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1 Introduction

During the last years much progress has been made towards a better under-
standing of the complex geometry and analysis of bounded linearly convex
domains inC™ with C>°-smooth boundaries, in particular of those, which
are of finitel-type (in the sense of d’Angelo).

On the geometric side J. Bruna, A. Nagel and S. Wainger clarified 1988
in [4], what the correct notion of pseudoballs and a corresponding pseudo-
metric on convex smooth hypersurfaces of finite type should be. J.McNeal
showed in [11], that the d’Angelb-type of such domains is at each bound-
ary point realized by a complex line inside the holomorphic tangent space
to the boundary at that point. This investigation was continued in [1] and
in [15], where it was, finally shown, that the complete Catlin multitype of
such hypersurfaces is realized by the orders of contact of linear subspaces
of the holomorphic tangent space with the boundary.

A fundamental step on the analytic side was done by in [12] and in [13],
which together give quite precise descriptions of the boundary behavior of
the Bergman kernel function and the mapping behavior of the Bergman
kernel on such domains.

A different type of analytic question, namely the guantitative behavior
of thed-equation (in other norms thai?-Sobolev), has, except for the case
n = 2 (see [10]), until recently been treated only for a few classes of special
convex domains as examples. In [14] the (almost) exétdét continuity of
solutions to thé-equation for bounded-closed(0, 1)-forms was obtained
on complex pseudoellepsoids. This was generalized in [2] to a larger class
of convex domains of finite type, which are in some sense nevertheless quite
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similar to complex ellipsoids. Later, the exadblder continuity properties
of such solutions foreal pseudoellipsoids were shown in [8]. The reason,
for studying this question on real ellipsoids was the following:

A difficulty which arises in the construction éksolving Cauchy—Fan-
tappé kernels on convex domaird3 c C C" of finite type consists in the
fact, that the complex tangent spaces to the boundary realize, as mentioned
above, the correct orders of contact in the complex sense, but it may happen,
thatinside a complex lingangentt@ D at a given poing differentreal lines
throughO might have different orders of contact wittD. More precisely,
there might be exactly one real line insiélewhich has a strictly larger
order of contact than all the other real lines throwgh /. This causes
serious difficulties for the estimates if one wants to use the tangent spaces as
support hypersurfaces for constructing Cauchy-Fanégpginels (the same
difficulties also appear with respect to some other analytic problems; see,
for instance, [3], where exactly this difficulty was avoided by making the
additional hypothesis:

There is a constant, such that for eacly € 9D, each unit vector
v € T}°9D and eacht > 0 sufficiently small the estimate

Y (C + tv) < 7(¢+ tiv) < yr(z + to) (1.1)

holds.

Real pseudoellipsoids are the most simple convex domains of finite type
for which this dangerous non-homogeneity of the order of contact of real
lines inside a fixed complex tangential line may happen. In [8] they were
considered as a test case and new complex support hypersurfaces depend-
ing smoothly on the boundary point were constructed which have in all real
directions inside a complex tangential direction at any boundary point con-
stant orders of contact, thus enforcing in some sense the hypothesis (1.1) to
hold.

The difficulty, that the holomorphic tangent spaces do in general not
give the correct supporting functions for convex domains has, recently, been
avoided by A. Cumenge who announced in [5] a constructionesalving

Berndtsson-Andersson kernel on such convex domains by i w)) as
an approximate peak function @i whereK p is the Bergman kernel ap.

In order to estimate this kernel, the estimates from [12] are used which, in
turn, heavily rely on a good knowledge of theNeumann problem on such
domains.

In this article we will construaf *°-families of supporting hypersurfaces
with optimal orders of contact also in all real directions for arbitrary bounded
convex domains witi>°-boundary of finite type as a useful tool for analytic
applications. The basic idea of the technique was, in fact, used for the first
time in a different context in [7]. The construction 8fsolving integral



Support functions for convex domains 147

kernels with best possible diter estimates using these families of peak
functions will be contained in the forthcoming article [6].

The first-named author would like to thank J. McNeal for many con-
versations on the subject during which, in fact, such optimal supporting
hypersurfaces were constructed for arbitréggd points on the boundary
of the domains considered here (by a differenttechnique), [9]. We also would
like to thank B. Fischer for helpful conversations on the subject.

