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Abstract. Algebraic varietiesV are investigated on which the natural ana-
logue of the classical Phragmén-Lindel̈of principle for plurisubharmonic
functions holds. For a homogeneous polynomialP in three variables it is
shown that its graph has this property if and only ifP has real coefficients,
no elliptic factors, is locally hyperbolic in all real characteristics, and the
localizations in these characteristics are square-free. The last condition is
shown to be necessary in any dimension.
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1. Introduction

An algebraic varietyV in C
n, n ≥ 2, has the property (SPL) if there exists

a constantA ≥ 1 such that for each plurisubharmonic functionu onV the
estimates

u(z) ≤ |z| + o(|z|), z ∈ V, and u(z) ≤ 0, z ∈ V ∩ R
n,(1.1)

imply

u(z) ≤ A|Im z|, z ∈ V.(1.2)

The third author gratefully acknowledges support of the A. v. Humboldt Stiftung for visits
at Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf, where this research
was carried out.



104 R.W. Braun et al.

By the classical Phragḿen-Lindel̈of Theorem,V = C
n satisfies (SPL) with

A = 1. Thus the varieties with the property (SPL) are the ones for which a
natural extension of the Phragmén-Lindel̈of Theorem holds. This, however,
is not the only reason why they are of interest. By results of Meise, Taylor,
and Vogt [10], [11], [15], the zero variety

V (Pm) = {z ∈ C
n : Pm(z) = 0}

of a homogeneous polynomialPm of degreem ≥ 2 in n variables satisfies
(SPL) if and only if the differential operatorP (D) : C∞(Rn) → C∞(Rn)
admits a continuous linear right inverse. Moreover, results of Hörmander
[8] imply that for eachQ ∈ C[z1, . . . , zn] with degQ < m the operator
(Pm + Q)(D) acts surjectively on the spaceA(Rn) of all real-analytic
functions ifV (Pm) has (SPL). It is reasonable to ask whyA > 1 is allowed
in (1.2). Proposition 2.8 explains why the caseA = 1, while interesting, is
too restrictive. For example,V (Pm) satisfies (SPL) withA = 1 if and only
if Pm is a product of real linear forms.

To consider non-homogeneous polynomials, letPm ∈ C[z1, . . . , zn] be
homogeneous of degreem ≥ 2 and defineP ∈ C[z1, . . . , zn+1] by

P (z′, zn+1) := Pm(z′) − zn+1.

In this situation, Meise and Taylor [9] have shown recently that ifV (P )
satisfies(SPL) thenPm is square-free and has real coefficients. They also
proved thatV (P ) satisfies(SPL) if Pm is of real principal type and none of
its irreducible factors is elliptic. Forn = 2 this condition is a characterization
and is equivalent toPm being strictly hyperbolic orPm being a product of
m distinct real linear forms. Moreover, Meise and Taylor [9] showed that
for real homogeneous polynomialsPm, V (P ) has (SPL) if and only if both
varieties

V±(Pm) := {z ∈ C
n : Pm(z) = ±1}

have (SPL) and thatV (P ) has (SPL) if and only if the operatorP (D) :
C∞(Rn+1) → C∞(Rn+1) admits a continuous linear right inverse.

In the present paper we improve the necessary condition ofPm being
square-free and use the improvement to characterize in dimensionn = 3
whenV (P ) has (SPL). To formulate the result, denote by(Pm)θ the lowest
order homogeneous polynomial in the expansion ofz 7→ Pm(θ+ z). Using
the concept of quasihomogeneity and a result of [4], we show that ifV (P )
has (SPL) then(Pm)θ is square-free for eachθ ∈ V (Pm) ∩ R

n, |ξ| = 1. Of
course, this condition is a lot more restrictive than the requirement thatPm

is square-free. In fact, forn = 3 it leads to the following characterization:
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Theorem 1.1. Let Pm ∈ C[z1, z2, z3] be homogeneous of degreem ≥ 2
and defineP ∈ C[z1, . . . , z4] byP (z) := Pm(z1, z2, z3)−z4. The following
are equivalent:

(1) V (P ) has(SPL),
(2) P (D) : C∞(R4) → C∞(R4) admits a continuous linear right inverse,
(3) V+(Pm) andV−(Pm) satisfy(SPL),
(4) V (Pm) has(SPL), Pm has real coefficients, and(Pm)θ is square-free

for eachθ ∈ V (Pm) ∩ R
3 with |θ| = 1.

Examples like Newton’s knot and the Cartesian leaf in homogeneous coor-
dinates

P3(x, y, z) = y2z − x(x− z)2 and P3(x, y, z) = x3 + y3 − 3xyz

satisfy these conditions (see Example 4.11). Hence forn ≥ 3 there are ho-
mogeneous polynomialsPm ∈ R[z1, . . . , zn] for which V (P ) has(SPL),
while V (Pm) ∩ R

n contains non-zero singular points, contrary to the situ-
ation forn = 2.

Because of the results of Meise and Taylor [9], the essential point in
proving Theorem 1.1 is to show that (4) implies (3). To do this we apply a
recent result of [5], by which there exists a constantA0 ≥ 1 such that each
u ∈ PSH(V±(Pm)) which satisfies (1.1) already satisfies

u(z) ≤ A0|z|, z ∈ V±(Pm).(1.3)

From this it follows that it suffices to prove the estimate (1.2) foru only
at pointsz ∈ V±(Pm) for which |Im z| is small compared to|z|. Since
bothV+(Pm) andV−(Pm) are manifolds, points in a fixed ball of arbitrary
size are easy to handle. Since pointsz ∈ V±(Pm) with large|z| are close
to points inV (Pm), it suffices to considerV±(Pm) in cones around real
lines spanned byξ ∈ V (Pm) ∩ R

3, |ξ| = 1. To handleV±(Pm) in such
cones we use a result of Braun [1] by which there exist suitable coordinates
so that in some neighborhood ofξ the varietyV (Pm) is a finite union of
graphs of holomorphic functions which are real-valued for real arguments.
Assumingξ = (1, 0, 0) it follows from this that for larget > 0 the varieties
V±(Pm) near(tξ, 0, 0) can be approximated sufficiently well byV±(Q),
whereQ(z1, z2, z3) = zm−ν

1 Q0(z2, z3) for someν ∈ N and someQ0 ∈
R[z2, z3] which is strictly hyperbolic. Knowing this, we use compactness and
scaling arguments together with bounds for particular harmonic functions
to derive the estimate (1.2) foru in a cone aroundRξ from the fact that we
already know (1.3).



106 R.W. Braun et al.

2. Preliminaries

In this section we introduce the basic definitions that will be used subse-
quently.

Definition 2.1. LetV be an algebraic variety inCn andΩ be an open subset
of V . A functionu : Ω → [−∞,∞[ will be called plurisubharmonic if it
is locally bounded above, plurisubharmonic in the usual sense onΩreg, the
set of all regular points ofV in Ω, and satisfies

u(z) = lim sup
ξ∈Ωreg,ξ→z

u(ξ)

at the singular points ofV inΩ. By PSH(Ω) we denote the set of all plurisub-
harmonic functions onΩ.

