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logue of the classical Phragm-Lindebf principle for plurisubharmonic
functions holds. For a homogeneous polynonftain three variables it is
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shown to be necessary in any dimension.
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1. Introduction

An algebraic variety/ in C*, n > 2, has the property (SPL) if there exists
a constantd > 1 such that for each plurisubharmonic functiewn V' the
estimates

(1.1)  wu(z) <|z|+o(z]),z€V, and u(z) <0, z€ VNR",
imply
(1.2) u(z) < Allmz|, z€ V.
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By the classical Phragem-Lindebf Theorem) = C™ satisfies (SPL) with

A = 1. Thus the varieties with the property (SPL) are the ones for which a
natural extension of the Phrag@m-Lindebf Theorem holds. This, however,

is not the only reason why they are of interest. By results of Meise, Taylor,
and Vogt [10], [11], [15], the zero variety

V(P,) ={z€C": P,(z) =0}

of a homogeneous polynomi&},, of degreen > 2 in n variables satisfies
(SPL) if and only if the differential operatd?(D) : C*°(R") — C*°(R")
admits a continuous linear right inverse. Moreover, results @thnder
[8] imply that for each@ € Clz, ..., z,] with deg @ < m the operator
(P + Q)(D) acts surjectively on the spacé(R"™) of all real-analytic
functions ifV (P,,) has (SPL). Itis reasonable to ask why> 1 is allowed
in (1.2). Proposition 2.8 explains why the case= 1, while interesting, is
too restrictive. For examplé;(P,,) satisfies (SPL) wittd = 1 if and only
if P, is a product of real linear forms.

To consider non-homogeneous polynomials Hgte€ C|z, ..., z,] be
homogeneous of degree > 2 and defineP € C[zy, ..., z,+1] by

P(Z, 2p41) = Pp(2) — 2041

In this situation, Meise and Taylor [9] have shown recently that ()
satisfies SPL) then P, is square-free and has real coefficients. They also
proved thal/(P) satisfiegSPL) if P, is of real principal type and none of
itsirreducible factorsis elliptic. Far = 2 this condition is a characterization
and is equivalent t@,,, being strictly hyperbolic o, being a product of

m distinct real linear forms. Moreover, Meise and Taylor [9] showed that
for real homogeneous polynomidhs,, V' (P) has (SPL) if and only if both
varieties

Vi(Pp) :={2€C": P,(z) = +1}

have (SPL) and thal’(P) has (SPL) if and only if the operatd?(D) :
C®(R*H1) — C>°(R™*!) admits a continuous linear right inverse.

In the present paper we improve the necessary conditiaf,obeing
square-free and use the improvement to characterize in dimensiors
whenV (P) has (SPL). To formulate the result, denote(B, )» the lowest
order homogeneous polynomial in the expansion ef P,, (6 + z). Using
the concept of quasihomogeneity and a result of [4], we show théatf)
has (SPL) theitP,, )y is square-free for eache V(P,,) NR", || = 1. Of
course, this condition is a lot more restrictive than the requiremenfihat
is square-free. In fact, for = 3 it leads to the following characterization:
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Theorem 1.1. Let P,, € C[z1, 22, 23] be homogeneous of degree > 2
and define? € Cl[zy, ..., z4] by P(2) := Py, (21, 22, 23) — z4. The following
are equivalent

(1) V(P) has(SPL),

(2) P(D) : C*(R*) — C°°(R*) admits a continuous linear right inverse,

(3) Vi(Pp) andV_(P,,) satisfy(SPL),

(4) V(P,,) has(SPL), P,, has real coefficients, and®,, )y is square-free
for eachd € V(P,,) N R3 with |0] = 1.

Examples like Newton’s knot and the Cartesian leaf in homogeneous coor-
dinates

Pg(iﬁ,y,Z) = yQZ - ZL’(%‘ - Z)2 and Pg(l’,y,Z) = xS + y3 - 31’@/2

satisfy these conditions (see Example 4.11). Hence fer3 there are ho-
mogeneous polynomialB,, € Rz, ..., z,] for which V(P) has(SPL),
while V(P,,) N R™ contains non-zero singular points, contrary to the situ-
ation forn = 2.

Because of the results of Meise and Taylor [9], the essential point in
proving Theorem 1.1 is to show that (4) implies (3). To do this we apply a
recent result of [5], by which there exists a constdpt> 1 such that each
u € PSH(V4 (P,,)) which satisfies (1.1) already satisfies

(13) u(Z) < A0|Z’7 z € V:E(Pm)

From this it follows that it suffices to prove the estimate (1.2)daonly

at pointsz € Vi(P,,) for which |Im z| is small compared t¢z|. Since
bothV, (P,,) andV_(P,,) are manifolds, points in a fixed ball of arbitrary
size are easy to handle. Since poiats Vi (P,,) with large|z| are close

to points inV(P,,), it suffices to consideV..(P,,) in cones around real
lines spanned by € V(P,,) NR3,|¢| = 1. To handleVy(P,,) in such
cones we use a result of Braun [1] by which there exist suitable coordinates
so that in some neighborhood étthe varietyV' (P,,) is a finite union of
graphs of holomorphic functions which are real-valued for real arguments.
Assuming¢ = (1,0, 0) it follows from this that for large > 0 the varieties
Vi(Py,) near(t&,0,0) can be approximated sufficiently well By (Q),
whereQ(z1, 22, 23) = 21" "Qo(z2, z3) for somer € N and some&y), €
R[22, z3] whichis strictly hyperbolic. Knowing this, we use compactness and
scaling arguments together with bounds for particular harmonic functions
to derive the estimate (1.2) farin a cone aroun¢ from the fact that we
already know (1.3).
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2. Preliminaries

In this section we introduce the basic definitions that will be used subse-
quently.

Definition 2.1. LetV be an algebraic variety idi™ and{2 be an open subset
of V. A functionu : 2 — [—o0, oo[ will be called plurisubharmonic if it
is locally bounded above, plurisubharmonic in the usual sense.gnthe
set of all regular points of in {2, and satisfies

u(z) = limsup wu(§)
£€Qrcga£‘>2

atthe singular points df in £2. By PSH(?2) we denote the set of all plurisub-
harmonic functions on..

Definition 2.2. Let V' be an algebraic variety i€, n > 2, andA > 1,
B > 0. We say:

(a) V satisfies the conditioBPL(A, B) if for eachu € PSH(V) the con-
ditions («) and(3) imply (), where
(@) u(z) < |z[ +o(|2]), z€V,
(B) u(z) <0, ze VNR",
() u(z) < Allmz|+ B, z€ V.

(b) V satisfies the conditiofSPL) (the strong Phragém-Lindebf condi-
tion) if V' satisfiesSPL(A, 0) for someA > 1.

Remark. By the classical Phragem-Lindebf Theorem,C" satisfies
SPL(1,0). Hencethe algebraic varieties satisfy{3¢’L ) are those on which

the obvious extension of the classical Phragrhindebf condition holds.

To indicate why these varieties are of interest also in a different context, we
recall the following notions.

Definition 2.3. Letw : [0, oo[ — ]0, co[ be continuous and increasing and
assume that it has the following properties:

o0

(@) w(2t) = O(w(t)) @ [Sa<o

$2
1
(v) logt= O(w(t)) ast tends to infinity () x+— w(e®) is convex

Thenw : z — w(|z]), z € C",n € N, will be called a weight function. Also
we will assume without restriction that(0) > 1. For examples we refer to

[3].
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Definition 2.4. Let V be an algebraic variety iE” andw a weight func-
tion. V satisfies the conditioRL(R", w) of Phragn&n-Lindebf type, if the

following holds:

There existsA > 1 so that for eaclp > 0 there exists3, > 0 so that each
u € PSH(V') which satisfieg«) and(3) also satisfiey), where

(@) u(z) <|Imz|+ O(w(z)),z €V,
B) u(z) <pllmz|,zeV,
(7) u(z) < Allmz| + Byw(z),z € V.

If w(t) = log(2 + t) then we will writePL(R", log).

One relation between the conditioRBL(A, B) andPL(R",w) is ex-
plained in the following lemma.

Lemma 2.5. For each algebraic variety” in C™ the following assertions
hold:

(@) If V satisfiesSPL(A, B) for someA > 1,B > 0, thenV satisfies
PL(R",w) for each weight functiow.

(b) If V' is homogeneous and satisfiek(R", w) for some weight function
w thenV satisfiegSPL).

In particular, (SPL) and PL(R", w) are equivalent i’ is homogeneous.

Proof. (a) Since each weight functian satisfiesv(t) = o(t) ast tends to
infinity, this is easily checked.

