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1 Introduction

This article contains a natural and important application of the holomorphic
support functions for convex domains of finite typeGft constructed in
[DiFo]. Namely, we use these functions to gesolving Cauchy-Fantap@i
kernels ford-closed(0, ¢)-forms, such that the solutions given by them on
bounded forms satisfy the best possible uniforidér estimates. More
precisely we show:

Theorem 1.1 Let D cc C™ be a linearly convex domain witfP°-smooth
boundary of finite typen. We denote bnygq)(D) the Banach space of

0, q)-forms with bounded coefficients éhand by/ll/m D) the Banach
(0,9)

space of0, ¢)-forms whose coefficients are uniformlglder continuous of
order1/m on D. Then there are bounded linear operators

[e'e) 1/m
Ty - L(O,q—i—l)(D) - A(évq)(D)

such thaT,f = fforall f € L 41)(D) with of =0.

A different proof for this result has already been announced 1997 by A.
Cumenge in [Cu]. In fact, A. Cumenge uses certain approximate holomor-
phic peak functions obtained from the Bergman kerndDdkee (1)) in her
construction of a-solving kernel of Andersson-Berndtsson type. In order

to get the desired estimates for this kernel, she applies the very precise esti-
mates for the Bergman kernel and its derivatives proved by J.D. McNeal in
[Mc2] by using the detailed information on the complex geometry of con-
vex domains of finite type from [Mc1] and the complete machinery of the
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0-Neumann problem. Our approach seems to be in some sense more direct.
Of course, the complex geometry from [Mc1] is again an essential tool (as
it was already in [DiFo] for the construction of the support functions). How-
ever, no other deep analysis is needed. The construction af-salving
Cauchy-Fantappikernels from the support functions follows well-known
routines. For estimating them, the estimates for the support fun&ifvom
Theorem 2.3 of [DiFo] and the fact, that also the imaginary pastcdn be
easily controlled in the usual way, play the essential role.

Concerning this question of the imaginary part of Suwe would like
to mention here the following: In [DiHe] a bounded pseudoconvex domain
D; cc C? with smooth polynomial boundary of finite type and a linearly
convex domainD, cc C* with smoothC!-boundary of finite type have
been constructed with the following property: if, in analogy to [Cu], we
define the approximate peak functions

(1)

for (2,¢) € D; x D; (Kp, denotes, of course, the Bergman kernel of the
domainD;, j = 1,2), then there are boundary points € 9D;, such that
Pj(z,¢) has zeros for pointéz, ¢) arbitrarily close to(z7, z7). It follows

from this, in particular, that the imaginary parts of tAedo not satisfy the
properties which are needed in the usual estimates of the Cauchy-Fantappi
kernels. Notice, that th®; are not of the type of the domains considered in
the above Theorem, but rather close to them. However, it seems to be difficult
to imagine, how one could prove, that, nevertheless, the approximate peak
functions P defined as in (1) behave nicely on bounded linearly convex
domainsD of finite type withC*°-smooth boundaries.

For more details about other relevant work and the history concerning
the problem considered in Theorem 1.1, we refer the reader to [DiFo]. Fur-
ther results, concerning the construction of solution operators which satisfy
estimates with respect to other norms will be given in another paper.

This article is organized in the following way: in Sect. 2 we recall the sup-
port functionsS constructed in [DiFo], write down a Leray decomposition
Q for them and give the construction of ofirsolving Cauchy-Fantappi
kernels. We also start with thedttler estimates of these kernels which will
be continued in all the remaining sections. In Sect. 3 we collect some basic
geometric tools for convex domains of finite type. In Sect. 4 we use these
tools to prove the needed estimates for the support funcfiofise estimates
for the Leray decompositio@ and some first order derivatives of them are
given in Sect. 5. In Sect. 6 we finally write down the integral estimates for
the Cauchy-Fantappikernels as defined in Sect. 2.
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2 Solution operators

