse measure.

We prove now thatT is laminar onWs(Sj
1) nearSj

1 , Sj
1 minimal, i.e. that the

representation formula given by the theorem is valid.
The slicing formula forT in B gives that for a test functionθ

< T ∧ idζ ∧ dζ, θ >=
∫
< θ,< τ, π2, ζ >> dλ(ζ) =

∫
(
∫
θdµζ(y))dλ(ζ).

Since the measure (µζ) is transverse, we get thatµ0 := (π1)∗ < T, π2, ζ > is
independent ofζ. If we identify T ∧ idζ ∧ dζ with a measure, Fubini’s theorem
gives that

(1)< π∗(T ∧ idζ ∧ dζ), φ >=
∫

(
∫
φdλ(ζ))dµ0(y).

Hence< T, θidζ ∧ dζ >=
∫

E(
∫
π−1

1 (y) θdλ(ζ))dµ0(y). So< T, θidζ ∧ dζ >=∫
< θidζ ∧ dζ, [Vy] > dµ0(y). Perturbing the projectionπ2 we show that this

identity holds as well for all (1,1) test forms. HenceT =
∫

[Vy]dµ0(y). ut
Remark 5.9We use the same hypothesis as in Theorem 5.9. LetU be a relatively
open set inWs(Sj

1) (and hence inJ ) on which somef n is a homeomorphism
(whereSj

1 is minimal), so thatf n(U ) = B, a flow box, centered at a point ofSj
1.

Furthermore we assume thatU and∆ are disjoint from∪n
j =0f −j (C), whereC is

the critical set. Let∆ be a disc cuttingU such thatf n(∆ ∩ U ) is a level set of
π2 in B, cutting all acrossB and f n is 1− 1 on∆. a. We have

dµ∆ := ddc(G|∆) =
1

dn
ddc((G ◦ f n)|∆) =

(f n)∗

dn
[ddc(G|f n(∆))]|∆.

So using the functional equation forT
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T|U = ((f n)∗T/dn)|U
= ((f n)∗T|B/dn)|U

= (
(f n)∗

dn
{
∫

[Vy]dµ0(y)})|U

=
∫

(f n)∗[Vy]ddcG|∆

=
∫

[Wy]dµ∆(y).

HereWy denotes the preimage ofVy underf n.

5.3 Convergence results for currents on J−

Theorem 5.10 Let f ∈ Hd, d ≥ 2, be an s−hyperbolic map onP2. Assume that

Sj
1 is minimal. There is a positive closed(1,1) current σ supported onWu(Sj

1)
satisfying f∗σ = d · σ, ‖σ‖ = 1, and a neighborhood U of Sj1 in P

2 with the
following property: If D ⊂⊂ R is a relatively open subset of a Riemann surface
R in U, R is transverse to the stable direction at every point in R∩ J , and T|R
has no mass on∂D, then( f n

∗ ([D ])
dn ) converges to(

∫
D ∧ T)σ.

Proof. We let σ be given as in Corollary 5.7. In particular the proof will show
thatσ is unique. Because of Proposition 5.4, it suffices to consider the case when
R is a local graph over an unstable manifold, transverse to the stable direction
on R∩ J . Observe that ifR does not intersectJ , then f n

∗ ([D ])
dn → 0. Hence we can

assume thatR is a local graph over the unstable direction.
We want to prove that ifD ⊂⊂ R andD ′ ⊂⊂ R′ are two such regions with∫

D ∧ T =
∫

D ′ ∧ T, then the limits of

f n
∗ (D)
dn

and
f n
∗ (D ′)

dn

exist and are the same.
Assume first thatD andD ′ are two such regions cutting across the flow box

B andD ∩ J , D ′ ∩ J ⊂ B. Denoteσn := f n
∗ (D)
dn , σ′

n := f n
∗ (D′)

dn .

We want to show thatσn − σ′
n → 0 weakly. By the contraction in the stable

direction, the setsf n(D) ∩ Ws(S1
j ) and f n(D ′) ∩ Ws(Sj

1) get closer and closer.
The areas off n(D) and f n(D ′) are bounded above byCdn and bounded below
by c1dn, (c1 > 0) by Proposition 5.3. Fix 0< ε << 1. Let K ⊂⊂ D , K ′ ⊂⊂ D ′

be smaller regions so that
∫

D\K T < ε,
∫

D′\K ′ T < ε with T|R having no mass
on ∂K , and similarly for∂K ′. There is a fixedr > 0 such that forn sufficiently
large and for everyx ∈ f n(K ) ∩ J there is a disc of radiusr , ∆(x, r ) ⊂ f n(D)
which is a graph over a similar disc∆(x′, r ) ⊂ f n(D ′).