This work was done, while the first author was visiting the Department
of Mathematics of the University of Michigan. He would like to thank this
institution and, in particular, its complex analysis group for the support and
hospitality given to him.

2 The set-up and the main result

LetD cc C™be alinearly convex domain of finite type with C°°-smooth
boundary and, € 0D an arbitrary point. We denote fgr € 0D by n,

the unit outer normal vector @D at(. Then there is &> family of linear
coordinate changefl:(z) : ¢ € 9D} composed of a translation and a
unitary transformation, such that, for ea¢che 0D, I-(¢) = 0 andn¢ is
turned byl into the vector(1,0,...,0). In particular,TgoaD becomes in
the new coordinates = /- (w) associated tq just {z; = 0}. If we write
0D in these coordinates locally as a graph over its real tangent pldhe at
given now by{Re z; = 0}, we get as a defining function (z) for 0D near

¢ a (uniquely determined) function of the form

r¢ (2) =Rez + f%g (Im 21, 2')
=Rez + P () + R (Im 21, 2') (2.1)

wherez’ = (2,...,2,), Re(0) = 0, dR¢(0) = 0, and P;(z') consists of
all terms up to total ordef of the Taylor series of?;. Hence,R, satisfies
the estimates

|R¢(y1,2")] < C(yf + |l 2| + \z’\m“) 2.2)

for all (yi1,2’) close to0 with a constantC' uniform in { € 9D. More
explicitly, we have

P(2) =) Pei(#) (2.3)
=2
with

N 1 8j7“C 1a_1B3
PCJ (Z ) - zﬁ: O['lg' az/aazlﬂ (0) z z
a+p=j
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= > a0 277 (2.4)

a+pB=j

Remark 2.1Notice, that this expressionis invariant under unitary coordinate
changes in the’-subspace and that all functiong R, P, R areC* in
(z,¢) and eachr, is convex.

In order to formulate the estimates for the constructed support functions
for D precisely and, in fact, also for their proof, we will have to consider
intersections oD with transvers@-dimensional affine subspaces. For this
we introduce for any, € 9D and any unit vector € T!°9D the affine
space

A= {212 =+ wing +wov with w = (wy, wz) € C*}

and the2-dimensional convex domaif;, := D N A.. We think ofn¢
andv as being expressed in the coordinates associatéd $o,( = 0,
ne = (1,0...,0) andv = (0,v,...,v,). We may consided , as a
domain inC2. It has in the coordinatesu;, wo) in a neighborhoodV” of 0
in C? (independent of € 9D) the following form

D¢y NW = {w = (w1, wa) € W :
r¢w (W) == 1¢ (wine + wov) < 0} (2.5)

Hence, putting
Pr »(w) := Pe(wav) andR¢ ,(Imwy, wa) := Re(Im(wing), wov)
one has

DQU = {w e W :Rewy + P@(wg) + RC,U(Imwl,wg) < 0} (2.6)

whereP, , is of the formF; , (w2) = Z; L ngv) (w2) with

ng)(w) = Z ag)(C,v)wk@l (2.7)

kt1=j

where the coefficients"’) (¢,v) areC>®in (¢,v) € 9D x B,_1(0;1).
We will need the fo]ffowmg

Definition 2.2 For any polynomialP(z) = Zévzo Yot b= aaﬁzazﬁ on
anyCF we define the norfyP|| to be

PI=Y Y a3

=0 a-+p=j
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It also will be convenient to fix the following notation
1 forj=0mod4
gj:=4 —1 forj=2mod4 (2.8)
0  otherwise
In this article we will show

Theorem 2.3 If in the situation as described above numbéis K > 0
have been chosen sufficiently large, then for each sufficiently small
the functionS(z, ¢) € C>(C™ x dD), holomorphic inz for each¢ € dD,
for whichS¢(z) := So lgl(z) is (in these new coordinates associated)}o
equal to

m j 1 0r
Se(z) =3a1+ K3 —ey MYo; Y NER S0 (2.9
i=2 ol=j

satisfies the following estimate with a constant- 0 not depending on
(¢, v): if we putSe ,(w) := S¢(wine + wov) for ¢ € 9D and each unit
vectorv € Tcloc‘)D, then

Re w1 K 2 “ m (])
Re S¢ o (w) < 5 E(Im wy)” — ecjz2 HPCW

jwaol (2.10)

holds for allw € D¢, N By(0; R) with a radius? independent of, v.