Let i(z) be a smooth family of coordinate changes as defined in [DiFo].
We writel:(z) = @(¢)(z — (), where®((¢) is a unitary matrix depending
smoothly on¢ € 9D such that the unit outer normal vector &@ will

be turned into(1, 0, ...,0). The inverse transformation thenl‘tél(w) =

C+ 1 (Ow = ¢ + D7 (¢)w. The following definitions are as in [DiFo]:
re(w) = o(l; * (w)),
1 ajrg

ol 8wa

Se(w) —3w1+Kw1—cZM2] 0; Z 2)

la]=
a=

for M > 0 suitably large¢ > 0 suitably small (both independent ¢f, and

put
S(z,¢) = S¢(le(2)): 3)
Next we want to define functions@);(z, ¢) such that

n

S(2,0) =(Q(2,0),2 =) =>_Qj(z.0(z — ¢)
j=1

for @ := (Q1,...,Q,). We will do this by first definingQ’g(w) with
Sc(w) = (Q¢(w), w). Then we have the computation

Sc(w) = (Q¢(w), w)
Se(le(2)) = (Qc(le(2), le(2))
5(z,¢) = (Qc(le(2), 2(0) (2 = Q)
Thus
Q(z,¢) == 2" (O)Qc(lc(2)) 4)

will have the required property, once we will have found@féw) asabove.
For this we just define

Qé(w) =3+ Kwy (5)
and fork > 1
& o Ui 9 o, 8%”4 we
7= oq:%,;]k>0

The equationS¢(w) = (Q¢(w),w) then follows. It is also important to
mention that the definition a(z, ¢) in fact does not depend on the choice
of the transformatio. To be more precise we have the following lemma.
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Lemma 2.1 Let A(¢) be a unitary matrix of the form

10 ... 0
AQ) = "
A
0
and let¥(¢) = A(Q)®(C). If we defineQ(z, ¢) in the same way ag(z, ¢)
but with¥ instead ofp then we get

Q(z,¢) = Q(z,¢) forall z ¢

Proof. To see this we just have to observe that the term

1 ajTC
D aigue Ov”
‘aallzé

is rotation invariant. The term in the definition Qfg is not. But then there

is some additionalt” if we transform@ into @ and this makes it rotation
invariant again. O

Now we define Cauchy-Fanta@pintegral operators?, based on the
support functionS and its Leray decompositio(z, (). We define the
Cauchy-Fantappiform

Qi(za C)
Wi(z,() = d¢;.
(2,¢) Z S0 %
b Ei—-% . .
LetB = m = Z = z|2dg}- be the usual Martinelli Bochner form
and letK, be the well known Martinelli Bochner operator. Further define
n—q—2
Ryf:= > FAW ABA(@W)EN(9B)"" 17 F2 A (9,B)"

cedD

. A QAbNOLQ)F A (O b)—97+2 A (8,b)1
Cr ceon SkHL|¢ — z[2(n—k=1) :

In the last line we used the convention of denoting(th®)-form > . Q;(z,
¢)d¢; again byQ. That we only have to apply the complex tangential compo-
nentsd/ of the operatod);, follows from the fact that the integral is already
saturated with respect . It is also well known (see for instance [Ra]
or [DiFoWi]) that the operator$;, = R, + K, are solution operators, that
means)T, f = f for all 9-closed(0, ¢ + 1)-forms onD.
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The usual way to prove dlder estimates, is to use the Hardy-Littlewood
lemma which states that a functigne C*(D) also belongs tol®(D) for
0 < a < 1if it satisfies the estimate

|df (z)| < Cdist(z,0D)*"! forall ze D.

Due to the fact that digt, D) ~ |o(z)| and because it is well known that
Ky mapsL; +1)( ) to /1?‘ )( ) for all @ < 1 it remains to show that

[d-Bof (2)] < || Flloo lo(2)|7 "

To computed, R, f we just have to put the derivative on each of the factors
of the kernel. If we keep in mind thti| < |( — z|, thatd.0:b = d.0.b = 0
and thatd,, of all the other terms are bounded we get that

n—

a2 1d-Q A (DT Q)*|
CIEDY ||f||oo(/ S R Ao
+/ QA (OF Q)|
op | S| [¢ — z|2(n—k=1)
N KIQ A (8,Q)" Y
op | SFL] ¢ — z[2(n—k=1)—1

|~ k= 111Q A (3:Q)"
,

D |SF+2[|¢ — Z|2(n7k71)71d 2n—1

doay—1

doop—1

2(n — k= 1)]1Q A (9:Q)"|

op [ S| [¢ — z[2(n—k-1)+1-1

dO‘anl)

and the third term only appears fbr> 0. Since
/ QA (8Q)* | doon-1 _ / 1Q A (9:Q)!|doan—1
P)

