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1 Introduction

In this paper we study the topology of a semialgebraic set defin&d ioy few
quadratic inequalities. Let us denote by-) the standard inner product iR".

Let Q be a symmetrie x n matrix,b € R" be a vector an@ € R be a number.

The functionq : R" — R, q(x) = (Qx,Xx) + (b,x) — a is called aquadratic
polynomial Let us consider a semialgebraic set defined by quadratic inequalities:

Xz{xe}R“:qi(x)<O:i =1...,s; q(x)<O0:i :s+1,...,k},

whereq; are quadratic polynomials. We are interested in the topology of the set
X when the numbek of inequalities is small whereas the dimensioris big.

As a measure of the “topological complexity” of the 3etwve consider the sum

of its Betti numbers

rank H*(X;.7) = rankH..(X;.7),

where H* are singular cohomology and, are singular homology with the
coefficients in a field7 . Our results and constructions are independent of the
field, and therefore we often omi¥ in the notation.

In this paper we prove the following main result.

(1.1) Theorem. Let us fix ke N. Then there exists a polynomial@®) : n € ¥

of degree (k) such that for any ne N, for any k quadratic polynomials; g
R"—R:i=1...,kand for anyl < s < k the sum of the Betti numbers of
the set

Xz{xeR”:qi(x)<O:i =1....s; g(Xx)<0:i :s+1,...,k}

does not exceedyfh).
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The general estimate (see [6-8,11]), which is applicable for an arbitrary
semialgebraic set, would give usk(®™ as an upper bound for the sum of the
Betti numbers ofX. Thus this estimate is better than the estimate from Theorem
1.1 if k is large. If, howeverk is small (fixed) anch is large, then the estimate
of Theorem 1.1 is better. As is known, any real or complex algebraic variety can
be represented as an intersection of quadrics. Therefore, Theorem 1.1 provides,
in principle, a tool for estimating the sum of the Betti numbers of an arbitrary
real or complex algebraic variety. Of course, generally the number of obtained
guadratic equations will be very large, so the estimate provided by Theorem 1.1
will be too weak. However, some algebraic varieties can be represented as the
intersection of few quadrics, and, therefore, Theorem 1.1 would provide for them
a better estimate (see Sect. 6 for an example). A possible application of Theorem
1.1 to lower bounds of bilinear complexity of a semialgebraic decision problem
is discussed in Sect. 6.1.

We use a similar technigue to that of [6] with some necessary modifications.
As in [6], we prove first a version of Theorem 1.1 for a smooth variety by
choosing an appropriate Morse function on it. K¢t (Qq, . .., Qk) be ak-tuple
of symmetricn x n matrices anda = (ay, ..., a) be ak-tuple of real numbers
interpreted as a vector frof*. First, we establish our upper bound for a compact
complete intersection df real quadrics

(12) XO(Q,a):{xeR":<x,Qix>:ai, i:1,...,k},

wherea = (ay, ..., a) is “in general position” inlkk (Corollary 3.3). To prove

this, as in [6] we choose an appropriate Morse funcfigx) on X,(Q,a) and
estimate the number of critical points ofas the number of solutions to a system

of polynomial equations. However, in our case we get a very special system, so
we are able to show that the number of solutions is bounded by a polynomial in
the dimensiom rather than by (R)°™ (Lemma 3.2). Next, as in [6] we extend

our bound to the general (non-smooth) case. However, we can no longer use the
reduction of [6], for it would destroy the “quadratic nature” of our sets. Instead,
by using a combinatorial construction we prove Theorem 1.1 for the sets

(1.3) X(Q,a):{xe]R”:(x,Qix>§ai, i:1,...,k},

whereX(Q, a) is compact and is “in general position” (Lemma 4.3).
Then, using the standard approximation technique, we prove Theorem 1.1 in
whole generality (Sect. 5).

2 Preliminaries. The space of quadratic forms

In this section we recall some facts about quadratic forms “in general position”.

Let us consider the linear spa®é, of all n x n real symmetric matrices.
We can identifyW, with the spacd&”mzﬂ). We will be interested in the subset of
singular matrices iW,.
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(2.1) Proposition (see, for example, Corollary of Lemma 2 from [1For any
r=0,...,n the set

Wy ={Ae W, :rankA=n—r}
is a smooth analytic variety in Wof codimensior ;1. O

Proposition 2.1 is also known as the “corank formula”. TMY8 = {0} is
the origin inW,, whereas\;? is a dense subset W,.