(b) This follows from Meise, Taylor, and Vogt [15], Theorem 3.1, in con-
nection with Meise and Taylor [9], Lemma 3.2. O

2.6. Differential operators and Phragnen-Lindeloff conditions.For P €
Cla1, ... 2], P(2) = 3|0 1<m 9a?®, We define the differential operator
P(D) with symbol P by

1 olal
PD):= 3 el oo g
laj<m
When2|a‘:myaa| # 0, P has degree: and its principal parP,, is defined
as Pn(z) = 3. jq1=m a?”. SOmetimes P, will just denote an arbitrary
homogeneous polynomial of degree We will use the notation

V(P):={2€C": P(z) =0}

andVy(Py,) =V (P, F1).

By Meise, Taylor, and Vogt [11], [14], the variety( P) satisfieL(R",
log) (resp.PL(R",w)) if and only if the differential operatoP (D) ad-
mits a continuous linear right inverse 6t (R™) and/orD’(R™) (resp. on
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Ey (R™) and/orDEw) (R™)). Palamodov [16] has shown that the splitting of a
differential complex of”'>°-functions or distributions oveR™ is equivalent
to PL(R™, log) holding for the corresponding varieties.

By Meise, Taylor, and Vogt [15], Theorem 4X( P,,,) hasPL(R", log)
and hencegSPL), wheneverV (P) satisfiesPL(R",w) for some weight
functionw. Therefore it is reasonable to treat general differential operators
P(D) as perturbations of their principal pa, (D). In this connection,
Meise and Taylor [9] showed recently that the condit{8#L) plays an
important role wherP,, is perturbed by an independent variable. From [9],
Theorem 3.4, we recall the following theorem.

Theorem 2.7. Let P,, € R|zy,..., z,] be homogeneous of degree > 2
and let P(2) := Pp(2') — zny1 fOr 2 = (2, 2,41) € C™L Then the
following assertions are equivalent

(1) V(P) satisfiePL(R"*!, log),

(2) V(P) satisfiesPL(R"*!, w) for some weight functiow with w(t) =
O(tl/m),

(3) Vi(Py,) both satisfy(SPL),

(4) V(P) satisfiefSPL),

(5) V(P) satisfiePL(R"*!, w) for each weight functiow.

Itis natural to ask why we consid8PL(A, 0) for constantsd > 1. The
caseA = 1 is also interesting but it is very restrictive. For example, there
are no polynomials of degree > 1 with an irreducible principal part that
can satishiSPL with A = 1. To explain this in a bit more detail, we include
the following proposition that is essentially well-known.

Proposition 2.8. Let P € C[zy,..., z,] be of degreen > 1 and denote
by P,, its principal part. If V(P) satisfiesSPL(1,0) then P and P, are
hyperbolic with respect to each vectdrc R™\ {0} satisfyingP,,,(N) # 0.
In particular, up to acomplex factaF),, is the product ofn real linear forms.

Proof. Forp > O let K, := {x € R" : |z| < p}. If V(P) satisfies
SPL(1,0) thenitalso satisfies the conditi®f.( K1, K2) defined in Franken
and Meise [7], 2.6(c). Hence it follows from [7], 2.9, 2.11, and 2.13 that

P(D) : Coo(foﬁ) — Coo(ffl) admits a continuous linear right inverse. By
Meise, Taylor, and Vogt [11], 3.8, this implies the conclusion. O
3. Local conditions

In this section we introduce the localizatioR), of a given polynomialP
at a pointd € V(P), which is used in the next section to formulate one
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of the main results. To derive properties(@f), from those ofP, we also
consider local Phragem-Lindebf conditions and investigate some of their
properties.

Definition 3.1. Let V be an algebraic variety i™ and{ € V N R™.

(a) V satisfies the conditioRLj,. (&) if there exist constants, > ry > 0
and A > 0 such that each plurisubharmonic functieron V N {z €
C™: |z — €| < r1} that satisfiega) and(3) also satisfie$y), where
(@) u(z) <1, zeVn{zeC":|z-¢ <ri},

(B) u(z) <0, ze VNAR"N{z e C": |z =& <mr},
(7) u(z) < Allmz|, ze VN{z e C": |z —§| <ra}.

(b) Letn : C™ — [0, co[ be a function which satisfieg z) = o(|z|) as|z|
tends to zero. Then we say tHatsatisfies the conditioR L. (£, ) if
there exist constantg > r > 0 andA > 0 such that for every > 0
there is a constanB, > 0 such that each plurisubharmonic function
uonV N{z e C": |z — ¢ < ri} which satisfiega) and(3) also
satisfieqy), where
(@) u(z) <1l,zeVnN{zeC":|z—-¢ <},

(B) u(z) <pllmz,ze VNn{zeC':|z—-¢ <r},
(7) u(z) < Allmz|+Byn(z—§), ze VN{z € C": |z =§| < ra}.

Clearly,PLj,.(£) impliesPLj,. (&, n) for each functiom as in 3.1(b).

Remark 3.2.Classical estimates for the harmonic measure of the real line
in the unit disk show thaPL,.(£) holds at{ € V' N R"™ wheneverl/ is a
manifold in§ anddimg V N R™ = dim¢ V in £ (see, e.g., Meise, Taylor,
and Vogt [11], Corollary 4.8).

From Meise and Taylor [9], Proposition 4.4, we recall the following
result:

Proposition 3.3. If an algebraic varietyV’ in C" satisfies(SPL), then it
also satisfie®Lj,. (&) for eaché € V N R".

The converse of Proposition 3.3 is false, sinte= {(z1,22) € C? :
2? = 2o} satisfieP Ly, (£) ateackt € V NIR? but it does not satisfySPL)
by [9], Proposition 2.3 and Theorem 3.4.

Definition 3.4. Let 8 € C™ and a function” holomorphic in some neigh-
borhood off be given. Then the lowest order homogeneous polynomial
(P)g in the Taylor series expansion of— P(6 + z) will be called the
localization of P in the pointd.

In Chapter 7 of Whitney [17] several possibilities to introduce tangent
varieties for analytic varieties are discussed. Here we only recall [17], 7.1G,
the one which is defined in terms of limiting directions.
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Definition 3.5. Let V' be an analytic variety i€” and{ € V. The tangent
coneVian (€) in ¢ is defined as the set of alle C™ such that for each > 0
there exist: € V andt € C satisfying|z — (| < e and|t(z — () —v| < e.

Remark 3.6.In Whitney [17], Theorem 7.4D, it is shown thgt,,(¢) can

also be described as the common zero set of all localizatjfop®f functions

f which are holomorphic in some neighborhobd of ¢ and vanish on
Uy NV. In particular,Via, (¢) is a homogeneous algebraic variety.

In Sect. 5 below we need to know a result (Corollary 3.8) which can be
easily derived from the following theorem.

Theorem 3.7. If an algebraic varietyy” in C" satisfies the conditioR L,
(&,m) at& € V. nR™ for some functiom on C™ satisfyingn(z) = o(|z|),
then the variety;.n (€) satisfiesPLj,.(0) and (SPL).

We do not include a proof of Theorem 3.7, because it is similar to pub-
lished proofs of other results which show that certain Phégirindebf
conditions holding on an algebraic variety carry over to limit varieties. The
first result of this type is due todtmander [8], who showed that the global
Phragnén-Lindebf condition that characterizes surjectivity of constant co-
efficient partial differential operatorB(D) on real analytic functions not
only carries over to the cone of limiting directionsiof P) at infinity, but is
equivalent to the condition holding on this cone. In Meise, Taylor, and Vogt
[15], Theorem 4.1, it was shown that the global Phragrhindebf con-
dition PL(R"™, w) carries over to the cone of limiting directions at infinity,
while Braun [2], Theorem 4.1, proves the corresponding result for a local
Phragnén-Lindebf condition which is quite similar t®L;... Note that by
Meise, Taylor, and Vogt [15], Theorem 313, (§) satisfied Ly, (0) if and
only if Vian(€) satisfiesPL(R™, log), which is equivalent t¢SPL), as we
have noted in Lemma 2.5.

Corollary 3.8. For P € C[zy,..., z,| let V(P) satisfyPLj,.(6) at some
6 € V(P)NR". Then each irreducible factor ¢), is a constant multiple
of a polynomial with real coefficients.

Proof. If V(P) satisfiesPLi..(0) then
Vian(0) = {z € C" = (P)g(2) = 0}

satisfies (SPL) by Theorem 3.7 and hefidg(R", log). Consequently, it
follows from Meise, Taylor, and Vogt [13], Lemma 2, that every irreducible
factor of (P)y has real coefficients, up to a complex constant. 0

Next we provide two lemmas which will be applied in the following
section and in which localizations are used.
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Lemma 3.9. Forn > 2let P, € C[z,..., z,] be homogeneous of degree
m > 2, letd := (0,...,0,1), and assumé,,(f) = 0. Then there exist
v € N, v < m, and polynomials); € C[z,..., z,—1], homogeneous

of degreej, v < j < m, such thatP, (2, z,) = Y7, a7 Q,(7).
Moreover,( P, )o(2', zn) = Qu(2').