5D Sk+1’C _ Z‘Qn—2k—3 D SH—ZK _ z‘2n—2l—5

</ QA (9:Q)!|dorzn—1

D SH'QK _ Z‘Qn—Ql—S

it remains to show that for eadh= 0,...,n — ¢ — 2 the following three
integrals
QrErQf
ceop SFT2C — 2223 O2n—1
QrofRf ,
ceop SFHLC — 2[2n—2k-2 T2n—1 ()

O02n—1-

/ 1d.Q A (0] Q)|
¢

cop SFFL|C — z[2n—2k—2
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can be estimated qu(z)\#‘l. For this purpose we need estimatesSoe€),
d,Q andagQ. They, in turn, are based on some known facts about convex
domains of finite type, which we recall first.

3 Basic geometric tools for convex domains

LetD = {p < 0} C C" be abounded convex domain wifr-boundary of
finite typem. We may assume, that the defining functiolnas been chosen
to be convex ol£™ and smooth of£™\{0}. We define some sort of complex
directional boundary distances by

7(C,v,¢) :=max{c: |o(C + A v) —o(¢)] <e forall XeC, |\ <c}.

For a fixed point¢ and a fixed radiug we define thes-extremal basis
(v1,...,v,) centered at as in [Mc2]. If it is important to mention the
dependence og ande of the coordinates with respect to this basis, we
denote their components by, ... Let v, be a unit vector in they, ¢ .-
direction and write((, ) := 7((, vk, €). We can now define the polydiscs

AP.(C) :=={2 € C" : |z ¢c| < Ai(C, )V},

(Note that the factod in front means blowing up the polydisc around its
center and not just multiplying each point By)
Using these polydiscs we define the pseudodistance

d(z,¢) :=inf{e: z € P.(¢)}.
The following statements can be found in the literature (see for instance
[Mc1], [Mc2], [BrNaWa], [BrChDu]):
Proposition 3.1 (i) For each constanf{ there are constants(K') and
C(K) only depending ot such that

Pyi)e(¢) C KP-(¢) C Pory=(6),
C(K)PE(C) C PKE(() C C(K)PE(C)

for ¢ neardD and alle > 0 small enough.
(i) There are constant§’; > 1, ¢ < 1 andcs (independent of ande)
such that

ClPS/Q(C) ) %PE(C) for all ¢, &, (8)
C1P(¢) C P.(¢) forall t< o, (e, 9)
C3P\g(§)\(C) cD forall (eD. (10)
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(iii) If v =3""_, ajuj, where(vi,...,vy,) is thec-extremal basis at,

then we have
1 gyl
(Cvye) ; (e’

In particular for every unitvectos we haver (¢, v, ) < 7(¢,€)/|ax]
for all k.
(iv) Foreveryz € P.(¢) we haver((,v,e) = 7(z,v,¢).
(v) We haver;(¢,e) ~ candt(¢,v,e) < em for every unit vectow. If
v IS a unit vector in complex tangential direction then we also have
ez < 7(¢,v, ).
(vi) Letwv be a unit vector and let

oiti

a;j(z,v) = mg(z + Av)|x=0-

Then we have
Z |ai;(2,0)|7(2,v,6) T = ¢
1<i+j<m

uniformly for all z, v ande.
(vii) Letw be any orthonormal coordinate system centeredand letv;
be the unit vector in the;-direction. Then we have

8|a+ﬁ|g(z) < £
Ow*ows |~ Hj T(z,vj,g)aj+/3j

for all multiindicesa and 3 with |a + 3| > 1.
(viii) The pseudodistancé(z, ¢) satisfies the properties

d(z,¢) =~ d(C, 2),
d(z,¢) S d(z,w) + d(w, ().
(ix) Ifw(z) |stheprolectlonofapomattotheboundar_@Dthend(z 7(z))
|Q(Z)| z € P.(¢) impliesd(z,{) < ¢; z ¢ P.(¢) implies

( () 2 e(not>¢); d(z,() <e¢ implieSZ € P(¢)forallt > ¢
andd( C) > cimpliesz ¢ P;(¢) forall ¢ S e.