(2.2) Definition. Let us fix ak-tuple Q = (Qq,...,Qx) of symmetricn x n
matrices. Let- be a symmetria x n matrix. If the map

k
Te i B* — Wh, Pe(zi,....z%)=F _Zzi -Q
i=1
intersects every variet) ¢ W,, r =0,...,n transversally, we say th& is
generic with respect to QSometimes we say th&t is generig if the choice of
Q =(Qq,--.,Qx) is obvious from the context.

Proposition 2.1 immediately implies

(2.3) Corollary.

1) For given k-tuple Q= (Qq, . . ., Q) of n x n symmetric matrices the set of
generic matrices F contains an open and dense subset, of W

2) If F is generic with respect to Q, then

rank(F _Zf:Z‘QO - {¢8k+21_1}

for all zy, ...,z € IR. Here[:] denotes the integer part.

Proof.
1) Let us consider a linear map: B @ W, — W, :

k
Gz, F)=F =) z-Q: zecR* FeW,

i=1
The map¢ is surjective and therefore intersects every variay transversally.
Forr =0,...,n letS = ¢~%(W!) c Bk @& W,. Let us denote by the natural
projectionp : 2k @ W,, — W, onto the second summand. It follows then (see,
for example, Lemma 4.6 of [4]) thdE is generic with respect tQ whenever
F is a regular value of every restrictign : S — W, of p on S. Since the
set of singular values gf; is a semialgebraic set, by Sard’s Theorem (see, for
example, Sect. 1 of Chapter Il of [4]) we get the desired result.

2) If F is generic, then the affine variety

k
F—ZZaQiZ Z,... ZER
i=1

r(r+1)

in W, does not intersedtV, for k < 5
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3 Generic intersections of quadrics

In this section we prove a version of Theorem 1.1 for a compact complete
intersection (1.2) of real quadrics.

(3.1) Definition. Let us fix ak-tuple Q = (Qq,...,Qk) of n x n symmetric
matrices. We say thaa € R is generic with respect to Qif a is a regular
value of the quadratic mag : R" — R¥ : q(x) = ((X, QuX), ..., (X, QX)).
Sometimes we just say thatis generig if the choice ofQ = (Qq,...,Qx) is
obvious from the context.

By Sard’s Theorem it follows that for an® = (Qq, . . . , Qk) the set of generic
a is open and dense i&X. If a is generic, then the variety

XO(Q7a):{xe]R”: X, Qx)=a, i :1,...,k},

is either empty or a smootm (— k)-dimensional manifold such that for every
X € Xo(Q, a) the vectorsQ;x, ..., Qkx are linearly independent.

Let F be a positive definite matrix. Then there exists a veggoe R" such
that the functionf (x) = (X — X, F(X — Xo)) is a Morse function orXy(Q, a)
(see, for example, Sect. 6, Part | of [5] for the standard squared distéce
(X —Xg,X—Xp). Our functionf (x) reduces td(x) by a coordinate transformation.)
We show that ifF is generic with respect tQ, then the number of critical points
of f on Xo(Q, a) is bounded by a polynomial in.

(3.2) Lemma. Let us fix ke N. Then there exists a polynomial(p) : n € N

of degree @k) such that for any k-tuple Q= (Qs,...,Qx), for any generic
a=(a,...,a) € R, and for any Morse function(k) = (x — Xo, F (X — Xo)),
where F is a positive definite matrix which is generic with respect to Q, the
number of critical points of x) on the variety

Xo(Q,a):{xe]R“: X, Qx) =4, i :1,‘..,k}

does not exceediMm).

Proof. We introduce some notation. Far=(z, ..., z) we let
k
P(z)=F — ZZiQi-
i=1

For subsetd ,J C {1,...,n} we denote byd(z;1,J) the submatrix of®(z)
with row indices inl C {1,...,n} and column indices id C {1,...,n}. Let
y = FXo. We denote b@/(;) then x (n + 1) matrix @(z),y).

Without loss of generality we may assume tKg{Q, a) is not empty. A point
x € R" is a critical point of the functiorf, if and only if there exist Lagrange
multipliersz = (z, . . ., z) € R¥ such that

(3.21) P(2)x =,
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and, additionally, we have that
(3.2.2) (X, Qx)=g fori=1,... k.