Inorderto make it clear, what this Theorem means in particular, we formulate
the following direct consequence of it:

Corollary 2.4 Define the functio(z, () onC" x 9D as in Theorem (2.3),
take a poing € 9D and a unit vectow € T°9D. Letp < 1i be thel-type

of the domainD, ,, at 0 (p is the (complex) order of contact of the complex
line ¢ + tv with &D at ¢). Then there is a radiu® > 0, not depending on
(¢,v) and a constant > 0, such that the estimate

ReS(z,¢) < —clz — ¢ (2.11)
holds for allz € D N B(¢, R) of the formz = ¢ + win¢ + wav.

Remark 2.5a) Because of the semicontinuity of the d’Angéktype for
convex domains of finite type under small perturbations, our proof shows,
that the following more general fact is true:

Let r be a convexC>°-defining function for a convex bounded domdin
with C*°-smooth boundary of finite typg:. Then there exists g, > 0
small enough, such that there i€&-function S(z, ), holomorphic inz,
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onC™ x {¢ : —no < r(¢) < no}, which satisfies, for a (suitable) choice of a
C>°-family of coordinate transformatiorig with /() = 0 and turning the
exterior normal unit vecton, to 0D(r(¢)) := {z € C" : r(2) = r(¢)} at

¢ into the vector(1,0,...,0) € C, for sufficiently large constant&”, M
and sufficiently smalk, R, the identity (2.9) and the estimate (2.10) with
respect to the domaiP (r(¢)) at¢ and with the same: as in the Theorem.
b) It follows directly from our proof of Theorem 2.3, that, instead of using
the family of defining functions, from (2.1) in (2.10), we also could use
the familyr¢(w) :=ro lgl(w) as long as is aC* defining function ofD
convex on a neighborhood 6fand such thgt| = % ondD. Formula (2.10)
remains valid.

3 An important Lemma on homogeneous convex polynomials it

In this section we will formulate a Main Lemma on homogeneous convex
polynomials in one complex variables which will be the basis of the proof
of Theorem 2.1.

Lemma 3.1 (MainLemma) Lef > 2be aninteger. Thenthereisag(;j) >
0, such that for any homogeneous convex polynomial

Pj(z) = Z a2
k+l=j

in one complex variable and any0 < ¢ < g¢(j) the following inequality
holds:

Pj(2) + g Re (aj02’) > ﬁHPjH\ZV VzeC (3.1)
with o; as in (2.8).
Remark 3.2Notice, thatj automatically is even.

For the proof of this Lemma we will need the following fact, which we will
show first:

Lemma 3.3 Let P(z) = P(x,y) # 0, z = z + iy, be a homogeneous
convex polynomial of degrge> 2 in the complex plane. Suppose that there
isazg # 0, such thatP(zp) = 0. ThenP has the form

P(z) = (2Re (a2))! (3.2)

with a suitablea € C \ {0}.
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Proof. Notice, that the polynomia(z) := P(Z) againis# 0, convex and
homogeneous of degrge since we just made a linear coordinate change.
Now we haveQ(1) = 0. We write@ = Q(z,y) in real coordinates. Then
we have

J
Qz,y) = bty ™
k=0

However, sinc&)(1,0) = 0, thereis & < s < j such thatz, = 0 for all
k > s. We choose minimal with this property. Then we have

Qz,y) =) bty
k=0

For anyd > 0 the polynomialQs(z,y) := 58Q(§, y) Is again convex and,
obviously,Qo(z,y) = lims_0 Qs(x,y) = bsz*y? ~*. In particular()y must
be convex. This, however, only can be the casesfer 0, meaning, that
Q(x,y) = apy®. From this the claim follows immediately. 0