Proof. Applying Taylor’s formula a¥, P,,(6) = 0 implies
(3.1) P (2,1) = Pn(6 + (2',0)) ZQJ

whereQ; € Clz,. .., z,—1] is zero or homogeneous of degregnd where
Q. # 0. FromP,,(#) = 0 andP,, # 0 it follows that1l < v < m. Since
' IS homogeneous, (3.1) implies fof # 0:

(3.2) P2, 2p) = 2Py, < > sz 1Qi(z

By continuity, this holds also whes, = 0. From (3.2) we get for =
(Z/, Zn)

(O+2) = Pu(2, 14 2,) =Y _(1+2)"7Q;(2)
Jj=v
m m—j m _],
=35 ("))
Jj=v k=0
and hencéP,,)o (2, zn) = Qu(2'). 0
Lemma 3.10. Let P,,, € C|zy, ..., z,] be homogeneous of degree> 2.
If ¢ :=(1,0,...,0) € V(Pp) and if the localization( P,,,)¢ of P, at& has
degreev, then
s:(1y2) = Pu(z1m ™V 20V o 2T,
(1,2) € (C\{0}) x C",
extends to a polynomial € Clr, z1,. .., z,] With 5(0, 2) = 2" (P )e¢

(2’2, .. .,Zn>.

Proof. Itis easy to check that for = (21, 2/)

m
217 E



112 R.W. Braun et al.

where the polynomialg; are either zero or homogeneous of degieBy
definition,q, = (P, )¢. From this representation we get

sz ] —v(m—j Tj(mfu)qj(z/) _ ZTm(j*V)Zln ]qj<z/).
j=v

This shows that is the restriction of a polynomialto (C\ {0}) x C™ and
that

5(0,2) = 21" " au(2') = 2" (P )¢ (2).

4. A necessary condition for(SPL)

Let P € Cl[zy,..., 2, have real principal parP,, of degreem > 2 and
define the polynomiab by S(z1,...,zn+1) == P(21,-..,2n) — Zn+1- IN

this section we use the concept of quasihomogeneity and a result of [4] to
derive anecessary condition intermg®f for V(S) to havePL(R" ! 1og).

This extends a result of Meise and Taylor [9] and explains some of their
counterexamples. The precise result is stated in the following theorem.

Theorem4.1. Let P € C[zy,...,z,| have degreen > 2 and principal
part P, € Rlz1,...,2,]. DefineS € Clzy,...,2z,41] by S(2/, 2p4+1) =
P(2") = zpy1. I V(9) satisfiesPL(R" !, log), then for eacld € V(P,,)N
R™ 10| = 1, the localization( P, )y of P, in 6 is square-free.

The proof of this theorem is prepared by several lemmas for which we
need the following definition.

Definition 4.2. Ford = (di,...,d,) # (0,...,0) with d; non-negative
and rational forl < j < n, a given polynomialP € Cl[z1, ..., z,] is said
to bed-quasihomogeneous of degnee> 0 if

Z aaz%, 2z€C",

(d,a)=m

where(d, a) = >"_, d;ja; and where not alt,, vanish. The zero polyno-
mial is considered to bé-quasihomogeneous of degreec.

For an arbitrary polynomia) € C|z, .. ., z,,] thed-quasihomogeneous
principal part ofQ) is defined as the highest degrequasihomogeneous part

of Q.

The concept of quasihomogeneity is relevant for our considerations be-
cause of the following lemma which we recall from [4], Lemma 3.2.
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Lemma 4.3. LetP € C[zy,.. ., z,] bed-quasihomogeneous of degree>

0 and let@ € C|z1, ..., z,] be a sum ofi-quasihomogeneous polynomials
of degrees less tham. Assume further that the following conditions are
fulfilled:

(1) dy <djfor2<j<n,
(2) there existg = ((1,¢") € V(P)with¢(; € R, ¢” € R*1, and¢” # 0,
(3) the polynomial\ — P(\, (") does not vanish identically.

If V(P + Q) satisfiesPL(R™,w) for some weight functiow and D :=
max{d; : ; # 0}, thenw satisfies™/? = O(w(t)) ast tends to infinity.

Lemma4.4.Forn > 3let P € Clzy,...,2,] be a polynomial of de-

greem > 2 with principal part P,, which satisfies?,,() = 0 for § =

(0,...,0,1) € R™. Assume that there exist> 2, g > 1, andQ, R €

C[z1,- - ., 2zn—1] such that the following conditions are satisfied

(@) (Pn)y (2, 2n) = Q(z’)kR(z’) for z = (2, z,) € C",

(b) Q=) = Eng aq(2)* whereay 4—19,..0 # 0 anda, = 0 for all
o € Nj~! satisfyinge; = 0 andag > g — 1.

Then the zero variety of the polynomiak C|zy, ..., z,+1] defined by
S(z1y . s2nt1) = P21, .y 2n) — Zn+1
does not satisfPL(R" !, log).

Proof. For P,, and® chooser € N, 1 < v < m, and polynomialg); <
Clz1y- -+ 2n-1], v < j < m, according to Lemma 3.9. Because of (a) we
get from Lemma 3.9 th&f is of the following form:

S(zl? Zns ZTL+1) = z;n_VQ(z/)kR(Z,>

m
+ > Qi) + P(2, ) — znan,
j=v+1

wheredeg P < m. In order to apply Lemma 4.3, we have to find an appro-
priate quasihomogeneitisuch that the-quasihomogeneous principal part
of S admits roots whose imaginary parts have a special form. The definition
of the firstn weights is

1 1
dy =1, dg:zl—i—ﬁ, d3::---::dn_1::1+w,
1 1

dp =14+ —+—, d:=(di,...,dp_1).
+m+m27 (17 ) 1)
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Denote thed’-quasihomogeneous principal part Bfby B and letA =
d’-degB. Note thatA is not smaller than the classical degredfi.e.,
4.1) A>v—kg.

Now define

4.2)

1
i1 i= (m — v)dn + k (g n 9m2 ) YA, do=(d,dp, dpsr).

Note that (4.1) implieg,, ;1 > m. We claim:

(x) The d’-quasihomogeneous principal part @fis a17g_1,07_,,,0z1,z§’1,
whosed'-degree igy + (g — 1)m 2.

To prove this claim, letv # (1,¢—1,0,...,0) with a, # 0 be given. There

are three cases:

Casea; = 0 Thenay < g—2because of (b). Sineg > d;for2 < j <n,
we have the following estimate for th#&-degree o:*:

n—1 g-— 9 9
Zajdjg(g—Q)dg—i-ng:g—i— m2 +—5
j=2

3m?2

g—4/3 g—1
=g+ m2/ <g+ RCRE

Casea; =1 The casevs = g — 1 being excluded, we have again <

g —2.Sincedy > d; > d; for2 < j < n, thed'-degree ok is clearly

smaller than that of, 2.

Casea; > 2 Thed'-degree of:* is

n—1
qg—2 g—1
ardy + Y agdy < 2dy + (g — 2)dy = g + — <t

Jj=2

This proves(x). The next claim is:
(xx) Thed-quasihomogeneous principal part®fs

S m—v k_k(g—1) /
Sq(z1, .o 2ng1) =25 Ya1,g-1,0,..,021 %5 B(Z') — zp41.

To prove (xx), note first that because of (4.2) the polynomigl is d-
quasihomogeneous af-degreed,,.;. Furthermore, sincel; < d, for
1<j<mn,

_ 1 |
d-degP§(m—l)dn:m—l—l—(m—l)%:m—m<dn+1.
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To showthatz,T*ij(z’), v < j < m, does not belong to th&quasihomo-
geneous principal part &, consider:

dpi1 — d-degz 7 Q;(2) > (m — v)dy + k (g +7 _21)
m

+A_(m_j)dn_jd2
Z(j—l/)dn-l-y—jdg

j—v v 1 m-1 1
= — > =

m m2 " m m?2 m2

So (xx) is shown. Choosg’ € R"~1 \ {0} such thap: A — S,(\,¢’,0),
A € C, is a polynomial of degree at ledst> 2. Fix now a valué € R that
p|r obtains at most once, lét be a non-real solution ¢f(¢;) = b, and set
¢" = (¢, b). Then the claim follows from Lemma 4.3. O

Lemma4.5. Forn > 2letQ € Rz, ..., z,] be square-free and homoge-
neous of degreg > 1. Then there exists a real linear change of coordinates
such that in the new coordinatég(z) = szg aqz®, wherea,, # 0 for
a=(g—1,1,0,...,0) anda, = 0 whenevery; > g — 1 andas = 0.

