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1 Introduction

In this paper we discuss hyperbolic holomorphic mapsPénOur aim is to
introduce invariant currents and measures which describe the dynamics.

The simplest model is the exampte (w?) on C? which onP? can be written
as g2 : w?:t?].

Let f : P> — P? be a holomorphic self-map of degrele In homogeneous
coordinatesf = [P : Q : R] where P,Q,R are homogenous polynomials of
degreed with no common zeros except for the origin, das a well defined
holomorphic map. The space of such maps is denotedy

Some results on the dynamics of such maps have been obtained in ([FS1]),
([FS2]), ([FS3]). We recall a few notions.

Definition 1.1 The Fatou set = F; of f € .7 is the largest open set on which
the iterateqf ") is a normal family. The Julia set & J; is the complement oftF

Definition 1.2 Letg : M — M be a continuous self map on a manifold. The non
wandering sef? = (2, is the set of points x M such that for every neighborhood
U of x there is an > 1 with f"(U) N U # 0.

We want to study the dynamics &f € .7y, under the assumption thétis
prehyperbolic o1, see ([Ru]). The examples we have in mind are perturbations
of maps of the following type:

f([z:w:t]) =[P(z,1) : Q(w,1) : t9]
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whereP, Q define polynomial maps oR* which are hyperbolic on their non-
wandering set. It is well known that dP! this is equivalent to the fact that alll
critical points are in the basin of attraction of attracting cycles.

We study in this paper the class of maps .74, which are strongly hy-
perbolic on (% (s-hyperbolic), see definition 3.2. In particular we assume that
periodic points are dense i . If f is prehyperbolic o, then( = SUSUS,
where the unstable dimension §f is j. In this case we show that ea& is
nonempty (Theorem 3.4) and that S = Uxes W3(X) whereWs(x) is the stable
manifold of x.

The setS; is the support of a probability measurewhich is mixing and of
maximal entropy. It is a basic set ([FS2]).

The setS; decomposes into a finite number of basic s&is= U,Sl There
is an ordering among the basic se‘fé < SKif one can go fromSf to Sl see
the paragraph after Theorem 2.5 for a precise definition. We are interested in
describing dynamical objects reIatedS’npassummgSl is minimal for this order.

More precisely, in order to describe the "foliated” structureldf is natural
to consider positive closed currents. It is shown in ([FS2]) thé the support
of a positive closed currerft which is obtained as the limit oﬁl’— wherew
is the standard Kahler form arr.

We show that ifS] is minimal andf is s-hyperbolic then the restriction of
the currentT to WS(S]) is laminar, i.e. neaf] it is an integral of currents of
integration of local stable manifolds. Indews(si) is open inJ. We prove that
the stable manifold of a point € S} is dense inWS(S]). The approach is to
obtain the result by proving a convergence result for the curr@jﬁf—s{WF?(x)],
wherex € S| and Wg(x)] is the current of integration on the local stable
manifold atx. The approach is similar to the one used by Bedford and Smillie
([BS2)) in the case of Enon maps irC?, which are biholomorphisms.

The setS; is the repelling part of the dynamics. By analogy witleridn
maps, paragraph 4, we introduce an open set

= {z;{f ""(2)} converge locally uniformly near z t&}

andK ~ :=P?\U ~. The seK ~\ S is the union of unstable manifold" (%) with
X0 € S (Proposition 4.2). Recall that for endomorphisms the unstable manifold
depends on the prehistory of a point.
We prove the existence of positive closed{JLcurrentss, supported orK ~
and satisfying the functional equatiéyv = do, whered is the algebraic degree
of f. Whens$! is minimal we describe the structure of a currensatisfying the

previous equation and whose supporW§(Si).

Indeed WherS{ is minimal the closure oW“(S{) is obtained by adding a
finite number of attracting cycles.

For this current we show that:=T A o is an invariant probability measure
with support equal tcS{ andf is mixing with respect tar (see Theorems 6.2
and 6.3).
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2 Hyperbolicity for endomorphisms

We first recall a few definitions and results on hyperbolic sets for smooth maps
on a compact Riemannian manifditl. We refer to ([Ru]) for the general theory.

Letf : M — M a smooth map oM and suppos& is a compact forward
invariant set forf, i.e.f(K) =K.

The first problem is to generalize the notion of hyperbolic set for diffeomor-
phisms to general smooth maps (endomorphisms).

We could say that (but as explained below we will rétis hyperbolic if there
is a continuous splitting of the tangent bundlgM = V.2 + V! for x € K with
Vs contracted and/"Y expanded undefr’. More precisely, there exist constants
C > 1,06 > 1 such that for everk € K, f/(V{) C V. (V) C Vi
and Df*(x)¢| < Sl¢| V k = 1,2,..,& € Vi§ and [DF*(x)¢| > L[¢| V k =
1,2,..,¢ € V! If K is hyperbolic in this sense, there are associated local stable
manifolds WS to each pointx € K. These are smooth manifolds of the same
dimension as/g andf (W?) C W, as germs. MoreoveT, W = V3.

However, if one tries to construct unstable manifolds, they are not necessarily
unigue because preimages are not unique. Rather, an unstable manifotd at
K depends on the prehistory chosen fari.e. one fixes any sequence =
(X k<o, X0 = X, f(X) = x+1. Note thatx”is not necessarily unique since points
can have several preimages. There is an unstable manigldhrough x of
the same dimension ag', and these manifolds have the following invariance
property:f (W' , ) C W ,, as germs. Moreovef,Wy' =V, .

So all the possible unstable manifolds are tangent to each other, but depend
otherwise on the prehistory chosen.

The condition that all the unstable manifolds are tangent is too restrictive,
because the tangent space should depend on the prehistory.

Hence we introduce

K = {&X = (%) € ITk<oK; f (%—1) = %}

and similarlyM .

The mapf induces a map : K — K, (%) := (f (%)).

The tangent bundle df is the set of X7 &) with & € Ty,M. The seK is said
to be prehyperbolic fof if there is a continuous splitting of the tangent bundle
for K, Tz = Ve + Vg' with V¢ contracted and/y' expanded undef’. More
precisely there are constaris > 1, © > 1 such that for everx = (x) € K
there is a splitting off,M = Vg + V' and

IDf*()¢'| < COTX|E|, ¢ e Ve [Df K(xo)¢’| < COT ¢, ¢ € Vg

We also assume thdf (V,e) C Vi, and Of)(Vy') = Vi . Under these
assumptions the dimensions8f andVy' are locally constant. We will call the
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dimension ofVy, the unstable dimension. Givenc K, for R sufficiently small
we define the local stable manifold

Weg = {y € M;d(f"(y),f"(x)) < Rforn > 0}

Givenx, € K let X = (%) € K be a prehistory fox,. We define the local
unstable manifold for that prehistory as:

We's = {Yo € M; I(W)k<o € M andd(yk, %) < R}
Similarly we define the global stable and unstable sets:

We = {y € M; lim_d(f"(y),f"(x)) = 0}

R = {Yo € M;3(¥idk<o € M d(y, %) — O}.
These are tangent attd Vg andVy' respectively. The maps — We, and
X — W'y are continuous for the&z" topology on the space of parametrized
discs. Moreover there are constahts- 0, A > 1 such that ify,z € Weg then

d(f"(y),f"(2)) < LAT"d(y, 2).
If' ¥ = (W), Z = (z) are prehistories as in the definition W', then
d(yn»zn) é L>\7|n‘d(y0720)

Definition 2.1 The setK has local product structure if R can be chosen such that
forallx e K, yeK

Wer "Wyl C K
and the intersection consists of at most one point.

In this case there is an > 0 such that ifd(x,y) < 2e then Wgg N W'g
consists of exactly one poink[y]. Moreover there is ah > 0 such that

d(x,[x,y]) < Ld(x,y),

d(y, [x,y] < Ld(x,y).

Definition 2.2 Letf : M — M be as above and le® be the non wandering set
for f. We say that f satisfies Axiom A if

i) £2 is a compact prehyperbolic set.

ii) Periodic points are dense .