For later use we define a family of polyannuli based on the polydiscs
from above. Using the constafif from Proposition 3.1 (i) we put

PEZ(C) = ClPZ_"s(C)\%PQ—iE(C)‘
It follows from (8) that these polyannuli cover the full punctured polydisc

U Pi(¢ O)\ {0} (11)
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Moreover ifig(¢) is the smallest integer larger thanlog,(cz¢) then
27%(8) < ¢oe and it follows from (9) thatP{* (¢) C C1Py-iy (¢) C P-({)
and consequently we have a finite covering

UP1 ) D Pi(O\P(0). (12)

Note also that

i0(g) < 2 —logy(coe) = —logy(coe/4). (13)

4 Estimates for S

The following Proposition is proved in [DiFo].

Proposition 4.1 Let n¢ be the normal unit vector t6D at the boundary
point¢ and letv be a complex tangential unit vector. Define

a+3
aap(C,v) = m@(( + Av) p=o-

For pointsz of the formz = ¢ + pn¢ + Av with u, A € C, we have

ReS(+.0) < P~ Kiimpp — 03" 3 fauslC IV,

J=2 a+p=j
wherec¢ is a constant not depending qror v.
We also need the following

Lemma 4.2 Letz € D be close enough to the boundary and assumesthat
is small enough. Then one has

1S(2,0)| > ¢ forall ¢edDnPn(z)) (14)
15(2,¢)| Z [e(z)] forall ¢ €dDN Py, (r(z)) (15)

Proof. Let ¢ € 0D ande be fixed,0 < k < K some fixed constants and
ko a small constant to be chosen later. Write= pin¢ + Av, wheren, is
the normal vector af andwv is a unit vector complex tangential &) at¢.
First we define

PY(¢) := {2 : IRep| < ko, (= — Repn¢) € KP.(C)
and (z —Reun¢) € kP-(¢)}.

We will show that

1S(2,¢)| = e forall ze P(¢). (16)
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uniform in the choice of andwv.

Using Proposition 3.1 (jii) it is clear that there is a const&nsuch that
Imp < Ki7(¢ ne,e)and A < kj7(¢, v, €) implies(z—Repun¢) € kP.().
Thus we have eithgl| > &/ 7(¢,v,e) orImpu > K 7(¢, n¢, €) or both. Let
k1 < k| be a constant to be chosen lateiNf > k;7(¢, v, ¢) then we can
use the estimate from Proposition 4.1 and Proposition 3.1 (vi) and get

‘S(Za C)‘ > —RES(Z, C)

&3 37 Jaas(C,0) AP

=2 a+p=j

Z \aag(ﬁ,v)lr(g,v,a)j

=2 a+B=j

v

Vv

Vv
M <

If A < k17(¢,v,¢) then we must have Im > kj7(¢,n¢,e) > koe. Now
we have to consider the imaginary partand get

15(2, Q)| = [Im S(z, ()]

m
> [3Im | — [2KReplmp| —ce > > laap(C,v)[|AF.
=2 a+p6=j

Using the estimate fok and again Proposition 3.1 (vi) the last term can be
estimated from above b ce. Now we can choosk; so small thak?ce <

kee. By the definition ofPY(¢) we also have that Im < C17(¢, ne,€) <
kse. Sothe second term can be estimate@ By ksc andkg can be chosen
so small thaR Kkokse < koe. Altogether we have

|S(2,Q)| > 3koe — ko — koe 2 €

and the proof of (16) is complete.

To prove (14) we just have to observe tifae P?(w(z)) means¢ €
C1P.(n(z)) and¢ ¢ 3P.(m(z)). Using Proposition 3.1 (i) and (ix) this
implies the inequalitiese < d({,n(z)) < Ce for certain constants and
C'. By Proposition 3.1 (viii) we also get: < d(n(z),() < Ce for some
other constantsandC'. Using Proposition 3.1 (ix) and (i) again we get that
m(z) € CP.(¢) andw(z) ¢ cP-(¢). If z is close enough to the boundary
ande is small enough this implies € P%(¢) for still some other constants
k and K. The first statement of the Lemma now follows from (16).

