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Introduction

The problem of bounding the “complexity” of a polynomial ideal in terms of
the degrees of its generators has attracted a great deal of interest in recent years.
Results in this direction go back at least as far as the classical work [17] of
Hermann on the ideal membership problem, and the effective Nullstellensatz of
Brownawell [4] and Kol#r [21] marks a major recent advance. With the develop-
ment of computational algebraic geometry the question has taken on increasing
importance, and it came into particularly clear focus through the influential paper
[3] of Bayer and Mumford. More recently, the theorem of [8] and [20] concerning
regularity of powers raises the question of bounding the complexity of powers of
an ideal, and suggests that asymptotically the picture should become very clean.

The aim of the present paper is to examine some of the results and questions
of [3], [30] and [7] from a geometric perspective, in the spirit of [12]. Our
thesis is that much of this material is clarified, and parts rendered transparent,
when viewed through the lenses of vanishing theorems and intersection theory.
Specifically, motivated by the work [25], [26] of Paoletti we introduce an invariant
s(J) thatmeasures in effect how much one has to twist an j@éabrder to make
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it positive. Degree bounds on generatorgjoyield bounds on this-invariant,

but in generak(7) can be small even when the degrees of generators are large.
We prove that the-invariants(7) computes the asymptotic regularity of large
powers of an ideal sheaf, and bounds the asymptotic behaviour of several other
natural measures of complexity considered in [3] and [30]. We also show that
this invariant behaves very well with respect to natural geometric and algebraic
operations. This leads for example to a considerably simplified analogue of the
construction from [7] of varieties with irrational asymptotic regularity.

Turning to a more detailed overview of the contents of this paper, we start
by fixing the setting in which we shall work. Denote Byan irreducible non-
singular projective variety of dimensiondefined over an algebraically closed
field K of arbitrary characteristic, and Iéf be a fixed ample divisor (class)
on X. The most natural and important example is of cou¥se- P” andH a
hyperplane, and in fact little essential will be lost to the reader who focuses on
this classical case. However since we are working geometrically it seems natural
to consider general varieties, and in the end it is no harder to do so. Given an
ideal sheaf7 < Oy, consider the blowing-up : Bl 7(X) — X of J, with
exceptional divisol. We define

su(J) = inf{s €e R | v*(sH) — F is an ampleR-divisor on Bl7(X) }.

One hasy (J) < dy(J), wheredy (J) denotes the least integér> 0 such
that 7(dH) is globally generated, but in general the inequality is strithis
s-invariantis closely related the Seshadri constants introduced by Demailly, and
has been studied by Paoletti whéis the ideal sheaf of a smooth subvarietykof
(See Remark 1.3 below). In a general way, our goal is to bound the “complexity”
of 7 (or at least its powers) in terms of this invariant.

We do not use the term “complexity” here in any technical sense. Rather,
guided by [3], we consider various natural invariants that each give a picture of
how complicated one might considgrto be:

(0). Thedegrees oftheirreducible components ofthe zero-locus 4gfpes X
of J;

(2). The degrees of all the “associated subvarieties" of Zérbedncluding
those corresponding to the embedded primes in a primary decomposition
of J;

(2). ForH very ample, th€astelnuovo-Mumford regulariteg(7) of 7, which
measures roughly speaking the cohomological complexity;of

(3). Theindex of nilpotencyilp(7) of 7, i.e. the least integer> 0 such that
t
(VI) ca.

1 infact, itis possible fos g (J) to be irrational.
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In settings (0) and (1), one can ask also for degree bounds after having attached
multiplicities to the components in question: allowing embedded components,
this leads to what Bayer and Mumford call ¢wéthmetic degreef 7. The index
of nilpotency is closely related to the effective Nullstellensatz of &wdind [12],
and various relations among these invariants have been established ([3], [30],
[24]). In the classical situation, whe(g is replaced by a homogeneous idéal
generated by forms of degréeit is elementary to obtain a Bezout-type bound
for (0), while the main theorem of [21] gives the analogous statement for (3).
However, Bayer and Mumford observe that there cannot exist singly exponential
bounds ird for the regularity or arithmetic degree.

In the direction of (0) and (1), one has:

Proposition A. Lets = sy (7). Then
(0.1) Z s9MZ . deg, Z < s"-deg, X,

where the sum is taken over all irreducible component8esbes.7). If J is
integrally closed, then the same inequality holds including in the sum also the
embedded associated subvarietieZefoes.7).
The first assertion follows already from the positivity theorems for intersection
classes established in [16], although the elementary direct approach of [12] also
applies. The stronger statement for integrally closed ideals, while elementary,
seems to have been overlooked. We also give examples (Example 2.8) to show
thatif 7 is not integrally closed, then one cannot bound the number of embedded
components in terms af; (7).

Assume now that/ is very ample. In this setting the Castelnuovo-Mumford
regularity reg, () of J (with respect taOx (H)) can be defined just as in the
classical cas& = P".