Proof. Since(@ is square-free, we can find € R" satisfyingQ(b;) = 0
andgrad Q(b1) # 0. Next choosé, € R™ such that(bs, grad Q(b1)) # 0.
Then Euler’s rule(x, grad Q(z)) = ¢gQ(x), implies thatb; and b, are
linearly independent. By our choice bf andb, the functiong : R — R,

9(¢) == Q(b1 + (by) satisfies
43)  g(0)=Q(b1)=0 and ¢ (0)= (grad Q(b1),b2) # 0.

Next choosés, . .., b, such thatb,, ..., b,} is a basis oR™ and consider
the following expansion

n g )
(4.4) Q (Z gm) => g G
k=1 j=0

where the polynomialg; are homogeneous of degrgdn particular, (4.4)
implies

Q

9(¢) = Qb1 +¢ba) =D ¢5(¢,0,...,0) = > ¢;(1,0,...,0)¢.

j=0 7=0

By (4.3) and the homogeneity propertieggfwe conclude from thigy = 0
andqi(1,0,...,0) # 0. Now choosex € R*~! such thalg; (¢) = (¢, a)
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and note that # 0. Hence there i/ € GL(n — 1,R) such thatV (a) =
(1,0,...,0). Define

p(zn:gjbj> = Q(Clbl + Zn: ( Y Mj-l,i—le)bi).
j=1 2

=2 j=

Then the linear term of this polynomial is

0 (S MaG) ) = (G .0)
j=2
= <(CQ7 s ,Cn),MCL> = C2~

Hencep has the desired form. O

Proof of Theorend.1. Note first that the principal past,, of S is the poly-
nomial P,,,, regarded as an elementl®f1, . . . , z,+1]. SinceV (S) satisfies
PL(R"*! log), it follows from Meise, Taylor, and Vogt [15], Theorem 4.1,
thatV'(S,,) = V(P,,) x C has the same property. Heng¢P,,,) satisfies
PL(R"™, log) and consequently (SPL), by Proposition 2.5(b). Assume there
existsd € V(P,) NR", |0 = 1, such thal P,,)s is not square-free. After

a suitable real linear change of variables we may assumm¢€0,...,0,1).

By Lemma 3.9 and our assumption there eglstk € C[z1,...,2,-1], @
square-free, and > 2 such thatleg @ > 1, R # 0, and

(Pn)o(2, 2n) = Q(z’)kR(z’).

SinceP,, has real coefficients, so do€B,, ). As V (P,,) satisfies (SPL), it
follows from Corollary 3.8 that it is no restriction to assume taand R
have real coefficients. i > 3, then Lemma 4.5 shows that there exists a
change of variables in the variables such th& has the special form given
in condition (b) of Lemma 4.4. Hence Lemma 4.4 implies ti&®) does
not satisfyPL(R"*! log) in contradiction to the hypothesis. This proves
Theorem 4.1 forn > 3.

If n = 2 then it follows from Lemma 3.9 that

m

Pr(z1,22) = 25 (P)o(z1) + Y 25" 7Qj(z1)
Jj=v+1

for somer € N and suitable polynomial®; which are homogeneous of
degreej. The assumption ofP,,)y impliesv > 2. Hence

m m—1
o m—j _j al
S(z1, 22, 23) = g ajzy 2]+ E E a2y 297 — 23,
j=v k=0 |a|=k
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whereq, € R\ {0}. To apply Lemma 4.3 again, let

1
d1 = 1,d2 = m

, andds := da(m — v) + v.

Then it is easy to check that thequasihomogeneous principal part of
S is the polynomialQ(z1, 22, 23) = ay 25" “2{ — z3. Now let(y := 1,
(3 = —signa,, and note thav > 2. Hence there existg; € C\ R
such that®)(¢1, (2, ¢3) = 0. Consequently, Lemma 4.3 implies tHat.S)
does not satisfPL(IR?, log), in contradiction to the hypothesis. This proves
Theorem 4.1 also if = 2. O

Theorem 4.1 extends Meise and Taylor [9], Lemma 2.2, as the following
corollary shows.

Corollary 4.6. Let P € Clzy,...,2,] have degreen > 2 and principal
part P, € Rlz1,...,2,). DefineS € Clz, ..., zn41] by S(2/, zp41) =
P(2') — zp11. If V(9) satisfiePL(R"", log), thenP,, is square-free.

Proof. As in the proof of Theorem 4.1 it follows thadf (P,,) satisfies
PL(R™, log). If we assume thaf’,, is not square-free then there exist
Q,R € Clz1,...,2,) andk > 2 such thatP,, = Q*R, wheredeg Q > 1.
Since V(P,,) hasPL(R",log), also V(Q) has this property by Meise,
Taylor, and Vogt [15], Proposition 2.6, and hence the real zero sé& of
has dimensiom — 1 by [15], Theorem 3.13. In particular there exists
0 € V(Q)NR", 0] = 1. Now itis easy to check that

(Pm)o = (Qo)* Ry.

Hence Theorem 4.1 implies that(S) does not satisfiPL(R"*! log) in
contradiction to the hypothesis. O

5. A characterization in dimension 3

In this section we show that the necessary condition which we derived in
Theorem 4.1 leads to a characterization of those homogeneous polynomials
P,, in three variables for whic,.(P,,) and V_(P,,) have(SPL). The
precise result is the following theorem which implies Theorem 1.1.

Theorem 5.1. Let P,, € C[z1, 22, 23] be homogeneous of degree > 2
and defineP € Clz1,...,24] by P(21,...,24) := Py(z1,22,23) — 24.
Then the following conditions are equivalent

(1) Vi(Pn) andV_(P,,) satisfy(SPL),
(2) V(P) satisfiefSPL),
(3) V(P) satisfiePL(R%, log),
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(4) V(P,,) satisfies(SPL), P,, has real coefficients, and for ea¢h €
V(P,) NR3,|0| = 1, the localization ofP,, at  is square-free.

The theorem is proved by showing thit (P,,) and V_(P,,) inherit
(SPL) from two simpler varieties. One of them is of couiseP,,), the
cone of limiting directions. The hypotheses imply thatP,,) is locally
hyperbolic nea¥’ (P,,) "R3\ {0}. The a priori estimate of Theorem 5.2 al-
lows us to restrict our attention to cones spanned by neighborhoods of points
¢ € V(Py,). Assumet = (1,0,0) and denote the vanishing order Bf, in
¢ by v. In Lemma 5.6 we show that inside the above mentioned cone, but
outside a tubular neighborhoétiof R -¢, the two varietied’(S) andV (P,,,)
are so close that the standard method for proving Pheéagibndebf condi-
tions for hyperbolic polynomials, namely taking maxima over the fibers of
a suitable projection, works also for(S). InsideU, howeverV (S) is still
a manifold, whileV'(P,,,) may be singular irf. Here, we compar&’(.S)
to another manifold’ (Qq — 1), whereQq (22, 23) := (Pmn)¢(2). We show
in Lemma 5.10 that coordinate patches ¥6fQo — 1) induce coordinate
patches fol/(S) N U and use standard estimates on these patches. At first
we recall a result from [5].

Theorem 5.2. Let P,,, € R|zy,..., z,| be homogeneous of degreeand
let @ € R[z,...,2,] be of degree less than. If P, is square-free and
if V(P,,) satisfiesPL(R",log) then there exisfly > 1, By > 0 such that
eachu € PSH(V (P, + @)) which satisfies the conditioris) and (3) of
2.2(a)also satisfiesi(z) < Ag|z| + Bo, z € V(P + Q).

Proof. SinceV (P,,) hasPL(R",log), it follows from Meise, Taylor, and
Vogt [15], Theorem 3.13, that each irreducible factofhf has ann — 1)-
dimensional set of real zeros. Therefore, the present theorem follows from
[5], Theorem 1.1. O

If P, satisfies the hypotheses in 5.1(4) then Theorem 5.2 and Lemma
2.5 imply that onV (P,,) the estimate needed f@8PL) holds whenever
z € Vi (P,,) satisfiegz| < AIm z| for some constank > 0. Hence we
only have to consider those pointsliia (P,,,) for which |Im z|/|z| is small.
This will be done in cones around real lineslifiP,,,). To handle these we
need several lemmas. Furthermore, we will use the following notation.

Notation.Forw € C" andr = (ry,...,ry,),7; > 0,1 < j < n, we denote
the polydisk with centew and polyradius by B(w; r) or B(w;r1,...,7y).
Forp > 0 we will use the abbreviatioB (w; p) = B(w;p, ..., p).