Definition 2.2. Let V be an algebraic variety inCn, n ≥ 2, andA ≥ 1,
B ≥ 0. We say:

(a) V satisfies the conditionSPL(A,B) if for eachu ∈ PSH(V ) the con-
ditions(α) and(β) imply (γ), where

(α) u(z) ≤ |z| + o(|z|), z ∈ V ,
(β) u(z) ≤ 0, z ∈ V ∩ R

n,
(γ) u(z) ≤ A|Im z| +B, z ∈ V .

(b) V satisfies the condition(SPL) (the strong Phragḿen-Lindel̈of condi-
tion) if V satisfiesSPL(A, 0) for someA ≥ 1.

Remark. By the classical Phragḿen-Lindel̈of Theorem, C
n satisfies

SPL(1, 0). Hence the algebraic varieties satisfying(SPL)are those on which
the obvious extension of the classical Phragmén-Lindel̈of condition holds.
To indicate why these varieties are of interest also in a different context, we
recall the following notions.

Definition 2.3. Let ω : [0,∞[ → ]0,∞[ be continuous and increasing and
assume that it has the following properties:

(α) ω(2t) = O(ω(t)) (β)

∞∫
1

ω(t)
t2

dt < ∞

(γ) log t = O(ω(t)) ast tends to infinity (δ) x 7→ ω(ex) is convex.

Thenω : z 7→ ω(|z|), z ∈ C
n,n ∈ N, will be called a weight function. Also

we will assume without restriction thatω(0) ≥ 1. For examples we refer to
[3].
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Definition 2.4. Let V be an algebraic variety inCn andω a weight func-
tion.V satisfies the conditionPL(Rn, ω) of Phragḿen-Lindel̈of type, if the
following holds:
There existsA ≥ 1 so that for eachρ > 0 there existsBρ > 0 so that each
u ∈ PSH(V ) which satisfies(α) and(β) also satisfies(γ), where

(α) u(z) ≤ |Im z| +O(ω(z)), z ∈ V ,
(β) u(z) ≤ ρ|Im z|, z ∈ V ,
(γ) u(z) ≤ A|Im z| +Bρω(z), z ∈ V .

If ω(t) = log(2 + t) then we will writePL(Rn, log).

One relation between the conditionsSPL(A,B) andPL(Rn, ω) is ex-
plained in the following lemma.

Lemma 2.5. For each algebraic varietyV in C
n the following assertions

hold:

(a) If V satisfiesSPL(A,B) for someA ≥ 1, B ≥ 0, thenV satisfies
PL(Rn, ω) for each weight functionω.

(b) If V is homogeneous and satisfiesPL(Rn, ω) for some weight function
ω thenV satisfies(SPL).

In particular, (SPL) andPL(Rn, ω) are equivalent ifV is homogeneous.

Proof. (a) Since each weight functionω satisfiesω(t) = o(t) ast tends to
infinity, this is easily checked.
(b) This follows from Meise, Taylor, and Vogt [15], Theorem 3.1, in con-
nection with Meise and Taylor [9], Lemma 3.2. ut
2.6. Differential operators and Phragḿen-Lindelöff conditions.ForP ∈
C[z1, . . . , zn], P (z) =

∑
|α|≤m aαz

α, we define the differential operator
P (D) with symbolP by

P (D) :=
∑

|α|≤m

aα
1
i|α|

∂|α|

∂xα1
1 . . . ∂xαn

n
.

When
∑

|α|=m|aα| 6= 0,P has degreem and its principal partPm is defined
asPm(z) =

∑
|α|=m aαz

α. Sometimes,Pm will just denote an arbitrary
homogeneous polynomial of degreem. We will use the notation

V (P ) := {z ∈ C
n : P (z) = 0}

andV±(Pm) := V (Pm ∓ 1).
By Meise, Taylor, and Vogt [11], [14], the varietyV (P ) satisfiesPL(Rn,

log) (resp.PL(Rn, ω)) if and only if the differential operatorP (D) ad-
mits a continuous linear right inverse onC∞(Rn) and/orD′(Rn) (resp. on
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E(ω)(Rn) and/orD′
(ω)(R

n)). Palamodov [16] has shown that the splitting of a
differential complex ofC∞-functions or distributions overRn is equivalent
to PL(Rn, log) holding for the corresponding varieties.

By Meise, Taylor, and Vogt [15], Theorem 4.1,V (Pm) hasPL(Rn, log)
and hence(SPL), wheneverV (P ) satisfiesPL(Rn, ω) for some weight
functionω. Therefore it is reasonable to treat general differential operators
P (D) as perturbations of their principal partPm(D). In this connection,
Meise and Taylor [9] showed recently that the condition(SPL) plays an
important role whenPm is perturbed by an independent variable. From [9],
Theorem 3.4, we recall the following theorem.

Theorem 2.7. LetPm ∈ R[z1, . . . , zn] be homogeneous of degreem ≥ 2
and letP (z) := Pm(z′) − zn+1 for z = (z′, zn+1) ∈ C

n+1. Then the
following assertions are equivalent:

(1) V (P ) satisfiesPL(Rn+1, log),
(2) V (P ) satisfiesPL(Rn+1, ω) for some weight functionω with ω(t) =

o(t1/m),
(3) V±(Pm) both satisfy(SPL),
(4) V (P ) satisfies(SPL),
(5) V (P ) satisfiesPL(Rn+1, ω) for each weight functionω.

It is natural to ask why we considerSPL(A, 0) for constantsA > 1. The
caseA = 1 is also interesting but it is very restrictive. For example, there
are no polynomials of degreem > 1 with an irreducible principal part that
can satisfySPL withA = 1. To explain this in a bit more detail, we include
the following proposition that is essentially well-known.

Proposition 2.8. Let P ∈ C[z1, . . . , zn] be of degreem ≥ 1 and denote
by Pm its principal part. If V (P ) satisfiesSPL(1, 0) thenP andPm are
hyperbolic with respect to each vectorN ∈ R

n\{0} satisfyingPm(N) 6= 0.
In particular, up to a complex factor,Pm is the product ofm real linear forms.

Proof. For ρ > 0 let Kρ := {x ∈ R
n : |x| ≤ ρ}. If V (P ) satisfies

SPL(1, 0) then it also satisfies the conditioñPL(K1,K2) defined in Franken
and Meise [7], 2.6(c). Hence it follows from [7], 2.9, 2.11, and 2.13 that

P (D) : C∞(
◦
K1) → C∞(

◦
K1) admits a continuous linear right inverse. By

Meise, Taylor, and Vogt [11], 3.8, this implies the conclusion. ut

3. Local conditions

In this section we introduce the localization(P )θ of a given polynomialP
at a pointθ ∈ V (P ), which is used in the next section to formulate one
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of the main results. To derive properties of(P )θ from those ofP , we also
consider local Phragḿen-Lindel̈of conditions and investigate some of their
properties.

Definition 3.1. Let V be an algebraic variety inCn andξ ∈ V ∩ R
n.

(a) V satisfies the conditionPLloc(ξ) if there exist constantsr1 > r2 > 0
andA > 0 such that each plurisubharmonic functionu on V ∩ {z ∈
C

n : |z − ξ| < r1} that satisfies(α) and(β) also satisfies(γ), where
(α) u(z) ≤ 1, z ∈ V ∩ {z ∈ C

n : |z − ξ| < r1},
(β) u(z) ≤ 0, z ∈ V ∩ R

n ∩ {z ∈ C
n : |z − ξ| < r1},

(γ) u(z) ≤ A|Im z|, z ∈ V ∩ {z ∈ C
n : |z − ξ| < r2}.