We now come to the
Proof of Lemma (3.3)We introduce the following notation:
C := { P; : convex, homogeneous of degree j, ||P;|| =1}

and assume, that there is &(j) > 0, such that (3.1) holds. Then there is
a sequenc(an(”))SlO:1 C C, such that

m 1 . 1 j
P + ~ 0 Re (ajo2’) < %|z|3 for some 2z # 0 (3.3)

We may suppose, thﬁj(”) — P;j € C. There are two possible cases:

1 case:There is ac > 0 such thatPj(z) > c for all |z] = 1. This,
obviously, is a contradiction to (3.3) for large

2" case:There is a with |z| = 1, such thatP;(z) = 0. Then, according
to Lemma 3.3 P; has the form

Pj(z) = (az + az)’
with a # 0. We puta = te’¥ andz = e’ and calculate
(az +@z)’ +eajRe (a?27) =t/ (cos (¢ + 0))’ + etio; cos (j(0 + 1))

Sincej is even, we just have to make sure, thatos(j(6 + 1)) = 1,
wheneverkos(f + 1) = 0. Since this is exactly the casefift- ¢ = k7 for
k odd, our choice of; as in (2.8) is good. O

The following characterization of convexity {f can easily be checked:
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Lemma 3.4 A real-valuedC?-function\ on an open sel/ C C is convex
onU if and only if

0’ (2)
072

[0
A (z) := 8282(2) -

‘ZOVZGU

We also will have to consider certain homogeneous polynomials of degree
4 > 2 which are almost, but not quite convex. For them we need the

Lemma 3.5 There is a numbedf; > 0, such that the following holds: If
Pj(2) = Y214 p—; ap2'Z" is a real-valued polynomial of which is homo--
geneous of degregand which is almost convex in the sense, that there is a
0 < § < §; such that

APy > =5|| Pi|2P 2
then the inequality
ojRe (ajoz’) > 6||Py||z]
holds for all z € C for which
Pj(z) < 6||P;||=

Proof. We show this indirectly assuming, that there is no séichThen
we can find a sequendéj(") of real-valued homogeneous polynomials of

degreej, such thaf| P\ || = 1,

AP™ > L2 (3.4)
n

j -

but still there are points,, € C, |z,| = 1, such thatPj(”)(zn) < % but,
nevertheless,

n) _j 1
ojRe (ago)zfl) <

We may suppose, thd%j(”) — Pj andz, — 2. Then, because of (3.4)
P; has to be convex|P;|| = 1, Pj(z0) < 0, henceP;(z) = 0 and
g Re(agg)) < 0. This contradicts Lemma 3.1. *O
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4 Basic estimates on convex functions i@

Letpy # 0be aC> convex functioninaneighborhooddf = A(0; R) c C
such thaip(0) = 0, dp(0) = 0. Suppose that the Taylor expansiorpgfat
0 has the form

po(z) = Pm(2) + Ro(2) (4.1)

with a homogeneous polynomi&l,, # 0 of degreem and aC*-function
R such that Ry(z)| < C|z|™*1. Because of the convexity @f we have
m = 2r.

We want to consider in this section the fam#y= F(po) of all convex
functionsp which are small perturbations pf in theC? +!-norm onA and
such thap(0) = 0 anddp(0) = 0. We can write each sughin the form

2r

p2) =) Pi(2) + R(2) (4.2)

=2

with polynomialsP; homogeneous of degrgeand|R(z)| < C|z|*" 1, C
independent op € F. For any number8 < R’ < R" we write Aps pr :=
{z: R <|z] < R"}. We may suppose that the neighborhdbdhas been
chosen so small that for apye F thereisaradiu8 < Ra,_1 < Ro, := R
such that

9 .
HPQT"HZ’ " > Qg?}%THPjH’ZV Vz € ARQT—LRQT (43)

(Notice, that by choosing the neighborhasdcsmaller and smaller, we can
pushRs,_ arbitrarily close td.)