For a given critical poink the vectorz = (7, . .., z) of Lagrange multipliers is
necessarily unique, because the vectg, ..., Qxx are linearly independent.
We will represent the set of possible Lagrange multiplers (z,...,%) as a
union of polynomially many (possibly intersecting) pieces, c R* so that the
system of equations (3.2.1)—(3.2.2) witke .7, has at most polynomially many
solutionsx for every piece7%,,.

SinceF is generic with respect tQ = (Qy,...,Qk), by Corollary 2.3 we
have that

Vek+1-1

rank ®(z) > n — [ 5

] forall z=(z,...,%).

(3.2.3) PiecesZ,. Our pieces %, C ¥ are indexed by ordered triples =
+1—

Vak 21 l} andl,J C

{1,...,n} are subsets of equal cardinali ty— s. We define

(s,1,J), wheres is a natural number X s <

T 3 :{z:(zl,...,zk) e R¥: rank&(z) = rank@(?):n—s

and det(z,1,J) # o}.

We observe that a piece?, C ¥ can be defined by a system of one polynomial
equation inz;, ...,z of degree at mostr® (that is, the sum of squares of all
(n—s+1)x (n—s+1) minors of the matrixp(z) is equal to zero) and one
polynomial inequality of degree at mas{(that is, detb(z, |, J) # 0). The number
of all possible pieces”,, does not exceel - n%, that is, polynomial im for a
fixed k.

Let us choose a piece?, for o = (s,1,J). For everyz € .7, the set
x of solutions of (3.2.1) is as-dimensional affine subspadg in R". Let us

construct rational vector-functionsy(z),...,us(z) : %, — R" such that
Uo(2), - .., Us(z) is an affine basis oA, for everyz € .%,. We let{1,...,n}\J =
{j1,...,js}. Fori =0,...,s andj € {j,...,js} we define thg-th coordinate
of u;(z) to be either identically 1, if = j;, or identically zero, otherwise. Then

the other coordinates af;(z) are uniquely determined from a non-degenerate
system (3.2.1) of linear equations. By Cramer’s rule it follows that evef)
is a rational vector-function iz = (z, . .., %) of the type

() = P1i(2) Pni(2)
(324) ()= <detq5(z;| )7 detd(z; W)’

whereP; ; are polynomials and deB;; < nfori =0,...,sandj =1,...,n.
Thus for everyx € R", which satisfies (3.2.1) wita € .%,, there is a unique
vector\ = (\g, ..., As) such that
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S
(3.2.5) X = Aui(2)
i=0
and
S
(3.2.6) da=1
i=0
Let us write the following systent’, : « = (s,1,J) of polynomial equations
and inequalities irs + k + 1 real variablesy, ..., z, Ao, - . ., As!
System2X,.
— we express the conditian= (z, ..., %) € .7, by means of a polynomial

equation and an inequality (see (3.2.3));

— we substitute (3.2.4) into (3.2.5) and the resulting expressiorx fare
substitute into (3.2.2);

— finally we write the equation (3.2.6).

Since the number of variables if, does not exceedk2(see (3.2.3)), the
degrees of equations and inequalities do not exceetl 2, and the number of
equations and inequalities s+ 2, by the results of [8], Sect. 3 (see also [6])
we conclude that the number of connected components of the set of solutions
to the system¥, does not exceed(k + 2)(2n + 1))0('(). The set of solutions

(z, .-, Z, Ao, ..., As) Of the systemX, is in one-to-one correspondence via
(3.2.4)—(3.2.5) with the set of critical points € X,(Q,a) of the functionf,
whose vectorz = (z,...,%) of Lagrange multipliers from (3.2.1) belongs to
the pieceZ,. In particular, we conclude that the set of solutions to sysiem

is finite. Therefore the number of solutions to a syst&mn does not exceed
((k +2)(2n + 1))O(k). In other words, for every fixetk the number of critical
pointsx € X(Q, a) of f, whose vector of Lagrange multipliers belongs to a piece
.7, is bounded by a polynomial in of degreeO(k). Since the total number of
pieces.Z, is also bounded by a polynomial m of degreeO(k) (see (3.2.3)),
the proof follows. O

(3.3) Corollary. Let us fix ke N. Then there exists a polynomigl(p) : n € ¥
of degree k) such that for any ne N, for any k-tuple Q= (Qy,...,Qk) of
symmetric nx n matrices, and for any generic vectoraRX the sum of the Betti
numbers of the set

Xo(Q.a) = {x € B": (x,Qx) =@, i =1,....k}
is bounded by g(n) provided %(Q, a) is compact.

