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1 Introduction

In this paper we study the topology of a semialgebraic set defined inR
n by few

quadratic inequalities. Let us denote by〈·, ·〉 the standard inner product inRn.
Let Q be a symmetricn×n matrix, b ∈ Rn be a vector anda ∈ R be a number.
The functionq : Rn −→ R, q(x) = 〈Qx, x〉 + 〈b, x〉 − a is called aquadratic
polynomial. Let us consider a semialgebraic set defined by quadratic inequalities:

X =
{

x ∈ Rn : qi (x) < 0 : i = 1, . . . , s; qi (x) ≤ 0 : i = s + 1, . . . , k
}
,

whereqi are quadratic polynomials. We are interested in the topology of the set
X when the numberk of inequalities is small whereas the dimensionn is big.
As a measure of the “topological complexity” of the setX we consider the sum
of its Betti numbers

rank H ∗(X; F ) = rank H∗(X; F ),

where H ∗ are singular cohomology andH∗ are singular homology with the
coefficients in a fieldF . Our results and constructions are independent of the
field, and therefore we often omitF in the notation.

In this paper we prove the following main result.

(1.1) Theorem. Let us fix k∈ N. Then there exists a polynomial Pk(n) : n ∈ N
of degree O(k) such that for any n∈ N, for any k quadratic polynomials qi :
R

n −→ R : i = 1, . . . , k and for any1 ≤ s ≤ k the sum of the Betti numbers of
the set

X =
{

x ∈ Rn : qi (x) < 0 : i = 1, . . . , s; qi (x) ≤ 0 : i = s + 1, . . . , k
}

does not exceed Pk(n).
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The general estimate (see [6–8, 11]), which is applicable for an arbitrary
semialgebraic set, would give us (2k)O(n) as an upper bound for the sum of the
Betti numbers ofX. Thus this estimate is better than the estimate from Theorem
1.1 if k is large. If, however,k is small (fixed) andn is large, then the estimate
of Theorem 1.1 is better. As is known, any real or complex algebraic variety can
be represented as an intersection of quadrics. Therefore, Theorem 1.1 provides,
in principle, a tool for estimating the sum of the Betti numbers of an arbitrary
real or complex algebraic variety. Of course, generally the number of obtained
quadratic equations will be very large, so the estimate provided by Theorem 1.1
will be too weak. However, some algebraic varieties can be represented as the
intersection of few quadrics, and, therefore, Theorem 1.1 would provide for them
a better estimate (see Sect. 6 for an example). A possible application of Theorem
1.1 to lower bounds of bilinear complexity of a semialgebraic decision problem
is discussed in Sect. 6.1.

We use a similar technique to that of [6] with some necessary modifications.
As in [6], we prove first a version of Theorem 1.1 for a smooth variety by
choosing an appropriate Morse function on it. LetQ = (Q1, . . . ,Qk) be ak-tuple
of symmetricn × n matrices anda = (a1, . . . , ak) be ak-tuple of real numbers
interpreted as a vector fromRk . First, we establish our upper bound for a compact
complete intersection ofk real quadrics

(1.2) X0(Q, a) =
{

x ∈ Rn : 〈x,Qi x〉 = ai , i = 1, . . . , k
}
,

wherea = (a1, . . . , ak) is “in general position” inRk (Corollary 3.3). To prove
this, as in [6] we choose an appropriate Morse functionf (x) on X0(Q, a) and
estimate the number of critical points off as the number of solutions to a system
of polynomial equations. However, in our case we get a very special system, so
we are able to show that the number of solutions is bounded by a polynomial in
the dimensionn rather than by (2k)O(n) (Lemma 3.2). Next, as in [6] we extend
our bound to the general (non-smooth) case. However, we can no longer use the
reduction of [6], for it would destroy the “quadratic nature” of our sets. Instead,
by using a combinatorial construction we prove Theorem 1.1 for the sets

(1.3) X(Q, a) =
{

x ∈ Rn : 〈x,Qi x〉 ≤ ai , i = 1, . . . , k
}
,

whereX(Q, a) is compact anda is “in general position” (Lemma 4.3).
Then, using the standard approximation technique, we prove Theorem 1.1 in

whole generality (Sect. 5).

2 Preliminaries. The space of quadratic forms

In this section we recall some facts about quadratic forms “in general position”.
Let us consider the linear spaceWn of all n × n real symmetric matrices.