Theorem 2.3 ([Ru p.160]) Letf: M — M be a smooth map with non wandering
setf2. Assume f satisfies Axiom A. Then

i) 2 has local product structure.

i) 2 =0,U---UL is afinite union of pairwise disjoint closed forward invariant
sets such that f is topologically transitive on eaeh(i.e. f has a dense forward
orbit on eachf?;). The above decomposition is unique, the sgtaire called the
basic sets.

iif) Each basic set(?; is a finite union(2; = 2 1 U---U {2 \, of smallest pairwise
disjoint closed sets which are permuted cyclically by f.
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Remark 2.4Each (2 is isolated in the nonwandering set, more precisely, there
exists a compact neighborhoal of 2 such that if{X, Incz, f(X1) = Xp+1 VN
andx, € U Vn, thenx, € £ Vn ([Ru p. 160], [Pz],[Mo]).

Recall the ordering among basic sets. We 8ay> (2 if and only if W"(£2)N
W5(£2) # 0, which means that it is possible to go frafh to 2;. The No-cycle
condition means that one cannot find basic $@ts..., (%, p > 1 such that
-Qil > -Qiz > ---Qip > Qil-

The interest of hyperbolic maps on their nonwandering’set their stability.
We have the following result ([Ru, p.168]), ([Pz]) and ([Mo, p. 182]).

Theorem 2.5 The set of¢™ maps on M, satisfying Axiom A and the No-cycle
condition is open. In particular the non-wandering sets of such maps are close if
the maps are close.

If f is such a map, there exists a neighborha@df) C Z* (M, M) such that
for g € 24(f), f is conjugate tgyon their prehyperbolic cover. More precisely,
there is a homeomorphisim: 2(f) — (2(g) such that the following diagram is
commutative. ~ o

Q) =" Q)
hl hl
2(g) =7 Qg)
We consider(f) and 2(g) as subsets oM c (P2)N with the product

topology, so the fact that the conjugating homeomorphism is close to the identity
makes sense.

3 Holomorphic maps in P?

Letf : P2 — P2, f € .74. Let w be the Kahler form inP? normalized such
that [w A w = 1. It was shown in ([FS2]) that the sequence of positive closed
(1,1) forms & d) £ converges in the sense of currents to a positive closed current
T, whose support is equal to the Julia Setand which satisfies the following
functional equation

T =dT

whered denotes the algebraic degreefof

It was shown in [FS2] thaf, := T AT is a probability measure satisfying
f*u = d?; and hence is a measure of maximal entropyllrsee ([Gr]). Observe
that by Bezout's Theorerh is ad? to 1 map.

Let 2 = £ be the non wandering set 6fand assumeé? is prehyperbolic.
Then {2 can be decomposed into disjoint séis=: S U S U S, where§ is of
unstable dimensiof. A priori some of theS could be empty. However since
f(£2) =12 itis clear thatf (§) =§ ] =0,1,2. The following result is proved in
([FS2]).
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Theorem 3.1 Assume fe .7%; is prehyperbolic onf%. Then

)% Fx, k7S

i) Sp is the union of a finite number of attracting periodic orbits and the Fatou
components are preperiodic to attracting basins.

iii) S O S, = support ofy, f~1(S,) =S,.

Definition 3.2 We will say that fe .77, is s— hyperbolic if

i) f is prehyperbolic onf

i)f S =S

iii) There is an algebraic variety A of dimensidnsuch that A0 S, = ().
iv) Periodic points are dense if¥;.

v) There exists a neighborhood U of Such that F1(S)NU =S;.

Because of i) and iv)s— hyperbolic maps satisfy Axiom A.

Remark 3.30bserve that ilDf is injective at every point 0§, then condition
iii) is satisfied withA = C, the critical set.

Condition v) allows us to prove a shadowing Lemma and the following result,
see also ([Ru p. 103]) and ([Pz]).

Theorem 3.4 If K is prehyperbolic, satisfies v) above and has a local product
structure, there is a neighborhood U of K such that{(§) € U for all m > 0,
then y € W for some xe K, in fact y is in the local stable manifold of. xf
¥ = (y«) is a prehistory such that allye U then y € Wy' for someX = () € K.

If K satisfies only conditions i) to iv), thews(S!) = uxesllws(x).

Remark 3.5The last statement is proved in a standard way ([Ru]) by using a
similar statement in the hyperbolic cover. We need condition v) only to prove
that a neighborhood o8 in WS(S]) is contained in the union of local stable
manifolds centered oB!.

Theorem 3.6 Assume fe .7 is s— hyperbolic. Then each of thg 8 nonempty.
Moreover J\ S, = W5(S) = {y; limp_ o d(f"(y), S1) = 0}, S has local product
structure. Furthermore, \W(S;) = Uxes, WS, and more precisely, there isla>>
e >0and al >> R > 0so that if an orbit{f"(y) }n>0 remains at distance e
from §, then ye WS(x) for some xe S.

Proof. We know by Theorem 3.1 tha, is nonempty. Assumé&, is empty.
Then2 =S US,. Letx € J\'S. The Julia setl is totally invariant andf"(x)}
has to cluster somewhere ¢ Hence{f"(x)} has to cluster or%,. But this is
impossible sincd ~1(S) =S andS; is repelling. HenceS, is nonempty.

AssumeS, is empty. Then? = S, U S, and by Theorem 3.1, ii)J = P2
There is a neighborhood > S, such thatf ~}(U) cc U. So orbits of points
in P2\ S, cluster only atS;,. Let S = US] be the decomposition @ in basic
sets given by Theorem 2.3. FBsmall enough, let

Wi = {z:d({f"(2)},8]) <R}
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EachW,% is closed andJy ;f *“(W,i?) =P\ S. It follows that for somgo, WFif
has nonempty interior. Moreovany = Uxesio (WS(x) N WY) is a union of local

stable manifolds. Fix € S° such that the local stable manifoldfS(x) N W
intersects the interior 0W|j;a°. We can assume that is a periodic point. Let

% be the prehistory ok in § consisting of the periodic orbit of. Consider
W{'. Using the local product structure one sees M N W' C S’ and
contains a disc frong'r aboutx, because one can just follow a transverse disc

to WS(x) contained in the interior dWij. Hence there is a baB(x, r) such that
B(x,r) N Wg's C S°. Sincef mapsS}° to itself, it follows that

W' C S

We can assume, using the result of Siu-Yeung ([SY]) BfatA is Kobayashi
hyperbolic. Indeed, we can suppose tAdt of large degree and contained in a
Zariski open dense set of varieti¥ssuch thatP? \ X is Kobayashi hyperbolic.
This would imply thatf" restricted toB(x,r) N Wg's is equicontinuous, which
is impossible. S& is hon empty.

Lety € J\'S. Let U be a neighborhood d&, such thaf ~}(U) cc U. We
can assumg ¢ U. We want to show that"(y) — S;. If not, f"(y) will also
cluster onS,, let m be the smallest integer such thHdt(y) € U. This implies
thatf™=1(y) € U, a contradiction. Sd \ S, ¢ W5(S)). If y € WS(S,) it cannot
be in the Fatou set nor i§,, the other inclusion follows.

That$S, has local product structure follows from the density of periodic points
and Theorem D.2, in ([Ru] p.155). One deduces from the local product structure
that W3(S;) = Uxeg WS(x) and that more precisely, there is an<C: << 1 and
an 0< R << 1 so that if an orbit{f "(y)}n>0 remains closer t&, thane, then
y € W5(x) for somex € S;. O

Corollary 3.7 Assume fe .74y is s— hyperbolic onf2. Then the Julia set has
empty interior.

Proof. Assume first that the interior @b, is non empty. Then
EM(Int(S)) — Int(S) and S N [UN_f ~"C] = () whereC denotes the critical
set, and this is still valid for any algebraic variety closeGo Since int&) is
Kobayashi hyperbolic, the familyf{) is normal, which contradicts the uniform
expansion of on S;.

As a consequence, if it} is non empty, then the interior 8/3(S,) is not
empty. LetA? be a polydisc inWs(S;). Fix 0 < € << 1 small enough. Define

Fm = {z € A% distf"(z),S) < e Vn > m.}

There is am€m such thatFr,, has nonempty interior. By the last part of Theorem
3.4,fM™(F™) is contained in the union of local stable manifoldsSef

Let W3(p) be such a manifold. We can assume thas periodic. We show
that W3 (P) is contained ir5, for the prehistoryp™consisting of the periodic orbit
of p.