The estimate (15) also follows from (16) because we haaeﬁg(zn €)
for all ¢ € 9D N Py (7(2)). To see this, first observe that by (10)
c3Ply(2)|(2) N OD = ) and consequently((, z) > c|o(z)| forall ¢ € dD.
Using Proposition 3.1 (viii), (ix) and (i) this implies ¢ kP, (¢) for all
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¢ € dD. On the other hand we havéz, () < d(z,7(z)) + d(w(z),().
Using again Proposition 3.1 (ix) and (i) this implié&:, ¢) < C|e(z)| and
2 € K Py (¢) forall ¢ € Py (7(2)). Soz belongs taP), ) (¢) for all
¢ € 9D N Py, (7(z)) and the proof of the Lemma is complete. O

5 Estimates forQ

We now come to the decisive estimates for the componends dfQ and
9L Q. First we fix a pointzy € D close enough to the boundary, ggt.=
m(z0) andp = |p(z0)| and choose a small numberNow we want to write
all forms with respect to the-extremal coordinates &g, which we denote
by w*. We choose a unitary transformatiér such thatv* = &*(¢ — (o).
If we define

Q* (w*) := P*Q(20, Co + (P*)Tw*)
then we have . Q;(20,()d¢ = >, Q. (w*)dw;, and

2 a * * — % *
lk

Lemma 5.1 For all w* with |w}| < 7;(¢o,€) we have

|Qk(w )‘ ~ Tk(C075)
0 €
aZj
a * *
8@;Qk(w )

Q. (w")

AN

7%(Co €)
g

TJ(C07 g)Tk(C(% 5)

and the involved constants are independerdy@nde. Note that according
to Proposition3.1 (v)we have:s /71 ({p,e) S 1.

~

S

Before we prove this lemma we want to make use of Lemma 2.1 and
choose a convenient transformatidfor the definition of). We may assume
that |Vo(¢)| = 1 for all { € 9D and thats is so small thaido(¢p +
(*)Tw*) /owi|* > cfor all w* with |w}| < 7;(Co, ). We define

a F* *
vj = %Q(Co + () w*),

J

and .
J

Aji=1-> |ul”.

=2
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It is clear thatd; > |12 > cforall 5. Now we set

Yy =
—Vjy for [=1
1 0 for 1<i<y

[A; 1 A; A; for 1=

—viY for 1>

Y1 = for j>1.

Obviously we have(0) = Id and itis easy to check th@(() := ¥ (P* (¢ —
Co))®* has the desired properties. Moreover we hé&yg + (9*)Tw*) =
@ (w*)P*,
Using the definitions of)*, Q and® we get
Q" (w*) = T (W")Q¢y 4@y (P(Co + (27) w*) (20 — o — (€) w™))
= WT(w*)QCOH@)Tw* (T (w*) (P (20 — (o) — w™)).

Therefore we have

6
—Qk Zwyk Za—wczg 8“2 (17)

+ > (W) (Z J;QZ(W;W’A) (18)

withw = ¥ (w*)(P*(z0—Cp) —w*).In orderto prove Lemma5.1we need es-
t'matESforQZ<W)’ ag; Zo-i—(@*)Tw ( ) 80‘1)\ Qg( )11/Juk(7vU*)' ai@;wuk(W*)
and%w,\. These estimates are given in the following lemmas.