We can identifyWn with the spaceR
n(n+1)

2 . We will be interested in the subset of
singular matrices inWn.
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(2.1) Proposition (see, for example, Corollary of Lemma 2 from [1]).For any
r = 0, . . . , n the set

Wr
n = {A ∈ Wn : rank A = n − r }

is a smooth analytic variety in Wn of codimensionr (r +1)
2 . �

Proposition 2.1 is also known as the “corank formula”. ThusWn
n = {0} is

the origin inWn, whereasW0
n is a dense subset inWn.

(2.2) Definition. Let us fix a k-tuple Q = (Q1, . . . ,Qk) of symmetricn × n
matrices. LetF be a symmetricn × n matrix. If the map

ΨF : Rk −→ Wn, ΨF (z1, . . . , zk) = F −
k∑

i =1

zi · Qi

intersects every varietyWr
n ⊂ Wn, r = 0, . . . , n transversally, we say thatF is

generic with respect to Q. Sometimes we say thatF is generic, if the choice of
Q = (Q1, . . . ,Qk) is obvious from the context.

Proposition 2.1 immediately implies

(2.3) Corollary.
1) For given k-tuple Q= (Q1, . . . ,Qk) of n× n symmetric matrices the set of

generic matrices F contains an open and dense subset of Wn.
2) If F is generic with respect to Q, then

rank
(

F −
k∑

i =1

zi Qi

)
≥ n −

[√
8k + 1− 1

2

]
for all z1, . . . , zk ∈ R. Here [·] denotes the integer part.

Proof.
1) Let us consider a linear mapφ : Rk ⊕ Wn −→ Wn :

φ(z,F ) = F −
k∑

i =1

zi · Qi : z ∈ Rk , F ∈ Wn.

The mapφ is surjective and therefore intersects every varietyWr
n transversally.

For r = 0, . . . , n let Sr = φ−1(Wr
n ) ⊂ R

k ⊕ Wn. Let us denote byp the natural
projectionp : Rk ⊕ Wn −→ Wn onto the second summand. It follows then (see,
for example, Lemma 4.6 of [4]) thatF is generic with respect toQ whenever
F is a regular value of every restrictionpr : Sr −→ Wn of p on Sr . Since the
set of singular values ofpr is a semialgebraic set, by Sard’s Theorem (see, for
example, Sect. 1 of Chapter II of [4]) we get the desired result.

2) If F is generic, then the affine variety

F −
k∑

i =1

zi Qi : z1, . . . , zk ∈ R

in Wn does not intersectWr
n for k <

r (r + 1)
2

. �
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3 Generic intersections of quadrics

In this section we prove a version of Theorem 1.1 for a compact complete
intersection (1.2) of real quadrics.

(3.1) Definition. Let us fix a k-tuple Q = (Q1, . . . ,Qk) of n × n symmetric
matrices. We say thata ∈ R

k is generic with respect to Q, if a is a regular
value of the quadratic mapq : Rn −→ R

k : q(x) =
(〈x,Q1x〉, . . . , 〈x,Qkx〉).

Sometimes we just say thata is generic, if the choice ofQ = (Q1, . . . ,Qk) is
obvious from the context.

By Sard’s Theorem it follows that for anyQ = (Q1, . . . ,Qk) the set of generic
a is open and dense inRk . If a is generic, then the variety

X0(Q, a) =
{

x ∈ Rn : 〈x,Qi x〉 = ai , i = 1, . . . , k
}
,

is either empty or a smooth (n − k)-dimensional manifold such that for every
x ∈ X0(Q, a) the vectorsQ1x, . . . ,Qkx are linearly independent.

Let F be a positive definite matrix. Then there exists a vectorx0 ∈ Rn such
that the functionf (x) = 〈x − x0,F (x − x0)〉 is a Morse function onX0(Q, a)
(see, for example, Sect. 6, Part I of [5] for the standard squared distancel (x) =
〈x−x0, x−x0〉. Our functionf (x) reduces tol (x) by a coordinate transformation.)
We show that ifF is generic with respect toQ, then the number of critical points
of f on X0(Q, a) is bounded by a polynomial inn.

(3.2) Lemma. Let us fix k∈ N. Then there exists a polynomial pk(n) : n ∈ N
of degree O(k) such that for any k-tuple Q= (Q1, . . . ,Qk), for any generic
a = (a1, . . . , ak) ∈ Rk, and for any Morse function f(x) = 〈x − x0,F (x − x0)〉,
where F is a positive definite matrix which is generic with respect to Q, the
number of critical points of f(x) on the variety

X0(Q, a) =
{

x ∈ Rn : 〈x,Qi x〉 = ai , i = 1, . . . , k
}

does not exceed pk(n).