Theorem B.One has the equalities
du(J?)

jim %Y i — su(J),
p—>00 p p—>00 p

where given an ideal shed@fC Oy, dy (Z) denotes as above the least integer

such thatZ(d H) is globally generated.

Thus thes-invariantsy (7) governs exactly the asymoptotic regularity of powers

of 7. As indicated above, this result was suggested by the theorems of [8] and

[20], which prove the analogue of the first equality for homogeneous ideals.
Continuing to assume thaf is very ample, one can define as in [3] the

codimensiort contribution adefy (.7) to arithmetic degree Qf , which measures

(taking into account suitable multiplicities) the degrees of the codimerision

irreducible and embedded components of the scheme defingt By in [3]

there are upper bounds — at least asymptotically — for this degree in terms of

the regularity, and we deduce
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Corollary C. Denote byadeéj,(j") the codimensiort contribution to the
arithmetic degree qff”. Then

k
Iimsupadeé’]fjp) - sud)

p—00 P - k!

-degy (X).

In general this statement is the best possible: for instance equality holds for
complete intersections of hypersurfaces of the same degree in projective space.
As in the case of Theorem B, the simple asymptotic statement contrasts with
the examples presented in [3] showing that there cannot be a singly exponential
bound for adely.7) in terms ofdy (7) (let alone in terms of ; (7)).

Turning finally to the index of nilpotency, one can canonically attaclyto
an integer () arising as the maximum of the multiplicities of the irreducible
components of the exceptional divisor of the normalized blow-ug oThese
multiplicities appear in a Bezout-type bound strengthening Proposition A, which
in particular gives rise to the inequalit /) < s} - degy X, wheres, =

max(1, s, (7)}. The results of [12] (and also [18]) show that7)" """ < 7
and more generally that

) (V7

r(J)-(n+p-1)
) c

for all p > 1. Note that (*) leads to the asymptotic statement
limsup, ., WL < gt - deg, X.

Motlvated by the mfluence of theinvariant in these questions, we study its
behavior under natural geometric and algebraic operations. In this direction we
prove for example:

Proposition D. Let 71, J> € Oy be ideal sheaves ol. Then one has:

su(J1- To) < su(J) + su(J2)
su(J+ T2) < max{sy(J) ., su(F) }.

Moreover, if 7 denotes the integral closure of an ided) thensy (7) = sy (7).

In view of Theorem , this result shows that the asymptotic regularity of large
powers of an ideal satisfies much better formal algebraic properties than are
known or expected to hold for the regularity of an ideal itself.

Our exposition is organized as follows. §i we define and study the
invariant measuring the positivity of an ideal sheaf. Degree and nilpotency bounds
— which for the most part involve only minor modifications to results from [12]
—are given irg2. Finally, in§3 we consider asymptotic bounds on the regularity
and arithmetic degree of large powers of an ideal.

Finally, a word about assumptions. Many (but not all) of our results do not
require the ambient variet¥ to be non-singular. However in order to avoid
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changing hypotheses throughout the body of the exposition, we make a blanket
assumption of smoothness (which in any event is the most natural situation
geometrically). We indicate in Remarks when this hypothesis can be relaxed.

1. Thes-invariant of an ideal sheaf

In the present section we define and studystiievariant of an ideal sheaf with
respect to an ample divisor.

We start by fixing some notation that will remain in force throughout the
paper. LetX be a non-singular irreducible projective variety defined over an
algebraically closed fiel& of arbitrary characteristic, and consider a fixed co-
herent ideal sheaf € Ox. Denote by

v:W=Bls;(X) — X

the blowing up ofX along.7. ThenJ becomes locally principal oW, i.e there
is an effective Cartier divisoF on W (namely the excptional divisor af) such
that

J - Oy = Ow(=F).

Fix now an ample divisor (classy on X. If s > 0, thenv*(sH) — F is
ample onW thanks to the fact that F is ample forv. In order to measure the
positivity 7 with respect toH, we ask how small one can takeio be while
keeping the class in question non-negative:

Definition 1.1. Thes-invariant of 7 with respect taH is defined to be the pos-
itive real number
su(J) = min{s € R|v*(sH) — F is nef }.

Herev*(sH) — F is considered as aR-divisor (class) onW,? and to say that
it is nef means by definition that

s - (v*H . C’) > (F-C/)
for every effective curve€’” Cc W.

Remark 1.2.Suppose thaf : Y — X is a surjective morphism of projective
varieties with the property thaf - Oy = Oy(—E) for some effective Cartier
divisor E onY. Then f factors through. Recalling that nefness can be tested
after pull-back by a surjective morphism, it follows that

su(J) = min{s e R| f*(sH) — Eisnef}.0

2 By anR-divisor on a variety we understand an element of D) ® R, Div(V) denoting the
group of Cartier divisors of. An R-divisor class is a numerical equivalence clasRafivisors.
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Remark 1.3.(Seshadri constants). Following [9] and [25] it would be natural to
define theSeshadri constarty, () of 7 with respect taH to be the reciprocal

1
su(J)