Proof. The sum of the Betti numbers of a compact smooth manifold does not
exceed the number of critical points of a Morse function (see, for example, [5]).
Now we apply Lemma 3.2. O

For further convenience we assume tpgain) is a monotone function im.
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4 Generic quadratic inequalities
In this section we prove Theorem 1.1 for compact semialgebraic sets
X(Q,a) = {x eR": (X, Qx)<aq i :1,...,k},

wherea = (ay, . . ., &) is “in general position”. To do that, we consider a formally
larger class of semialgebraic sets defined by quadratic equations and inequalities
and use the induction on the number of inequalities. We use Corollary 3.3 as a
base fo r the induction.

Below we define the main object of this section.

(4.1) Sets W, g(Q,a). Let us choose &-tuple Q = (Qq,...,Q«) of n x n

symmetric matrices and a vectar= (a,...,a) € RX. For any partition of
the set{1,...,k} into pairwise disjoint (possibly empty) subs&sl ,E: SuU

I UE ={1,...,k} we consider a semialgebraic 3&%, £(Q,a) C R"*, where
s = cardS. We interpret a point inR"* as a pair X,u), wherex € R" and
u=(uy : i €98)is ans-tuple of real numbers; indexed by the elements &.

We define

Ws e(Q,a) = {(X,U) e R (x,Qix) < g fori el;
(X,Qix) =g fori € E;

X, Qx)+uZ =g fori ¢ S}.

For a subse8 C {1,...,k} we define a quadratic map’ : RS — K as
follows: g° = (47, . . ., g¢) ,where

x,Qx)+u? ifies;
(X, Qix) if i ¢S.

(4.2) Definition. LetQ = (Qq, ..., Q) be ak-tuple ofn x n symmetric matrices.
We say that a vecta € RX is strictly generic with respect to Qf a is a regular
value of every mam® : R™S — RX for S ¢ {1,...,k}. Sometimes we just
say thata is strictly generig if the tupleQ is obvious from the context.

@ = {

Sard’s Theorem implies that for any giv€hthe set of strictly generia is
an open and dense subsefik.

(4.3) Lemma. Let us fix ke N. Then there exists a polynomial gn) : n € N
of degree k) such that for any k-tuple @ (Qy,...,Qx), for any partition
SUI UE ={1,...,k}, and for any ac 12X, which is strictly generic with respect
to Q, the sum of the Betti numbers of the sgt| W(Q, a) does not exceed.p(n)
provided this set is compact.

Proof. Let py 1(n) = pc(n + k), wherepk(n) is a polynomial from Corollary 3.3.
We proceed by induction on the cardinality lofthe set of inequalities). If card
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I = 0 then the estimate follows by Corollary 3.3. Suppose that thé senhot
empty. Let us pick up g l.LetS =SU{j},1’"=1\{j} andE' =EU{j}.
Starting fromWs, £(Q,a) C R"™S we get eitherWs |/ g(Q,a) C RS, jf
we replace the inequalityx, Q x) < & by the equationx, Qx) +u? = g, or
Ws,r e/(Q,a) C R"S, if we replace this inequality by the equation Q;x) = .
If Ws, g(Q,a) is compact, then bothVs/ |- (Q,a) andWs g/ are compact.
Our aim is to estimate rank * Ws | £(Q, a) in terms of rankH * Wy, ;/ g(Q, &)
and rankH* Ws ' £/(Q, a). Note, that the number of inequalities participating
in the definition of either of the seWds |, £(Q,a) andWs g/(Q, a) is smaller
than that ofWs; £(Q, a).

The setWs - g(Q, a) can be dissected into two pieces

W1 e(Q.a) = {(x,u) € We £(Q,a) : 4 =0} and

Worure(Q2) = {(X’”) €Ws 1 e(Qa): u < 0}
with the intersection

WE . e(Q.8)= {(x,u) € Wer £(Q.a) : y =0},

Let us consider the natural projectigh"s*! — R"™S that maps a point
(X,u; : i € §') tothe point &, u; : i € S) (we erasay;). This projection home-
omorphically maps each s, |, £(Q,a) andWg, |, £(Q,a) ontoWs; (Q, a)
and the seWSO,)I £(Q,a) ontoWs ;- e/(Q, a). Applying the induction hypothesis
to We - e(Q, @) andWs» e/(Q, a) we get

rankH* We - g(Q,a), rankH* WS, |, g(Q,a) = rankH* Ws ' e/(Q,a)
< pya(n).