Let φ be a test form in a small neighborhood ofS1
1 . We can assume that the

support ofφ has diameter less thanr10. Then f n(D) ⊃ ∪∆j ⊃ f n(K ∩ J ) and
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f n(D ′) ⊃ ∪∆′
j ⊃ f n(K ′ ∩ J ) with ∆j and∆′

j such that∆j is a graph over∆′
j

close to∆′
j .

We then get

<
f n
∗ (D)
dn

, φ >=
1

dn

∑
< ∆j , φ > + < An, φ >

where| < An, φ > | ≤ ‖f n
∗ (D\K )‖

dn ≤ 2ε for largen.

We have a similar formula for(f
n)∗(D′)

dn and∆j , ∆
′
j are uniformly close. It

follows thatσn − σ′
n → 0 in a neighborhood ofSj

1 .
Since this is true for all subsequences, using that the limit set of{σn} re-

spectively{σ′
n} is forward invariant and that positive closed currents have no

mass at isolated points, we get thatσn − σ′
n → 0 on P

2.
Hence

∫
D ∧ T = lim

n

∫
D ∧ (f n)∗ω

dn

= lim
n

∫
f n
∗ D
dn

∧ ω

= lim
n

∫
σn ∧ ω

= lim
n

∫
σ′

n ∧ ω

=
∫

D ′ ∧ T.

By varying the flow boxes and lettingD ′ be a slice ofπ2, we see thatT|R
agrees with the push forward of the transverse measure toR.

Next we consider the case whereD ∩J andD ′ ∩J are contained respectively
in two flow boxesB andB′, but not necessarily cutting all across. We can cover
a neighborhoodV of Sj

1 by a finite union of not necessarily disjoint small flow
boxes.

We choose the flow boxesB by using small discsδ in local unstable manifolds
for which ∂δ has 0 transverse measure, and then the base ofB is δ ∩ J .

Fix a 0< r << 1 but r much larger than the diameter of the flow boxes.
We will define a refined collectionC of flow boxes: IfB′ is a flow box closer
to B than r , there is a natural projection ofB′ to the local unstable manifold
containingδ. We can letB1, B2 be the two flow boxes inB obtained by taking
as base the projection ofB′, π(B′) ∩ δ andδ \ π(B′) respectively.

We allow all flow boxes⊂ B which are intersections of such subsets. Then
C contains finitely many flow boxes.

By having the original flow boxesB extended in the stable direction, we
may assume that ifx ∈ f n(R) ∩ B for some flow boxB, then f n(R) contains
a neighborhood ofx cutting all across someflow box (x might be too near the
”top” of B for f n(R) to cut acrossB).
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Fix 0< ε << 1. Let Aε be a neighborhood of∂D in D of width ε. Since the
mass ofT|R on Aε can be chosen arbitrarily small, it follows that the mass off n

∗ (Aε)
dn

is also arbitrarily small (see Proposition 5.4). Fixn0 such that iff n0+`(D \ Aε)
hits a flow boxBi in x, thenf n0+`(D) contains a disc throughx cutting all across
someBj .

By transitivity of f on Sj
1, we can chooseN such thatf n+N (D \Aε) hits all the

flow boxes for anyn ≥ 0. In the discsD ,D ′ we have a pairing between regions
which end up as a union of the same number of graphs in the same flow box, we
know by the first step that these pieces give the same limit, we cover in this way in
D andD ′ a regionR = ∪Di , R′ = ∪D ′

i such that
∫

R∧T =
∫

R′∧T ≥ α
dn0+N where

α is a fixed constant. Indeed (
∫

R∧T)dn0+N =
∫

R∧ (f n0+N )∗T =
∫

f n0+N
∗ R∧T ≥

α > 0 becausef n0+N
∗ R cuts all the flow boxes.