(b) Let η : C
n → [0,∞[ be a function which satisfiesη(z) = o(|z|) as|z|

tends to zero. Then we say thatV satisfies the conditionPLloc(ξ, η) if
there exist constantsr1 > r2 > 0 andA > 0 such that for everyρ > 0
there is a constantBρ > 0 such that each plurisubharmonic function
u on V ∩ {z ∈ C

n : |z − ξ| < r1} which satisfies(α) and(β) also
satisfies(γ), where
(α) u(z) ≤ 1, z ∈ V ∩ {z ∈ C

n : |z − ξ| < r1},
(β) u(z) ≤ ρ|Im z|, z ∈ V ∩ {z ∈ C

n : |z − ξ| < r1},
(γ) u(z) ≤ A|Im z| +Bρη(z− ξ), z ∈ V ∩ {z ∈ C

n : |z− ξ| < r2}.

Clearly,PLloc(ξ) impliesPLloc(ξ, η) for each functionη as in 3.1(b).

Remark 3.2.Classical estimates for the harmonic measure of the real line
in the unit disk show thatPLloc(ξ) holds atξ ∈ V ∩ R

n wheneverV is a
manifold inξ anddimR V ∩ R

n = dimC V in ξ (see, e.g., Meise, Taylor,
and Vogt [11], Corollary 4.8).

From Meise and Taylor [9], Proposition 4.4, we recall the following
result:

Proposition 3.3. If an algebraic varietyV in C
n satisfies(SPL), then it

also satisfiesPLloc(ξ) for eachξ ∈ V ∩ R
n.

The converse of Proposition 3.3 is false, sinceV := {(z1, z2) ∈ C
2 :

z2
1 = z2} satisfiesPLloc(ξ) at eachξ ∈ V ∩R

2 but it does not satisfy(SPL)
by [9], Proposition 2.3 and Theorem 3.4.

Definition 3.4. Let θ ∈ C
n and a functionP holomorphic in some neigh-

borhood ofθ be given. Then the lowest order homogeneous polynomial
(P )θ in the Taylor series expansion ofz 7→ P (θ + z) will be called the
localization ofP in the pointθ.

In Chapter 7 of Whitney [17] several possibilities to introduce tangent
varieties for analytic varieties are discussed. Here we only recall [17], 7.1G,
the one which is defined in terms of limiting directions.
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Definition 3.5. Let V be an analytic variety inCn andζ ∈ V . The tangent
coneVtan(ζ) in ζ is defined as the set of allv ∈ C

n such that for eachε > 0
there existz ∈ V andt ∈ C satisfying|z − ζ| < ε and|t(z − ζ) − v| < ε.

Remark 3.6.In Whitney [17], Theorem 7.4D, it is shown thatVtan(ζ) can
also be described as the common zero set of all localizations(f)ζ of functions
f which are holomorphic in some neighborhoodUf of ζ and vanish on
Uf ∩ V . In particular,Vtan(ζ) is a homogeneous algebraic variety.

In Sect. 5 below we need to know a result (Corollary 3.8) which can be
easily derived from the following theorem.

Theorem 3.7. If an algebraic varietyV in C
n satisfies the conditionPLloc

(ξ, η) at ξ ∈ V ∩ R
n for some functionη on C

n satisfyingη(z) = o(|z|),
then the varietyVtan(ξ) satisfiesPLloc(0) and(SPL).

We do not include a proof of Theorem 3.7, because it is similar to pub-
lished proofs of other results which show that certain Phragmén-Lindel̈of
conditions holding on an algebraic variety carry over to limit varieties. The
first result of this type is due to Ḧormander [8], who showed that the global
Phragḿen-Lindel̈of condition that characterizes surjectivity of constant co-
efficient partial differential operatorsP (D) on real analytic functions not
only carries over to the cone of limiting directions ofV (P ) at infinity, but is
equivalent to the condition holding on this cone. In Meise, Taylor, and Vogt
[15], Theorem 4.1, it was shown that the global Phragmén-Lindel̈of con-
dition PL(Rn, ω) carries over to the cone of limiting directions at infinity,
while Braun [2], Theorem 4.1, proves the corresponding result for a local
Phragḿen-Lindel̈of condition which is quite similar toPLloc. Note that by
Meise, Taylor, and Vogt [15], Theorem 3.3,Vtan(ξ) satisfiesPLloc(0) if and
only if Vtan(ξ) satisfiesPL(Rn, log), which is equivalent to(SPL), as we
have noted in Lemma 2.5.

Corollary 3.8. For P ∈ C[z1, . . . , zn] let V (P ) satisfyPLloc(θ) at some
θ ∈ V (P )∩R

n. Then each irreducible factor of(P )θ is a constant multiple
of a polynomial with real coefficients.

Proof. If V (P ) satisfiesPLloc(θ) then

Vtan(θ) = {z ∈ C
n : (P )θ(z) = 0}

satisfies (SPL) by Theorem 3.7 and hencePL(Rn, log). Consequently, it
follows from Meise, Taylor, and Vogt [13], Lemma 2, that every irreducible
factor of(P )θ has real coefficients, up to a complex constant. ut

Next we provide two lemmas which will be applied in the following
section and in which localizations are used.
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Lemma 3.9. For n ≥ 2 letPm ∈ C[z1, . . . , zn] be homogeneous of degree
m ≥ 2, let θ := (0, . . . , 0, 1), and assumePm(θ) = 0. Then there exist
ν ∈ N, ν ≤ m, and polynomialsQj ∈ C[z1, . . . , zn−1], homogeneous
of degreej, ν ≤ j ≤ m, such thatPm(z′, zn) =

∑m
j=ν z

m−j
n Qj(z′).

Moreover,(Pm)θ(z′, zn) = Qν(z′).

Proof. Applying Taylor’s formula atθ, Pm(θ) = 0 implies

Pm(z′, 1) = Pm(θ + (z′, 0)) =
m∑

j=ν

Qj(z′)(3.1)

whereQj ∈ C[z1, . . . , zn−1] is zero or homogeneous of degreej and where
Qν 6= 0. FromPm(θ) = 0 andPm 6= 0 it follows that1 ≤ ν ≤ m. Since
Pm is homogeneous, (3.1) implies forzn 6= 0:

Pm(z′, zn) = zm
n Pm

(
z′

zn
, 1
)

=
m∑

j=ν

zm−j
n Qj(z′).(3.2)

By continuity, this holds also whenzn = 0. From (3.2) we get forz =
(z′, zn)

Pm(θ + z) = Pm(z′, 1 + zn) =
m∑

j=ν

(1 + zn)m−jQj(z′)

=
m∑

j=ν

m−j∑
k=0

(
m− j

k

)
zk
nQj(z′)

and hence(Pm)θ(z′, zn) = Qν(z′). ut
Lemma 3.10. LetPm ∈ C[z1, . . . , zn] be homogeneous of degreem ≥ 2.
If ξ := (1, 0, . . . , 0) ∈ V (Pm) and if the localization(Pm)ξ ofPm at ξ has
degreeν, then

s : (τ, z) 7→ Pm(z1τ−ν , z2τ
m−ν , . . . , znτ

m−ν),
(τ, z) ∈ (C \ {0}) × C

n,

extends to a polynomial̃s ∈ C[τ, z1, . . . , zn] with s̃(0, z) = zm−ν
1 (Pm)ξ

(z2, . . . , zn).