Proof. We introduce some notation. Forz = (z1, . . . , zk) we let

Φ(z) = F −
k∑

i =1

zi Qi .

For subsetsI , J ⊂ {1, . . . , n} we denote byΦ(z; I , J ) the submatrix ofΦ(z)
with row indices inI ⊂ {1, . . . , n} and column indices inJ ⊂ {1, . . . , n}. Let
y = Fx0. We denote byΦ̂(z) the n × (n + 1) matrix (Φ(z), y).

Without loss of generality we may assume thatX0(Q, a) is not empty. A point
x ∈ Rn is a critical point of the functionf , if and only if there exist Lagrange
multipliers z = (z1, . . . , zk) ∈ Rk such that

(3.2.1) Φ(z)x = y,
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and, additionally, we have that

(3.2.2) 〈x,Qi x〉 = ai for i = 1, . . . , k.

For a given critical pointx the vectorz = (z1, . . . , zk) of Lagrange multipliers is
necessarily unique, because the vectorsQ1x, . . . ,Qkx are linearly independent.
We will represent the set of possible Lagrange multipliersz = (z1, . . . , zk) as a
union of polynomially many (possibly intersecting) piecesBα ⊂ R

k so that the
system of equations (3.2.1)–(3.2.2) withz ∈ Bα has at most polynomially many
solutionsx for every pieceBα.

Since F is generic with respect toQ = (Q1, . . . ,Qk), by Corollary 2.3 we
have that

rankΦ(z) ≥ n −
[√

8k + 1− 1
2

]
for all z = (z1, . . . , zk).

(3.2.3) PiecesBα. Our piecesBα ⊂ R
k are indexed by ordered triplesα =

(s, I , J ), where s is a natural number 0≤ s ≤
[√

8k + 1− 1
2

]
and I , J ⊂

{1, . . . , n} are subsets of equal cardinali tyn − s. We define

Bs,I ,J =
{

z = (z1, . . . , zk) ∈ Rk : rankΦ(z) = rank Φ̂(z) = n − s

and detΦ(z, I , J ) /= 0
}
.

We observe that a pieceBα ⊂ R
k can be defined by a system of one polynomial

equation inz1, . . . , zk of degree at most 2n (that is, the sum of squares of all
(n − s + 1)× (n − s + 1) minors of the matrixΦ̂(z) is equal to zero) and one
polynomial inequality of degree at mostn (that is, detΦ(z, I , J ) /= 0). The number
of all possible piecesBα does not exceedk · n2k , that is, polynomial inn for a
fixed k.

Let us choose a pieceBα for α = (s, I , J ). For everyz ∈ Bα the set
x of solutions of (3.2.1) is ans-dimensional affine subspaceAz in R

n. Let us
construct rational vector-functionsu0(z), . . . , us(z) : Bα −→ R

n such that
u0(z), . . . , us(z) is an affine basis ofAz for everyz ∈ Bα. We let{1, . . . , n}\J =
{j1, . . . , js}. For i = 0, . . . , s and j ∈ {j1, . . . , js} we define thej -th coordinate
of ui (z) to be either identically 1, ifj = ji , or identically zero, otherwise. Then
the other coordinates ofui (z) are uniquely determined from a non-degenerate
system (3.2.1) of linear equations. By Cramer’s rule it follows that everyui (z)
is a rational vector-function inz = (z1, . . . , zk) of the type

(3.2.4) ui (z) =

(
P1,i (z)

detΦ(z; I , J )
, . . . ,

Pn,i (z)
detΦ(z; I , J )

)
,

wherePj ,i are polynomials and degPj ,i ≤ n for i = 0, . . . , s and j = 1, . . . , n.
Thus for everyx ∈ Rn, which satisfies (3.2.1) withz ∈ Bα, there is a unique
vectorλ = (λ0, . . . , λs) such that
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(3.2.5) x =
s∑

i =0

λi ui (z)

and

(3.2.6)
s∑

i =0

λi = 1.