We continue the process by considering the image ofD , D ′ under the map
f 2(n0+N ), we have new regions inD \ R, D ′ \ R′ which end up as graphs in the
same flow box. We pair them extending the regions that are already paired.

In a finite number of steps we exhaust arbitrarily large fractions of
∫

T ∧
(D \ Aε) or of

∫
T ∧ (D ′ \ A′

ε). Then the remaining regionsBε, B′
ε satisfy∫

T ∧ Bε =
∫

T ∧ B′
ε = o(1) (going to zero whenε → 0). So we get that

for any test formφ

| < σn, φ > − < σ′
n, φ > | = o(1).

Sinceε is arbitraryσn − σ′
n → 0.

Instead of two discs we consider the family of currentsf m
∗ [D ]
dm . We want

to show that the sequence is convergent. We consider an annulusAε in D as
before and observe that iff m(D \ Aε) intersects a flow boxB andm ≥ n0 then
f m(D)∩B continues across someB′. We can apply the above procedure to the sets
dm1−m2f m2∗ (D), (i.e. dm1−m2 copies off m2∗ (D)) and f m1∗ (D), m1 > m2 > `N + n0

where ` is the number of pairings needed to exhaust most of
∫

D ∧ T. After
dividing the sequences by1dm1 we get thatf

m1(D)
dm1 and f m2(D)

dm2 are close in the sense
of currents.

It follows that f n
∗ (D)
dn has as limitσc which must necessarily be (

∫
D ∧T)σ. ut

Corollary 5.11 If θ is a test function and D is as in Theorem 5.11, the sequence

f n
∗ (θ[D ])

dn
→ cσ, c =

∫
θ[D ] ∧ T.

Proof. We can replaceθ[D ] by a finite sum of the type
∑

cj [Dj ], cj constants
approximatingθ on Dj . Theorem 5.10 applies because we have an a priori esti-
mate of the errors under push forward, Proposition 5.4. ut

5.4 Convergence results for currents on J

Theorem 5.12 Let Sj
1 be a minimal basic set for an s− hyperbolic map f ∈

Hd, d ≥ 2. Let D ⊂⊂ R ⊂ P
2 be a region in a Riemann surface R, D
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intersecting Sj1 at a point a. Then[D ] is a closed current in some open set U.
We assume U is contained in a coordinate chart. Letρ ≥ 0 be a test function

supported in U. Assume D∩supp(ρ) is not contained inWu(Sj
1). We suppose that

the tangent space of D is close to the stable direction at every point of D∩ J .
Let u be a local potential for a currentσ (as in Theorem 5.11) associated to Sj

1

in U . Then the sequence of currentsτn := (f n)∗(ρ[D ])
dn converges to cT on the open

setΩ := P
2 \ (S2 ∪j/=1 Ws(Sj

1)) where c=
∫

D ρddcu.

Proof. We first prove the result for a (1,1) currentτ which is positive closed
in an open setV and such thatτ =

∫
[Dα]dν(α) whereDα are discs andν a

probability measure, and the discsDα are graphs over a discD0, (w = hα(z)).
We will also assume that the potentialv, v(z, w) =

∫
log |w− hα(z)|dν(α), such

that ddcv = τ, is continuous inV . We assume thatτ extends in this way to a
neighborhood ofV .

Let ∆ be a disc inΩ. Let θ be a nonnegative test function supported in
Ω, θ = 0 on a neighborhood of∂∆. Defineσn := f n

∗ (θ[∆])
dn . We assume that for

some largen, f n(∆) satisfies the condition of Theorem 5.11. The condition onθ
implies that (σn) converges toc′σ wherec′ =

∫
T ∧ θ[∆] (see Corollary 5.12).

We then have< (f n)∗(ρτ )
dn , θ[∆] >=< ρτ, σn >, which converges to

c′ < ρτ, σ >, because the potential ofτ is continuous, see Corollary 5.7. We
get, if τn := (f n)∗(ρτ )

dn , that< τn, θ[∆] >→< T, θ[∆] >< ρτ, σ > .

Observe that the convergence is uniform with respect to∆ as soon asf n0(∆)
satisfies the conditions of Theorem 5.11.