Proof. It is easy to check that forz = (z1, z′)

Pm(z1, z′) =
m∑

j=ν

zm−j
1 qj(z′),
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where the polynomialsqj are either zero or homogeneous of degreej. By
definition,qν = (Pm)ξ. From this representation we get

s(τ, z) =
m∑

j=ν

zm−j
1 τ−ν(m−j)τ j(m−ν)qj(z′) =

m∑
j=ν

τm(j−ν)zm−j
1 qj(z′).

This shows thats is the restriction of a polynomial̃s to (C \ {0}) × C
n and

that

s(0, z) = zm−ν
1 qν(z′) = zm−ν

1 (Pm)ξ(z′).

ut

4. A necessary condition for(SPL)

Let P ∈ C[z1, . . . , zn] have real principal partPm of degreem ≥ 2 and
define the polynomialS by S(z1, . . . , zn+1) := P (z1, . . . , zn) − zn+1. In
this section we use the concept of quasihomogeneity and a result of [4] to
derive a necessary condition in terms ofPm forV (S) to havePL(Rn+1, log).
This extends a result of Meise and Taylor [9] and explains some of their
counterexamples. The precise result is stated in the following theorem.

Theorem 4.1. Let P ∈ C[z1, . . . , zn] have degreem ≥ 2 and principal
part Pm ∈ R[z1, . . . , zn]. DefineS ∈ C[z1, . . . , zn+1] by S(z′, zn+1) :=
P (z′)− zn+1. If V (S) satisfiesPL(Rn+1, log), then for eachθ ∈ V (Pm)∩
R

n, |θ| = 1, the localization(Pm)θ of Pm in θ is square-free.

The proof of this theorem is prepared by several lemmas for which we
need the following definition.

Definition 4.2. For d = (d1, . . . , dn) 6= (0, . . . , 0) with dj non-negative
and rational for1 ≤ j ≤ n, a given polynomialP ∈ C[z1, . . . , zn] is said
to bed-quasihomogeneous of degreem ≥ 0 if

P (z) =
∑

〈d,α〉=m

aαz
α, z ∈ C

n,

where〈d, α〉 =
∑n

j=1 djαj and where not allaα vanish. The zero polyno-
mial is considered to bed-quasihomogeneous of degree−∞.

For an arbitrary polynomialQ ∈ C[z1, . . . , zn] thed-quasihomogeneous
principal part ofQ is defined as the highest degreed-quasihomogeneous part
of Q.

The concept of quasihomogeneity is relevant for our considerations be-
cause of the following lemma which we recall from [4], Lemma 3.2.
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Lemma 4.3. LetP ∈ C[z1, . . . , zn]bed-quasihomogeneous of degreem >
0 and letQ ∈ C[z1, . . . , zn] be a sum ofd-quasihomogeneous polynomials
of degrees less thanm. Assume further that the following conditions are
fulfilled:

(1) d1 < dj for 2 ≤ j ≤ n,
(2) there existsζ = (ζ1, ζ ′′) ∈ V (P ) with ζ1 6∈ R, ζ ′′ ∈ R

n−1, andζ ′′ 6= 0,
(3) the polynomialλ 7→ P (λ, ζ ′′) does not vanish identically.

If V (P + Q) satisfiesPL(Rn, ω) for some weight functionω andD :=
max{dj : ζj 6= 0}, thenω satisfiestd1/D = O(ω(t)) ast tends to infinity.

Lemma 4.4. For n ≥ 3 let P ∈ C[z1, . . . , zn] be a polynomial of de-
greem ≥ 2 with principal partPm which satisfiesPm(θ) = 0 for θ =
(0, . . . , 0, 1) ∈ R

n. Assume that there existk ≥ 2, g ≥ 1, andQ,R ∈
C[z1, . . . , zn−1] such that the following conditions are satisfied:

(a) (Pm)θ (z′, zn) = Q(z′)kR(z′) for z = (z′, zn) ∈ C
n,

(b) Q(z′) =
∑

|α|=g aα(z′)α wherea1,g−1,0,...,0 6= 0 andaα = 0 for all

α ∈ N
n−1
0 satisfyingα1 = 0 andα2 ≥ g − 1.

Then the zero variety of the polynomialS ∈ C[z1, . . . , zn+1] defined by

S(z1, . . . , zn+1) = P (z1, . . . , zn) − zn+1

does not satisfyPL(Rn+1, log).

Proof. ForPm andθ chooseν ∈ N, 1 ≤ ν ≤ m, and polynomialsQj ∈
C[z1, . . . , zn−1], ν ≤ j ≤ m, according to Lemma 3.9. Because of (a) we
get from Lemma 3.9 thatS is of the following form:

S(z′, zn, zn+1) = zm−ν
n Q(z′)kR(z′)

+
m∑

j=ν+1

zm−j
n Qj(z′) + P̃ (z′, zn) − zn+1,

wheredeg P̃ < m. In order to apply Lemma 4.3, we have to find an appro-
priate quasihomogeneityd such that thed-quasihomogeneous principal part
of S admits roots whose imaginary parts have a special form. The definition
of the firstn weights is

d1 := 1, d2 := 1 +
1
m2 , d3 := · · · := dn−1 := 1 +

1
3m2 ,

dn := 1 +
1
m

+
1
m2 , d′ := (d1, . . . , dn−1).
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Denote thed′-quasihomogeneous principal part ofR by B and letA =
d′-degB. Note thatA is not smaller than the classical degree ofB, i.e.,

A ≥ ν − kg.(4.1)

Now define

dn+1 := (m− ν)dn + k

(
g +

g − 1
m2

)
+A, d := (d′, dn, dn+1).

(4.2)

Note that (4.1) impliesdn+1 ≥ m. We claim:

(∗) The d′-quasihomogeneous principal part ofQ is a1,g−1,0,...,0z1z
g−1
2 ,

whosed′-degree isg + (g − 1)m−2.

To prove this claim, letα 6= (1, g−1, 0, . . . , 0) with aα 6= 0 be given. There
are three cases:

Caseα1 = 0 Thenα2 ≤ g−2 because of (b). Sinced2 > dj for 2 < j < n,
we have the following estimate for thed′-degree ofzα:

n−1∑
j=2

αjdj ≤ (g − 2)d2 + 2d3 = g +
g − 2
m2 +

2
3m2

= g +
g − 4/3
m2 < g +

g − 1
m2 .

Caseα1 = 1 The caseα2 = g − 1 being excluded, we have againα2 ≤
g− 2. Sinced2 > dj > d1 for 2 < j < n, thed′-degree ofzα is clearly
smaller than that ofz1z

g−1
2 .

Caseα1 ≥ 2 Thed′-degree ofzα is

α1d1 +
n−1∑
j=2

αjdj ≤ 2d1 + (g − 2)d2 = g +
g − 2
m2 < g +

g − 1
m2 .

This proves(∗). The next claim is:

(∗∗) Thed-quasihomogeneous principal part ofS is

Sq(z1, . . . , zn+1) := zm−ν
n a1,g−1,0,...,0z

k
1z

k(g−1)
2 B(z′) − zn+1.