J

Lemma 5.2 For all w* with |w}| < 7;((o, €) we get

52

e < |[Yre(w)] <1 and [¢hp(w*)]| < o oD for v Tll;)
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ai;wkk(w*) S rj(cojs)ik(@’g)

(f";“%k(wﬂ ’STj(CO;E)TV(Zig)Tk(CO’g) ot
‘ ai;wl(wﬂ = Tj(ct,ge)’

‘83;%(10*) S Tj(CO;E)ETl(Cﬂv‘S) o

Proof. Since? is a unitary matrix the estimate| < 1 is obvious. The
estimate forj+), x| follows from the facts thatAy| > cand/Ax_1Ax <
1. It follows immediately from Proposition 3.1 (vii) and (iv) that,| <

. Together with Proposition 3.1 (v) we get

Tk( 075) )
€

T1 (C07 E)Tk(Cba 6) ’
Using the fact that/A; 1 A; > c we also get

2

9
71(Co, €) 7k (05 €)

V1] = k] S

V] < [vive] S

for{ > 1 andl # k.
0 o < €
ow’ ¥ 7 (C0, )75 (Cos €)
sequence of Proposmon 3.1 (vii) and (iv). Singer (¢, ) < 1 this gives
the desired estimate fog2: 11|
J

We also compute

The estimat is also an immediate con-

0 _ 0 _
_ Z(%I/H)Vﬁ —+ (87’(1_];‘1/”)1/,{

g 1
<
~ Z 7—] COa TH(CO? )TH(CO)g) ~ Tj(CO)e)‘

Now for ! = 1 this gives us

|Za*uk (20— Go) — w’y |

<ZT]C07 k(o )H@(ZO_CO)_w]k"
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Since for allw* with [w}| < 7;(Co, ) we have| [®* (20 — (o) — w*]; | S
o0 + 71({o, ) and therefore
|[0°(20 — Go) —wi| _ e+
Tk’(CO’ 6) ~ g

this gives the desired result foe= 1.
Forl > 1 we compute

0
Flﬁzz
wj

i 1— o < <
dw} Ay )|~ 7(Co,€)Ti(Cos €)
and withk #£ [

9 il = |2 ~3 4
|8TD;1/%| = ‘81{;}‘ (ukal Al_1>
2

< c < c
™ 75(C0, €)71(C0, €) Tk (Cos€) 7 T (Co, €)Ti(Cos E)
Since
0 0 « .
BTIJ;WZ = ; 87117;#% (D" (20 — Co) —w ]k
and[®*(zg — (o) — w*],, is bounded this completes the proof. 0

We also need the following lemma.

Lemma 5.3 Let( = (o + (¢*)Tw*, letw be as above and let; (w*) be
the unit vector inv; (w*) direction. Then for every* with |w?| < 7;(¢o, €)
we have

(G, vj(w"), &) = 75(Co, €)-

Proof. Using Proposition 3.1 (iv) and (iii) we get for alt* with |w}| <

7;(Co; €)

n (w* -1
(¢ vj(w"),€) = 7(Qo, vj(w"), €) = (Z W)

— 7(Co;€
~ Tl(<07 5)

- 1=1,...,n |w]l(w*)\ '

Forj = 1 we derive from (19)

11(60.€) o g 08 o mlCo.€)e o

[ (w)] ~ [ (wh)] ~ (G e) ~°

Therefore the minimum is comparabletd(p, ).

(20)

55
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If 5 > 1 it follows from (19) that forl # j we get

(o € € € 2 71(C0, €)
IS 7;(Co,€) T1(Co,€) < (TI(C[L@)) 75 (Co,€)

Sincee/7;(p, €) is bounded angt);; (w*)| > ¢ this implies

7j(0,€) ~ m(Co€) torall 1
s ()]~ )] O EE

and together with (20) this proves the lemma. O

Lemma 5.4 Using again the abbreviation = ¥ (w*)(®*(z9 — (o) — w*)
we get for allw* with |w}| < 7;(Co, €)

|Qéo+(q§*)Tw*(w)‘ S
9 1
oy Q@ (@) 3
0

1 —
B57 Qv (W) =0
J

and fork > 1 we have

3

‘Q]Z'o-i-(é*)Tw* (W)| 5 Th (CO, 8)
3
Tl(C07 E)Tk(C(), E)

3

Tj (Cﬂa 5)T/€(C0’ 5)

N

9k
lalem(@ﬂTw* (‘”)‘
0

—k
awj

AN

k
QCO‘F(é*)Tw* (W)

Proof. By definition we haveQéﬁ@*)Tw* (w) = 3+ Kw; and the first
three statements are therefore obvious.