For each such, we choose inductively radi < Ry < -+ < Rg,_1 <
R, in the following way: if for somek, 2 < k£ < 2r — 1, the radii
Ry, Rk+1, - - ., Roy have already been chosen, then we defije; to be
the minimum of all radi0 < R < Ry, such that

k . J .
I1Pullel’ = mas | Pyl ¥= € Ag g, (4.9)

We putAy, := Ar, , r,. Notice, however, that this inequality might not be
possible. In such a case we g}t := Rj. Furthermore, we puk; := 0.
We note, that we have because of this definition offhe

Lemma 4.1 Choose for g € F the radii0 =Ry <--- < Ry as above.
Then we have for all < k < 2r and all 2 € A;, the estimate

P 2I¥ > max | P;|||z)
1P ||| nay 12511z
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Next, we show, that for any € F all those homogeneous pat® are
almost convex, for which the annulus, is relatively large. More precisely,
we have

Lemma 4.2 Thereisforallh > 0anumbetls > 0andan arbitrarily small
neighborhoodF of py, such that for any € F and anyk: 2 < k<2r for
which the radiiRy_1, Ry corresponding te satlsfyR one has

Ac(Py)(z) > =0|| Pyl |2]* 2 vz (4.5)

Proof. We observe at first, that for/afor which R;, > 0, but R;,_; = 0,
the following holds trueP; = 0 for all 2 < j < k and P is convex.
Hence (4.5) is trivially satisfied for sudh
Next, we notice that for some universal constéht> 0 and any ho-
mogeneous polynomiaP; of degree2 < j < 2r we have by the triangle
inequality ‘
|AcP;(2)| < C|I P12 2 ¥z (4.6)

Hence, we get for any € F represented in the form (4.2) and ahy k& <
2r because of the convexity pf
Ac(Py) 2 =C)_ 1P|z~ — |Ac(~R)| 4.7)
£k

We may suppose, that\.(—R)| < C|z|*~! for anyp € F and we define
forany2 < k < 2rsuchthatR; 1 #0

Ry, := /Ry_1 Ry,

Put for such & the ratio=%— =: L and choosg # k. We consider the

k
Ri 1

1% case:j > k
Then we get

N i
1Pl Ry, = 1Pl Ry Ry,

Jj/2 ,j/2
- ey o
k:
RI/2
< ||P|| R} ’;/21 because of the definition of Ry,
gk/2 Ril?

— k—1

= HPkHRkRk/2 R

A A
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Together with (4.6) we get in this first case

P |
’ACPj(Z)‘ < CHPkHRZ QL(j_k)/z (4-8)
Next we have to consider the
2" case:j < k
By the same chain of estimates we get here
ag 1
|AcP;(2)] < CHPkHRi QL(k_j)/g (4.9)
Plugging (4.8) and (4.9) into (4.7) gives
Ac(Py) > —C|| Pyl Ry~ QZ T ]\/2 ~CR¥~'  (4.10)

Notice, that, whatevef, > 0 is, the neighborhoodF of py can be chosen
so small, that we have

CRy = C\/Ror_1 Ry, < [Prl] ZTH

for all p € F. Hence, we also ha\éfzk < ”P—zr”. This gives
P 1 . 1 Ap
CRY™ < 2 Por |l B2 < S Pell g™ (4.11)

We put this into (4.10) and see, that the Lemma follows by just chodsing
large enough. O

Now we have to take into account also those teinsfor which the
corresponding annuli are very small or even just circles. We show

Lemma 4.3 Leté > 0 be fixed and choosks > 0 and the neighborhood
F of pg according to Lemma 4.2. Also fix a constd@ht> 0. Then for any
sufficiently large constant/ > 0 the following holds true:

Suppose the paifj, k), 2 < j < k < 2r, has the following properties
with respect toa functiop e F:

a) L .

b) AJ ;é (Z) andAk # (.
Then one has

k j : ~ ! X
M| P]l|2* + M || Py]||2) > CM™ || Pi|||2[' Vi < 1 <k, Vz
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Proof. We define inductivelyNy, := || P»,|| and if N;;; has already been
defined we put for any > 2

N, if A, =
)= { ki if A =10 (4.12)
1P if Ay # 0
We claim, that we then have for agy< [ < 2r the equation
NiR} = Njj R (4.13)

Namely, observe, that this follows from (4.122,1513 = 0. 1f A # 0, let
A be the smallest positive integer such that allsq, # (). Then we have
according to the definition of the radit; the equation