To prove (∗∗), note first that because of (4.2) the polynomialSq is d-
quasihomogeneous ofd-degreedn+1. Furthermore, sincedj ≤ dn for
1 ≤ j ≤ n,

d-degP̃ ≤ (m− 1)dn = m− 1 + (m− 1)
m+ 1
m2 = m− 1

m2 < dn+1.
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To show thatzm−j
n Qj(z′), ν < j ≤ m, does not belong to thed-quasihomo-

geneous principal part ofS, consider:

dn+1 − d-degzm−j
n Qj(z′) ≥ (m− ν)dn + k

(
g +

g − 1
m2

)
+A− (m− j)dn − jd2

≥ (j − ν)dn + ν − jd2

=
j − ν

m
− ν

m2 ≥ 1
m

− m− 1
m2 =

1
m2 .

So(∗∗) is shown. Chooseζ ′ ∈ R
n−1 \ {0} such thatp : λ 7→ Sq(λ, ζ ′, 0),

λ ∈ C, is a polynomial of degree at leastk ≥ 2. Fix now a valueb ∈ R that
p|R obtains at most once, letζ1 be a non-real solution ofp(ζ1) = b, and set
ζ ′′ = (ζ ′, b). Then the claim follows from Lemma 4.3. ut
Lemma 4.5. For n ≥ 2 letQ ∈ R[z1, . . . , zn] be square-free and homoge-
neous of degreeg ≥ 1. Then there exists a real linear change of coordinates
such that in the new coordinatesQ(z) =

∑
|α|=g aαz

α, whereaα 6= 0 for
α = (g − 1, 1, 0, . . . , 0) andaα = 0 wheneverα1 ≥ g − 1 andα2 = 0.

Proof. SinceQ is square-free, we can findb1 ∈ R
n satisfyingQ(b1) = 0

andgradQ(b1) 6= 0. Next chooseb2 ∈ R
n such that〈b2, gradQ(b1)〉 6= 0.

Then Euler’s rule,〈x, gradQ(x)〉 = gQ(x), implies thatb1 and b2 are
linearly independent. By our choice ofb1 andb2, the functiong : R → R,
g(ζ) := Q(b1 + ζb2) satisfies

g(0) = Q(b1) = 0 and g′(0) = 〈gradQ(b1), b2〉 6= 0.(4.3)

Next chooseb3, . . . , bn such that{b1, . . . , bn} is a basis ofRn and consider
the following expansion

Q

(
n∑

k=1

ζkbk

)
=

g∑
j=0

qj(ζ2, . . . , ζn)ζg−j
1(4.4)

where the polynomialsqj are homogeneous of degreej. In particular, (4.4)
implies

g(ζ) = Q(b1 + ζb2) =
g∑

j=0

qj(ζ, 0, . . . , 0) =
g∑

j=0

qj(1, 0, . . . , 0)ζj .

By (4.3) and the homogeneity properties ofq0, we conclude from thisq0 = 0
andq1(1, 0, . . . , 0) 6= 0. Now choosea ∈ R

n−1 such thatq1(ξ) = 〈ξ, a〉
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and note thata 6= 0. Hence there isM ∈ GL(n− 1,R) such thatM(a) =
(1, 0, . . . , 0). Define

p
( n∑

j=1

ζjbj

)
:= Q

(
ζ1b1 +

n∑
i=2

( n∑
j=2

Mj−1,i−1ζj

)
bi

)
.

Then the linear term of this polynomial is

q1

(( n∑
j=2

Mj−1,i−1ζj

)n

i=2

)
= 〈M t(ζ2, . . . , ζn), a〉

= 〈(ζ2, . . . , ζn),Ma〉 = ζ2.

Hencep has the desired form. ut

Proof of Theorem4.1. Note first that the principal partSm of S is the poly-
nomialPm, regarded as an element ofR[z1, . . . , zn+1]. SinceV (S) satisfies
PL(Rn+1, log), it follows from Meise, Taylor, and Vogt [15], Theorem 4.1,
thatV (Sm) = V (Pm) × C has the same property. HenceV (Pm) satisfies
PL(Rn, log) and consequently (SPL), by Proposition 2.5(b). Assume there
existsθ ∈ V (Pm) ∩ R

n, |θ| = 1, such that(Pm)θ is not square-free. After
a suitable real linear change of variables we may assumeθ = (0, . . . , 0, 1).
By Lemma 3.9 and our assumption there existQ,R ∈ C[z1, . . . , zn−1], Q
square-free, andk ≥ 2 such thatdegQ ≥ 1,R 6= 0, and

(Pm)θ(z′, zn) = Q(z′)kR(z′).

SincePm has real coefficients, so does(Pm)θ. AsV (Pm) satisfies (SPL), it
follows from Corollary 3.8 that it is no restriction to assume thatQ andR
have real coefficients. Ifn ≥ 3, then Lemma 4.5 shows that there exists a
change of variables in thez′ variables such thatQ has the special form given
in condition (b) of Lemma 4.4. Hence Lemma 4.4 implies thatV (S) does
not satisfyPL(Rn+1, log) in contradiction to the hypothesis. This proves
Theorem 4.1 forn ≥ 3.

If n = 2 then it follows from Lemma 3.9 that

Pm(z1, z2) = zm−ν
2 (Pm)θ(z1) +

m∑
j=ν+1

zm−j
2 Qj(z1)

for someν ∈ N and suitable polynomialsQj which are homogeneous of
degreej. The assumption on(Pm)θ impliesν ≥ 2. Hence

S(z1, z2, z3) =
m∑

j=ν

ajz
m−j
2 zj

1 +
m−1∑
k=0

∑
|α|=k

aαz
α1
1 zα2

2 − z3,



The classical Phragḿen-Lindel̈of estimates 117

whereaν ∈ R \ {0}. To apply Lemma 4.3 again, let

d1 := 1, d2 :=
m+ 1
m

, andd3 := d2(m− ν) + ν.

Then it is easy to check that thed-quasihomogeneous principal part of
S is the polynomialQ(z1, z2, z3) := aνz

m−ν
2 zν

1 − z3. Now let ζ2 := 1,
ζ3 = − sign aν , and note thatν ≥ 2. Hence there existsζ1 ∈ C \ R

such thatQ(ζ1, ζ2, ζ3) = 0. Consequently, Lemma 4.3 implies thatV (S)
does not satisfyPL(R3, log), in contradiction to the hypothesis. This proves
Theorem 4.1 also ifn = 2. ut

Theorem 4.1 extends Meise and Taylor [9], Lemma 2.2, as the following
corollary shows.

Corollary 4.6. Let P ∈ C[z1, . . . , zn] have degreem ≥ 2 and principal
part Pm ∈ R[z1, . . . , zn]. DefineS ∈ C[z1, . . . , zn+1] by S(z′, zn+1) :=
P (z′) − zn+1. If V (S) satisfiesPL(Rn+1, log), thenPm is square-free.

Proof. As in the proof of Theorem 4.1 it follows thatV (Pm) satisfies
PL(Rn, log). If we assume thatPm is not square-free then there exist
Q,R ∈ C[z1, . . . , zn] andk ≥ 2 such thatPm = QkR, wheredegQ ≥ 1.
SinceV (Pm) hasPL(Rn, log), alsoV (Q) has this property by Meise,
Taylor, and Vogt [15], Proposition 2.6, and hence the real zero set ofQ
has dimensionn − 1 by [15], Theorem 3.13. In particular there exists
θ ∈ V (Q) ∩ R

n, |θ| = 1. Now it is easy to check that

(Pm)θ = (Qθ)kRθ.