Let us write the following systemΣα : α = (s, I , J ) of polynomial equations
and inequalities ins + k + 1 real variablesz1, . . . , zk , λ0, . . . , λs:

SystemΣα.
– we express the conditionz = (z1, . . . , zk) ∈ Bα by means of a polynomial

equation and an inequality (see (3.2.3));
– we substitute (3.2.4) into (3.2.5) and the resulting expression forx we

substitute into (3.2.2);
– finally we write the equation (3.2.6).
Since the number of variables inΣα does not exceed 2k (see (3.2.3)), the

degrees of equations and inequalities do not exceed 2n + 1, and the number of
equations and inequalities isk + 2, by the results of [8], Sect. 3 (see also [6])
we conclude that the number of connected components of the set of solutions

to the systemΣα does not exceed
(
(k + 2)(2n + 1)

)O(k)
. The set of solutions

(z1, . . . , zk , λ0, . . . , λs) of the systemΣα is in one-to-one correspondence via
(3.2.4)–(3.2.5) with the set of critical pointsx ∈ X0(Q, a) of the function f ,
whose vectorz = (z1, . . . , zk) of Lagrange multipliers from (3.2.1) belongs to
the pieceBα. In particular, we conclude that the set of solutions to systemΣα

is finite. Therefore the number of solutions to a systemΣα does not exceed(
(k + 2)(2n + 1)

)O(k)
. In other words, for every fixedk the number of critical

pointsx ∈ X(Q, a) of f , whose vector of Lagrange multipliers belongs to a piece
Bα, is bounded by a polynomial inn of degreeO(k). Since the total number of
piecesBα is also bounded by a polynomial inn of degreeO(k) (see (3.2.3)),
the proof follows. �

(3.3) Corollary. Let us fix k∈ N. Then there exists a polynomial pk(n) : n ∈ N
of degree O(k) such that for any n∈ N, for any k-tuple Q= (Q1, . . . ,Qk) of
symmetric n×n matrices, and for any generic vector a∈ Rk the sum of the Betti
numbers of the set

X0(Q, a) =
{

x ∈ Rn : 〈x,Qi x〉 = ai , i = 1, . . . , k
}

is bounded by pk(n) provided X0(Q, a) is compact.

Proof. The sum of the Betti numbers of a compact smooth manifold does not
exceed the number of critical points of a Morse function (see, for example, [5]).
Now we apply Lemma 3.2. �

For further convenience we assume thatpk(n) is a monotone function inn.
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4 Generic quadratic inequalities

In this section we prove Theorem 1.1 for compact semialgebraic sets

X(Q, a) =
{

x ∈ Rn : 〈x,Qi x〉 ≤ ai : i = 1, . . . , k
}
,

wherea = (a1, . . . , ak) is “in general position”. To do that, we consider a formally
larger class of semialgebraic sets defined by quadratic equations and inequalities
and use the induction on the number of inequalities. We use Corollary 3.3 as a
base fo r the induction.

Below we define the main object of this section.

(4.1) Sets WS,I ,E(Q, a). Let us choose ak-tuple Q = (Q1, . . . ,Qk) of n × n
symmetric matrices and a vectora = (a1, . . . , ak) ∈ R

k . For any partition of
the set{1, . . . , k} into pairwise disjoint (possibly empty) subsetsS, I ,E : S ∪
I ∪ E = {1, . . . , k} we consider a semialgebraic setWS,I ,E(Q, a) ⊂ R

n+s, where
s = cardS. We interpret a point inRn+s as a pair (x, u), wherex ∈ R

n and
u = (ui : i ∈ S) is ans-tuple of real numbersui indexed by the elements ofS.
We define

WS,I ,E(Q, a) =

{
(x, u) ∈ Rn+s : 〈x,Qi x〉 ≤ ai for i ∈ I ;

〈x,Qi x〉 = ai for i ∈ E;

〈x,Qi x〉 + u2
i = ai for i ∈ S

}
.

For a subsetS ⊂ {1, . . . , k} we define a quadratic mapqS : Rn+s −→ R
k as

follows: qS = (qS
1 , . . . , q

S
k ) ,where

qS
i (x, u) =

{ 〈x,Qi x〉 + u2
i if i ∈ S;

〈x,Qi x〉 if i 6∈ S.

(4.2) Definition. Let Q = (Q1, . . . ,Qk) be ak-tuple ofn×n symmetric matrices.
We say that a vectora ∈ Rk is strictly generic with respect to Q, if a is a regular
value of every mapqS : Rn+s −→ R

k for S ⊂ {1, . . . , k}. Sometimes we just
say thata is strictly generic, if the tupleQ is obvious from the context.

Sard’s Theorem implies that for any givenQ the set of strictly generica is
an open and dense subset inRk .