We next show thatτn →< ρτ, σ > T. First we show that (‖τn‖) is bounded.
We observe that‖ f n

∗ω
dn ‖ = 1. Indeed

‖ f n
∗ ω
dn

‖ = <
f n
∗ ω
dn

, ω >

= < ω,
(f n)∗ω

dn
>= 1

If S is the limit of some subsequence (f
ni∗ ω
dni ), we have

‖τni ‖ = <
(f ni )∗ρτ

dni
, ω >

= < ρτ,
(f ni )∗ω

dni
>

= < ρτ,S > .

The last equality is a consequence of Corollary 5.6, since the potential ofτ
is continuous. Hence (‖τn‖) is bounded.

We can fatten [∆] to a current [∆̃] such thatθ[∆̃] has continuous coef-
ficients. If [∆] = 1|z1|<1δ0dz2 ∧ dz2 in local coordinates; we can take [∆̃] =
1|z1|<1χ(z2)dz2 ∧ dz2 whereχ is a positive test function.
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Let τ̃ be a cluster point of the sequenceτn in P
2. We get from the previous

discussion that ˜τ and < ρτ, σ > T coincide on forms of typeθ[∆̃]. We do
as observed above. The vector space generated by such forms is dense in the
space of (1,1) forms with continuous coefficients nearS1

1 . Hence ˜τ coincide
with < ρτ, σ > T nearS1

1 . The cluster values of the sequence{τn} are invariant
under f ∗, since all of them coincide nearS1

1 , we have that ˜τ =< ρτ, σ > T in
Ω.

When τ = [D ] we cannot say that< ρτ, σn >→ c′ < ρτ, σ > because
we only haveσn → σ weakly, and the potential ofτ is not continuous. We
fatten D into τ̃ =

∫
[Dα]dν(α) in order that ˜τ has a local continuous potential.

Under (f n)∗ each discDα is expanded along the stable manifold and they get
closer and closer nearS1

1 . Let
∫

Dα
ρddcu =: c(α). We can assume thec(α)′s

are arbitrarily close toc. So if ρτ̃n → c̃T then because the (Dα) have the same
behavior (f n)∗(ρDα)

dn → c(α)T. The (Dα) get closer, the limits are the same up to

multiplicative constants and in particular(f n)∗(ρ[D ])
dn → cT. ut

Corollary 5.13 For a ∈ S1
1 , Ws(a) is dense in Ws(S1

1 ).

Proof. Let D be a disc centered ata and contained inWs(a). Let u be a local
potential ofσ, u is pluriharmonic out ofWu(S1

1 )∪S0. The discD is not completely
contained inWu(S1

1 ) henceu is not identically−∞ on D . Let τn = (f n)∗(Dρ)
dn . We

know thatτn → cT, c /= 0 in Ω = P
2 \ (S2 ∪j/=1 Ws(Sj

1)), sinceWs(Sj
1) j /= 1 is

disjoint from Ws(S1
1 ) we get the result. ut

5.5 Structure of the invariant currentσ on Wu(S1
1 ).

The structure of the currentσ which is supported onWu(S1
1 ) ∪ S0, is not neces-

sarily laminar. Indeed the unstable manifolds might intersect and hence do not
give a foliation ofWu(S1

1 ). We show here thatσ is locally an integral of analytic
graphs. We first describe ”flow boxes” onWu(S1

1 ).

Proposition 5.14 Let x0 ∈ S1
1 , a minimal hyperbolic set for an s− hyperbolic

map f. There are neighborhoods∆ = ∆1∗∆2 ⊂ ∆1∗∆′
2 = ∆′ in local coordinates

of x0 such that the local unstable manifolds intersecting∆ are graphs over the
∆1 axis with values in∆′

2.

Proof. We first observe that the unstable direction and the stable direction never
coincide at a pointx ∈ S1

1 since they span the tangent space atx. Since the
splitting of the tangent bundle is continuous, we get a positive angle between the
stable and unstable direction atx0 and uniformly inx0.

We can assume∆ = ∆1 ∗ ∆2 where∆1 is along the stable direction atx0.
Using the graph transform, and the construction of unstable manifolds we see
that the local unstable manifolds are graphs over∆1. ut

Let A(∆1, ∆2) denote the space of holomorphic maps from∆1 with values in
∆2. We give this space the topology of uniform convergence. Forg ∈ A(∆1, ∆2)
we will denote byVg the graph ofg and [Vg] the current of integration onVg.
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Theorem 5.15 Let f be an s-hyperbolic map onP2. Let x0 ∈ S1
1 , a minimal basic

set. In the notation of Proposition 5.15 there is a ”flow box”∆′ and a positive
measureλ on A(∆1, ∆

′
2) such that on∆, σ =

∫
[Vg]dλ(g)|∆, where Vg are the

local unstable manifolds intersecting∆.