Lemma5.3. Let P,,, € R]z1, 29, 23] be homogeneous of degree > 2
and assume that (P,,) hasPL(R?,log). Then for eaclf € V(P,,) N R3,
|€] = 1, there exist a real linear change of variablesc N, n > 0, 0 > 0,
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and holomorphic functions; : B((1,0);n,17) — C,1 < j < v, such that
in the new coordinates the following holds:

(1) £ =(1,0,0), and(0,0, 1) is non-characteristic fof>,,,

(2 V(Pm) N B(&n,m,0) = Uj1{(21, 22, 8j(21,22)) : (21,22) € B
((1,0);m,m)},

(3) Bj(#1,22) isreal forrealzi, zo, 1 < j < w.

Proof. Itis easy to check that (1) can be achieved by a real linear change of

variables. Sincé>,, is real and(0, 0, 1) is non-characteristic foP,,, up to
a real constant we have

m
P (21,22, 23) H 23— Bj(21,22)), (21,22, 23) € C°,

where 31 (z1, 22), - - -, Bm(21, 22) denote the (not necessarily distinet)
roots ofzz —+ Py, (21, 22, 23) forfixed(z1, z2) € C2. By hypothesis,,(1,0,0)
= 0, therefore there exisiswith 1 < v < m such that (without restriction)
Bj(1,0) =0 for 1 <j<wv and 3;(1,0) =a; #0 for v +1 < j < m.
SinceV (P,,) satisfiesPL(R3, log) it follows from Braun [1], Corollary 12,

that there ar@ < 7, o < 1, and holomorphic functions; : B((1,0);n,7)
— C,1 < j < v, such that

V(Pn) N B(&n,m,0)

{(21, 22, Bj(21, 22)) : (21, 22) € B((1,0);m,1)}.

I
LC s

1=

Moreover,(;(z1, z2) is real when(zy, z2) is real forl < j < v. Hence (2)
and (3) hold. O

The easy proof of the following lemma is left to the reader.

Lemmab5.4. Letv € N and distinct number$,,...,b, € R\ {0} be
given and letQo(z2, 23) := [[j_;(23 — bj22). Then there exispy > 1
and Dy > 0 such that for eachu € C, |u| < 2 and each(ws, w3) € C?
satisfyingQo(ws, w3) = pand|ws| > po there existsauniquel < < v,
such that

Dy

‘w3_blw2’ | |11 To v—1"
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Lemma 5.5. For p € N there exist€” > 1 such that for any choice o
anda € CP satisfying|a;| < |A;]/2for 1 < j < p, the following estimate
holds

p p
‘ H(Aj + aj) — HA]" < Clril?é( (\ak\ H Aj).
j=1 j=1 =R Gk

Proof. Writing the difference as a telescoping sum, the estimate is obtained
easily. O

Lemma 5.6. Let P,,, € R[z1, 22, 23] be homogeneous of degree> 2 and

satisfy conditiorb.1(4) Assume thaf = (1,0,0) € V(P,,) and that the
conclusions of Lemma3 hold. Then there exigiy > 1,7,s > 0,D > 0,

andR; > 1suchthatforeach> R;and(zy, z2) € C? satisfyingz;| < rt

andt'="/Vpy < |z| < rt the equationP,,(z1, z2, 23) = +1 has exactly
v distinct rootsz3 (21, 22), . . ., 25 (21, 22) satisfying|z}(z1, z2)| < st and

|23 (21, 22)| < D|z2|. Moreover, each(z1, z2) is real for real z1, z2.

Proof. We will give the proof only for the cas&,,(z) = +1, since the
one forP,, = —1 is the same, up to obvious modifications. In the proof
we will use the notation that was introduced in Lemma 5.3. Sif¢g), is
square-free, the real numbers

. 96;
by = 52

are distinct. Since the functionty, 1 < j < v, are holomorphic, we have
the following power series expansions

(1,0), 1<j<v,

B, A) =biA+> b, [A<n, 1<j<w
k=2

Next define the holomorphic functions

F,U:B(&n,m,0) = C, F(z) = [ (25 = Bi (21, 22)),

j=1

L P (2)

U(z) = F)
Since (0,0, 1) is non-characteristic foP,,, the equation?,, (1,0, z3) =
0 hasm roots, v of which are zero. The other roots, 1, ..., a,,, are

all non-zero and satisfiu;| > o by 5.3(2). It is no restriction to assume
Pr(1,0,23) = 25 [[L, 41 (—ay) and] 72, (—a;) = 1, which implies

m

U(1,0,00= ] (-aj) =1

j=v+1
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Shrinkingn ando if necessary, we may assuag| > 3o forv+1 < j < m.
Next note that for € B(¢;n,n, o) we have

F(z1,29,23) = H <Z3 - Zlﬁj(la Z))

j=1

(5.1) = H(Zs — 22b; — gj (21, 22)),
j=1

where

[ee] P k
, — b [2) .
gj (217 Z2) 21 kZQ .k (z1>

From this it follows that, shrinking > 0 again, there existd/ > 0 such
that

(5.2) lgj(z1,22)| < M|z, (21,22) € B((1,0);m,m), 1<j<v.
Now definer S R[ZQ, Zg] andQ € R[Zl, 29, 23] by

v

(5.3) Qo(z2,23) := H(Z3 —bjz2), Q(z1,22,23) = 2" "Qo(22, 23).

J=1

To prove the lemma we will apply a scaling argument and Rélsctieo-
rem. The basic observation for the scaling is tRatz) = 1 is equivalent

to P,(z/t) = t7™. If z/t € B({;n,n,0), this equation is equivalent to
F(z/t) = t7™/U(z/t). To get the desired information on the zeros of
P, = 1 we approximateF” by Qo andU by 27""". To do so, we need a
number of estimates. To derive them, denotephyand Dy the numbers
which exist for the polynomial), by Lemma 5.4. Furthermore, define

k:=min{|b; —bg| : 1 < j, k<v, j#k} >0,
(5.4) My = 11;1;1S><V\bj|.
Enlargingp, if necessary, we may assum®g /pg < min(x/2, Moy, (k/2)”
(4(v — 1)(3Mp)*~1)~1). Then fixt > (2po/n)"/™ andz € B(&;n,1,0)
satisfying|za| > pot~™/". If Q(z) = t~™ then the definition of) implies
1

m—v "’
21

Qo(t™" 29, t™/" 23) =

Provided that) is small enough, we have

< <2
| 21| ™ 1-n
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Since|t™/" zy| > po, Lemma 5.4 implies the existence of a uniqué <
| < v, satisfying|t™/¥ z3 — bit"™/" 25| < Dy /[t™" 2|1 and hence, using
|z9| > potfm/ui

D D
(5.5) |23 — bizo| < — =

S Gl 1 = g1

By the definition ofx and M in (4.1), it follows from (5.5) andz;| >
pot~™/" that forj # [ and1 < j < v we have the following estimates:

D
(5.6) |23 — bjza| < (p’? + 2Mo> 20| < 3Mop|2a],
0
D K
(5.7) |2’3 — ijQ’ 2 (Ii— p’?) ‘22’ Z *‘22’.
0

Together with (5.5) they imply

> 11z —bi22)

k=1 j#k

K v—1 _ D _

(Sle2) = = DEMo) 2 22z
Po

S 1 (/{, |>V—1

=359 <2 .

By homogeneity there exisis, € N such that

AV

p
(5.9) ‘ (523) Qo(z2, 23)

< Kylz"?, p>2.

Next choosey > 0 so small tha < x/4 andK, >, 6" < ;(5)"6.
SinceQ(z) = t~™itfollows from (5.8) and (5.9) thatfaf € C, |¢| = §]|z2
we have the following estimate
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|Q(21, 22, biza + () — 177" = |Q(21, 22, biza + () — Q(2)]

I A
p=1

(45 o

(5.10) )
Ku222”p5p22p) |27

p=2

> (b)Yl

)

To derive an upper bound fdt,,(z1, z2,-) — Q(z1, 22,-) on the same
circle, note that) = Qo - Q1, whereQ(z) = 2{""” and that

(5.11) Pn—Q=FU—-QoQ1=FU — Q1)+ (F —Qo)Q1.