(4.3) Lemma. Let us fix k∈ N. Then there exists a polynomial pk,1(n) : n ∈ N
of degree O(k) such that for any k-tuple Q= (Q1, . . . ,Qk), for any partition
S∪ I ∪E = {1, . . . , k}, and for any a∈ Rk, which is strictly generic with respect
to Q, the sum of the Betti numbers of the set WS,I ,E(Q, a) does not exceed pk,1(n)
provided this set is compact.

Proof. Let pk,1(n) = pk(n + k), wherepk(n) is a polynomial from Corollary 3.3.
We proceed by induction on the cardinality ofI (the set of inequalities). If card
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I = 0 then the estimate follows by Corollary 3.3. Suppose that the setI is not
empty. Let us pick up aj ∈ I . Let S′ = S∪ {j }, I ′ = I \ {j } andE′ = E ∪ {j }.
Starting fromWS,I ,E(Q, a) ⊂ R

n+s we get eitherWS′,I ′,E(Q, a) ⊂ R
n+s+1, if

we replace the inequality〈x,Qj x〉 ≤ aj by the equation〈x,Qj x〉 + u2
j = aj , or

WS,I ′,E′ (Q, a) ⊂ R
n+s, if we replace this inequality by the equation〈x,Qj x〉 = aj .

If WS,I ,E(Q, a) is compact, then bothWS′,I ′,E(Q, a) and WS,I ′,E′ are compact.
Our aim is to estimate rankH ∗ WS,I ,E(Q, a) in terms of rankH ∗ WS′,I ′,E(Q, a)
and rankH ∗ WS,I ′,E′ (Q, a). Note, that the number of inequalities participating
in the definition of either of the setsWS′,I ′,E(Q, a) andWS,I ′,E′ (Q, a) is smaller
than that ofWS,I ,E(Q, a).

The setWS′,I ′,E(Q, a) can be dissected into two pieces

W+
S′,I ′,E(Q, a) =

{
(x, u) ∈ WS′,I ′,E(Q, a) : uj ≥ 0

}
and

W−
S′,I ′,E(Q, a) =

{
(x, u) ∈ WS′,I ′,E(Q, a) : uj ≤ 0

}
with the intersection

W0
S′,I ′,E(Q, a) =

{
(x, u) ∈ WS′,I ′,E(Q, a) : uj = 0

}
.

Let us consider the natural projectionRn+s+1 −→ R
n+s that maps a point

(x, ui : i ∈ S′) to the point (x, ui : i ∈ S) (we eraseuj ). This projection home-
omorphically maps each setW+

S′,I ′,E(Q, a) andW−
S′,I ′,E(Q, a) onto WS,I ,E(Q, a)

and the setW0
S′,I ′,E(Q, a) ontoWS,I ′,E′ (Q, a). Applying the induction hypothesis

to WS′,I ′,E(Q, a) andWS,I ′,E′ (Q, a) we get

rank H ∗ WS′,I ′,E(Q, a), rank H ∗ W0
S′,I ′,E(Q, a) = rank H ∗ WS,I ′,E′ (Q, a)

≤ pk,1(n).

Therefore, applying the Mayer–Vietoris exact sequence (see, for example, Sect. 6
of Chapter 4 of [9]) we get that

rank H ∗ W+
S′,I ′,E(Q, a) + rank H ∗ W−

S′,I ′,E(Q, a) ≤ 2pk,1(n),

and hence

rank H ∗ W+
S′,I ′,E(Q, a) = rank H ∗ W−

S′,I ′,E(Q, a) = rank H ∗ WS,I ,E(Q, a)

≤ pk,1(n).

�

(4.4) Corollary. Let us fix k∈ N. Then there exists a polynomial pk,1(n) : n ∈ N
of degree O(k) such that for any k-tuple Q= (Q1, . . . ,Qk) of n× n symmetric
matrices and for any strictly generic a∈ Rk the sum of the Betti numbers of the
set

X(Q, a) =
{

x ∈ Rn : 〈x,Qi x〉 ≤ ai , i = 1, . . . , k
}

does not exceed pk,1(n) provided X(Q, a) is compact.

Proof. Follows by Lemma 4.3 since the setWS,I ,E(Q, a) for S = E = ∅ and
I = {1, . . . , k} coincides withX(Q, a). �
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5 Proof of Theorem 1.1

First, using the standard approximation technique we prove Theorem 1.1 for the
setsX(Q, a) defined by (1.3).