Hence Theorem 4.1 implies thatV (S) does not satisfyPL(Rn+1, log) in
contradiction to the hypothesis. ut

5. A characterization in dimension 3

In this section we show that the necessary condition which we derived in
Theorem 4.1 leads to a characterization of those homogeneous polynomials
Pm in three variables for whichV+(Pm) andV−(Pm) have(SPL). The
precise result is the following theorem which implies Theorem 1.1.

Theorem 5.1. Let Pm ∈ C[z1, z2, z3] be homogeneous of degreem ≥ 2
and defineP ∈ C[z1, . . . , z4] by P (z1, . . . , z4) := Pm(z1, z2, z3) − z4.
Then the following conditions are equivalent:

(1) V+(Pm) andV−(Pm) satisfy(SPL),
(2) V (P ) satisfies(SPL),
(3) V (P ) satisfiesPL(R4, log),
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(4) V (Pm) satisfies(SPL), Pm has real coefficients, and for eachθ ∈
V (Pm) ∩ R

3, |θ| = 1, the localization ofPm at θ is square-free.

The theorem is proved by showing thatV+(Pm) andV−(Pm) inherit
(SPL) from two simpler varieties. One of them is of courseV (Pm), the
cone of limiting directions. The hypotheses imply thatV (Pm) is locally
hyperbolic nearV (Pm)∩R

3 \{0}. The a priori estimate of Theorem 5.2 al-
lows us to restrict our attention to cones spanned by neighborhoods of points
ξ ∈ V (Pm). Assumeξ = (1, 0, 0) and denote the vanishing order ofPm in
ξ by ν. In Lemma 5.6 we show that inside the above mentioned cone, but
outside a tubular neighborhoodU of R·ξ, the two varietiesV (S) andV (Pm)
are so close that the standard method for proving Phragmén-Lindel̈of condi-
tions for hyperbolic polynomials, namely taking maxima over the fibers of
a suitable projection, works also forV (S). InsideU , however,V (S) is still
a manifold, whileV (Pm) may be singular inξ. Here, we compareV (S)
to another manifoldV (Q0 − 1), whereQ0(z2, z3) := (Pm)ξ(z). We show
in Lemma 5.10 that coordinate patches forV (Q0 − 1) induce coordinate
patches forV (S) ∩ U and use standard estimates on these patches. At first
we recall a result from [5].

Theorem 5.2. LetPm ∈ R[z1, . . . , zn] be homogeneous of degreem and
let Q ∈ R[z1, . . . , zn] be of degree less thanm. If Pm is square-free and
if V (Pm) satisfiesPL(Rn, log) then there existA0 ≥ 1, B0 ≥ 0 such that
eachu ∈ PSH(V (Pm +Q)) which satisfies the conditions(α) and(β) of
2.2(a)also satisfiesu(z) ≤ A0|z| +B0, z ∈ V (Pm +Q).

Proof. SinceV (Pm) hasPL(Rn, log), it follows from Meise, Taylor, and
Vogt [15], Theorem 3.13, that each irreducible factor ofPm has an(n− 1)-
dimensional set of real zeros. Therefore, the present theorem follows from
[5], Theorem 1.1. ut

If Pm satisfies the hypotheses in 5.1(4) then Theorem 5.2 and Lemma
2.5 imply that onV±(Pm) the estimate needed for(SPL) holds whenever
z ∈ V±(Pm) satisfies|z| ≤ λ|Im z| for some constantλ > 0. Hence we
only have to consider those points inV±(Pm) for which |Im z|/|z| is small.
This will be done in cones around real lines inV (Pm). To handle these we
need several lemmas. Furthermore, we will use the following notation.

Notation.Forw ∈ C
n andr = (r1, . . . , rn), rj > 0, 1 ≤ j ≤ n, we denote

the polydisk with centerw and polyradiusr byB(w; r) orB(w; r1, . . . , rn).
Forρ > 0 we will use the abbreviationB(w; ρ) = B(w; ρ, . . . , ρ).

Lemma 5.3. Let Pm ∈ R[z1, z2, z3] be homogeneous of degreem ≥ 2
and assume thatV (Pm) hasPL(R3, log). Then for eachξ ∈ V (Pm) ∩ R

3,
|ξ| = 1, there exist a real linear change of variables,ν ∈ N, η > 0, σ > 0,
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and holomorphic functionsβj : B((1, 0); η, η) → C, 1 ≤ j ≤ ν, such that
in the new coordinates the following holds:

(1) ξ = (1, 0, 0), and(0, 0, 1) is non-characteristic forPm,
(2) V (Pm) ∩ B(ξ; η, η, σ) =

⋃ν
j=1{(z1, z2, βj(z1, z2)) : (z1, z2) ∈ B

((1, 0); η, η)},
(3) βj(z1, z2) is real for realz1, z2, 1 ≤ j ≤ ν.

Proof. It is easy to check that (1) can be achieved by a real linear change of
variables. SincePm is real and(0, 0, 1) is non-characteristic forPm, up to
a real constant we have

Pm(z1, z2, z3) =
m∏

j=1

(z3 − βj(z1, z2)), (z1, z2, z3) ∈ C
3,

whereβ1(z1, z2), . . . , βm(z1, z2) denote the (not necessarily distinct)m
roots ofz3 7→ Pm(z1, z2, z3) for fixed(z1, z2) ∈ C

2. By hypothesisPm(1, 0, 0)
= 0, therefore there existsν with 1 ≤ ν ≤ m such that (without restriction)

βj(1, 0) = 0 for 1 ≤ j ≤ ν and βj(1, 0) = aj 6= 0 for ν + 1 ≤ j ≤ m.

SinceV (Pm) satisfiesPL(R3, log) it follows from Braun [1], Corollary 12,
that there are0 < η, σ ≤ 1, and holomorphic functionsβj : B((1, 0); η, η)
→ C, 1 ≤ j ≤ ν, such that

V (Pm) ∩B(ξ; η, η, σ)

=
ν⋃

j=1

{(z1, z2, βj(z1, z2)) : (z1, z2) ∈ B((1, 0); η, η)}.

Moreover,βj(z1, z2) is real when(z1, z2) is real for1 ≤ j ≤ ν. Hence (2)
and (3) hold. ut

The easy proof of the following lemma is left to the reader.

Lemma 5.4. Let ν ∈ N and distinct numbersb1, . . . , bν ∈ R \ {0} be
given and letQ0(z2, z3) :=

∏ν
j=1(z3 − bjz2). Then there existρ0 ≥ 1

andD0 > 0 such that for eachµ ∈ C, |µ| ≤ 2 and each(w2, w3) ∈ C
2

satisfyingQ0(w2, w3) = µ and|w2| ≥ ρ0 there exists a uniquel,1 ≤ l ≤ ν,
such that

|w3 − blw2| ≤ D0

|w2|ν−1 .



120 R.W. Braun et al.

Lemma 5.5. For p ∈ N there existsC ≥ 1 such that for any choice ofA
anda ∈ C

p satisfying|aj | < |Aj |/2 for 1 ≤ j ≤ p, the following estimate
holds: ∣∣∣ p∏

j=1

(Aj + aj) −
p∏

j=1

Aj

∣∣∣ ≤ C max
1≤k≤p

(
|ak|

∏
j 6=k

Aj

)
.