312 J.E. Forneess, N. Sibony

Any WS(x) close enough toNg(p) is going to intersectVy (P). So a disc
in WY(p) aboutp is contained inS;, by the local product structure. Sin& is
forward invariant it follows thatW!() C S;. Letk be the period op. Thenfk
mapsW"(p) to itself. Clearly the sequenc{eéf‘bvu(ﬁ))m}m is not a normal family.
Since$ is contained in the Kobayashi hyperbolic complement of a perturbation
of A, ([SY]) this leads to a contradiction. O

We discuss now the decomposition @f= S U S U S into basic sets, i.e.
closed disjoint sets with dense orbit as given in the abstract setting by Theorem
2.3.

We study the special case bfc .72y which is assumed to b&- hyperbolic
on 2. We have already seen that the basic setsSjoare just finitely many at-
tracting periodic orbits. The corresponding stable sets are the basins of attraction.
We next show tha$; is a basic set.

Theorem 3.8 Suppose that fe .74 is s— hyperbolic. The set Sof unstable
dimensior? is a basic set and;S= S,. The unstable set 03 open with locally
pluripolar complement.

Proof. We know from Theorem 3.1 th&, contains the suppoi$, of . Let
o2 =S\ S,. We claim thato, is closed. Letv be a neighborhood o, such
thatf —k(V) cc V for somek > 1, recall thatf ~1(S,) = S,. Observe that points
in V \ f ~"™(V) are wandering. Henc& \ S, cannot intersect that set. SoN o
is empty, hencer, is closed.

Let C be the critical set of. ClearlyC NS, = (). Define " := U,>of "(C).
Sincef is s— hyperbolic,f “}($) = S. Using thatf (W) cc W for some
small neighborhoodV of S, and somef > 1, it follows that 2 NS, = (.
Locally in P2\ # one can define holomorphic local branches of inversei' of
f,~". A theorem of Ueda ([U]) asserts that they are equicontinuous.

For any continuous functiop on P2, defineA}(x) = d% Z,d:zl (7" (x)).

By the above result it is clear that for any giventhe sequence of functions
(Ag) is locally equicontinuous iP? \ #. On the other hand it is shown in
([FS3]) that there exists a locally pluripolar sét (independent o) such that
for x € P?\ &, AL (X) — u(¢), in particular the limit does not depend &nAs
a consequencag(x) — (o) uniformly on compact sets of the nonempty open
setP?\ .

Observe thatr, is also totally invariant. Let) = 1 in a neighborhood 0§,
and 0 in a neighborhood of;. SinceAg(x) — 1, for X € oy, this implies that
oy is empty.

It is shown in ([FSZ2]) that the measufeis ergodic. Henceg: almost every
point has a dense orbit. As a consequeie; S, is a basic set.

Recall that

W) = {y; 37 = (n) Yo=Y, f(¥o—1) =¥n and d(yn, S) — O}.
We have already mentioned that except on a pluripolar set
. d2n
(57 d% Zi:1€>S” — W
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SoP?\ & c WY(S). Since there is an open d8t > S, such thaf ~1(U) cc
U, thenWY(S,) is open with locally pluripolar complement. O

4 The inverse Julia set] —

We recall first a few facts about invariant currents fardn maps.

Let f be a Henon map inC?, for examplef (z, w) = (z° + ¢ +aw, z), ¢ € C,
a#0. Considerf[z : w : t] = [22 + ct? + awt : zt : t7], the rational extension of
f to P2. Let w denote the standardéler form of P2,

It is shown in ([FS5]) that“nz):“ converges to a positive currept on P2,
The restrictionu* of i* to C? has been considered in ([BS1]), ((BS2]) where it
was extensively studied.
It is proved in ([FS3]) that the current™ A i* is well defined and that this
measure is equal to the Dirac mags at the point of indeterminacy df i.e.
p_ =[0:1:0] The pointp_ appears as the only "repelling” point for (For
any small neighborhootd (p) and any poing € U (p), g # p, there is an integer
m(g) so thatf"(q) ¢ U (p ¥n > m(q).)
Similarly it is possible to defing ™ for the mapf —* (the extension t&2 of the
automorphisnf ~ of C?) and to consider the probability measyre A ji* =: v,
which is an invariant measure of maximal entropy supported on a compact subset
of C?. The properties of the measureare studied in ([BS1]), ([BS2]), ([BLS)).
Whenf is a holomorphic map of®? of degreed > 2, the analogue of the
currenty* is what we have called@. SoT = lim (fd# The probability measure
1 :=TAT is well defined. Iff is prehyperbolic on its nonwandering gt then
S, :=suppy is contained in the repelling pa%, see Theorem 3.1.
For any holomorphic map : P> — P? of degreed > 2 the probability
measureu is mixing and of maximal entropy ([FS2]).

In the case of Bnon mapsK ~ is defined as the set of poinssuch that
{f 7"(2)} is bounded. Equivalently we can consider

U~ ={z;{f "(2)} converges t@, the support of, }
and defineK — := C2\ U ~. The convergence tp_ is always uniform in a small
neighborhood , st ~ is open. By analogy with the previous definition we define
U, for f €. .77, as follows:
For any seV, setV, :={f "(z);ze V}.
U;™ = {2; 3 a neighbhv of z, with dist{V,,, Suppu} — 0 whenn — oo}
ThenK,™ :=P?\ U;.

Definition 4.1 The backward Julia setJ = J;~ is defined to b&K = = 0K, .
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It is clear thatf (K ") =K, f }( K)o K—, fd")>J-,f(U)DU"
andf~{(U-)cU".

Assume thaf is s— hyperbolic. Let §f), 1 < k < ¢, be the basic sets in
S We will consider the corresponding unstable sets

WY(SK) = {y; 39 = (Yn)n<o, @ prehistory ofy = yo, such thad(y,, Sf) — 0}.

Proposition 4.2 Suppose f is s hyperbolic. Then K = Uz s WY (R) U S =
WHY(S,) U S. More precisely, for arbitarily small R> 0, Uz .5 Wg (X) contains a
neighborhood of Sin WY(S,). In particular, K- NS, = (.

Proof. Let x ¢ W'(S) U S. Then no prehistory ok converges td5,. So all
prehistories cluster only o, U . Therefore sinceS; is attracting forf =2,
they converge t&. And the same holds in a neighborhoodxofHenceK ~ is
contained inW'(S) U S. The inclusionWY(S;) U S € K™ is clear.

Since S has the local product structure, see Theorem 3.5, Theorem 2.5
implies that WY(S;) = Uz .gWY(X). Indeed S is completely invariant so
KNS =0. O

Corollary 4.3 Assume f is s hyperbolic. Then the complement of Kn P? is
a domain of holomorphy. SoKis connected.

Proof. Except for a finite set of points i, there is a possibly singular holomor-
phic disc (a piece of somé&/Y(X)) through any point irk —, which is contained
in K. It follows from the solution of the Levi Problem iA? thatP? \ K~ is a
domain of holomorphy. Henck ~ is connected. O

We want to describe more precisely the Sat¥S!). Recall that we have an
ordering among the¥)).

Theorem 4.4 Assume f is an-s hyperbolic map. Then WS{) N W”(Si) = S{
If S] is minimal, then W(S]) \ S/ is contained in the region of attraction 0$,S
W“(S{)\W“(S{) C . The set V\?(S{) is relatively openin JAIsouxesiWRS,(x) =

Jr, the union of local stable manifolds, R< 1 contains a neighborhood of{S
inJ.

Proof. We know by Theorem 3.4 and Proposition 4.2 thé¥(S;) = Uxes, W5(X)
and WY(§) = UgzcgWY(X). Hence for eachj, WS(S]) = upesi-ws(p) and
wu(s)) = UXGQWU(X)- Letp € S| andq € é{ Assumex € W3(p) N WHY(§).
Notice that we can replace by a forward iterate ok. Hence we can assume
thatx € W3(p), the local stable manifold gb. We want to show first that is
recurrent.