However Definition 1.1 is more convenient for our purposes, and we use a dif-
ferent name in order to avoid the possibility of confusion. Wheis the ideal

sheaf of a poinkt € X andL = Ox(H), the invariank (L, x) = ey (J) was in-
troduced by Demailly as a measure of the local positivity @t x. The behavior

of these Seshadri constants in this case is very interesting and they have been the
focus of considerable study (cf. [11], [10], [22], [1], [2]). Whghis the ideal of

a smooth subvariety the Seshadri constapts7) were studied in the interest-

ing papers ([25], [26]), of Paoletti, who considers especially smooth curves in
threefolds. Several of the results in the present note are simple generalizations of
statements appearing in and suggested by Paoletti’'s work, particularhgg5],

In the past, however, it was unclear how to use geometric methods to study these
invariants for arbitrary ideals. One of our main technical observations is that so
long as one is content with asymptotic statements for powers, one doesn’t need
restrictions on the geometry ¢f. This also motivates our study in the present
section of the algebraic properties of thinvariant. O

ea(J) =

We start by comparing this invariant to the twists needed to gengrates
customary, set

(1.3)  d(J) = du(J) = min{d € Z | J(dH)isgloballygenerated.
The following is due to Paoletti:
Lemma 1.4. One has the inequality
su(J) < du(J).
More generally,

su(J) < 4 (T7)

for every integerp > 1.
Proof. In fact, supppose thaf (d H) is globally generated. Then
v 1J@H) = Oy(v*(dH) - E)

is likewise globally generated and hence nef. Therefgie/) < d. The second
assertion is proven similarly.
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Remark 1.5.We will see later (Theorem 3.2) that#f is very ample, then in fact
su(J) = lim 46720, O

Example 1.6. (Schemes cut out by quadritakeX = P" andH a hyperplane,
and suppose thgt is generated by quadrics, i.e. tiia¢2) is spanned by its global
sections. Assume in addition that the zero-loZus- Zeroes.7) is not a linear
space. Theny (7) = 2. Indeed, the previous Lemma shows that7) < 2,

and by takingC” in (1.1) to be the proper transform of a general secant line to
Z,one sees thaty () > 2.

Example 1.7. (Irrationas-invariants) A construction used on several occasions
by the first author (cf. [6]) leads to examples wheg€.7) is irrational. This of
course also gives examples whefg.7) < dy(J).° Take A to be an abelian
surface with Picard number(A) > 3 (for exampleA might be the product
of two copies of an elliptic curve). Denote by Ndfy ¢ NS(A)r the cone of
numerically effective real divisor classes. Then, as on any abelian surface,

Nef(A) = {«a € NS(A)r | (@®) >0, (x-h) >0},

h being any ample class. But the Hodge Index theorem shows that the intersection
form has type(+, —, ..., —) on NS(A)g, and therefore Ngfd) is a circular

cone. At least on suitablg, can then find an effective cur@ c A, plus an
ample divisor clas#/ such that the ray passing througiiC] in the direction of

[H] meets the boundary of Ned) at an irrational point, i.e.

inf {s >0|sH — C e Nef(4)} ¢ Q.

Taking J = O4(—C), this means thaty (7) is irrational. Note that one can
replaceH byaH andC by C + bH (a, b € N), and so arrive at examples with
C andH arbitrarily positive. O

Remark 1.8. (Algebrais-invariants). As in the case of “punctual’” Seshadri
constants [28], it follows from a theorem of Campana and Peternell [5] that
s-invariants are always algebraic numbers. In fact, Campana and Peternell show
that if n is a nefR-divisor class on a variety which is not ample, then there
exists an irreducible subvarie® < Y such thatf, n9™# = 0. Applying this

ton = v*(sH) — F on W = Bl 7(X) yields an integer polynomial satisfied by

s =sy(J). o

Remark 1.9. (Paoletti's geometric interpretation of thewvariant). Suppose
thatY C X is a smooth subvariety with normal bunde= Ny, x, and set7 =
Zy,x. Then Paoletti [25], p. 487, shows that thévariantzy () has a simple
geometric interpretation, as follows. Consider first a non-constant magping

3 See also Example 2.8.
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C — X from a smooth curve t&. If £(C) € Y, thenf—17 c O is anideal
of finite colength inO¢, and we define
colength( f~17) }
(C-y H) ’

sy(J) = sup {
fiC—X
fozy
where(C -; H) denotes the degree of the divis6tH on C. Next, put
sp(J) = inf{s > 0| N*(sH) isnef},

the nefness of a bundle twisted by@ror R divisor being defined in the evident
manner (cf. [23], Chapter 2). Then

su(J) = max{sy(J), sp(J) }.

In fact, givenf : C — X as above, lef’ : C — W be the proper transform
of f. Then colengthf~*7) = (C -, F), and consequently,, (7) is the least
real number’ > 0 such thatg(s’"H) — F has non-negative degree on every
curveC’ C W not lying in the exceptional divisoF c W. Similarly, s},(J)
controls the nefness @ (v (s"H) — F).

For constructing examples, it is useful to understand something about how
the s-invariant behaves in “chains" of subvarieties. WKhas before, consider
then a sequence of non-singular irreducible subvarieties.