To estimate the terms on the right hand side, we use (5.3), (5.4), and Lemma
5.5 to get for\ = b;z5 + ¢

[(F' = Qo)Q1)(21, 22, )|

14

H()\ - ijQ g] 21, ZQ H — b 22

j=1 j=1
) ‘Zl ”TTL*I/

H(/\ - ijQ)
< CM|z*((2Mo + 8)|22])" a7 < Lz,

S ’z1|m—u

(5.12)

1<k<v

< C max (gj(zl,z’g)
ik

whereL := CM (2Mp + 6)2™~ . Similarly we get

’F(Zlvz27)‘)| = H|C+ (bl - bj)ZQ +gj(21,22)‘

(5.13) =1
< (6]l + M|z2[*)((8 + 2M)|zo] )~

= ((5 + M‘ZQD((S + QM())V_I‘ZQ‘V.
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To estimatd/ (z1, z2, A) — 27"~ ", recall from the proof of Lemma 5.3 that
for fixed (21, z2) € B((1,0);n,n) we have, by the homogeneity %,,

m

U(z1,22,C) = H (€ — Bj(21,22))
Jj=v+1
= T €202,
Jj=v+1

Sincef;(1,0) = a;, v +1 < j < m, and since thg; depend continuously
onz, z, for eache > 0 there existg (¢) > 0 such that3;(1,z) —a;| < e
for |z| < o(e) andv + 1 < j < m. SinceP,, is homogeneous and since
[}, 1(=a;) = 1, we get from Lemma 5.5

‘U(zl, 29, \) — zin_”}

— ﬁ </\ —ajz + <(Ij — B (1, ?)) z1> - ﬁ (—ajz1)

j=v+1 1 j=v+1

e n(:2))
Z1

< C((Mo + 0)|z2] +e) [z ["
< 2™ (Mo + 6)|z2| + ¢)
if n < o(e)/2. From this and (5.13) we get
[(F(U — Q1)) (21, 22, \)| < (6 + M |2a]) (6 + 2Mp)” ™
(5.14) x C2M V(Mo + ) |22 + €) 22|

1 K\ v—1
< . s 1%
=16 (2) Jel

if £ and consequently is small enough. From (5.12) we get

<C max <\)\] + |21}
v+1<k<m

[[(=a;20)

i#k

(515) 1((F - Q)@1)(e1,22, V] < Lzl < o0 (5) 7 dl=al”,

if n < 17 (g)”_1 5. Combining (5.14) and (5.15) with (5.11) it follows
from (5.10) that we can apply Rougk theorem to conclude that there exist
po >0, Ry > 0,and0 < r < o /(6 + My) such that the following holds:
Whenevert > R; and(z1,z;) € C? satisfies|z;| < r andt=™/"p, <
|z2| < r, to each solutiorr = (z1, 22, bjz2) of the equatior®)(¢) = 0 there
corresponds a unique solutidm, 2o, 24(z1, z)) of the equationP,,,(¢) =

t~" satisfying

\zé(zl,zq) — blZQ| < 5|2’2’.
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This implies
|24 (21, 22)| < O|za| + |biz2| < (6 + Mp)|z2| = D|zo| < Dr=s<o

if we let D := § + My ands := Dr. Whenzy, zo are real, we get for
¢:= (21,22,2'%(21,22)):

7™ = Pp(C) = Pu(C) and [ — byza| = [C — brza| < 82,

sinceP,, has real coefficients and sinkgs real. By the uniqueness of the
solution, this implies thazté(zl, z9) is real for reak;, zo. Since the equation

Q(z1, z2,7) = 0 hasv distinct roots 29, . . ., b, 22, wWhich are further apart
from each other tha#) z;|, the lemma now follows from an obvious scaling
argument. 0

To apply Lemma 5.6, we need the estimates of the following lemma.

Lemma 5.7. For eachz, w € C ande > 0 the following inequalities hotd

() [Imvz?2 4+ w?| < |Imz| + [Imw|,
(i) Imz| < |Imv2? —¢&?|.

If, furthermore,|z| > e for somel > 1, then

A
(|||) ‘Im \V Z2 — 82‘ S \/ﬁumz’

Proof. Letz = z + iy, w = u+ v, andv/z2 + w? = A+:B. Then a short
calculation shows that

AB=gzy+uv and A% — B% = (2 +u?) — (v* + v?).

Solving for A from the first of these equations and substituting into the
second one gives a quadratic equation3r> 0 whose solution is

1

B = {0 + ) = (@ +u)) + (@ +u?) = (1 + )

(5.16) +4(:cy+uv)2> }
By the Schwarz inequalityry + uv)? < (22 + u?)(y? + v?), the term

under the square-root is not larger than? + u?) + (y% + v?)]?, which
implies

Im v/ 22 + w?| = |B| < vVy? + 02 < |y| + |v] = |Im z| + [Imw].
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Hence (i) holds. To prove (ii), set= 0,v = ¢ in (5.16) and note that then
the term under the square-root is equald + y? — £2)% + 4y2%2. If we
let C := 2ye/(2? + y* — £2), then we get

1
(5.17) 32:§(y2+52—a:2+|x2—|—y2—62|\/1—|—02).

If 22 4 y% — &2 > 0 this implies

Im /2% — %] = [B| = [y| = [Im 2],

sincev1+C2 > 1. If 22 4+ y? — 2 < 0 theny? + €2 — 22 > 242 and
henceB? > y2. From this, (i) follows also in this case.

For the inequality (iii), use the estimatél + C2 < 1+C?/2in (5.17).
Since|z|? = 22 + y? > A\?e? we obtain

2 1 AZy2
B2 < 2 4 12 € <2 (1 = )
_y+yx2+y2_62_y +)\2—1 A2 -1

Obviously, this implies (iii). O

In the following statement;| denotes the maximum norm@f*. Every-
where else, the choice of the norm does not matter.

Lemma 5.8. Supposé) < ¢ < % and thatv(z’, z,,) is plurisubharmonic
for |2/| < 1, |z»| < 1 and satisfies

() v(2,z,) <1, || <1,z <1,
(i) v(2',2,) =0 if2’,z, are real and/z,| > e.

Then for each\ < 1 there is a constant’,, such that
(i) v(2,z,) < CA(|JIm 2| 4+ [Im /22 — &2), [2/| <\, |zn| < A

Proof. This follows from standard estimates for harmonic measure, but is
perhaps most easily seen using the following explicit formulas.rl(e}
denote the harmonic measure of the real axis in the unit disk. That is, the
subharmonic function off| < 1 that is equal t® on the real axis, equal to

1 on|¢| = 1, and harmonic fof¢| < 1, Im ¢ # 0. Well-known and easily

verified formulas forh(¢), ¢ = = + y, areh(¢) = L[arg(¢ + 1) + 7 —
arg(¢ — 1)] = Z arctan % Similarly, if k-(¢) denotes the function
harmonic in the unit disk with the real intervdisi, ], [¢, 1] removed, and
with boundary values 1 ofg| = 1 and 0 on[—1,¢] U [e, 1], then
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This is easily seen by considering the sequence of analyticinaps?, r =
1“’_‘631, o = /7 which represent$|¢| < 1} \ ([-1,¢] U [¢,1]) as a 2-1
analytic cover of the upper half disko| < 1, Imo > 0} with |(| = 1
mapping to|oc| = 1 and the interval§—1, —¢], [¢, 1] to the negative and
positive real-axis, respectively.

Forz = (#/,z,) € C™" with |Z/| < 1 and|z,| < 1, the maximum
principle easily shows(z) < h(z1) + - + h(zp—1) + ke(2y) for every
plurisubharmonic functiom satisfying (i) and (ii). Sincé.(¢) < Cy|Im ]
andk.(¢) < Cy|Im /¢ —&?| for || < X\ < 1, it follows that (iii) also
holds. O

Lemma 5.9. Assume thaf,,, and¢ = (1,0, 0) satisfy the hypotheses of
Lemmégb.6andletpg > 1,7, s > 0,andR; > 1 be the constants which exist
by that lemma. Then there exist constafits As, A3 > 1 such that for each
t > R; the following holdsWhenever, € PSH(V. (P,,)) satisfies the con-
ditions(a) and(8) of2.2(a) thenforz € Vi (P,,)NB(t&;rt /2,1t /2, st/2)
we have the estimates

(@) u(z1, 22, 23) < Aq|Im zq| + Agt! =™V if | 25| < 4pot—m/7,
(b) u(z1,22,23) < Aq|Tm 21| + Az|Im zo| if [22] > 2ppt! /7.

Proof. Since the arguments fof (7,,) andV_(P,,) are the same, we only
treatVy (Py,). Fix u € PSH(Vy(P,,)) satisfying(«) and (5) of 2.2(a).
Since0 ¢ V. (P,,) it follows from Theorem 5.2 that there existi§, > 1,
not depending om, such that

(5.18) u(z) < Aflzl, 2z € Vi(Pp).