Let B be a ball containingk. Then B will contain a discA intersecting
WS(p) transversally. Since periodic orbits are denseSjn (see Definition 3.2)
we have thatA will also intersectWg(p’) transversally, wher@’ is a periodic
point in S{ By topological transitivity and expansion, we can assumeftfian)
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is close toWu r for arbitrarily largem for any k. On the other hand, we have
a prehistory ofx X for which the distance betweeq andgx approaches 0. By
the contraction in the stable direction it then follows that for sdmé'“m(A)
will intersectB. Sox is recurrent. This proves thWS(Sl) N W”(Sl) =S

Suppose‘Sl is minimal for the ordering>, andp € W“(Sl)\sl We want to
show thatp is in the domain of attraction di. Let C denote the set of cluster
points of the forward orbit op. ThenC is contained in the nonwandering s€t,
cannot intersec. If C intersects two separa@, C must contain points that
are not in§; U &. HenceC can only intersect ongy. If k #j, this contradicts
that S} is minimal, if k = j, this contradicts thaWs(S]) N W'(S}) = S]. So
necessarifyC C &. Hencep is in the region of attraction fo%.

Next, supposgyg € WU(S{) \ (S U W”(S{)). Note that any such point must
have a preimage in the same set. Hence we can find a preh{giofy<o of po
in this set. The cluster points must be nhonwandering and cannot int&sest
must be in somey.

If k #j, then W”(Si) clusters aﬁf. This contradicts that for smakR, an
arbitrarily small neighborhoot) of S/, uiegi-wgg(f() \ U is a compact subset of

the region of attraction df and thawieéiwu(i() contains a neighborhood S{

in W”(S{). (See Proposition 4.2.) Henke=j, sopg € W“(S{), a contradiction.
By Proposition 4.2py € W' for somex e élk
We prove next that ifS{ is minimal, thenWS(Si) is open inJ. Consider
uxesi-wg(x) =F, the union of local stable manifold® << 1. ThenF is closed
and we want to show it contains a neighborhoodeBfin J. If not there is
x € J arbitrarily close toS{, notin F, sayx € WS(p), p € Sf. By Theorem
3.5, the orbit{f"(x)} cannot remain close t8!. The distance froni"(x) to §1
can increase only if the orbit follows an unstable manifold of a poirlinBut
we have seen thaW“(S{) enters immediately into a basin of attraction. This is
impossible for{f"(x)}. O

Proposition 4.5 Assume f is s hyperbolic. The set K is an attractor for f in
P2\ S, i.e. {f"} converges uniformly on compact setfi\ S, to K.

Proof. Fix a neighborhoodJ (K ~) and a neighborhool (S,). There exists an
integerN > 1 so that isx € P?\ (U (K ~)) andn > N, then all preimage="(x)
are inV (). Hence for anyx € P2\ V(S), n > N, f"(x) € U(K ™). O

Remark 4.6The Julia sefl is also an attractor fdr—1 in PZ\S), in the following
sense. IB(x, r) is a ball disjoint fromS, then ¢ ~")(B(x, r)) converge uniformly

to J. The analogy with non maps can be continued. The attracting point at
infinity, p = [1 : 0 : O] for the Henon magh = [z2 +ct? +awt : zt : t?], plays the
role of §.
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5 Positive closed currents ond and K.
5.1 Invariant currents on K

We first introduce a class of invariant currents supportetKonand study their
intersection withT .

We recall first the definition of the direct image or push forward of a current.
Let R be a current on a smooth manifol. Assumeg : M — N is a smooth
proper mapN a smooth manifold. The direct imageR of R is defined by

<g:R ¢ >=<R,g"¢> (1)

for any test forme¢. Observe thay, preserves the dimension of the current, i.e.
the type of the forms, g*¢.

Similarly we would like to to define the pull-back of the currédbn N by
the equation

<g'R ¢ >=<R,g.0> (2)

where¢ is a smooth test form angl.¢ is the current defined in (1). This works
if ¢ is a diffeomorphism, in fact.¢ = (¢~1)*¢, so is a smooth test form also.

This works also well ifg is a finitely sheeted unbranched covering. In this
case

k
g0=> (g7 )0
j=1
Wheregl_l, e ,gk_1 are the local inverses af, so is also a smooth test form
which can hence be paired with

Unfortunately, we will use mapg : P> — P? which are holomorphic of
degreed > 2 and are always branched.

If Ris a closed, positive (1) current onP?, then7*R = dd°u whereu
is a plurisubharmonic function o@3. We definef *R by the equationr*f *R =
dd®(u o F) ([FS3]). LetZ =f(C) be the branch locus df, hereC denotes the
critical set. Then

f:P2\f1(2) = P2\ (2)
is a finitely sheeted covering map ahtR is classically defined as a current on
P2\ f ~1(Z) using the relation

<f'R,¢ >=< R,f,R > .

The two definitions coincide of#? \ f ~1(Z). WhenR gives no mass t@ then
f*R as defined irfP? is just the trivial extension t@? \ f ~1(Z).

For a positive currenR on P? we have supRR = f (supR) : The fact that
supp.(R) C f(supi) is valid for all currents. Suppose = f(y) € f(suppR)
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and let¢ be a positive form supported in a neighborhoodxofThenf*¢ > 0
neary and< f,R, ¢ >=< R, f*¢$ >> 0. Sox is in the support of.R.
Recall also that for a positive closed, () currentR on P? the masg|R|| of

R is given by
IIR]| :/R/\w.

It is possible to choose a plurisubharmonic functicin C2 satisfyingu(\z) =
cin|A| +u(z), with c = ||R|| anddd®u = 7*R. See [FS3].

Claim 5.1 A potentialv for 7*(f.R) is given by
v(2) = § YoF )=, U(z) counted with multiplicity.

Proof. Obvious. O
Observe that for a positive curreRton P> we have the formula

f.f*R=d°R. (3)

Givenf € .74. We assumd is s— hyperbolic on{2. We consider the set
. of positive closed (11) currentsS on P? with ||S|| = 1 such thaf,S = dS
and support ofS is disjoint from the support of: which is equal tdS, (sincef
is s— hyperbolic).

Theorem 5.2 Assume that f is-s hyperbolic. The set”” is a nonempty convex
weakly compact set. The currents.#1 are supported in K.

Proof. Let R be any positive closed currentR|| = 1, with support disjoint
from S,. Such currents exist. For exampie = ﬁ% where [C] is the current
of integration on the critical set of. We can assume that supgs disjoint
from an open set O S such thatf %(U) cc U for some positive integer
k. Consideroy = % 161 fannR. Let o be any limit point of the sequencsy.
Sinceoy — =24 = O(2) it follows thatf,o = do. Sincef (P2\ U) ¢ P2\ U the
support ofc is disjoint fromU. If R is a positive closed (1) current, then the
mass off.R is the same adx the mass oR:

/f*R/\w:/R/\f*w

andf *w = (degree of fy + dd°u whereu is a Z > function onP?. SinceR
is closed,[ R A dd®u = 0.

We prove next that the support of any elem&nin . is contained irkK —.

Fix xo ¢ K~ U S,. All prehistories ofxg cluster only onS,. Define ¢n(X) :=
maxgef‘_n(x)dist(sz,y). Given e > 0,dist(xo, ) > 2e¢, there is anng such that
for n > ng, ¢on(X) < €. By continuity there is ane > r > 0 such that for
X € B(Xo,r), on(X) < €. If © is a test form with support iB(xg,r), S has no
mass on supp()*(©) whenn > ng, hence< (f"),S,0 >=< S, (f")*© >=0
so< S,0 >=0 since {").S =d"S. It follows that supf® ¢ K~. Consequently
. is compact.

The convexity is clear. O
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Example 5.1 [z : w: t] = [2% : w9 : t9]. ThenK~ = {zwt = 0}.

The only positive closed (1) currents supported bl — are of the form
alz = 0] + plw = 0] +~[t = O] ([Fe]). So the elements o are of the form
above, witha > 0,5 > 0,7 > 0,a+ 3+~ = 1. We will need some estimates for
the mass of the push forward of a current.

Proposition 5.3 Let be a positive close(l, 1) current in an open set U d#2.
Letx € Z,>°(U). Then there is a constant A (dependingdnand a constant C
depending on f such that

(FMxt
IF=gn I < Ix7ll + AC]7].
Moreover f*:;ﬁT | = [ xTAT.If 7 is arelatively compact region in a Riemann

LTl = [rAT.

surface R and [k has no mass ofir, then|| 5

Proof. Let F be a pull back of to C3. There is a constar@ such that

1

log|z| - C < $Iog|F”| <log|z| +C.
So
ny*
(fd)n” = w +ddCuy
with —C < u, < C. Hence
fM(xr fM*w
((;rf ),w> = <X7’,( d)”

< xT,w >+ < x7,dduy >

< xT,w >+ < ddT, Uy > .