Therefore, applying the Mayer—Vietoris exact sequence (see, for example, Sect. 6
of Chapter 4 of [9]) we get that

rankH* Wg, |, £(Q,a) +rankH™* Wy, |, £(Q,a) < 2px 1(n),
and hence
rankH* Wg, |, £(Q, a) = rankH* Ws 1 e(Q,a)

rankH* Ws £(Q, a)
Pk,1(n).

IN

O

(4.4) Corollary. Let us fix ke N. Then there exists a polynomial gn) : n € N
of degree @k) such that for any k-tuple & (Qq, ..., Qx) of n x n symmetric
matrices and for any strictly generic @ R¥ the sum of the Betti numbers of the
set

X(Q,a) = {x ER": (x,QX) < &, | =1,...,k}
does not exceed.a(n) provided XQ, a) is compact.

Proof. Follows by Lemma 4.3 since the s®fs, g(Q,a) for S =E = and
I ={1,...,k} coincides withX(Q, a). O
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5 Proof of Theorem 1.1

First, using the standard approximation technique we prove Theorem 1.1 for the
setsX(Q, a) defined by (1.3).

(5.1) Lemma. Let us fix ke N. Then there exists a polynomial gn) : n € N
of degree @k) such that for any(k + 1)-tuple Q = (Qp, Q1,...,Qx) of n x
n symmetric matrices, where,@ a positive definite matrix, and for any a
(a0, - - -, &) the sum of the Betti numbers of the set

X(Qja):{xe]R“: X, Qx) <a, i :0,...,k}

does not exceedp(n).

Proof. Let px 2(n) = pk+1,1(n), wherepy 1 is the polynomial from Corollary 4.4.
We define

#£(Q,a) = {e =(eo,...,€k) ;. a+eis strictly generic with respect tQ

and 0< ¢ < 1fori :07...,k}

(see Definition 4.2). The sef (Q, a) is open and dense in the unit cube<0
¢ < 1. Therefore

X(Q,a)= (] X(Q.,a+e).

e€Z(Q,a)

SinceQq is positive definite, the setd(Q,a) and X(Q, a + ¢) are compact and
we have that
H* X(Q,a) =limH* X(Q,a+e),

where the direct limit is taken with respect to natural inclusiX{®,a +¢) C
X(Q,a+o) whenever; < ¢ forj =0,...,k (see, for example, Sect. 6 of Chapter
6 of [9]). Now we apply Corollary 4.4 to the se¥§Q,a+¢): e € £(Q,a). O

(5.2) Corollary. Letus fix ke N. Then for any k-tuple G (Qy,...,Qk) of nxn
symmetric matrices and for any=a(ay, . . ., a) the sum of the Betti numbers of
the set

X(Q,a) = {x eER": (X,Qix) < a, i :1,...,k}
does not exceed.p(n), where p » is the polynomial from Lemma 5.1.

Proof. For R > 0O let us define

XR(Q,a):{x EX(Q,a): x2+...+x2< R}.

Then
X(Q7a) = U XR(Qaa)7

R>0
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and therefore
H. X(Q,a) =limH, Xg(Q,a).

On the other hand¥g(Q, a) can be considered as the set of solutions of a system
of quadratic inequalities with at least one positive definite matrix. By Lemma
5.1

rank H. Xg(Q,a) < p«,2(n)
and the proof follows. O

(5.3) Corollary. Letus fix ke N. Then for any k symmetric matrices,Q. ., Qx,
forany a, ..., ax and for any s< k the sum of the Betti numbers of the set

X ={x ER": (X,QiX) <a,i=1...,8 (XQx)<qg:i =s+17...,k}
does not exceedp(n), where R » is the polynomial from Corollary 5.2.