ZCYCX,

and fix an ample divisoH on X . There are three naturally defined ideal sheaves
in this setting, and we can consider the correpondiyariants

su@zx) ,» su@y;x) and sy (Zz)y);

in the third case we vieW as an ample divisor ori, and compute on the blow-up
of Y. One evidently has the inequality;(Zz,y) < su(Zz,x), and in favorable
situations the two invariants in question coincide:

Proposition 1.10. In the situation just described, assume that(Zy,x) <
SH(IZ/y). Then

SH(IZ/X) = SH(IZ/Y)-
Proof. We keep the notation introduced in Remark 1.9. It is evident that
sy(Zz;x) < maX sy Zzy), sy Ty/x)},

and it follows from the conormal bundle sequenceXONy, y|Z — N7,y —
N3,y — Othat

sy(Zzyx) < max{sy(Zzy). sy (@yjx) }
The assertion is then a consequence of Remark 1.9.
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Example 1.11. (Irrationabk-invariants on projective spacePne can combine
Example 1.7 with the previous Proposition to arrive at a quick example of a curve
C c P, with ideal sheat7 = Z¢/p-, such thats; (7) is irrational, H being

the hyperplane class. Specifically, take a very ample divisan an abelian
surfaceA, plus a curveC C X, such thaty (O4(—C)) is an irrational number

> 2, and such thaA is cut out by quadrics under the embedditig- P = P”
defined byH . [Starting with anyC andH giving irrational invariant, first replace

H by 4H to ensure thal, p is generated by quadrics, and then replacky

C + mH for m > 0 to makesy (O4(—C)) > 2.] Thensy(Zap) = 2, SO

by applying the previous example to the chainc A c P, we find that
su(J) = sp(04(—C)). Examples of curves iR® having irrationals-invariant
were given by the first author in [7]but they involved more computation. (The
present approach has the additional advantage that it actually works over any
algebraically closed ground field.) O

We conclude this section with a result giving some algebraic properties of
the s-invariant:

Proposition 1.12. Let X be an irreducible projective variety, and an ample
divisor onX.

(). Givenideal sheavedi, 7> € Oy, one has the inequalities:

su(J1- o) < su(J) + su(J2)
su(Ji+ ) < max{sy(T), su(F2) }.

IA

(ii). If 7 < Oy denotes the integral closure ¢f, then
su(J) = su(J).
For basic facts about the integral closure of an ideal, see [29].

Proof. We will apply Remark 1.2. Thus for (i), lef : Y — X be a surjective
mapping from an irreducible variety which dominates the blowings-up af
alongJ1, J. and 1 + J>. ThusY carries effective Cartier divisors,, E, and
E1, characterized by

J1-Oy = Oy(—E1) , J1-Oy =Oy(—E1), (714 TJ2) - Oy = Oy(—E12).
Note that then
*) (1) - Oy = Oy(— (E1+ E2) ).

4 The cited paper deals with curves having irrational asymptotic Castelnuovo-Mumford regu-
larity, but Theorem 3.2 shows that this is the same as irratigiralariant.
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Write sq = sg(J1) andss = sy (J2). Thenf*(slH) —FEq andf*(SQH) —E>
are nef ort’, and consequently so is their syf((sy +s2) H) — (E1 + E»). The
first inequality in (i) then follows from (*). For the second, set max{si, s2}
and note that one has a surjective map

Oy(—E1) @ Oy(—E3) —> Oy(—E1)

of vector bundles orY. By definition ofs, the bundle on the left becomes nef
when twisted by th&k-divisor f*(s H). Since quotients of nef bundles are nef,
this implies thatf*(s H) — E1, is nef, and the required inequality follows.

For (i), we use the fact (cf. [29], p.330) that B{X) and BE-(X) have the
same normalizatiolY, which sits in a commutative diagram:

Moreover, the exceptional diviso#s and F of v andv pull back to the same
divisor E on V. Invoking again Remark 1.2 one has

sp(J) = inf{s > 0| u*(sH) — E isnef} = s4(J),
as required.

Remark 1.13.Definition 1.1 and (1.4) remain valid on singular varieties. In
(2.12) it would be enough to assume thats normal. O

2. Degree and nilpotency bounds

Inthe present section, we show how thievariant governs bounds on the degrees
of zeroes of an ideal and its index of nilpotency. For the most part this involves
only small modifications to computations appearing for instance in [12], so we
shall be brief.

We start by fixing some additional notation. LEtbe a non-singular irre-
ducible quasi-projective variety of dimensier— which for the moment we do

5 We are implicitly using here the fact that nefness makes sense for twists of bundleoby
R-divisors, and that the usual formal properties are satisfied. These facts are worked out in Chapter
2 of the forthcoming book [23], but the reader can easily verify the required assertion directly by
considering the evidemR-divisors on the projectivizatioﬁ(Oy(—El) @ Oy(—Ez)) — X.
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not assume to be projective — and suppose that Oy is a coherent sheaf of
ideals onX. As before we denote by: W = Bl 7(X) — X the blowing up of
J, with exceptional divisoi'. Consider now the normalizatign: V. —> W
of W, with u : V. — X the natural composition:

"
V?W?X.