(5.1) Lemma. Let us fix k∈ N. Then there exists a polynomial pk,2(n) : n ∈ N
of degree O(k) such that for any(k + 1)-tuple Q = (Q0,Q1, . . . ,Qk) of n ×
n symmetric matrices, where Q0 is a positive definite matrix, and for any a=
(a0, . . . , ak) the sum of the Betti numbers of the set

X(Q, a) =
{

x ∈ Rn : 〈x,Qi x〉 ≤ ai , i = 0, . . . , k
}

does not exceed pk,2(n).

Proof. Let pk,2(n) = pk+1,1(n), wherepk,1 is the polynomial from Corollary 4.4.
We define

E (Q, a) =

{
ε = (ε0, . . . , εk) : a + ε is strictly generic with respect toQ

and 0< εi < 1 for i = 0, . . . , k

}
(see Definition 4.2). The setE (Q, a) is open and dense in the unit cube 0≤
εi ≤ 1. Therefore

X(Q, a) =
⋂

ε∈E (Q,a)

X(Q, a + ε).

SinceQ0 is positive definite, the setsX(Q, a) andX(Q, a + ε) are compact and
we have that

H ∗ X(Q, a) = lim−→H ∗ X(Q, a + ε),

where the direct limit is taken with respect to natural inclusionsX(Q, a + ε) ⊂
X(Q, a+δ) wheneverεj ≤ δj for j = 0, . . . , k (see, for example, Sect. 6 of Chapter
6 of [9]). Now we apply Corollary 4.4 to the setsX(Q, a + ε) : ε ∈ E (Q, a). �

(5.2) Corollary. Let us fix k∈ N. Then for any k-tuple Q= (Q1, . . . ,Qk) of n×n
symmetric matrices and for any a= (a1, . . . , ak) the sum of the Betti numbers of
the set

X(Q, a) =
{

x ∈ Rn : 〈x,Qi x〉 ≤ ai , i = 1, . . . , k
}

does not exceed pk,2(n), where pk,2 is the polynomial from Lemma 5.1.

Proof. For R > 0 let us define

XR(Q, a) =
{

x ∈ X(Q, a) : x2
1 + . . . + x2

n ≤ R
}
.

Then
X(Q, a) =

⋃
R>0

XR(Q, a),
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and therefore
H∗ X(Q, a) = lim−→H∗ XR(Q, a).

On the other hand,XR(Q, a) can be considered as the set of solutions of a system
of quadratic inequalities with at least one positive definite matrix. By Lemma
5.1

rank H∗ XR(Q, a) ≤ pk,2(n)

and the proof follows. �

(5.3) Corollary. Let us fix k∈ N. Then for any k symmetric matrices Q1, . . . ,Qk,
for any a1, . . . , ak and for any s≤ k the sum of the Betti numbers of the set

X =
{

x ∈ Rn : 〈x,Qi x〉 < ai , i = 1, . . . , s; 〈x,Qi x〉 ≤ ai : i = s + 1, . . . , k
}

does not exceed pk,2(n), where pk,2 is the polynomial from Corollary 5.2.

Proof. Let E =
{
ε = (ε1, . . . , εs) : 0 < εi ≤ 1 : i = 1, . . . , s

}
and

Xε =
{

x ∈ Rn : 〈x,Qi x〉 ≤ ai −εi , i = 1, . . . , s; 〈x,Qi x〉 ≤ ai : i = s+1, . . . , k}
Then

X =
⋃
ε∈E

Xε.

Now we observe that
H∗(X) = lim−→H∗(Xε),

where the limit is taken with respect to natural inclusionsXε ⊂ Xδ whenever
εi ≥ δi and apply Corollary 5.2 to the setsXε. �

Proof of Theorem 1.1.Let Pk(n) =
1
2

pk+2,2(n + 1), wherepk,2 is the polynomial

from Corollary 5.3. Suppose thatqi (x) = 〈x,Qi x〉 + 〈bi , x〉 − ai , whereQi is an
n×n symmetric matrix,bi ∈ Rn is a vector andai ∈ R is a number. We introduce
a new real variablet and consider the semialgebraic setX̂ ⊂ R

n+1 given by the
following family of k + 2 quadratic inequalities without linear terms:

X̂ =

{
(x, t) ∈ Rn+1 : 〈x,Qi x〉 + t · 〈bi , x〉 < ai : i = 1, . . . , s;

〈x,Qi x〉 + t · 〈bi , x〉 ≤ ai : i = s + 1, . . . , k;

t2 ≤ 1, −t2 ≤ −1 (that is, t2 = 1)

}
.