Proof. Let ∆ = ∆1 ∗ ∆2 be the neighborhood containingx0, introduced in
Proposition 5.15. Let∆′′ = ∆′′

1 ∗∆′
2 where∆′′

1 ⊂⊂ ∆1. We defineC(∆1, ∆2) as
the space of currentsR in ∆1 ∗∆2 which can be represented asR =

∫
[Vg]dρ(g)

whereρ is a finite positive measure onA(∆1, ∆2).
Let g ∈ A(∆1, ∆

′
2). There is a uniform bound on the derivative ofg in ∆′′

1 .
It follows that there is a constantC such that ifR ∈ C(∆1 ∗∆′

2),

1
C

Mass(ρ) ≤ ‖Rχ∆′′‖ ≤ CMass(ρ). (1)

We next observe that ifRn is a sequence of currents inC(∆1 ∗ ∆′
2) which

converges in the sense of currents to a currentR in ∆1∗∆′′
2 for some∆2” ⊃ ∆′

2,
then the restriction ofR to ∆′′ is in C(∆′′

1 ∗ ∆′
2) : From (1) we deduce that

the corresponding measuresρn have bounded mass. We can assumeρn → ρ, a
positive measure. Since the problem is local, we can assume we are inC

2 and
that ∆1 ∗ ∆2 is the unit polydisc. Letun(z, w) =

∫
log |w − gα(z)|dρn(α) be

the potential ofRn in ∆1 ∗ C. For z0 ∈ ∆1 let θz0 : A(∆1, ∆2) → ∆2 be the
evaluation atz0, i.e. θz0(g) = g(z0). We want to show thatun converges inL1

loc
to u(z, w) =

∫
log |w − g(z)|dρ(g). The functionun(z0, ·) is the potential for the

measure (θz0)∗(ρn). If ρn → ρ, (θz0)∗ρn → (θz0)∗ρ, the support of (θz0)∗ρn are
contained in a fixed compact. Henceun(z0, ·) converges to the potential of the
measure (θz0)∗ρ, which proves the claim.

As a consequenceR =
∫

[Vg]dρ(g).

The currentσ is obtained as a limit of[f
n
∗ (D)]
dn whereD is a Riemann surface

in the unstable direction. As in Theorem 5.11 we can consider an annulusAε near
∂D , the mass off

n
∗ (Aε)

dn is small (Proposition 5.4)for largen and if f n(D \Aε) hits
∆1 ∗∆2 at p for largen, then there is a component off n(D) ∩ (∆1 ∗∆′

2) which

is a graph over∆1 and containsp. It follows that f n
∗ (D)
dn restricted to∆1 ∗∆′

2 is
approximable in the mass norm by currents inC(∆1, ∆

′
2). Hence, by the above

arguments,σ =
∫

[Vg]dλ(g). ut

6 Invariant measures on minimal invariant sets

Let f ∈ Hd be ans− hyperbolic map. For anyS ∈ S (see the definition before
Theorem 5.3) we can define the measureνs := T ∧ S. The wedge product is well
defined sinceT has locally a continuous potential. It follows from ([FS4]) that
νs is a probability measure.

Let σ be the current supported onWu(S1
1 ) ∪ S0 in Theorem 5.10.

Proposition 6.1 Defineν = T ∧ σ. Thenν is a forward invariant probability
measure supported on S1

1 .
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Proof. We prove the invariance. Letφ be a test function. Then

< f∗ν, φ > = < T ∧ σ, f ∗φ >

= <
f ∗T

d
∧ σ, f ∗φ >

= <
σ

d
, f ∗(Tφ) >

= lim
n
<
σ

d
, f ∗((

(f n)∗ω
dn

)φ) >

= lim <
f∗σ
d
,

(f n)∗ω
dn

φ >

because the convergence of the local potentials of(f n)∗ω
dn is uniform in the above

limit. So

< f∗ν, φ > = < σ,Tφ >

= < T ∧ σ, φ >
= < ν, φ > .