It is no restriction to assume in the sequek % andR; > 16pg/r. Next

fix t > Ry and definev : B((¢t,0);rt) — [—o0, 0o by

v(z1, z2) = max{u(z1, 22, 23) : Pm(21, 22, 23) = 1, |23] < st}.
Thenw is plurisubharmonic and by Lemma 5.6 it satisfies
(5.19) wv(z1,22) <0 if 2z5,20€R and potl_m/” < |z| < rt.

Further, we get from Lemma 5.6 and (5.18)

oz, ) < A (\(zwz)\ T max rz§<zl,22>|)
1<j<v

< Ag(1+ D)|(z1, 22)| < Ao|(21, 22)|
< Ao(l + 2r)t < 3Apt for (Zl,ZQ) € B((t,O);Tt),

whereA, := Aj(1 + D). Now let

(5.20)

D¢ 1= g vt + 1)1, t6), (¢) € B(0: D).
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The properties of imply thaty is plurisubharmonic o3 (0; 1), bounded by
1, and equalto 0 i’, ¢, are real ands| > ¢ := po/(rt™/*). Hence we can
apply Lemma 5.8 t@ to conclude that there is a constaht, independent
of v, such that

v(z1,22) < Ay (]Im z1| + [Im \/Z% — (potl_m/”)2|> )
(5.21) (#1,22) € B((t,0);7t/2).

The estimates (a) and (b) are now easy consequences of (5.21), part (a) by
applying Lemma 5.7(i) and part (b) from Lemma 5.7(iii). O

To formulate our next lemma, we introduce the following notation for
cones with truncated tip. € C", |£| = 1, > 0, andR > 0 are given we
let

z

2|

I'(¢,0,R) = {ZG(Cn:

<9, \z]>R}.

Lemma 5.10. Let P,,, € R[z1, 22, 23] be homogeneous of degree > 2
and assume thaP,, satisfies conditiorf4) of Theorenb.1 Then for each
¢ € V(Py,) NR3,|¢| = 1, there exist > 0, R¢ > 1, and A¢ > 1 such
that eachu € PSH(V.(P,,)) which satisfies the conditioris:) and (3) of
2.2(a) also satisfies

u(z) < A¢ltmz| for z € Va(Py) N I(, 0, Re).

Proof. By hypothesis, we can apply Lemma 5.3. In particular, we can as-
sumet = (1,0,0). Then we apply Lemma5.6 and Lemma 5.9 toget 1,

% >r>0,s>0,R >1,and constantd, Ay, A3 such that the conclu-
sion of Lemma 5.9 holds. To prove the present lemma it suffices to show that
there exist > 0, Ry > Ry, andA > 1 such that each € PSH(V(P,,))
which satisfies the conditior{s) and(3) of 2.2(a) also satisfies

(5.22) u(z) < Almz| for ze |J tB(&9).

t>Ro
Note thatby Lemma5.9(b), the estimate (5.22) holds with max(A;, A3)
onthe setJ,. p {z € tB(&71/2,1/2,0/2) : 22| > 2pot~™/"}. To prove
(5.22) onlJ,. g, {z € tB(&;6) : |22| < 4pot~™/"}, for suitables > 0 and
Ry > Ry, we will use the notation introduced in the proof of Lemma 5.6.
Then we have for € B(§;n,n,0)

v

Pn(z) = F(2)U(2), F(z)=]] (23— bjz2 — g;(21,22)) ,
j=1
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Asinthe proof of Lemma5.6 we assume withoutrestrictionth@dt 0,0) =
H?"‘:U“(—aj) = 1. Thenitis easy to check that for the localizatior§ ate
have

(Pu)e = (F)e(U)e = (F)e = Qo where

v

Qo(22,23) = H(Z3 —bjz2).

j=1

Subsequently we will only treat the cage( P, ), since the same arguments
apply toV_(P,,). To do so note that by Lemma 3.10,

<1

S(r,z) := Py, (;,

29TV 2377"_”) -1

is a polynomial in(, z1, 29, z3) which satisfies

5(0,2) = 21" (Pn)e(22, 23) = 27" " Qo(22, 23).

Since the real numbers, ..., b, are distinct,grad Qo(z2,23) # 0 for
(22, 23) # 0. Hence

oS S
8722(072)7&0 or 73(072)7&0

if 2 7& 0 and (2’2,23) 7& 0.

Next let0 < r < 7,0 < s < o be the numbers which exist by Lemma 5.6
and note that

K :={(0,2) e R*: 2 € B(§;7/2,7/2,5/2),5(0,2) = 0}
is compact. Sincé0,0) ¢ K, for each(0, z) € K we haveg—i(o, z) #0
or §2(0,2) # 0. We let

M;:={2:(0,2) e K gS(O,z)#O}, j=2,3.

) .
Zj

Then for eachr € M3 the implicit function theorem implies the existence
of 6(z) = (do(2),...,03(2)) > 0 and of a holomorphic function; :
B((0, 21, 22); 8'(2)) — B(z3;03(2)) such that

V(S) N B((0,2);0(2)) = {(7,C1, G2, h3(7, 1, C2)) = (7, €15 C2)
€ B((0,21,22);0'(2))}.
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Since(0, z) € R* N V(S), the real implicit function theorem implies that
h3(T, 1, ¢2) is real when(r, (i, (2) is real. The same arguments apply to
the pointsz € Ms. Now note that

{B ((0,2); folz) 41(2) 5)(2), 53§Z>) Lz MQ} U
{B <(0, 2); ‘5°§Z), 5152), 5222) , 63(2)) e Mg}

isanopencoverak . Hencethereexist, ...,z € Myandzy,q,...,2; €
M3 such that the elements of the cover with centers; ), . . ., (0, z;) cover
K. Letédy := min{éo(Zj) 1< < l} Then

k
U .= U B ((O,Zj)' do 51(23')’52(%% 53(zj))

97 2

is a neighborhood of(. Hence

Lo = (B(0,€):1,7/2,7/2,5/2) \U) NV($) NR!
is compact and so is its projection in thespace. Therefore
g1 :=1inf{7: (7, 21, 22, 23) € Lo}

is obtained at some poiflity, w1, w2, w3) € Lo. If we assumey = 0, then
(0, w1, we,ws) is in K, in contradiction to the definition afy. This proves
g1 > 0.

Next note that also

L= (B((O,f); 1,7/2,7/2,5/2) \ U) NV(S) N ([0,e1/2] x C%)

is compact. Hence
gg == 1inf{|Imz| : (7,2) € L1}

is obtained at some poiift;, () € L;. If we assume, = 0, then(7y, ()
is real and hence ihy. By the definition ofs, this impliesm, > ¢4, in
contradiction tor; € [0,1/2]. This provess > 0.

Now chooseR; > max((2/e1)", R1) solargethatnax;<j<; 4/(7d1(z;)
(A1+A4y)) < RV andfixr > RyandC € Vi (Pp)NtB(E, 1 /4,7 /4, 5/4)
satisfying|Cz| < 4pot'~™/*. Then let

1 _ _
TS A Q1Y Z9 = Cr"T™, 23 1= (3T
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Itis easy to check thdtr, z) € V(S)NB((0,€);e1/2,r/4,r/4,s/4). Now
we fix u € PSH(V,.(P,,)) satisfying the conditionsx) and(3) of 2.2(a).
As we have seen in the proof of Lemma 5.9, there exdgts> 1 such that
(5.18) holds. Now we distinguish the following cases:

Case(t, z) ¢ U Sincer € [0,e1/2], the point(r, z) is in L. By the defi-
nition of €5, this implies|Im z| > es.
Case(r,z) ¢ U, [Imz1| > e2/3 Note first thatj¢ < |(1| < 2¢, since
0<r< % Hence the present hypothesis implies

—_ € €
Im ¢y| = 777[Im 2| > ?t > g\gly.
From this and (5.18) we get

u(¢) < Aglel < A (145 + 2)t

1
| croa (12" 5 Ll
(5.23) < 124 (1 + 5 + 4> - |Tm (|

Case(T, z) ¢ U, |Im(z2, z3)| > €2/3 Then we have
v £ —m /v
[Tn(Ga, Gs)| = 77 [Tz, 23) > 4

From this and Lemma 5.9(a) we get
3
u(¢) < Aylm G| + A25\1m(C2,C3)|
(5.24) < <A1 . ?’EA?) i)
2

Case(t, z) € U Withoutrestriction we assume thatthere exists {z;1,
..., zysuchthatr, z) € V(S)NB((0,w); &, 2wl 22(w) 5. (,)) By
the choice ob (w), we know thal’ (S)NB((0, w); §(w)) is the graph of
a holomorphic functiorh : B((0, w1, w2); dp(w), §1(w), d2(w)) — C
which is real whenv, y1, y2) € B((0, w1, w2); do(w), 1 (w), d2(w)) N
R3. Now note that the definition of implies that for(y,, y2) € B((wy,
wa); 61(w), d2(w)) the point(t~y1, 7™ Yya, 7V h(T,y1,y2)) IS in
Vi (Py,). Therefore, we can define a plurisubharmonic functjoan
B((w1,wz); 61 (w), d2(w)) by

Sp(ylv y?) = U(Til/ylv TmiVyQ) tmiljh(7—7 Y1, y2))

By Lemma 5.9(a) and the properties/oive get

o(y1,y2) < (A1 + A2) (7 Y Imy; | +7™7") and
e(y1,y2) < 0if (y1,y2) € R®
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Now fix y5 real and consider fdim y; > 0 the function
Yy = @y, y2) — (A1 + Ag)7 Y Imy;.
Then we have
Y(y1) < (A1 + A2)r™ and (y1) <0if y1 € R.