[ I+
IPIIRy = [Pl By

Since, in this casey; = || F)|| and Ny, = || P+|| and since, furthermore,
R; = Rl+1 == Rl—i—)\—la (4.13) follows.
Let, for a giverp € F, the pair(j, k) be chosen as in the Lemma. We fix

. . . . _ A a2t
anyj < I < k and consider points with |z|*~! > C]\"j% R - Rip_1.
We insert into thisk; = N’Z_Vil and obtain after cancelations
!
. M? N,
Eluiyeiuamall (4.14)
M2 Nk

Now, notice, thatV,, = || .|| and, even it4; = (), we still have|| || < N;.
Putting this into (4.14) and multiplying by |’, we get

k A l
M2 |[Py||#" > CM* | B (4.15)
~ !
for all [z|F~! > Ny = C%Rl ----- Ri_1
On the other hand we consider pointsvith |z|'~7 < MZJZRJ» ceee
_ M2
R, = %% As above we obtain
j o Aot
MY | Pill|=f = CM* | B||=) (4.16)

2l
We want to show, that fab/ sufficiently large (independent of the choice
of j, k) we have

. R o
for all ‘Z‘lij < Nl,j = é\/liRj ----- R;_4.

1

1
oo B
Ny o <Ny,
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For this we calculate

Ni=g 2i_gl ol_ok
= AT e
Niy ot
1 __1
(R; Ry 1) (R, Ry_1) *-1
and observe that
A __1 R 1 1
(Rj -+ Ri) I (R Rpq) 1> - >

because of property a) 6in the Lemma.
Alltogether this implies the Lemma. O

In order to get the complete estimate of Theorem 2.3 we still need to
include the remainder terR(z) of anyp € F into our estimates. For this
we use the following fact:

Lemma 4.4 For A > 0 sufficiently large one has: for eagh= Z?;Q P;+
R € F the functionp 4 := 357, P; + Alz[*"*1 is convex (outside).

Proof. Notice, thatA |z[>" 1 = (2H)2|z|2r—1 — 2oEl2roly,2r-1 -
(22?1 and that fop € F always|A.R| < C|z|*~1. Hence, choos-
ing A very large makes the functigry convex everywhere. O

We call F4 := {pa : p € F} and apply Lemma 2.1 from [4] to the
family F4. We get

Lemma 4.5 There is a universal constant;, (notice, that2r < m), such
thatforallps € Fa

2r
D IP(2)] + Al

For simplicity of notation, we call for a giveme F anindexj,2 < j < 2r,
good if for a givend > 0 and Ls chosen according to Lemma 4.2 the
corresponding annulus;; satlsfles— > L. Otherwise,j is, of course
bad We get from Lemmas 4.3 and 4, 5

Lemma 4.6 ChooseF, Ls, M, C, A as above. Then there is a constant
¢ > 0 such that for allp € F and anye > 0

2r .
pa(z) + EZ M o; Re (ajo2")
=2
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el Do IP(E)] + AR
j good

+e )y M? <a] Re (aj027) — —||P |||z|J> (4.17)

j good

Proof. Notice that, according to Lemma 4.3 we can choose for any ihdex
which is bad, good indices < | < k such that

l
—M||Fi||-)

AV

MQZ o;Re (alozl)

Y

1 J j k k
= (M2 IR 1= + 22 =)

Using this we get

2r
pa(z)+ EZ M%¥; Re (ajoz?)
j=2
2r
> (Lemma 4.5C';, Z |Pj(2)| + Alz)* T ] + EZ Ve o Re (ajoz)
=2 J=2

Z |Pi(2)|+ Al | +¢ Z M? o Re (ajoz’)
J good j good

+e Z MQjUj Re (ajozj)
j bad

> (Lemma4.3Cy | Y |Pi(2)] + Al

j good
+e Z M? o; Re (ajo2") —z—:— Z M2J||P l|z)
j good ] good
From this the Lemma follows. O

The following Lemma puts together what has been proved in this section:

Lemma 4.7 Let for a givenC*> convex functior, on a neighborhood of
A a sufficiently small neighborhoa8, a fixed numbet > 0 smaller than
all the 9; from Lemma 3.5Ls > 0 according to Lemma 4.2 and > 0

according to Lemma 4.4 be chosen. If tiién- 2 5 andM > Ois sufficiently
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large, then there is a constaat> 0 such that for alk > 0 sufficiently small
there is a radiusk > 0, such that the following estimate holds:

2r . 2r ' A
p(z) +ey_ Mo Re (ajo2’) > ety _|IPl|2l Y]zl <R (4.18)
j=2 j=2

forall p € F.