Proof.Leté?':{e:(el,...,es):O<ei <1l:i :1,...,5} and

XCZ{XE}Rn: X,Qx)y<a—e,i=1...,8 X,Qx) <g :i =s+1,...,k}

Then
X = U X..
ee&
Now we observe that
H.(X) = lim H. (X,).

where the limit is taken with respect to natural inclusiofgsc Xs; whenever
¢ > ¢ and apply Corollary 5.2 to the seXs. O

1 . .
Proof of Theorem 1.1Let Px(n) = 2pk+2’2(n +1), wherepy 2 is the polynomial

from Corollary 5.3. Suppose thgt(x) = (x, Qix) + (b, x) — &, whereQ; is an
nxn symmetric matrixp; € R" is a vector an& € IR is a humber. We introduce
a new real variablé and consider the semialgebraic et RM1 given by the
following family of k + 2 quadratic inequalities without linear terms:

:{(x,t)e]R”*l: X,Qx)+t-(b,x)<a:i=1...,s
X, Qx)+t-(bi,x)<a:i=s+1....k;
t2<1, —t?>< —1 (thatis t2:1)}.
By Corollary 5.3 it follows that

rank H* X < 2P¢(n).

On the other hand, the s& consists of the two non- intersecting components
X, and X_ corresponding to the casés 1 andt = —1 respectively. The map
(x,t) — x is @ homeomorphism betweéh andX whereas the mapx(t) —

—x is a homeomorphism betweefi. and X. This observation completes the
proof. O
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6 Corollaries, examples and possible applications

Theorem 1.1 allows us to distinguish several classes of (semi)algebraic varieties
with “small” Betti numbers. For example, for any fixédthe sum of the Betti
numbers of an intersection &freal quadrics ifR" is bounded by a polynomial
in n of degreeO(k) (since a system ok quadratic equations}(x) = g :
i = 1,...,k can be written as a system ok 2juadratic inequalitieg) (x) <
a, —gx) < —g : i=1...,k). The same remains true for intersections of
complex quadrics. Note, that we don't require that the quadrics must intersect
transversally. Another corollary of Theorem 1.1 is that a fixed number of quadrics
in R" dissects the space into polynomially many pieces.

As is known, any system of polynomial equations can be reduced to a system
of quadratic equations by substitutions of the tgpe xy. Sometimes the number
of obtained quadratic equations is small and we can apply Theorem 1.1. For
example, let us consider a real algebraic varietigihdefined by a polynomial
of degree 4

X={x B qux) () + () () = 1},

whereqy, 0z, 03, G4 are quadratic polynomials. Theorem 1.1 implies that the sum
of the Betti numbers of this variety is bounded by a polynomiat.itndeed, let
us consider a varietd c R"*

Z= {(nyl,yz7y3,y4) D 0i(X) -y =0:1=123,4andyiy> +Yyays = 1}.

The varietyZ is given by 5 quadratic equations (and, therefore, by 10 quadratic
inequalities), and hence we can use Theorem 1.1 to estimate the sum of the Betti
numbers oZ. The natural projectionx( yi, ¥, Y3, ¥4) — X mapsZ homeomor-
phically ontoX.

This construction suggests that the number of quadratic inequalities needed
to describe a semialgebraic set may be the “right” measure of its complexity.
This idea can be formalized as follows.

(6.1) Relation to the computational complexitytheorem 1.1 can be used to
establish some lower complexity bounds in algebraic computations. Here we
only briefly sketch a possible approach in maximal generality. Let us consider
a computational model over the real numbers (see, for example, [2]). Suppose
there is a machine that can perform arithmetic operations (addition, subtraction,
multiplication and division) and comparison over the real numbers. It is assumed
that every operation has cost 1. The machine has a finite number of Staiteka
memory realized by a finite number of boxes, indexed hy 1, N, each of which
contains at most one real number. At every step the machine either performs an
arithmetic operation with the numbers from some two boxes and stores the result
in some other box, or changes its state in accordance with the sign (positive,
negative or zero) of the number contained in some box. The indices of the used
boxes and the performed operation are determined by the current state of the
machine.
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Let us fix some semialgebraic s¥tC R". We are interested in the compu-
tational complexity of the following fundamental

X-membership problem.Givenx € R" decide whethek € X.