We denote byt = p*F the pull-back toV of the exceptional divisoF on W.
ThusE is an effective Cartier divisor ol, and

J Oy = Oy(-E).

Note thatOy (—FE) is ample relative tq:, and in particular is ample on every
fibre of u.
Now E determines a Weil divisor oi, say

t

[E] = > ri-[E]

i=1
where theE; are the irreducible components of the suppoiEpéndr; > 0. Set
Z; = u(E;) < X,

so thatZ; is a reduced and irreducible subvarietyXof Following [15], theZ;
are called thelistinguished subvarietiesf 7. (Note that several of thg€; may
have the same image K, in which case there will be repetitions among #e
However this doesn’t cause any problems.) Denoting by

Z = Zeroe$v/J)
the reduced zero-locus ¢f, one has then the decomposition
Z = UZ;

of Z as a union of distinguished subvarieties. Thus each irreducible component
of Z is distinguished, but there can be “embedded" distinguished subvarieties as
well. We refer to the positive integer as the coefficient attached #, and we
define

(2.1) r(J) =det Mmaxri}.

The following result, implicit in [12] and independently observed by Hickle
[18], shows that the invariami(7) controls the index of nilpotency qf :
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Theorem 2.1. One has
nr(J)
(V7)) g

More generally(v/7)" """ ¢ 77 for every integer > 1.
Sketch of ProofOne checks right away as in [12], (2.1) and (2.4), that

(VT € wOy(~tE) = T°

for every¢ > 0. The stated inclusions then follow from the Briamm—-Skoda
theorem (cf. [19]). O

In order to give Theorem 2.1 some real content, one needs an upper bound
onr(J). Itwould be interesting to know whether one can give useful statements
in a purely local setting. However globally they follow (Corollary 2.3) from the
fact that one has Bezout-type inequalities for the degrees of the distinguished
subvarieties in terms of theinvariant of 7.

Assume henceforth thaf is projective, and fix an ample divior clagson
X.

Proposition 2.2. Lets = sy () be thes-invariant of 7 with respect tad. Then

13
> ri-s8M% . deg, Z; < s - deg, X,

i=1

where for any subvariety < X, deg, V = (H%™" . V) denotes the degree of
V with respect taH.

Corollary 2.3. In the situation of the Proposition one has
st"“zi deg, Z; < s" deg, X,
and the integer(J) = max{r;} satisfies
r(J) < s -degy X,
wheres, = max{1, sy (7)}. O

The Proposition can be deduced from general positivity results due to Fulton
and the third author [16]. However following [12] we indicate a direct proof
using classical intersection theory.

Sketch of proof of Proposition 2.Zonsider the classes

h = [u'H] , m = [u*(sH) — E] € NS(V)r



Positivity and complexity of ideal sheaves 225

in the vector space of numerical equivalence classes with real coefficients.
Thusm is a nef class — so in particulg], m" > 0 and/ (s - k)’ -m"~*"/ > 0
foralli andj — and[E] = s - h — m. Arguing as in the proof of Proposition
3.1in[12], one then finds that

s" - degy, (X) =f (s-h)"

1%

Z/V((s-h)”—m")

1
:/V<(s.h)_m>(;(s.h)j.mn_l_j)
=/[E](§(s.h)j,mn_1_j)
> ir,- - s9MZi . deg, Z:,

i—1

as required. O

Remark 2.4.Suppose thak, ... , Z, are the (distinct) irreducible components
of Z. Then arguing as in [15] (4.3.4) and (12.2.9) one finds

14
Z ez, (J)-s9mZ . deg, Z; < s"-deg, X,

i=1
whereez (7) is the Samuel multiplicity of7 alongZ;. ]

One does not expect Bezout-type inequalities such as 2.3 to capture the em-
bedded components ¢f in the sense of primary decomposition (see [3], [13],
[21] and Example 2.8 below). Somewhat unexpectedly, however, the situation is
different when7 is integrally closed:

Corollary 2.5. Assume thay is integrally closed, and leY;, ... , Y, € X be
the irreducible subvarieties defined by all the associated primes @hinimal
or embedded). Then

q
> s%Miideg, ¥; < s" degX.

j=1
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Proof. It is enough to show that every associated subvariety is distinguished.
To this end, let;; = w.Oy( — r; E;) be the sheaf of all functions ok whose
pull-backs toV vanish to ordepr r; along the Weil divisott;. Theng; € Oy is

a primary ideal, and one has

= m M*OY(—ViEi)-
i=1

SinceJ = J this means that we have the (possibly redundant) primary decom-
position7 = Ng;. In particular every associated prime @fmust occur as the
radical of one of the;, i.e. as one of the distinguished subvarieties.