By Corollary 5.3 it follows that

rank H ∗ X̂ ≤ 2Pk(n).

On the other hand, the set̂X consists of the two non-intersecting components
X̂+ and X̂− corresponding to the casest = 1 andt = −1 respectively. The map
(x, t) 7−→ x is a homeomorphism between̂X+ andX whereas the map (x, t) 7−→
−x is a homeomorphism between̂X− and X. This observation completes the
proof. �
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6 Corollaries, examples and possible applications

Theorem 1.1 allows us to distinguish several classes of (semi)algebraic varieties
with “small” Betti numbers. For example, for any fixedk the sum of the Betti
numbers of an intersection ofk real quadrics inRn is bounded by a polynomial
in n of degreeO(k) (since a system ofk quadratic equationsqi (x) = ai :
i = 1, . . . , k can be written as a system of 2k quadratic inequalitiesqi (x) ≤
ai , −qi (x) ≤ −ai : i = 1, . . . , k). The same remains true for intersections of
complex quadrics. Note, that we don’t require that the quadrics must intersect
transversally. Another corollary of Theorem 1.1 is that a fixed number of quadrics
in Rn dissects the space into polynomially many pieces.

As is known, any system of polynomial equations can be reduced to a system
of quadratic equations by substitutions of the typez = xy. Sometimes the number
of obtained quadratic equations is small and we can apply Theorem 1.1. For
example, let us consider a real algebraic variety inR

n defined by a polynomial
of degree 4

X =
{

x ∈ Rn : q1(x) · q2(x) + q3(x) · q4(x) = 1
}
,

whereq1, q2, q3, q4 are quadratic polynomials. Theorem 1.1 implies that the sum
of the Betti numbers of this variety is bounded by a polynomial inn. Indeed, let
us consider a varietyZ ⊂ R

n+4

Z =
{

(x, y1, y2, y3, y4) : qi (x)− yi = 0 : i = 1, 2, 3, 4 andy1y2 + y3y4 = 1
}
.

The varietyZ is given by 5 quadratic equations (and, therefore, by 10 quadratic
inequalities), and hence we can use Theorem 1.1 to estimate the sum of the Betti
numbers ofZ . The natural projection (x, y1, y2, y3, y4) 7−→ x mapsZ homeomor-
phically ontoX.

This construction suggests that the number of quadratic inequalities needed
to describe a semialgebraic set may be the “right” measure of its complexity.
This idea can be formalized as follows.

(6.1) Relation to the computational complexity.Theorem 1.1 can be used to
establish some lower complexity bounds in algebraic computations. Here we
only briefly sketch a possible approach in maximal generality. Let us consider
a computational model over the real numbers (see, for example, [2]). Suppose
there is a machine that can perform arithmetic operations (addition, subtraction,
multiplication and division) and comparison over the real numbers. It is assumed
that every operation has cost 1. The machine has a finite number of statesS and a
memory realized by a finite number of boxes, indexed by 1, . . . ,N , each of which
contains at most one real number. At every step the machine either performs an
arithmetic operation with the numbers from some two boxes and stores the result
in some other box, or changes its state in accordance with the sign (positive,
negative or zero) of the number contained in some box. The indices of the used
boxes and the performed operation are determined by the current state of the
machine.
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Let us fix some semialgebraic setX ⊂ R
n. We are interested in the compu-

tational complexity of the following fundamental

X-membership problem. Given x ∈ Rn decide whetherx ∈ X.

It can be seen that the computational complexity of theX-membership prob-
lem is directly related to the “complexity” of the representation ofX in terms
of quadratic inequalities. Suppose that theX-membership problem can be solved
in k steps on some machine with the number of statesS. Let us choose some
computationτ (that is, a sequence of states of the machine) which leads to the
answer “yes” in theX-membership problem and letXτ ⊂ X be a set ofx for
which this computation is realized. ThenXτ is homeomorphic to a semialgebraic
setYτ in Rn+m : m ≤ k given by at mostk quadratic inequalities. Indeed, every
arithmetic operationx ∗ y 7−→ z, where∗ = +,−, ·, : can be recorded by an at
most quadratic equation with one new variable whereas branching fixes signs of
some variables. Sox ∈ Xτ iff x can be appended (in a unique way) by new
variables (z1, . . . , zm) to a vector from some semialgebraic setYτ ⊂ R