It can be seen that the computational complexity of Xamembership prob-
lem is directly related to the “complexity” of the representationXofn terms
of quadratic inequalities. Suppose that ¥renembership problem can be solved
in k steps on some machine with the number of st&eket us choose some
computationr (that is, a sequence of states of the machine) which leads to the
answer “yes” in theXx-membership problem and I&, C X be a set ofx for
which this computation is realized. Thé® is homeomorphic to a semialgebraic
setY, in R™™ : m < k given by at mosk quadratic inequalities. Indeed, every
arithmetic operatiorx xy — z, wherex = +,— - : can be recorded by an at
most quadratic equation with one new variable whereas branching fixes signs of
some variables. S& € X, iff x can be appended (in a unique way) by new
variables £y, . . ., zy) to a vector from some semialgebraic ¥etc R™™ which
is a set of solutions of at mo&t quadratic inequalities. The natural projection
Y, — X;: (X,Z,...,Zn) — X is @a homeomorphism. S¥ can be represented
as a disjoint union of at moS* subsetsX, each of which is homeomorphic to
an at mostrf +k)-dimensional semialgebraic s¥t given by at mosk quadratic
inequalities. It is seen that an upper bound on the nundpet,) of connected
components o and a lower bound on the numbgg(X) of connected com-
ponents ofX produce some lower bound on the complexity of the machine that
solves theX-membership problem.

This approach was used, for example, in [12] to obtain lower bounds for
algebraic decision trees. It was based on the general estimates of [6, 7, 11] for
the Betti numbers of semialgebraic sets. The estimate of Theorem 1.1 appears to
be too weak in this general situation.

However, the same construction can be applied to the “bilinear complexity”
model (see, for example, [10]). In the bilinear model our machine operates with
the vectors fronk" instead of the real numbers. Instead of addition (subtraction)
we are allowed to perform linear operations with real vectors: addikoy) (—
x+y and an application of a linear operator— Ax and instead of multiplication
we are allowed to compute the value of a bilinear fd&fx,y) for any given
pair of vectorsx,y. All the operations have unit cost. Similarly, every operation
can be recorded by an at most quadratic equation except that the new variable
can be a vector frorik". In this case we gain by using Theorem 1.1 instead of
the general bounds [6, 7, 11] since our bound depends better on the dimension.
Indeed, we deduce that the number of connected componentssbibuld not
exceedS* times the maximal number of connected component,ofin other
words,

Bo(X) < S*Pi(kn),

wherePy(n) is a polynomial of degre®(k) from Theorem 1.1.
In other words, the number of stat8sand the number of stepscan not be
both small if the number of connected componentXds large.
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For particular types of programs (decision trees, straight line programs) one
can obtain sharper estimates. For example, if we can solvXtheembership
problem ink steps on a machine which allows branching (“yes” or “no”) on the
last step only we must hav@ =1 and hence

rank H,.(X) < Px(kn).

The details of this construction will be described elsewhere.

7 Remarks

(7.1) How optimal is the bound of Theorem 1.1@ne can show that the type

of the upper bound from Theorem 1.1 can not be improved. More precisely, for
every fixedk we present an intersectiof(n, k) of 2k real quadrics irk?", whose

sum of the Betti numbers grows at least as fagt®gor somec > 0 depending
onk only. Let us fixk € N. Let X(n,k) C C" be a transversal intersection lof
complex affine quadrics. The topological spacg, n) is uniquely defined, and
explicit recursions for ranki, (X(n, k); Z) are known (see [3]). In particular, it
follows that

rank H,_i X(n, k) > n for somec = c(k) > 0 and all evem.

On the other hand, identifying" ~ 22" we may consideX(n,k) as a (non-
transversal) intersection ok2eal quadrics inR?".

(7.2) The case of# = Z,. Corollary 3.3, which establishes an upper bound for
the sum of the Betti numbers of a generic intersection of real quadrics, plays the
crucial role in our proof of Theorem 1.1. This corollary is proven by constructing
an appropriate Morse function. For (co)homology with the coefficients ithere

is an alternative proof based on the Smith Theory.

Let X(n,k) be a transversal intersection kfcomplex quadrics irC" (see
(7.1)). Using [3] one can estimaté, (X(n,k); Z2). Let Z(n, k) be the set of real
points inX(n, k). In other wordsZ (n, k) is the set of fixed points of the complex
conjugation onC". Then

rankH..(Z(n, k); Zz) < rankH, (X(n, k); Z2)

(see [11]). On the other hand(n, k) may be viewed as an intersectionlofeal
quadrics inIR". This approach, in principle, can give a sharper estimate for the
sum of the Betti numbers, but since it is applicable only for a specific field of
coefficients, we do not discuss this topic here.

Interesting results on the topology of the 3€Q, a) defined by (1.2) were
obtained in [1] by different methods. In particular, a spectral sequence was con-
structed in [1], which converges ta*(X(Q, a);.7).
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