Remark 2.6.The argument just given to show that each associated subvariety
of J is distinguished appears a number of times in the literature (e.g. [18]).
However it seems to have been overlooked that this leads to degree bounds on
associated subvarieties for integrally closed ideals. O

Remark 2.7.The same argument shows more generally that for any idetde
boundy_ s9MY deg, ¥ < s deg, X holds if one sums over all subvarietigs
defined by an associated prime ideal of the integral closir®f some power
of J. O

Example 2.8. (Pathological ideals with fixednvariant). We construct here a
family of ideals having fixed-invariant but arbitrarily many embedded points.
The same examples will show that the regularity bounds presented in the next sec-
tion only hold asymptotically. For simplicity we work over the complex numbers
C, butin fact one could deal with an arbitrary algebraically closed ground-field.
In order to highlight the underlying geometric picture, we start with a local
discussion. Working in affine three-spaxe= A® with coordinates, y, ¢, con-
sider the ideah = a, = (x2, p(t) - xy, y?) € C[x, y, t], wherep(r) € C[t]is a
polynomial inz. Then the zeroes gf(¢) along the line defined by{x = y = 0}
are embedded points af On the other hand, lef : ¥ = Bl ,)(X) — X is
the blowing up ofX along#, with exceptional divisoE. Then one checks that
a- Oy = Oy(—2E), so in other words of the ideala cannot be distinguished
from the squaréx, y)? of the ideal of¢.® The idea is that in the global setting,
the s-invariant will be computed on the blow-up of the line (Example 1.2), and
so cannot detect the embedded points.
This local construction is easily globalized. Take= P2 with homogeneous
coordinatesX, Y, Z, W, fix a homogeneous polynomidt;, = P;(Z, W) €

6 Geometrically, the important point is that for every complex number C, the homoge-
neous polynomials?, p(a)xy, y?> € I'(PY, Op1(2)) span a base-point linear series. More
algebraically, observe that alreath?, y2) - Oy = Ox (—2E).
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C[Z, W] of degreed, and letJ = Jp C Ops be the ideal sheaf spanned
by the homogeneous polynomia¥&, P, - XY andY2. Denoting byL < P3

the line{X = Y = 0}, one sees as above that the zeroe®,oflong L are
embedded points af7, so for generalP there will bed such. As before let

Y = Bl (P?) — P2 be the blowing-up of., with exceptional diviso&. Then

Jp - Oy = Oy(—2E), so it follows from Example 1.2 thaty (7») = 2 for ev-
ery P (H being the hyperplane divisor). In particular, the number of embedded
points cannot be bounded in terms of thimvariant. O

Remark 2.9.Proposition 2.2 does not requikenon-singular. The smoothnes of

X is however used when the Brieon-Skoda theorem is invoked in 2.1. How-
ever Huneke [19] has established analogues of this result which would lead to
statements on arbitrary.

3. Asymptotic regularity and degree bounds

In the present section we bound the "complexity" of large powers of an ideal
sheaf in terms of its-invariant.

As above, lefX be a non-singular irreducible projective variety of dimension
n. We assume in this section thAt is averyample divisor onX. In this case
the Castelnuovo-Mumford regularity of a coherent stiEa X is defined just
as in the classical setting of projective space:

Definition 3.1. A coherent sheafF is m-regular (with respect td) if
H' (X, F((m —i)H)) =0 fori > 0.
The regularityreg,, (F) of F is the least integem for which F ism-regular’ o

Just as in the classical caseFifis m-regular for some integer, thenF(mH) is
globally generated, anfis also(m+1)-regular. We view the regularity of a sheaf
as a measure of its cohomological complexity. Wies: P, this regularity has
a well-known interpretation as bounding the degrees of the generators of the
modules of syzygies of the module correspondingt(see [3]).

Fix now an ideal sheaf’ ¢ Oy with s-invariantsy (7). As above we denote
by dy (JP) the least integed > 0 such that7”(d H) is globally generated.

Theorem 3.2. The quantitieé%ﬂ) and #2472 tend to limits ap — oo, and
one has:

jim %Iy I

p— 00 p p—>00 p

7 If F is m-regular for everyn € Z — which will occur if and only ifF is supported on a
finite set — we put reg (F) = —oo.



228 S.D. Cutkosky et al.

Proof. Setd, = dy(J?) andr, = reg, (J”). Note to begin with thatl,,, <
dy + d,, for all £, m > 0, from which it follows that the limit lim_, o, % exists.

Call this limit 4. We will prove the theorem by establishing (from right to left)
the inequalities

(3.1) Iimsupr—” < sp(J) < d < liminf I
p p

Starting with the right-most inequality in (3.1), recall thagif is m-regular

with respect toH thenJ”(mH) is globally generated. Therefotg < r, for

everyp > 0, and in particular Iinf’f < liminf %’
We next show thaty (7) < lim d;” = d. To this end, fix any > 0. Then we
can choose large positive integers ¢go > 0 such that

o o B _ e

Po Po

so that in particular7”°(goH) is globally generated. Writing as befare W =
Bl 7(X) — X for the blow-up of7, with exceptional divisor, it follows that
v¥(qoH) — poF is globally generated and hence nef. Therefgre7) < % <
d + ¢, as required.