From this and an application of the standard estimate for the harmonic
measure of the real line in the unit disk it follows as in the proof of
Lemma 5.8 that

(A1 + Ag)

2
m=vIT B : 2).
51(w)7— Imy], w1 € B(wy;di(w)/2)

Arguing similarly forlm y; < 0, we conclude foy, real:

8™
< (Ap+ Ag)T7VI 1+ =5
P(y1,y2) < (A1 + Ag)7 7 [Imy| < * 7751(10))

< 2(A1 + AQ)TﬁV’Im yl‘,
by our choice ofk,. Next we fixy; and argue in the same way to get

o(y1,y2) < 2(A1 + A2)7 Y |[Imy; |
8

A A m=YIT
+(A1 + 2)77(52(w)T |Tm yo|

for (y1,y2) € B((w1,w2);01(w)/2,d2(w)/2). In particular, we get

(5.25) u((1,C2,G3) = w(21, 22) < 2(A1 + A2)(|Im G| + [Im (),

provided thatRs is large enough.
Now it follows from (5.25), (5.26), and (5.27) that (5.24) holds provided
that we choosé > 0 small andR, and A > 1 large enough.

As we have noted at the beginning, this completes the proof. O

After all these preparations we can finally prove Theorem 5.1.

Proof of Theorenb.1. (1)=- (2): By Lemma 2.5, the hypothesis implies
thatV (P,,) hasPL(RR?,1og). HenceP,, is real up to a complex constant by
Meise, Taylor, and Vogt [13], Lemma 2. If we assuig = \Q,,, for some
A€ C\RandQ,, € Rlz1, 22, 23], thenVy(Py,) = {z € C*: Qu(z) =
1/A}. Since@,, has real coefficients ant/\ ¢ R, V. (P,,) NR3 = 0.
Obviously, this implies thai’y (P,,) fails (SPL) in contradiction to the
present hypothesis. Hené#, has real coefficients. Therefore (2) follows
from (1) by the result of Meise and Taylor [9], Theorem 3.4, which we
recalled in Theorem 2.7.
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(2) = (3): This holds by Lemma 2.5(a).

3)=(4): Let P,, denote the polynomia®,,, regarded as an element of
Clz1,. .., z4], and note thab,, is the principal part of>. By Meise, Taylor,
and Vogt [15], Theorem 4.1V (P,,) hasPL(R*,log). SinceV (P,,) =
V(Py,) x C, thisimplies thal/ ( P,,) satisfiePL(R3, log) and henc¢SPL)
by Lemma 2.5. As in the proof of (B> (2), P,, must be real up to a complex
constant. However, by Meise and Taylor [9], Lemma 2.1, a polynomial of the
form P,,(z1,. .., zn) + Azn+1 WhereP,, has real coefficients cannot satisfy
PL(R*,1og) unless\ is also real. Thereforg,, must have real coefficients.
Then the last condition in (4) follows from (3) by Theorem 4.1.

(4)= (1): We will only prove that/,. ( P,,,) satisfiegSPL), since one can
argue in the same way fé7_(P,,). To do so, Proposition 4.5 of Meise and
Taylor [9] will be applied. This result shows thet (P,,) satisfieg SPL) if
and only if the following three conditions hold:

(i) Vi(Py) satisfiePLy,.(£) at eacht € V. (P,,) NR3,

(i) there are constantd, B > 0 suchthat(z) < A|z|+ B for all plurisub-
harmonic functions: on V. (P,,) satisfyingu(z) < |z| 4+ o(|z]) on V'
andu(z) < 0onVy(Py,) NR3,

(iii) foreach¢ € V(P,)NR™, [{| = 1, there existA¢, d¢, andR, > 0 such
that each, € PSH (V. (P,,)) which satisfies the conditioria:) and(3)
of 2.2(a), also satisfieg z) < A¢|Im z|forz € Vi (P,)NI(E, 0¢, Re).

To check these conditions, note first that( P,,,) is a manifold at each point
by Euler’s rule. That is,

3

sz%(z) =mPy,(2) =m, z¢eVi(Py),
=1 8Zj

sograd P, (z) # 0 for eachz € Vi (P,,). HencePLy (&) holds at each
point of V. (P,,) as we have noted in Remark 3.2. Thus condition (i) holds.
Next note that the hypotheses in (4) obviously imply tRatis square-free.
Hence condition (i) follows from Theorem 5.2 applied¢z) = —1. Since
condition (iii) holds by Lemma 5.10, we conclude tHat(P,,) satisfies
(SPL). O

RemarkLet P,, € R|z1,..., z,] be homogeneous of degree By Meise

and Taylor [9], Theorem 4.8/, (P,,) satisfies(SPL) wheneverP,, is of
principal type (i.e.Z?zly%ZT (©)|> # 0for ¢ € R™\ {0}) and each irre-
ducible factor ofP,, has at least one nontrivial real zero. For= 2 this
sufficient condition is also necessary and equivalenPtobeing strictly
hyperbolic. Note that in several steps of the proof of Theorem 5.1 we have
used that P, )¢ is hyperbolic at each € V(P,,) N\R3,|0| = 1. Forn = 3,
Theorem 5.1 shows that the condition th} is of principal type is not
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necessary, sincg(P,,) N R3 may contain non-zero singular points, as the
following examples show.

Example 5.11.(a) ForPs(z,y,2) := y*z — z(z — 2)? the varietyV ()
is singular exactly at the pointg\,0,\) : A € C} and the varieties
Vi (Ps) satisfy(SPL).
To prove this, note first that

grad P3(z,v, 2) = (=322 + 4xz — 22, 2yz, y* + 222 — 222).
From this it follows easily that
{€ € C3: P3(¢) = 0and grad P3(€) = 0} = {(\,0,A) : A € C}.

This proves the first assertion. To prove the second one we show that the
conditions in 5.1(4) are satisfied. Obviousi, has real coefficients. To
show thafl/ (P;) satisfiesPL(R?3, log) and hencéSPL), note first that
a simple computation shows fér= (1,0, 1)
(Ps)o(x,y,2) =y — (¢ — 2)°.

Hence( P3)y is the product of two distinct real linear forms and therefore
square-free. Moreover is locally hyperbolic in the sense of Anders-
son (see ldrmander [8], 6.4). Thus it follows from &éitmander [8],
Theorem 6.5, thaPs;(D) is a surjective differential operator from the
space of all analytic functions d&?* into itself. SinceP; is irreducible
and not elliptic, by Meise, Taylor, and Vogt [15], Corollary 3.14, and
Lemma 2.5 it follows thal’(P3) has(SPL). Therefore, Theorem 5.1
implies thatV, (P3) andV_(Ps) satisfy(SPL).
Note that{(x,y) € R? : Ps(z,y,1) = 0} is a well-known algebraic
curve, namely Newton’s knot.

(b) ForPs(z,y,z) = 23+ y3 — 3xyz the varietyV/ ( P) is singular exactly
at the points{(0,0, A) : A € C} and the varietie¥, (P,,) both satisfy
(SPL).
This can be shown similarly as in part (a). Note thét,y) € R? :
Ps(z,y,1) = 0} is the Cartesian leaf.

The following example shows that the PhragwlLindebf property is
not inherited by quasihomogeneous principal parts.

Example 5.12.SetP(z1, . . ., 24) = 2122(23 —2}) —z4. By Theorem 5.1, its
variety V ( P) satisfiesPL(R*, log). Define the weight! = (1,1,2,6), and
denote byQ(z) = 212223 — 24 thed-quasihomogeneous principal partf

The principal part)4 of @ is not square-free, hence by Corollary 4.6, the
variety V(Q) does not satisfiPL(R*, log). This shows thaPL(R", w) is

not inherited by quasihomogeneous principal parts. Note that the classical
principal partP,, of P satisfiesPL(R",w) wheneverP does, as Meise,
Taylor, and Vogt have shown in [15], 4.1.
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