The estimate follows.
The second statment follows from

£ (x7) f'(x7)
I = <>
fM*w
= <XT,( d)”
= < x7,dd°G, >

= < dd%x7),G, >

and sincey has compact suppordd®(y7) has measure coefficients. Hence

f*"fj’ﬁT)H —< dd®(x7),G >=< x7,dd°G > . HereG,, G are local potentials.

The last statement follows easily. O
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Proposition 5.4 Letf € .74, d > 2, and let R be a positive closétl, 1) current

in an open set UC P2. Lety) € #;(U), ¢ > 0. Define R := {:0R) The
sequence R— Oif and only if c:= [YRAT = 0. If ¢ # 0, all subsequences
have limit points and all the limit points are honzero positive closed currents of
mass c. If UN'S, = 0, then the limits are supported on'K MoreoverdR, and
J0R, converge to zero in the strong sense of measures.

Proof. We show first that||R,|| converge to< ¥R, T >=: c. By definition,
[Ra|l =< Ra,w >=< ¢R, L2« > We know from Proposition 5.3 thdlR, |
will be bounded. We can assume thatis contained in a canonical coordinate
chart. So(f:j# = dd°u, whereu, are smooth plurisubharmonic functions con-
verging uniformly on compact sets to a functionsatisfyingdd®u = T ([FS3])).

We have

(") w

n > = < YR,ddUu, >

= <dd“% AR, Uy >
— <dd4 ARU >
= < ¢R,dd°u >

= <yYRT>.

< YR,

Hence any weak limit of R,} has mass. In particular,R, — 0 if and only
if c=0.

Assumec # 0.

Let o be a cluster point of R,}, o = limk_, o Ry, . We prove next that
is closed. It suffices to show thatr = 0. Let ¢ be a (Q1) test form and let
X € £,°(U) be a nonnegative functiory, = 1 on supp().

Then

<do,p> = <o,0p>
= lim <R,,0¢ >
k— o0
= kIim < ORy, 0 >
Using thato commutes withf * and Schwarz’ inequality, as foréhon maps
(IBS2]), we get

\/%A%I
_ \/f*n((;ﬁR)/\aqﬂ

(f")*(99)
\/wRA T'

[ oRana
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= &l [urnony
= &l [owRnanye
= &l [ovnratye
< d—ln|/R/\8w/\i51/)|l/2

x| XRA (" o A T 0|2
supp

fn R —
— dn/2|/R/\a¢/\'a¢\l/2|/( )(X )/\dz/\¢|l/2

We have seen that the mass#:0®) is uniformly bounded, (Proposition 5.3).
Hence we have shown thals = 0. Notice that the above inequality holds
uniformly in ¢. Hence we also have shown tHeiR,|| = O(dn%), hence goes to
zero whenn — oo.

If ¢ is a test function< 90R,, 0 >= & < 90 AR,0(f") > .
Hence||00R, | = O(&) — 0 asn — cc.

AssumeU NS, = 0. If xo ¢ K~ and§ is supported neaxp, support{")*6 is
arbitrarily close toS,, so < (f").(¢¥R),8 >= 0, for largen and if ¢ is any limit
point of R,, we have< o¢,0 >=0. O

Remark 5.5If yRAT gives no mass t§,, then cluster points oR, := (=R
are supported oK ~.

Proof. Let e > 0. Then there exists); € Z>°(P?), ¢y > 0, ¢y = 1 on a
neighborhood o5, so that< ¥19¥R, T >< €. Using Proposition 5.4 it follows

that any weak limit of{f*n“fjilnwm} has mass< e.

On the other hand, by Proposition 5.4, any weak limit{ "((1_(1",/1’1)‘”)} is
supported orK —.

Hence any weak limit of% has no mass of? \ K. O

Corollary 5.6 Let R be a positive closed, 12 current in an open set U df.
Lety € €>U), ¥ > 0. Assume{o; = %} converges to SThen if

0 € ¢,°(V) is a test function and u is a continuous plurisubharmonic function
on V, some open set, #dd°u, o >—< #dd®u, S > .

Proof.

< 6dd°u, o; > < u,dd®(fo;) >

<u,dd®0 Aoj >+ < u,0dds; > +2 < u,d®d Ado; >

SO
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< u,dd°0 Ao >
< 6ddu, o > 0

lim < 6dd°u,o; >

Corollary 5.7 Assume fe .77, is s— hyperbolic. Let $ be a minimal set. There
is a positive closedl, 1) current o supported on W(S}) U S, |o|| = 1, fuo =

d - 0. In fact o can be taken to be a multiple of a cluster point of the sequence
on = F B"“ [“DI \where D is any local unstable disc centered at x for some

% € Standy > 0|s a test function vanishing in a neighborhoodf, 1 (x) > O,

Proof. We can apply Proposition 5.5 to the curréht [D]. Let G be a contin-
uous local potential foff, i.e.dd°G = T. Then< T,+[D] >= [ ¥dd°G. This
integral is not zero because® were harmonic oD, then by ([FSZ])fn will

be normal, buD is an unstable disc and this is impossible. SIWé(Sll) US
is closed, see Theorem 4.4, we get a cureentith the required properties.

5.2 Laminar structure on J for-shyperbolic maps

We want to show that locally od the currentT is an integral of currents of
integration on stable varieties (a laminar current). For that purpose we first show
that T admits a transverse measure on the stable set of a bas®&,set. on
wW(s)).

We introduce some notation and recall some notions.

Letf € .77y, d > 2, be ans— hyperbolic map an®] a basic set of unstable
dimension 1. LeB C S| be a flow box centered at a poiptof a minimal basic
setS]. It can be described as follows:

We can assume th& is relatively open inWs(S}) and is homeomorphic to
E x A, whereE is contained in a holomorphic disé; and A, is a holomorphic
disc. There is a homeomorphism= (m1,72), m : B — E % Ay, such that for
X € E C 4, w;l(x) is a local stable manifold of a point i which is a
holomorphic graph over\;. We can assume that is the restriction tdB of a
holomorphic projection and hence is defined on a neighborhod® bt 7, is
just continuous, we will identifjB andE x A,.

Given two points(, ¢’ € Ay, there is a natural mape ¢ : 7, 1(¢) — 7, }(¢’).
The pointy¢ ¢(y) is determined by the relatiom (x ¢ ¢(y)) = m1(y).

Assume that for eaclj € Aj, u¢ is a Radon measure orgl(g). Such a
family is said to be a transverse measure if and only¢if= (x¢/ ¢)«pic i.€. pier
is equal to the direct image of, under the map. ¢.

Given a positive closed (1) currentr on a neighborhood of a flow box, we
define for almost every € A, the slice ofr for 7, on 772‘1((), i.e.<T,m, ¢ >as
follows. If u is a potential forr, then< 7,7, { >= ddc(u‘ _1(0). It is a positive
measure. The slice is defined for thasdor which Upn i is not identically
—oo. If u is continuous, which is the case for the curré’r;tthen the slice is
always defined. The slicing formula ([Fe]) in this context asserts that for a test
function 6
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<TAId¢AdE, 0 >:/ <0,< 7,72, >>dA(C)
where \ denotes the Lebesgue measure/bn

Theorem 5.8 Let f € .7y, d > 2, be an s-hyperbolic map oi?. If B is a flow
box around a point in a minimaI{Sas described above, then =< T, 7, >
is a transverse measure on B and

(1) T = / [Vy]dico(y)

where[Vy] denotes the current of integration on the local stable maniiﬁqla(y) =
[Vy] and (o is any point inA.

Proof. We prove thafu: :=< T, m,{ > is a transverse measure.

Let D, D’ be two relatively compact open sets in transverse did¢s\’, and
corresponding to each other under the map ¢ i.e.D C 7, }(¢), D’ € m, X(¢’)
andD’NB = x¢ ¢(D)NB. The mapy, ¢ is not defined on the whole disc, only
on the intersection withVs(S}). We want to show that

p1¢(D) = per (D).

The idea is to use the fact that if one restricts¥s(S!), f"(D) =: D" and
f"(D’) =: D/ are very close though they have been expanded in the unstable
direction. We can writd®" = UD" wheref,™" : D" — D; C D is well defined
and theD/" are disjoint.