It remains to prove that limsup < sy (J). To this end we use a theorem
of Fujita [14] to the effect that Serre Vanishing remains valid even after twisting
by arbitrary nef divisors. Specifically, consider an irreducible projective variety
V, and fix an ample divisoA plus a coherent shedf on V. Fujita shows that
there is an integeriy = mo(A, F) such that for any nef divisaB:

*) H'(V,F(@mA+ B)) =0 foralli > 0 andm > mj.

(The important point here is that, is independent 0B.)
We propose to apply (*) on the blowing-up = Bl 7(X) of 7. Givene > 0,
choose large integets, po such that

su(7) < L < sy + <.
Do 2

Thenv*(qoH) — poF is ample, so there exists an integeg such that ifm >

mg then for any nef divisorP on W, the bundles associated to the divisors
v*(mqoH) —mpoF + P have vanishing higher cohomology. Now fix any integer
p > mopo, and write

p =mpo+ p1 wWith 0 < p1 < ppandm > my.

Thenv*(goH) — p1F is nef (in fact ample), and consequently we have the
vanishing of the higher cohomology of the line bundle

Ow (v* ((m + DgoH ) — pF).
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It now follows from Lemma 3.3 below — and this is the crucial point — that
H'(X, J7(0n+ DaoH) ) =0 fori > 0

provided thatp is sufficiently large. Thereforer? is ((m + 1)go + n)-regular
for p > 0, and consequently

oo A Daotn _ qo  gotn
p P po mpo
By taking p (and hence alsa) to be large enough, we can arrange that the
second term on the right is g, SO that%” < sy (J) + ¢ for p > 0. Therefore

lim sup’;” < sy (J), and we are done. O

The following Lemma played an essential role in the proof just completed. It
shows that one can realize large powers of an igeal Ox geometrically from
the natural divisor on the blow-upThis fact is surely not new, but we include a
proof for the convenience of the reader.

Lemma 3.3. Let 7 € Ox be an ideal sheaf o, and
v:W=Bls(X) — X

the blowing-up of7, with exceptional divisoF'. There exists an integery > 0
with the property that ifp > po, then

*) 10w (— pF)=J7?,
and for any divisorD on X:

H'(X,J"(D)) = H' (W, Ow(v*D — pF))
foralli > 0.

Proof. SinceOy (—F) is ample forv, it follows from Grothendieck-Serre van-
ishing that

R/v,Ow(—pF)=0 forj>0andp > 0.

The isomorphism on global cohomology groups is then a consequence of (*)
thanks to the Leray spectral sequence.

As for (*), the assertion is local o, so we may assume that is affine.
Choosing generatorg, ... , g, € J gives rise to a surjectio®}, — 7,
which in turn determines an embedding

W =Bls(X) € P(O%) =Py

8 If 7 defined a smooth subvariety &f, then the corresponding statement would be true for
all powers.
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insuchaway thap,-1(1) | W = Ow (= F). Writer : Pil=XxP1— X
for the projection. Serre vanishing for applied to the ideal Sheﬁt‘,/P&—l, shows
that if p > 0 then the natural homomorphism

**) 7:Opr-1(p) —> 1. Ow(—pF)

is surjective. On the other hand, recalling thaOp,-1 (k) = Sk (0% ) for every

k > 0, one sees that the image of (**) is exactfy’. It follows thatv*(’)w( —
pF) = Jr for p > 0, as asserted. |

Remark 3.4.The use of Serre Vanishing in the proof of Theorem 3.2 was sug-

gested by Demailly’s proof of Theorem 6.4 in [9]. Proposition 3.3 of [25] uses

a similar argument to prove a result for zero-loci of vector bundles that is rather
close in spirit to 3.2. O

Finally, we turn to asymptotic bounds on the arithmetic degrgg’ofn agen-
eral way we follow the approach of Bayer and Mumford, suitably geometrized.
We start by recalling the definition of the arithmetic degree from the viewpoint
of [21].

Assume then thaX is a non-singular irreducible projective variety of dimen-
sionn carrying a fixed ample divisor clag$, and letF be a coherent sheaf on
X. Then there is a canonical filtration

OcrFrrcFrilc...cFlcHF=rF

whereF* C Fisthe subsheaf consisting of sections whose support has codimen-
sion> kin X. As in [15], Example 18.3.11, one can in a natural way associate
to the quotientF* /71 a codimensiort cycle [F*/F*+1] e zk(X), and then

the codimensio contribution to the arithmetic degree #fis defined to be

aded, () = deg, ([F*/F1),

where as indicated the degred & / 7] is computed with respect to the fixed
polarizationH. For an ideal7 € Oy one sets adég.7) = aded,(Ox/J).
Thus adet(7) measures the degrees of the codimengi@omponents of/
(both mimimal and embedded), counted with suitable multiplicities.

Avariant of the following Lemma was implicitly used by Bayer and Mumford
in a similar context, and re-examined in [24] .