We know thatWu(S1
1 ) ∩ J ⊂ S1

1 . So the support ofν is contained inS1
1 . ut

Theorem 6.2 The measureν is mixing.

Proof. Let φ and ψ be two positive test functions with small support in a
neighborhoodU of S1

1 . We want to show that

In := (
∫
ψ(f n)φdν) → (

∫
ψdν)(

∫
φdν).

In =
∫
ψ(f n)φT ∧ σ

=
∫

(f n)∗ψ
(f n)∗T

dn
∧ φσ

= <
(f n)∗(ψT)

dn
, φσ >

= < ψT,
f n
∗ (φσ)

dn
> .

The currentσ was obtained by pushing a disc and averaging. We have seen
that the limit does not depend on the disk we start with and that the convergence
is uniform for (f m

∗ (D)
dm ) in U . It follows thatσn := f n

∗ (φσ)
dn → cσ with c =

∫
T ∧φσ.

Let G be a potential forT in a chart containing suppψ.
In =< ψT, σn >=< ddcG, ψσn >=< G,ddcψσn >
Using Proposition 5.5, sinceddcσn → 0, dσn → 0, in mass norm we get
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lim In = < G,ddcψσ > c

= < Tψ, σ > c

= < ν, ψ >< ν, φ > ut

Theorem 6.3 Let f be an s− hyperbolic map inHd and letν be the measure
of Proposition 6.1. Then supportν = S1

1 .

Proof. We will cover S1
1 by flow boxesBi = Bj ,`. We can assume thatBj ,` ∩ J

is a union of stable manifolds which are graphs over the∆′
` axis.

Let D ⊂ R be a region cutting all across a flow box such thatD ∧ T /= 0, as
in Theorem 5.11. LetAε be a neighborhood of∂D of width ε. Given 0< ε << 1
we choosen0 large enough so that forn ≥ n0 if f n(D \ Aε) intersectsBi then
the components of the intersection off n(D) with Bi extend as graphs over the
∆ axis (unstable direction) contained iñBi (flow boxes slightly enlarged in the
∆′
` direction).

Let M be the number of boxesBi . There is an indexi (n) such that∫ f n
∗ (D\Aε)χBi

dn ∧T ≥ c
M for all largen wherec is a fixed strictly positive constant.

Hencef n(D) cuts completely across̃Bi (n) at leastc′dn times. Sincef is transitive
and expanding, for some fixedm, f n+m(D) cuts across anyBj at leastc′dn times.

Hence
∫

B̃j

f n+m
∗ (D)∧T

dn+m ≥ c′′
dm .. Sincem is fixed, we get (σ ∧ T)(B̃j ) ≥ c′′

dm . We can

take the boxes (̃Bj ) of arbitrarily small diameter. So supp(ν)= S1
1 . ut

We consider now the decomposition of the invariant measureν.

Theorem 6.4 Let B be a small neighborhood of a point x∈ S1
1 . Then on B, T =∫

[Vy]dµ0(y), σ =
∫

[Vg]dλ(g) andν = T ∧σ =
∫

([Vy]∧[Vg])dµ0(y)dλ(g), where
the measuresµ0 andλ are as in Theorems 5.9 and 5.15 respectively.

Proof. We have already proved the representation formulas forT (Theorem
5.9) andσ (Theorem 5.15). SinceT has continuous potential, ifσi → σ then
T ∧ σi → T ∧ σ, so using an approximation to the integral we get that

T ∧ σ =
∫

T ∧ [Vg]dλ(g).

If u is a potential forT in a neighborhood ofB, thenT ∧ [Vg] = ddcu|Vg
. So

T ∧ σ =
∫

ddcu|Vg
dλ(g).

We consider thatu = lim vn wherevn are the local potentials for
∑

cn[Vgn ], cn

corresponding to an approximation ofµ0 by point masses. Thenddcu|Vg
=∫

[Vy] ∧ [Vg]dµ0(y). This proves the formula forν. ut

Corollary 6.5 Assume S11 is minimal. Let Wu
x̃,R be the local unstable manifold for

the prehistoryx̃ with x0 ∈ S1
1 . Then Wu

x̃ = ∪n≥0f n(Wu
x̃,R) is dense in Wu(S1

1 ).
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Proof. Let D = Wu
x̃,R. SinceD is not contained inS1

1 andWu(S1
1 ) ∩ J = S1

1 we
have that

∫
T ∧ D = c /= 0.