Proof. p € F and choose the radit; according to (4.4). According to
Lemma 4.6 we then have for the corresponding

2r .
pa(x) + 3 MY Re (ajp5?) > ¢ 3 |Py(2)|

j=2 7 good
; . 2r .
+e Z (M%j Re (aj02?) — éHijzJ) (4.19)
7 good

Now we consider at first for any fixed gogdall pointsz, such that
Pj(z) < 8|1P;l|=F
We get from Lemma 3.5
o;Re (ajoz’) = || Py|=
and hence, according to the choice(of

&b
2

2re
C

If, on the other hand, for thigthe pointz has been chosen such that

eM? 0;Re (aj02') — |||z > <M ||Py||2 (4.20)

Pj(z)M = 6|\ Py||=F
then we get foe > 0 small enough (depending just gz, C, ¢)

2re

j . . co .
c|Pj(2)] +eM* o Re (ajo2’) — ?HPJHMJ = S IBlll=t (4.21)

If ¢ > 0 is small enough, we havi M* < <. Putting together (4.19),
(4.20) and (4.21) we get

2r
pa(z) —i—EZ M?* o Re (ajo2’) > 5 Z M ||Pj|||z V=

j=2 j good
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Because of Lemma 4.3 we can even allow in the right side of this inequality
also the terms for whicki is not good after we divide bgr (notice, that
C > 1). We obtain

2r 2r
; , 5 ; ,
) +e>° MY o Re (ajo2’) = %Z MZ|Pjl||f V2 (4.22)
=2 j=2

If we now choose a radiug > 0 small enough, we get
0 .
Al 4 R(2)| < %IIPzTIHzI” Viz| <R

Combining this with (4.22) we get with:= £

+EZM2 o Re (aj027) > cZHP Il
j=2

for all |z| < R and for allp € F. This proves the Lemma. 0

5 Inequalities in C2

We, next, want to draw the necessary consequences from Lemma (4.7) for
a class of convex functions di¥* which will, for a given convex domain

D cc C™ with €*>°-boundary and any € 9D, v € TH°9D with |v] = 1,
include the functiorr ,, as defined in (2.5). We show

Proposition 5.1 Let g (w1, w2) = Rew; + R (Im wy, w2 ) be aC> con-
vex function satisfying(?) (0) = 0, dR®(0) = 0 and which is of finite
type at0 in the sense, that it can be written as

fpo(w) = Rew; + PO (wy) + Rgo) (Im wy, wy)
with a homogeneous polynomi&ll?) (w,) # 0 of degree sagr and
Rgo)(lm w1, wg)‘ < C(]Im wi|jwa| + |Im w1]2>

Fix any integerrn > 2r. Then there is a neighborhoa# of j, in the
C*-topology and there are constanis, M (sufficiently large)s, R > 0
(sufficiently small) and > 0 (sufficiently small), such that for all functions
from

F = {,5 e F: p(w) = Rew; + R(Im w1, wy)convex,

R(0) =0, dR(0) = 0} (5.1)
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the following holds:
If we associate witlp the function

1075 ;
S(w) := 3wy + Kw? —EZMQJ —Q(O)w% (5.2)
= i
with o; as in (2.8) then the inequality
Rew; K e || 5 :
Re (S(w)) < 5 L_ 5 (Im w; )? — EZ HPjH”LUQ’j (5.3)
j=2

holds on{w : 5(w) < 0} N B(0; R)}, where

- 1 p o
Pj(wq) := Z k'l'awka (O)wkwl
kt+l=j

forj=2,...,m

Proof. We use all notations of Sect. 4 and observe, that Lemma 4.7 applies
to 5(0,we) for all 5 € F, if only 7 has been chosen small enough. Putting
wy = x + iy, we writep € F in the form

plwr,we) =z + p(0,wa) +y - Ro(y, wo)