In Q’g(w*), k > 1 there are only the coordinates with [ > 1 in-
volved. We observe thaw;(w*)| = | 3_ , Y, (w*)[@* (20 — (o) — w*]u| <
[ (w)|(e + [wil) + 22,1 [Yiu(w™)] Jw)]. Using (19) we see that
21 [P (w)] wy | S (o, €) for all w* with |wi| < 7;(Co,€). Since
by (19) and Proposition 3.1 (V1 (w*)| < e/7(Co,€) < 2 we also have

[t (w)|(o + |wi]) < 5%(9 +¢e) < 2 < 71(o, €). Therefore we get for
alll >1

|wl(w*)| ,S TI(CO,{;‘) forall w*: \w}‘] < Tj((@,é‘).
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Now it follows from Proposition 3.1 (vii) and Lemma 5.3 that for> 1

Q)| < |—e3 M¥g, S PO

jal Jw® wy

=2 =4
a1=0, ap>0

<CiM2j Z ﬁajrc( ) \w |

- = & jal ow® | |wgl
a1=0,ap>0

DRSS e

~ ]:2 la|=3 H (C,’Uy( )78)0(” |wk‘
a1=0,ap>0

HILED D=

R S m(C0,e) lwrl
a1=0,ap>0

< €

Tk(C()ve)

which completes the proof of the first statement#as 1.

The second statement can be proved exactly in the same way. Except for
the fact that the additional derivative gives an additional factrv; (w*), )
~ 71(¢o, €) in the denominator.

To prove the third statement fér > 1 we first have to rewrite they;
derivative. Observe that

a 8 F* * F* T *

T @y (@omo = 5 0(Go+ (B Tw” + (&) (W)
J J

From this it is easy to see that

0 I
o0 7¢(W)|w=0 = ;ﬂJ 8wz (W) |w=0-

So we can write they; derivative as a sum aof; derivatives. Then we proceed
as in the proof of the second statement and get

0
8’(,(] QCO+ @* TUJ*

g
< Z‘d}l] C07 )Tk(go,é‘)'

Together with (19) this completes the proof of the lemma. O

Proof of Lemma 5.1n view of (17) and (18) the statements of the lemma
are now straight forward consequences of Lemma 5.2 and Lemma 5.4 and
Proposition 3.1 (v). O
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Before we come to the estimates of the integrals we want to state the
estimates of this section in there final form as they will be needed below.

Lemma 5.5 Let[Q] denote either) or d.Q. Then for allw* with [w}] <
7j(Co, €) the term

Q1A (O Q)|
can be estimated by a sum of products of the form

ek

Hf:l Tlti (<07 <C:)7—1/1' (Coa E)

whereu; andy; are greater than 1 and each index appears at most once.

Proof. As done in the beginning of this section we can wfig A (0,Q)*
with respect to thev* coordinates and get

k
or @y, (w))dwy, A N aj;; Q;, (w*)dw),, A dw},

=1 i

Now it is clear that all theu; and; must be different from each other.
However there might be one of the being equal to 1. If it i3y the first
term can be estimated by a constant, if it is some athéne corresponding
term still gives an estimate of the foriyr,,, (Co, ). Finally there arek
indicesv; > 1 left and Lemma 5.1 now almost gives the desired estimate.
The only remaining problem is that one of themight be equal to 1. In this
case we would get an estimat&(71 (o, €) 7, (¢o, €)). However we have to
observe thadwj is the normal direction &} and only has a small tangential
component inP.((p). To compute the precise amount we may assume that
Do, dw}, ..., dw; is a basis for the€0, 1)-forms near¢,. With respect to
this basis we have

0o -
—d
oui ™ Z; ou; "

2

I

Slnce|d o (¥ forall ¢ € P-(¢o)

we see that the tangential component of the form under consideration can
be estimated by a sum terms of the form

g 9 < 9
71(C0,€) 7w, (€0, €) 75 (o, €) ™ 75(Co,€) 7, (Cos )

wherej is some index which is not 1 and different from all the other
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6 Integral estimates

Now we come to the final step in the proof of Theorem 1.1. Let us introduce
the notation (See Lemma 5.5 for the definitioN@f.)