We know that ifG is the Green function forr*T thenG(F") = d"G. We
identify D with a section oveD in C3. We lift D" by applyingF" to the lift
of D and identifying withf". So if f ™" is defined we geG(f;™") = G/d". It
follows, using the change of variables formula, that

i/ ddCG:/ (fi‘”)*(ddCG):/ dd°G.
d" Jor or |

Summing oveli, we get

v, |
— dd°G) = | dd°G.
dn f"(D)( ) D

Let pe =< T,m,( >.

Let X = f"(4), X}, := f"(4’). Let x be a test function orE,, with value
one onD,, and supported on a small neighborhoodafn WS(S!) in %,. Since
(Dn, Xn) and O/, X)) are close and we have uniform expansion, we can assume
that there is a functiony’ close toy in 2 norm with the same properties with
respect to D/, X/). Because
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dd°’G < /decG

/ dd®xG

/ dd®\'G + evol(D/.)

Dn

/X’ddCG +evol(D})

< dd°G + 2evol(D})
Dy

if x has support close enough . Henced" ¢ (D;) = d" (D)) + 2evol(Dy,).
So since volp/) = O(d"), (see Proposition 5.4) we gat(D) = uc(D’) + o(1).
But n can be chosen arbitrarily large, henegD) = ¢ (D’).
i.e. {uc} is a transverse measure.

We prove now thaT is laminar onWS(S{) nearS{, S{ minimal, i.e. that the
representation formula given by the theorem is valid.

The slicing formula forT in B gives that for a test functiof

<TAId¢Ad(, 0 >= / <0,< 1,2, >>dA() = /(/ 0d ¢ (y))dA(Q)-

Since the measureuf) is transverse, we get thap := (m1). < T,m,( > is
independent of. If we identify T Aid¢ A d¢ with a measure, Fubini’s theorem
gives that

(1) < (T ATd¢ A D), >= / ( / )

Hence< T,0id{ Ad( >= fE(fwfl(y) OdA(())duo(y). So< T,0id¢ Ad( >=

J < 6id¢ Ad(,[Vy] > dpuo(y). Perturbing the projectiom, we show that this
identity holds as well for all (11) test forms. Henc& = [[Vy]dpo(y). O

Remark 5.9We use the same hypothesis as in Theorem 5.9ULke a relatively
open set inWs(S}) (and hence inJ) on which some&" is a homeomorphism
(whereS! is minimal), so thaf"(U) = B, a flow box, centered at a point & .
Furthermore we assume thatand A are disjoint fromuUiLf -I(C), whereC is
the critical set. LetA be a disc cutting) such thatf"(ANU) is a level set of
m, in B, cutting all acros8 andf" is 1— 1 on A. a. We have

1
dn

So using the functional equation far

(")
dn

dpa = dd%(Gja) = dd°((G o f")4) = [dd®(Gjtnia)])a-
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|
c
I

(") T/d")y
(") Tig/dMu

- [tslanomby
/ (F") [Vy]dd G 5
/ (W, 1d1.4(y).

HereW, denotes the preimage d, underf".

5.3 Convergence results for currents on J

Theorem 5.10 Letf € .74, d > 2, be an s-hyperbolic map of?. Assume that

Si is minimal. There is a positive closddl, 1) current o supported orW”(SD
satisfying fo = d - o, ||o|| = 1, and a neighborhood U of{Sin P2 with the
following property: If D CC R is a relatively open subset of a Riemann surface
R in U, R is transverse to the stable direction at every point in R, and Tr

has no mass oD, then(f ([DD) converges tq/ D A T)o.

Proof. We leto be given as in Corollary 5.7. In particular the proof will show
thato is unique. Because of Proposition 5.4, it suffices to consider the case when
R is a local graph over an unstable manifold, transverse to the stable direction
onRNJ. Observe that iR does not intersect, then *([DD — 0. Hence we can
assume thaR is a local graph over the unstable dlrectlon.

We want to prove that iD cC RandD’ cC R’ are two such regions with
JDAT=[D’AT, then the limits of

(D) f'(D’)
9 and 4

exist and are the same.

Assume first thaD andD’ are two such regions cutting across the flow box
B andD NJ, D' NJ C B. Denoteay, = fnd(f’), ol = fn(Dl).

We want to show that, — o, — 0 weakly. By the contracnon in the stable
direction, the set$"(D) N W5(§1) andf"(D’) N WS(Sl) get closer and closer.
The areas of "(D) andf"(D’) are bounded above b@d" and bounded below
by c:d", (c; > 0) by Proposition 5.3. Fix & ¢ << 1. LetK cc D, K’ cc D’
be smaller regions so tha},, T <€, [y, T < e with Tjg having no mass
on 9K, and similarly foroK’. There is a fixed > 0 such that fon sufficiently
large and for everx € f"(K) N J there is a disc of radius, A(x,r) c f"(D)
which is a graph over a similar disa(x’,r) c f"(D’).

Let ¢ be a test form in a small neighborhood §f. We can assume that the
support of$ has diameter less thafy. Thenf"(D) > u4; D f"(K N J) and
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f(D") > U4 o f"(K' N J) with 4 and A such thatd; is a graph over|
close to4.
We then get

(D)
dn ’

where| < Aq, ¢ > | < W < 2¢ for largen.

We have a similar formula fo% and 4, AJ-’ are uniformly close. It

follows thato, — o/, — 0 in a neighborhood oS{

Since this is true for all subsequences, using that the limit svgpf re-
spectively{o},} is forward invariant and that positive closed currents have no
mass at isolated points, we get that— o/, — 0 on P2,

Hence
/D AT

< ¢>:d—1nZ<Aj,¢>+<Am¢>

ny*
Hm/DAU)w
n n

d
. /f
= |im
n
= Iim/an/\w
n
= Iinm/aa/\w
/D'/\T.

By varying the flow boxes and lettinB’ be a slice ofr,, we see thall g
agrees with the push forward of the transverse measure to

Next we consider the case wheédenJ andD’NJ are contained respectively
in two flow boxesB andB’, but not necessarily cutting all across. We can cover
a neighborhood/ of S{ by a finite union of not necessarily disjoint small flow
boxes.

We choose the flow boxd® by using small disc8 in local unstable manifolds
for which 9§ has 0 transverse measure, and then the baBeist N J.

Fix a 0< r << 1 butr much larger than the diameter of the flow boxes.
We will define a refined collectioiz” of flow boxes: IfB’ is a flow box closer
to B thanr, there is a natural projection d@’ to the local unstable manifold
containingd. We can letB;, B, be the two flow boxes iB obtained by taking
as base the projection &', 7(B’) N § andé \ 7(B’) respectively.

We allow all flow boxesc B which are intersections of such subsets. Then
¢ contains finitely many flow boxes.

By having the original flow boxe8 extended in the stable direction, we
may assume that ik € f"(R) N B for some flow boxB, thenf"(R) contains
a neighborhood ok cutting all across som#fow box (x might be too near the
"top” of B for f"(R) to cut acrossB).

*

"D
an Nw
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Fix 0 < € << 1. Let A. be a neighborhood aiD in D of width e. Since the
mass ofT g on A, can be chosen arbitrarily small, it follows that the masgﬁﬁ)
is also arbitrarily small (see Proposition 5.4). Fix such that iff **(D \ A,)
hits a flow boxB; in x, thenf °*/(D) contains a disc througk cutting all across
someB;.

By transitivity off on'S], we can choosdl such thaf "N (D \ A.) hits all the
flow boxes for anyn > 0. In the discsD, D’ we have a pairing between regions
which end up as a union of the same number of graphs in the same flow box, we
know by the first step that these pieces give the same limit, we cover in this way in
D andD’ aregionR = UD;, R’ = UD/ such that/ RAT = [ R'AT > g where
« is a fixed constant. Indeed RAT)d™™N = [RA(FON)*T = [fONRAT >
a > 0 becausd™*NR cuts all the flow boxes.

We continue the process by considering the imag® oD’ under the map
f200*N) 'we have new regions iD \ R, D’ \ R’ which end up as graphs in the
same flow box. We pair them extending the regions that are already paired.