Proof. Writing the difference as a telescoping sum, the estimate is obtained
easily. ut
Lemma 5.6. LetPm ∈ R[z1, z2, z3] be homogeneous of degreem ≥ 2 and
satisfy condition5.1(4). Assume thatξ = (1, 0, 0) ∈ V (Pm) and that the
conclusions of Lemma5.3 hold. Then there existρ0 ≥ 1, r, s > 0, D > 0,
andR1 > 1 such that for eacht ≥ R1 and(z1, z2) ∈ C

2 satisfying|z1| < rt
and t1−m/νρ0 < |z2| < rt the equationPm(z1, z2, z3) = ±1 has exactly
ν distinct rootsz1

3(z1, z2), . . . , z
ν
3 (z1, z2) satisfying|zj

3(z1, z2)| ≤ st and
|zj

3(z1, z2)| ≤ D|z2|. Moreover, eachzj
3(z1, z2) is real for realz1, z2.

Proof. We will give the proof only for the casePm(z) = +1, since the
one forPm = −1 is the same, up to obvious modifications. In the proof
we will use the notation that was introduced in Lemma 5.3. Since(Pm)ξ is
square-free, the real numbers

bj :=
∂βj

∂z2
(1, 0), 1 ≤ j ≤ ν,

are distinct. Since the functionsβj , 1 ≤ j ≤ ν, are holomorphic, we have
the following power series expansions

βj(1, λ) = bjλ+
∞∑

k=2

bj,kλ
k, |λ| < η, 1 ≤ j ≤ ν.

Next define the holomorphic functions

F,U : B(ξ; η, η, σ) → C, F (z) =
ν∏

j=1

(z3 − βj(z1, z2)),

U(z) :=
Pm(z)
F (z)

.

Since(0, 0, 1) is non-characteristic forPm, the equationPm(1, 0, z3) =
0 hasm roots,ν of which are zero. The other roots,aν+1, . . . , am, are
all non-zero and satisfy|aj | > σ by 5.3(2). It is no restriction to assume
Pm(1, 0, z3) = zν

3
∏m

j=ν+1(−aj) and
∏m

j=ν+1(−aj) = 1, which implies

U(1, 0, 0) =
m∏

j=ν+1

(−aj) = 1.
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Shrinkingη andσ if necessary, we may assume|aj | > 3σ forν+1 ≤ j ≤ m.
Next note that forz ∈ B(ξ; η, η, σ) we have

F (z1, z2, z3) =
ν∏

j=1

(
z3 − z1βj(1,

z2
z1

)
)

=
ν∏

j=1

(z3 − z2bj − gj(z1, z2)),(5.1)

where

gj(z1, z2) = z1

∞∑
k=2

bj,k

(
z2
z1

)k

.

From this it follows that, shrinkingη > 0 again, there existsM > 0 such
that

|gj(z1, z2)| ≤ M |z2|2, (z1, z2) ∈ B((1, 0); η, η), 1 ≤ j ≤ ν.(5.2)

Now defineQ0 ∈ R[z2, z3] andQ ∈ R[z1, z2, z3] by

Q0(z2, z3) :=
ν∏

j=1

(z3 − bjz2), Q(z1, z2, z3) = zm−ν
1 Q0(z2, z3).(5.3)

To prove the lemma we will apply a scaling argument and Rouché’s theo-
rem. The basic observation for the scaling is thatPm(z) = 1 is equivalent
to Pm(z/t) = t−m. If z/t ∈ B(ξ; η, η, σ), this equation is equivalent to
F (z/t) = t−m/U(z/t). To get the desired information on the zeros of
Pm = 1 we approximateF by Q0 andU by zm−ν

1 . To do so, we need a
number of estimates. To derive them, denote byρ0 andD0 the numbers
which exist for the polynomialQ0 by Lemma 5.4. Furthermore, define

κ := min{|bj − bk| : 1 ≤ j, k ≤ ν, j 6= k} > 0,
M0 := max

1≤j≤ν
|bj |.(5.4)

Enlargingρ0 if necessary, we may assumeD0/ρ
ν
0 ≤ min(κ/2,M0, (κ/2)ν

(4(ν − 1)(3M0)ν−1)−1). Then fixt > (2ρ0/η)ν/m andz ∈ B(ξ; η, η, σ)
satisfying|z2| > ρ0t

−m/ν . If Q(z) = t−m then the definition ofQ implies

Q0(tm/νz2, t
m/νz3) =

1
zm−ν
1

.

Provided thatη is small enough, we have

1
|z1|m−ν

≤
(

1
1 − η

)m−ν

≤ 2.



122 R.W. Braun et al.

Since|tm/νz2| > ρ0, Lemma 5.4 implies the existence of a uniquel, 1 ≤
l ≤ ν, satisfying|tm/νz3 − blt

m/νz2| ≤ D0/|tm/νz2|ν−1 and hence, using
|z2| > ρ0t

−m/ν :

|z3 − blz2| ≤ D0

tm|z2|ν−1 ≤ D0

ρν
0

|z2|.(5.5)

By the definition ofκ andM0 in (4.1), it follows from (5.5) and|z2| >
ρ0t

−m/ν that forj 6= l and1 ≤ j ≤ ν we have the following estimates:

|z3 − bjz2| ≤
(
D0

ρν
0

+ 2M0

)
|z2| ≤ 3M0|z2|,(5.6)

|z3 − bjz2| ≥
(
κ− D0

ρν
0

)
|z2| ≥ κ

2
|z2|.(5.7)

Together with (5.5) they imply

∣∣∣∣∂Q0

∂z3
(z2, z3)

∣∣∣∣ =
∣∣∣∣∣∣

ν∑
k=1

∏
j 6=k

(z3 − bjz2)

∣∣∣∣∣∣
≥
(κ

2
|z2|
)ν−1 − (ν − 1)(3M0)ν−2D0

ρν
0

|z2|ν−1

≥ 1
2

(κ
2
|z2|
)ν−1

.

(5.8)

By homogeneity there existsKν ∈ N such that

∣∣∣∣( ∂

∂z3

)p

Q0(z2, z3)
∣∣∣∣ ≤ Kν |z2|ν−p, p ≥ 2.(5.9)

Next chooseδ > 0 so small thatδ ≤ κ/4 andKν
∑ν

p=2 δ
p < 1

4

(
κ
2

)ν
δ.

SinceQ(z) = t−m it follows from (5.8) and (5.9) that forζ ∈ C, |ζ| = δ|z2|,
we have the following estimate
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|Q(z1, z2, blz2 + ζ) − t−m| = |Q(z1, z2, blz2 + ζ) −Q(z)|

=

∣∣∣∣∣∣
ν∑

p=1

( ∂

∂z3

)p
Q0(z2, z3)zm−ν

1 ζp

∣∣∣∣∣∣
≥
(

1
2

(κ
2
|z2|
)ν−1

δ|z2|

−Kν

ν∑
p=2

|z2|ν−pδp|z2|p
 |z1|m−ν

≥
(1

4

(κ
2

)ν−1
δ|z2|ν

)
|z1|m−ν

>
1
8

(κ
2

)ν−1
δ|z2|ν .