We know f n
∗ (D)
dn → cσ and supportσ containsWu(S1

1 ), Theorem 5.10. Hence
Wu

x̃ is dense inWu(S1
1 ). ut

Theorem 6.6 Assume that f∈ Hd, d ≥ 2, is an s− hyperbolic map. Let S11
be a minimal basic set. The support of the currentσ in Theorem 5.11 is equal to
Wu(S1

1 ) ∪ S′
0 with S′

0 ⊂ S0.

Proof. We know from Theorem 6.4 that the support ofσ containsS1
1 .

The support ofσ is not contained inS1
1 because there is an algebraic curve

A which does not intersectS1
1 (see Definition 3.2). But the complement of the

support of a nonzero, positive closed (1,1) current is Stein ([FS4]) and hence
cannot containA. Hence the support ofσ must intersectA.

Since the support off∗σ = f (supp) = supp(σ), then the support is forward
invariant. The transitivity off on S1

1 implies that for any neighborhoodV of a
point in S1

1 , V \ S1
1 has mass forσ.

We have to consider the possibility that near a pointx0 ∈ S1
1 the mass of

σ is concentrated near an unstable manifoldWu
x̃,R corresponding to a prehistory

x̃ = (x0, x−1, . . .) but there is no mass along the unstable manifold corresponding
to another prehistory ˜x′ = (x0, x′

−1, . . .). By the invariance property all the global
unstable manifoldsWu

x̃ is in the support ofσ. Sincef n collapses the direction of
unstable manifolds because of contraction in the stable direction, it follows that
f n(Wu

x̃ ) and f n(Wu
x̃′ ) are along the same directions so there is also mass along

Wu
x̃′ . Hence suppσ ⊃ Wu(S1

1 ). The support being closed, we addS′
0 ⊂ S0 to get

supportσ. ut

7 Examples

Example 7.1Let f ∈ Hd be defined by

f [z : w : t ] = [P(z : t) : Q(w : t) : td]

whereP,Q are polynomials of degreed in one variable. Assume that the critical
points of P(z) and Q(w) are in the basin of attraction of attracting cycles, i.e.
P,Q are hyperbolic on their Julia sets,JP, JQ. If we use the inhomogeneous
coordinatet = 1, we get thatS2 = JP(z)∗JQ(w). The basic sets forS1 are int = 1
{periodic sinks forP}∗JQ or JP ∗{periodic sinks forQ}. We also have the basic
set in t = 0 corresponding to the Julia set forf0 = [P(z : 0) : Q(w : 0)]. Under
these assumptionsf is s−hyperbolic. In these examples the unstable manifold
for all prehistories inS1

1 of a given point coincide and are contained in complex
lines. SoJ− is a union of analytic varieties.

Example 7.2Let Φ be the Segre map fromP1 ∗ P
1 → P

2. In homogeneous
coordinatesΦ([z0 : z1], [w0 : w1]) = [z0w0 : z1w1 : z0w1 + z1w0]. Let f0 : P

1 → P
1

be a holomorphic map of degreed. There is f ∈ Hd such thatΦ(f0, f0) =
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f ◦ Φ, see Ueda ([U]). Iff0 is hyperbolic, thenf is hyperbolic. In this case
S2 = Φ(J0, J0) whereJ0 denotes the Julia set off0. The basic sets forS1 are of
the formΦ(periodic sink)∗ J0). In this case alsoJ− is an algebraic variety. In
these examples the no-cycle condition is satisfied.

Example 7.3Perturbations of these examples are quite different. Consider the
family of mappings, 0< ε << 1.

fε[z : w : t ] = [z2 :
1

10
wt +

zt
2

+ εw2 : t2].

There are three basic sets forS1, a circle in (t = 0), a quasicircle in (z = 0)
and in (t = 1) we get a solenoid in the region 1−δ < |z| < 1+δ, |w| < δ, where
δ is small if ε is small. The mapfε is injective in a neighborhood of the solenoid
so again the unstable manifolds do not have self intersection and indeed there is
just one prehistory for a given point.
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