Lemma 3.5. Stillassuming thatf is very ample, leD C X be a general divisor
linearly equivalent ta, and letFp, = F ®, Op denote the restiction of to
D.Ifk <n—1then

aded,(Fp) = adeg,(F),

where the degree on the left is computed with respect to the ample line bundle
Op(H)onD.
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Indication of Proof.The essential pointis to show that¥ is an equidimensional
Ox-module without embedded components, then the restrigtignof M to D
is also equidimensional without embedded components (see [24] for an argument
in a similar setting). Once one knows this, one can deduce the lemma from the
fact [15], Examples (18.3.6) and (18.3.11), that gé§F* / 7**1] ) governs the
leading term of the Hilbert polynomial of the sheaf in question. We leave details
to the reader. ]

In the spirit of [3], Proposition 3.6, we show that — at least asymptotically
— the arithmetic degrees of large powers of an ideal are bounded in terms of
their regularity:

Theorem 3.6. Suppose as above thatis a smooth irreducible projective vari-
ety, and assume tha& is a very ample divisor oX. Let 7 € Ox be an ideal
sheaf onX, and sefeg, (J) = lim % Then for everY < k < n:

lim sup

p—> 00

aded, (J7) - (@H(J))k deg, (X).
p

k - k!

Corollary 3.7. In the situation of the Proposition,

k
Iimsupadeé’(jp) - sulJ)

msu o < o deg, (X).O
Proof of Theorem 3.6Passing to a suitable field extension (which leaves both
the regularity and the arithmetic degree unchanged), we can assume without loss
of generality that the ground field is uncountable. IZete |H| be a general
divisor linearly equivalent td7, and consider the restrictiofy, = 7 - Op of J

to D. According to a theorem of Ratliff [27] there are only finitely many prime
ideals which appear as associated primes for any of the ig€afer p > 1. So

we may assume th&y (— D) does not contain any of these primes, so that the
sequence

0— J?(=D) > J" — Jh — 0

is exact for every. This sequence shows that fag/})) < reg, (J7) for every

p, wWhere by abuse of notation we are writikgfor the class of the restriction
Op(H)to D. Consequentlyeg, (Jp) < 1eg, (J). Similarly, Lemma 3.5 shows
that adefy (77) < adeg, (7)) for fixed p provided thatc < n — 1. As we are
now working over an uncountable ground field, we can assume by tdkitog
be very general that this holds simultaneously fopa#t 1. Since of course also
deg, D = deg, X, if k < n — littherefore suffices to prove the Proposition for
D. So by induction om = dim X we can assume that= n.
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Supposing then thdt = n, we need to bound as a function pf>> 0 the
length of the (finitely supported) subsheaf

Qp g OX/jp

of sections having zero-dimensional support. Equivalently, we need to bound for
p > 0 the dimensio®(X, Q,). To this end, observe first of all that for every
integerqg € N there is an inclusion

(3.2)
H°(X,Q,) = H°(X,Q,® Ox(qH)) € H°(X,(0x/J") ® Ox(qH)).

The plan is to estimate the dimension of the group on the right for a suitable
integerg. Fix ¢ > 0 plus large integerg, ¢ > 0 such that

(3.3) e, (J) +e > L > 2

p’

wherer, = reg,(J”). ThenHY(X, 77 ® Ox(¢H)) = 0, and so the exact
sequence

0— J”®Ox(gH) — Ox(gH) — (Ox/J") ® Ox(¢H) — 0
together with (3.2) shows that
adeg,(77) = (X, Q,)

(3.4) < h%(X, (Ox/J") ® Ox(qH))
< h°(X, Ox(gH)).

But Riemann-Roch implies that as a functiongof

(X, Ox(gH)) = L . deg,(X)+ 0(g" ™.

n!
It follows from (3.3) that by takingy (and hencey) sufficiently large, and
sufficiently small, we can arrange that

(reg, (1))"
n!

p—ln-ho(X, Ox(qH)) < -deg, (X) + Ce

whereC is a constant. The result then follows from (3.4). O

Remark 3.8. (Non-asymptotic pathologly).Example 2.8, we constructed for
eachd > 1idealsJ = J; onP? with fixed s-invariantsy (J;) = 2, but having

d embedded points. This shows that one cannot bound the arithmetic degree
of an ideal in terms of its-invariant. One easily checks that the regularity of
the ideals7, also goes to infinity withi. So by the same token, the regularity

of a given ideal cannot be bounded in terms ofsiisivariant. This pathology
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contrasts with results of Bayer and Mumford [3] showing that there are (multiply
exponential) bounds for the regularity and arithmetic degree of a homogeneous
ideal in terms of the degrees of its generators. The overall picture that seems to
emerge is that the singly exponential Bezout-type bounds appearing in [3] are
explained geometrically, i.e. in terms of thénvariant, whereas the multiply-
exponential bounds on regularity and arithmetic degree are more algebraic in
nature. ]

Remark 3.9.Theorems 3.2 and 3.6 do not require tiabe smooth. (In Lemma
3.5 one can use the hypothesis thats very ample to reduce to the case when
X =P") o
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