In a finite number of steps we exhaust arbitrarily large fractiong @f A
(D \ A) or of [T A(D’\ A)). Then the remaining regionB,, B/ satisfy
JTAB: = [TAB. = 0(1) (going to zero wherr — 0). So we get that
for any test forme

| <ond>— <o, ¢>|=0().

Sincee is arbitraryon — o), — 0.

Instead of two discs we consider the family of curreﬁ%@. We want
to show that the sequence is convergent. We consider an anAuliisD as
before and observe thatfif"(D \ A.) intersects a flow boB andm > ng then
f™(D)NB continues across son. We can apply the above procedure to the sets
dm—"ef™(D), (i.e.d™ ™ copies off™(D)) andf™(D), my > mp, > N +ng
where ¢ is the number of pairings needed to exhaust mos{ &f A T. After
dividing the sequences by we get that% andf";# are close in the sense
of currents. )

It follows that f*d(nD) has as limitrc which must necessarily b O AT)o. O

Corollary 5.11 If 6 is a test function and D is as in Theorem 5.11, the sequence
f(0[D])

dn
Proof. We can replac#[D] by a finite sum of the typ&  ¢;[D;], ¢; constants

approximating? on D;. Theorem 5.10 applies because we have an a priori esti-
mate of the errors under push forward, Proposition 5.4. O

— Co, c:/o[D]/\T.

5.4 Convergence results for currents on J

Theorem 5.12 Let q be a minimal basic set for an-s hyperbolic map f &
T4, d > 2. Let D cc R c P? be a region in a Riemann surface, FD
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intersecting $ at a point a Then[D] is a closed current in some open set U
We assume U is contained in a coordinate chart. het 0 be a test function
supported in U Assume Dsupfp) is not contained irWU(Si). We suppose that
the tangent space of D is close to the stable direction at every point ©fJD
Let u be a local potential for a current (as in Theorem 5.11) associated t_lp S
in U. Then the sequence of currents:= % converges to cT on the open
set2 :=P?\ (S Ui WS(S{)) where c= [, pdd°u.

Proof. We first prove the result for a (1) currentr which is positive closed
in an open seV and such that = [[D,]dv(a) whereD,, are discs and a
probability measure, and the disBs, are graphs over a diddg, (w = h,(2)).
We will also assume that the potential v(z, w) = [ log|w — h,(z)|dv(a), such
that ddv = 7, is continuous inV. We assume that extends in this way to a
neighborhood oV .

Let A be a disc inf2. Let # be a nonnegative test function supported in
£, 0 = 0 on a neighborhood abA. Define oy, = fn(f,ﬂ We assume that for
some largen, f"(A) satisfies the condition of Theorem 5.11. The conditiorfon
implies that ¢,) converges t@’c wherec’ = [ T A 0[A] (see Corollary 5.12).

We then havec %, 0[A] >=< p7,0n >, Which converges to
¢’ < pr,o >, because the potential of is continuous, see Corollary 5.7. We
get, if 7 := ELLD that < 7, 0[A] >—< T,0[A] >< pr,0 > .

Observe that the convergence is uniform with respect @s soon ag™(A)
satisfies the conditions of Theorem 5.11.

We next show that, —< p7,0 > T. First we show that|(m||) is bounded.

We observe thal f(*;ﬁ" | = 1. Indeed

flw flw
H dn || - < dn y W >
ny*
= <uw, (fd)n“’ ~=1

If Sis the limit of some subsequenc%iﬁﬁ), we have

nj \*
e,
(f")sw
dn
= <pr,S>.

7o |

= < p,

The last equality is a consequence of Corollary 5.6, since the potential of
is continuous. Hence|t, ) is bounded.

We can fatten {A] to a current /A] such thatf[A] has continuous coef-
ficients. If [A] = 1),,<10002 A dZ in local coordinates; we can takeﬁI =
1, <1x(z)dz A dZ; where is a positive test function.
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Let 7 be a cluster point of the sequengein P2. We get from the previous
discussion thatr ‘and < p7,0 > T coincide on forms of type9[A~]. We do
as observed above. The vector space generated by such forms is dense in the
space of (11) forms with continuous coefficients ne&t. Hence 7~ coincide
with < pr,o > T nearS}. The cluster values of the sequeng} are invariant
underf*, since all of them coincide ne&, we have that- =< pr,oc > T in
0.

When r = [D] we cannot say thak pr,0, >— ¢’ < pr,oc > because
we only haveos, — o weakly, and the potential of is not continuous. We
fattenD into 7 = [[D,]dv(e) in order thatr"has a local continuous potential.
Under €™)* each discD,, is expanded along the stable manifold and they get
closer and closer ned!. Let fDa pdd®u =: c(a). We can assume the(a)’s
are arbitrarily close ta. So if p7, — €T then because thd(,) have the same
behavior(f”)*d(inp‘)a) — c(a)T. The @) get closer, the limits are the same up to

multiplicative constants and in particuldr ¢C) _, cT. 0
Corollary 5.13 For a € S}, Ws(a) is dense in W(S}).

Proof. Let D be a disc centered at and contained iW=3(a). Let u be a local
potential ofe, u is pluriharmonic out ofVY(St)US. The discD is not completely
contained inW!(St) henceu is not identically—oc onD. Let , = %. We
know thatr, — cT, ¢ # 0 in 2 = P2\ (S Uiz W(S))), sinceWs(S)) j # 1 is
disjoint from W5(S}) we get the result. O

5.5 Structure of the invariant curremt on WY(S}).

The structure of the current which is supported oiVY(S}) U S, is not neces-
sarily laminar. Indeed the unstable manifolds might intersect and hence do not
give a foliation ofw!(S!). We show here that is locally an integral of analytic
graphs. We first describe "flow boxes” alY(S?).

Proposition 5.14 Let X° € S!, a minimal hyperbolic set for an-s hyperbolic

map f. There are neighborhoodd = A;xA; € AjxAf, = A’ inlocal coordinates
of x0 such that the local unstable manifolds intersectingare graphs over the
Ay axis with values inA5.

Proof. We first observe that the unstable direction and the stable direction never
coincide at a poin € S! since they span the tangent spacexaSince the
splitting of the tangent bundle is continuous, we get a positive angle between the
stable and unstable directionft and uniformly inx°.

We can assumel = A; x A, where A; is along the stable direction af.
Using the graph transform, and the construction of unstable manifolds we see
that the local unstable manifolds are graphs axer O

Let A(A1, A;) denote the space of holomorphic maps frdmwith values in
Ay. We give this space the topology of uniform convergence.grerA(A1, Ao)
we will denote byV, the graph ofg and [V,] the current of integration oW,,.
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Theorem 5.15 Let f be an s-hyperbolic map @?. Let X° € St, a minimal basic
set. In the notation of Proposition 5.15 there is a "flow boA” and a positive
measureX on A(Aq, AS) such that onA, o = f[Vg]d)\(g)m, where \, are the
local unstable manifolds intersecting.

Proof. Let A = A; x A, be the neighborhood containing, introduced in
Proposition 5.15. Let\” = Al « A, where Al cC A;. We defineC (A4, A) as
the space of curren® in Ay x A, which can be represented Bs= [[V,]dp(g)
wherep is a finite positive measure ol(A;, Ay).

Let g € A(Ag, A). There is a uniform bound on the derivative pfn Af.
It follows that there is a consta@ such that ifR € C(A; x AY),

1
SMass) < Ry || < CMassp). (1)

We next observe that iR, is a sequence of currents @(A; * Aj) which
converges in the sense of currents to a curkeimt A« A for someA,” O AL,
then the restriction oR to A” is in C(A] x A}) : From (1) we deduce that
the corresponding measurgs have bounded mass. We can assyme- p, a
positive measure. Since the problem is local, we can assume we @%and
that Ay x A, is the unit polydisc. Letn(z,w) = [log|w — g (z)|dpn(a) be
the potential ofR, in Ay * C. Forzy € A; let 6, : A(A1, Az) — Ay be the

evaluation atz, i.e. 05 (g) = g(z). We want to show thati, converges i“‘lloc

to u(z,w) = [log|w — g(z)|dp(g). The functionu,(z, -) is the potential for the
measure ). (on). If pn = p, (0z)«pn — (03)«p, the support of 4,).pn are
contained in a fixed compact. Henog(z, -) converges to the potential of the
measurey).p, which proves the claim.