n+m which
is a set of solutions of at mostk quadratic inequalities. The natural projection
Yτ −→ Xτ : (x, z1, . . . , zm) 7−→ x is a homeomorphism. SoX can be represented
as a disjoint union of at mostSk subsetsXτ each of which is homeomorphic to
an at most (n +k)-dimensional semialgebraic setYτ given by at mostk quadratic
inequalities. It is seen that an upper bound on the numberβ0(Xτ ) of connected
components ofXτ and a lower bound on the numberβ0(X) of connected com-
ponents ofX produce some lower bound on the complexity of the machine that
solves theX-membership problem.

This approach was used, for example, in [12] to obtain lower bounds for
algebraic decision trees. It was based on the general estimates of [6, 7, 11] for
the Betti numbers of semialgebraic sets. The estimate of Theorem 1.1 appears to
be too weak in this general situation.

However, the same construction can be applied to the “bilinear complexity”
model (see, for example, [10]). In the bilinear model our machine operates with
the vectors fromRn instead of the real numbers. Instead of addition (subtraction)
we are allowed to perform linear operations with real vectors: addition (x, y) 7−→
x+y and an application of a linear operatorx 7−→ Ax and instead of multiplication
we are allowed to compute the value of a bilinear formB(x, y) for any given
pair of vectorsx, y. All the operations have unit cost. Similarly, every operation
can be recorded by an at most quadratic equation except that the new variable
can be a vector fromRn. In this case we gain by using Theorem 1.1 instead of
the general bounds [6, 7, 11] since our bound depends better on the dimension.
Indeed, we deduce that the number of connected components ofX should not
exceedSk times the maximal number of connected components ofXτ . In other
words,

β0(X) ≤ SkPk(kn),

wherePk(n) is a polynomial of degreeO(k) from Theorem 1.1.
In other words, the number of statesS and the number of stepsk can not be

both small if the number of connected components ofX is large.
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For particular types of programs (decision trees, straight line programs) one
can obtain sharper estimates. For example, if we can solve theX-membership
problem ink steps on a machine which allows branching (“yes” or “no”) on the
last step only we must haveS = 1 and hence

rank H∗(X) ≤ Pk(kn).

The details of this construction will be described elsewhere.

7 Remarks

(7.1) How optimal is the bound of Theorem 1.1?One can show that the type
of the upper bound from Theorem 1.1 can not be improved. More precisely, for
every fixedk we present an intersectionX(n, k) of 2k real quadrics inR2n, whose
sum of the Betti numbers grows at least as fast asnck for somec > 0 depending
on k only. Let us fixk ∈ N. Let X(n, k) ⊂ C

n be a transversal intersection ofk
complex affine quadrics. The topological spaceX(k, n) is uniquely defined, and
explicit recursions for rankHp

(
X(n, k);Z

)
are known (see [3]). In particular, it

follows that

rank Hn−k X(n, k) ≥ nck for somec = c(k) > 0 and all evenn.

On the other hand, identifyingCn ≈ R
2n we may considerX(n, k) as a (non-

transversal) intersection of 2k real quadrics inR2n.

(7.2) The case ofF = Z2. Corollary 3.3, which establishes an upper bound for
the sum of the Betti numbers of a generic intersection of real quadrics, plays the
crucial role in our proof of Theorem 1.1. This corollary is proven by constructing
an appropriate Morse function. For (co)homology with the coefficients inZ2 there
is an alternative proof based on the Smith Theory.

Let X(n, k) be a transversal intersection ofk complex quadrics inCn (see
(7.1)). Using [3] one can estimateH∗

(
X(n, k);Z2

)
. Let Z(n, k) be the set of real

points inX(n, k). In other words,Z(n, k) is the set of fixed points of the complex
conjugation onCn. Then

rank H∗
(
Z(n, k);Z2

) ≤ rank H∗
(
X(n, k);Z2

)
(see [11]). On the other hand,Z(n, k) may be viewed as an intersection ofk real
quadrics inRn. This approach, in principle, can give a sharper estimate for the
sum of the Betti numbers, but since it is applicable only for a specific field of
coefficients, we do not discuss this topic here.

Interesting results on the topology of the setX(Q, a) defined by (1.2) were
obtained in [1] by different methods. In particular, a spectral sequence was con-
structed in [1], which converges toH ∗(X(Q, a); F ).
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