Q1A @TQH

)= [ e apeasdon
Q) A @TQH

B = [ G = spemeatont

According to Sect. 2 it remains to show that foreack 0,...,n — ¢ — 2
the two integrald; ,,(9D) can be estimated u}p(z)y#*.

Since the only singularity of the integrals occurs {oe z it is clear
thatl, o(0D) < C ifdist(z,0D) > c or if the integration is only over the
boundary outside some small neighborh@ddf = (z). This neighborhood
always should be chosen small enough, so that we have on it nice local co-
ordinates and several of the other properties discussed above. For simplicity
let us assume thd®, (7 (z)) is such a neighborhood.

Now let zy be a fixed point close enough to the boundary,(let=
m(z0) be the projection to the boundary and get |o(z)|. In order to
estimatel, »(P1(¢o)) we first give an estimate for some auxiliary integral
overdD N P.({) for arbitrarye < 1. After that we consider the two parts

11 5(Pp(Co)) andIy o (P1(G0)\ P, (Co)) separately.
First we want to estimate integrals of the form

/ Q] A (DF Q)| :
o 2n—2k—3%02n—1-
ODNP.(Go) IC — 202 2R3 707"
Sincez andg are fixed, we can change to thextremal coordinates &,
write the integrand with respect to these coordinates and use the estimates
from Lemma 5.5. We also want to mention that all the involved constants
can be chosen to be independentainds. What we finally have to deal
with are integrals of the form

/v1|<7'1(Co,€) /|w2<7'2(C0,€) /wn|<7n(C07€)

¥ dvy dug dvy - - - duy, doy,
H?:l 7; (€05 €)7w; (€05 €) (22 |wl|)2n*2/€*3’

wherep; > 1 andy; > 1 and each index appears at most once.
Firstwe integrate with respecttg@ and geta constantfactor(yp, c) < e
which together with the otheralready gives us**!. Now we still have to
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integrate oven — 1 complex discs but there are orly, — 3 factors in the
denominator. Therefore the following integrals may occur

1, :_/ M <1
[wi|<71(Cos€) 71(Co €)

fwil < (¢o.e) T1{C0s &) |wi|
dul dvl

1. ::/
lwn| <7 (Core) TL(C05€)

7 / / duy, dvy, . .. dug, dvy,
d :: “ e Z_
o, [ <y (Goe) g l<m, (Cove) (22 Twi; )T

1
em 2i—1
r dr 1
< ——— <egm
0 ?”22_1

Howeverl,. and I; may occur at most once and only one of them will be
present. So finally we get the following resuilt.

/ Q] A (BT Q) -
0

T, or 3021 S €™
DAP.(¢o) 1€ — 20|?n—2k=3

1
S (G, e) Sem

(21)

Now we want to estimate the integralg/(F,((o)). It follows from
Lemma 4.2 thatS¥*2| > e+ and|S¥1| | — 2| > oe**! for every( in
PY((p). Using the covering (11) and estimate (21) from above we now can
write

NE

I 2(Py(C0)) <) 11 2(PL(Co))
7=0
- 1 QI A (BF Q)]
: ; o(2770)F+t /fwﬂ%jg(co) [¢ = zopn—2R=3 721

s 1
(277 g)mHHH .

0(27g)k+L ™~

AN

i
o

which is the desired result.

It remains to considef, ;»(P1(¢o)\Pp(¢o)). Now we use the estimates
|SF+2| > b +2 and| SFHY |¢ — 2| = 2 in P2(¢y) which also follow from
Lemma 4.2. Using the second covering (12) and again the estimate (21) we
get
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11 /2 (P1(0)\Pp(Co))

0

.
'b
~

I 5(P{ (o))

IN
S .
s U
& o

2n—1

1 QI A (9F Q)"
o,

(27 )k+2 (o) 1€ — 2P 2R3 a
)

i
[e)

=
S
~

io ( _inliggr  dole

(277)m ™ 1
Sy S )@
=0 j=0

_ (21—i)io(9)+1
1 — 2 m
Using the fact thaty (o) < — 10g2(029/4) we also get

AN

—_

< 9(1=:2)in(e)

~

11/2<P1(C0)\P (CO)) < 2 m 1) 10g2(029/4) S Q%_l

which is again what we wanted.
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