As a consequenck = [[V,]dp(g).

The currents is obtained as a limit o?*nd(—nm] whereD is a Riemann surface
in the unstable dinrection. As in Theorem 5.11 we can consider an anAuhesar
dD, the mass o% is small (Proposition 5.4)for large and if f"(D \ A.) hits
Ay x Ay atp for largen, then there is a component B¥(D) N (A * A5) which
is a graph overd; and containg. It follows that f*n(?) restricted toA; x A} is
approximable in the mass norm by currentsdfA;, A5). Hence, by the above

argumentsg = [[V,]dA(g). 0

6 Invariant measures on minimal invariant sets

Letf € . 774 be ans— hyperbolic map. For ang € . (see the definition before
Theorem 5.3) we can define the measwye= T A S. The wedge product is well
defined sincel has locally a continuous potential. It follows from ([FS4]) that
vs is a probability measure.

Let o be the current supported &¥(S}) U S in Theorem 5.10.

Proposition 6.1 Definer = T A 0. Thenv is a forward invariant probability
measure supported on'S
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Proof. We prove the invariance. Let be a test function. Then

<TAo,f%¢ >

*

d
= <%,f*(T¢)>
(f”) w

<fuv, ¢ >

No, T >

= I|m<—f((

f*a (f“) w
d’ dn

)p) >
o >

because the convergence of the local potential%%é*ﬁ is uniform in the above
limit. So

<fip> = <o, Top>
= <TAo,¢p>
= <v,p>.

We know thatwu(SH)nJ c St. So the support of is contained irSt. O
Theorem 6.2 The measure is mixing.

Proof. Let ¢ and ) be two positive test functions with small support in a
neighborhoodJ of S!. We want to show that

o= ([ wModn) > ([ v [ o).

/w(f”)¢T ANo

fi

fM* (T
- )7 .
f “(¢0)
dn
The currents was obtained by pushing a disc and averaging. We have seen
that the limit does not depend on the disk we start with and that the convergence
is uniform for (% (D)) in U. It follows thatoy, := = (W) — cowithc = [T A¢o.
Let G be a potential foil in a chart containing suqu
Ih =< YT, 0 >=< dd°G, Yo, >=< G, dd%op >
Using Proposition 5.5, sincéd®s, — 0, do, — 0, in mass norm we get

= <yT,
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lim 1, = <G,dd%o >c¢
<Ty,0>cC
<Y >< v, P> a

Theorem 6.3 Let f be an s- hyperbolic map in7% and letv be the measure
of Proposition 6.1. Then suppart= S{.

Proof. We will coverSll by flow boxesB; = B; ,. We can assume th& , N J
is a union of stable manifolds which are graphs over ttjeaxis.

Let D C R be a region cutting all across a flow box such that T # 0, as
in Theorem 5.11. Lef, be a neighborhood @D of width e. Given 0< e << 1
we chooseng large enough so that far > ng if f"(D \ A.) intersectsB; then
the components of the intersection fof(D) with B; extend as graphs over the
A axis (unstable direction) contained By (flow boxes slightly enlarged in the
Ay, direction).

nLet M be the number of boxe®;. There is an index(n) such that
Ik % AT > & for all largen wherec is a fixed strictly positive constant.
Hencef "(D) cuts completely acrod3 () at leastc’d" times. Sincd is transitive
and expanding, for some fixed, f""™(D) cuts across anB; at leastc’d" times.

Hencef.gJ ff*";&'?ni” > g—m Sincem is fixed, we get¢ A T)(Bj) > ¢’ We can
take the boxes ) of arbitrarily small diameter. So suppE S 0

We consider now the decomposition of the invariant measure
Theorem 6.4 Let B be a small neighborhood of a pointxSt. ThenonB T =
JIVy1dpo(y), o = [[VeldA(g) andv = T Aa = [([Vy] ALV, D) dpo(y)d A(g), where
the measurego and A are as in Theorems 5.9 and 5.15 respectively.

Proof. We have already proved the representation formulasTfdiTheorem
5.9) ando (Theorem 5.15). Sinc& has continuous potential, ;i — o then
T Aoy — T Ao, SO using an approximation to the integral we get that

TAo= /T A V,1dA(g).

If uis a potential forT in a neighborhood 0B, thenT A[V,] = dd°uy, . So

TAo= /ddcuwgd)\(g).

We consider thatl = lim v, whereuv, are the local potentials for’ c,[V,,], Ca
corresponding to an approximation g by point masses. Thedduy, =
JTVy] A [V4ldpuo(y). This proves the formula fow. O

Corollary 6.5 Assume Sis minimal. Let W', be the local unstable manifold for
the prehistoryk with X € Sf. Then W' = Un>of "(Wy'g) is dense in W(S]).
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Proof. Let D = Wy's. SinceD is not contained irs{ andW"(S}) nJ = S we
have that/ TAD =c #0.
We knowf*d(—,?) — co and support containsW!(S}), Theorem 5.10. Hence

WY is dense inWY(S}). 0

Theorem 6.6 Assume that fe .77y, d > 2, is an s— hyperbolic map. Let 5
be a minimal basic set. The support of the currerih Theorem 5.11 is equal to

WY(Sh U § with § € S.

Proof. We know from Theorem 6.4 that the supportcotontainsS;.

The support ofr is not contained ir5! because there is an algebraic curve
A which does not interse@! (see Definition 3.2). But the complement of the
support of a nonzero, positive closed 1} current is Stein ([FS4]) and hence
cannot contairA. Hence the support af must interseci.

Since the support of.c = f(supp) = suppf), then the support is forward
invariant. The transitivity of on S} implies that for any neighborhood of a
point in St, V \ St has mass fob.

We have to consider the possibility that near a pointe St the mass of
o is concentrated near an unstable manifdlfl; corresponding to a prehistory
X = (X0, X_1, . . .) but there is no mass along the unstable manifold corresponding
to another prehistory’™= (xo, X’ 4, .. .). By the invariance property all the global
unstable manifold$\g' is in the support ob. Sincef" collapses the direction of
unstable manifolds because of contraction in the stable direction, it follows that
fP"(WY') andf" (W) are along the same directions so there is also mass along
W Hence suppr © WY(S!). The support being closed, we a8l C S to get
supporto. O

7 Examples

Example 7.1Let f € .74 be defined by

flz:w:t]=[Pz:t): Qw :t):t9]

whereP, Q are polynomials of degre@ in one variable. Assume that the critical
points of P(z) and Q(w) are in the basin of attraction of attracting cycles, i.e.
P,Q are hyperbolic on their Julia setdy, Jo. If we use the inhomogeneous
coordinatet = 1, we get tha, = Jp(z) *Jo(w). The basic sets fog, are int = 1
{periodic sinks fofP } «Jq or Jp *{periodic sinks foiIQ}. We also have the basic
set int = 0 corresponding to the Julia set figr= [P(z : 0) : Q(w : 0)]. Under
these assumptionfs is s—hyperbolic. In these examples the unstable manifold
for all prehistories irS} of a given point coincide and are contained in complex
lines. SoJ~ is a union of analytic varieties.

Example 7.2Let ¢ be the Segre map fror' « P! — P2. In homogeneous
coordinatesb([zo : 1], [wo : wi]) = [2owo : Zyws : Zowr +Zywg]. Let fy : PL — P?
be a holomorphic map of degrek There isf € .74y such that®(fy, fo) =
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f o &, see Ueda ([U]). Iffy is hyperbolic, thenf is hyperbolic. In this case
S = &(Jo, Jo) WwhereJy denotes the Julia set &. The basic sets fog, are of
the form @(periodic sink)x Jo). In this case alsd ~ is an algebraic variety. In
these examples the no-cycle condition is satisfied.

Example 7.3Perturbations of these examples are quite different. Consider the
family of mappings, < ¢ << 1.

1 zt
ot = [2 - 2. 42
fE[Z.w.t]—[Z.lwt+ +ew” : t7].

There are three basic sets f8r, a circle in ¢ = 0), a quasicircle inZ = 0)
and in ¢ = 1) we get a solenoid in the region-b < |z| < 1+4, |w| < J, where
0 is small if e is small. The mag, is injective in a neighborhood of the solenoid
so again the unstable manifolds do not have self intersection and indeed there is
just one prehistory for a given point.
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