We use polar coordinates, = te’?. The convexity of gives, in particular,

~ 2
0%p 0%p ORs
=2 > 5.4
Oy? Ot2 ot =0 ®.4)

at points of the forn{0, t¢?). Now, observe at first, that
&p i

87y2 (O, te )
for a constant” > 0 not depending on the choice pfe F. Furthermore,

sincep(0,te?) = Y1, Pi(te'?) + R(te) with R(ws) = O(|wo|**1)
uniformly in 5 € F, we have

2200

<C (5.5)

2r
<> H]%Htj‘Q + Ot (5.6)
j=2
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with another constar® > 0 not depending om. Putting (5.5) and (5.6)
into (5.4) gives after possibly increasiig and observing, thatPe, || is

uniformly bounded away frorti
2r .
NS
j=2

Hence, we obtain by integration changi@igon the way appropriately

%%(o,tew)

| Ra(0,2)| < ey MWQP/Q < Jci |8l 57)
j=2 j=2

Now we can estimate the real part of the functiw) from (5.2) for any
givenp € F on D N B(0, R) for sufficiently smallR > 0 where

D:={weC?: pw) <0}
using Lemma 4.7. Namely, we have éh

2r

r < =Y Pj(wz) — R(wsz) — yRa(y, w)
j=2

Putting this into (5.2) we get
2r

Re (S(w)) < —|z| = 2) _ Pj(wz) — 2R(ws) — 2yRa(y, wo)
j=2

+Ka? — Ky? — £y oMY Re (ajou])  (5.8)
j=2

wherea  is the coefficient of the terma?} in P;. We split the last sum in this
expression into 2 parts, nameE?”:2 ..and> ™, ., ... Obviously the
second part i€)(|wz|* 1) uniformly in 5. Furthermore, Lemma 4.7 gives

2r

B () B(us) €S0 MP o Re (ajoud)

Jj=2 J=2

2r
< —eeZHﬁjH lwal? ¥ wa| < R
j=2
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Furthermore| Ry (y, ws)| = O(Jy| + |ws|) uniformly onF. Putting all this

together with (5.7) into (5.8), we get far € D N B(0, R), after possibly
shrinking R, the estimate

Re S(w) ZHP wzj—I-y\lCZHP [lwa P —fy

Finally, we apply the Peter-Paul-inequality to this and get after chodsing
sufficiently large

Re S(w) < m K y? - ZHPHWQV

for all w € D N B(0, R). This finishes the proof of Proposition 5.1. O

Remark 5.2Notice, that Proposition 5.1 contains Theorem 2.3 for the case
of dimensiorg.

6 Proof of Theorem 2.3

Let nowD ccC C" be a convex domain witd>°-smooth boundary D of
finite typem. We use the complete set-up and notations as described in the
beginning of Sect. 2 of this article. We fix an arbitrary pajate 0D and

a unit vectoryy € T/°9D. We, then, can apply Proposition 5.1 taking the
functionr¢ ,(w) as defined in (2.5) agy(w). For thel-type i of D we
have, indeedin > 2r, Where2f is thel—tyge of the convex domain 2
defined by ,,. We now choosé, K, M, ¢, R, ¢ as given by Proposition 5.1.
Then there is a neighborhoddof ((y, vo) in dD x 729, such that for any
(¢,v) € T the functionr¢ ,, as defined by (2.5) belongs 6. Hence, we
can write down the functiod¢ , (w) given by (5.2) for eack(, v) € T and
the estimate (5.3) will hold o, ,, N B(0; R) (see (2.5)).

Next notice, that there is a relatively open neighborh@ouf ¢, in 8D,
suchthal’ x dB,,_1(0;1) as asubsetalD x T'99 D is covered by a finite
number of such neighborhoods Taking the maximal constants, M and
the minimal constants, R, ¢ used for these finitely many neighborhoods
and write down for eact(,v) € V x dB,,_1(0; 1) the functionS, ,,. Then
the S¢ , are automatically of the forrf; ,(w) = S¢(win¢ + wav) with S¢
asin (2.9), and (2.10) holds.

Finally, we can covetD by finitely many of these neighborhootis
Taking againk’, M maximal andt, R, ¢ minimal, Theorem 2.3 follows. O
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