(5.10)

To derive an upper bound forPm(z1, z2, ·) − Q(z1, z2, ·) on the same
circle, note thatQ = Q0 ·Q1, whereQ1(z) = zm−ν

1 and that

Pm −Q = FU −Q0Q1 = F (U −Q1) + (F −Q0)Q1.(5.11)

To estimate the terms on the right hand side, we use (5.3), (5.4), and Lemma
5.5 to get forλ = blz2 + ζ:

|((F −Q0)Q1)(z1, z2, λ)|

≤
∣∣∣∣∣∣

ν∏
j=1

(λ− bjz2 − gj(z1, z2)) −
ν∏

j=1

(λ− bjz2)

∣∣∣∣∣∣ |z1|m−ν

≤ C max
1≤k≤ν

|gj(z1, z2)|
∣∣∣∣∣∣
∏
j 6=k

(λ− bjz2)

∣∣∣∣∣∣
 |z1|m−ν

≤ CM |z2|2((2M0 + δ)|z2|)ν−1|z1|m−ν ≤ L|z2|ν+1,

(5.12)

whereL := CM(2M0 + δ)2m−ν . Similarly we get

|F (z1, z2, λ)| =
ν∏

j=1

|ζ + (bl − bj)z2 + gj(z1, z2)|

≤ (δ|z2| +M |z2|2)((δ + 2M0)|z2|)ν−1

= (δ +M |z2|)(δ + 2M0)ν−1|z2|ν .

(5.13)
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To estimateU(z1, z2, λ) − zm−ν
1 , recall from the proof of Lemma 5.3 that

for fixed (z1, z2) ∈ B((1, 0); η, η) we have, by the homogeneity ofPm,

U(z1, z2, ζ) =
m∏

j=ν+1

(ζ − βj(z1, z2))

=
m∏

j=ν+1

(ζ − z1(βj(1,
z2
z1

)).

Sinceβj(1, 0) = aj , ν+1 ≤ j ≤ m, and since theβj depend continuously
onz1, z2, for eachε > 0 there existsσ(ε) > 0 such that|βj(1, z)− aj | ≤ ε
for |z| ≤ σ(ε) andν + 1 ≤ j ≤ m. SincePm is homogeneous and since∏m

j=ν+1(−aj) = 1, we get from Lemma 5.5∣∣U(z1, z2, λ) − zm−ν
1

∣∣
=

∣∣∣∣∣∣
m∏

j=ν+1

(
λ− ajz1 +

(
aj − βj

(
1,
z2
z1

))
z1

)
−

m∏
j=ν+1

(−ajz1)

∣∣∣∣∣∣
≤ C max

ν+1≤k≤m

(
|λ| + |z1|

∣∣∣∣ak − βk

(
1,
z2
z1

)∣∣∣∣) ·
∣∣∣∣∣∣
∏
j 6=k

(−ajz1)

∣∣∣∣∣∣
≤ C ((M0 + δ)|z2| + ε) |z1|m−ν−1

≤ C2m−ν−1 ((M0 + δ)|z2| + ε) ,

if η < σ(ε)/2. From this and (5.13) we get

|(F (U −Q1))(z1, z2, λ)| ≤ (δ +M |z2|)(δ + 2M0)ν−1

× C2m−ν−1((M0 + δ)|z2| + ε)|z2|ν

≤ 1
16

(κ
2

)ν−1
δ|z2|ν

(5.14)

if ε and consequentlyη is small enough. From (5.12) we get

|((F −Q0)Q1)(z1, z2, λ)| ≤ L|z2|ν+1 ≤ 1
16

(κ
2

)ν−1
δ|z2|ν ,(5.15)

if η < 1
16L

(
κ
2

)ν−1
δ. Combining (5.14) and (5.15) with (5.11) it follows

from (5.10) that we can apply Rouché’s theorem to conclude that there exist
ρ0 > 0, R1 > 0, and0 < r < σ/(δ +M0) such that the following holds:
Whenevert ≥ R1 and (z1, z2) ∈ C

2 satisfies|z1| < r and t−m/νρ0 <
|z2| < r, to each solutionz = (z1, z2, blz2) of the equationQ(ζ) = 0 there
corresponds a unique solution(z1, z2, zl

3(z1, z)) of the equationPm(ζ) =
t−m satisfying

|zl
3(z1, z2) − blz2| < δ|z2|.
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This implies

|zl
3(z1, z2)| < δ|z2| + |blz2| ≤ (δ +M0)|z2| = D|z2| ≤ Dr = s < σ

if we let D := δ + M0 ands := Dr. Whenz1, z2 are real, we get for
ζ := (z1, z2, zl

3(z1, z2)):

t−m = Pm(ζ) = Pm(ζ) and |ζ − blz2| = |ζ − blz2| < δ|z2|,

sincePm has real coefficients and sincebl is real. By the uniqueness of the
solution, this implies thatzl

3(z1, z2) is real for realz1, z2. Since the equation
Q(z1, z2, τ) = 0 hasν distinct rootsb1z2, . . . , bνz2, which are further apart
from each other thanδ|z2|, the lemma now follows from an obvious scaling
argument. ut

To apply Lemma 5.6, we need the estimates of the following lemma.

Lemma 5.7. For eachz, w ∈ C andε > 0 the following inequalities hold:

(i) |Im √
z2 + w2| ≤ |Im z| + |Imw|,

(ii) |Im z| ≤ |Im √
z2 − ε2|.

If, furthermore,|z| ≥ λε for someλ > 1, then

(iii) |Im
√
z2 − ε2| ≤ λ√

λ2 − 1
|Im z|.

Proof. Let z = x+ iy,w = u+ iv, and
√
z2 + w2 = A+ iB. Then a short

calculation shows that

AB = xy + uv and A2 −B2 = (x2 + u2) − (y2 + v2).

Solving forA from the first of these equations and substituting into the
second one gives a quadratic equation forB2 ≥ 0 whose solution is

B2 =
1
2

{
(y2 + v2) − (x2 + u2) +

(
[(x2 + u2) − (y2 + v2)]2

+4(xy + uv)2
) 1

2

}
.(5.16)

By the Schwarz inequality,(xy + uv)2 ≤ (x2 + u2)(y2 + v2), the term
under the square-root is not larger than[(x2 + u2) + (y2 + v2)]2, which
implies

|Im
√
z2 + w2| = |B| ≤

√
y2 + v2 ≤ |y| + |v| = |Im z| + |Imw|.
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Hence (i) holds. To prove (ii), setu = 0, v = ε in (5.16) and note that then
the term under the square-root is equal to(x2 + y2 − ε2)2 + 4y2ε2. If we
letC := 2yε/(x2 + y2 − ε2), then we get

B2 =
1
2
(y2 + ε2 − x2 + |x2 + y2 − ε2|

√
1 + C2).(5.17)

If x2 + y2 − ε2 ≥ 0 this implies

|Im
√
z2 − ε2| = |B| ≥ |y| = |Im z|,

since
√

1 + C2 ≥ 1. If x2 + y2 − ε2 ≤ 0 theny2 + ε2 − x2 ≥ 2y2 and
henceB2 ≥ y2. From this, (ii) follows also in this case.

For the inequality (iii), use the estimate
√

1 + C2 ≤ 1+C2/2 in (5.17).
Since|z|2 = x2 + y2 ≥ λ2ε2 we obtain

B2 ≤ y2 + y2 ε2

x2 + y2 − ε2
≤ y2

(
1 +

1
λ2 − 1

)
=

λ2y2

λ2 − 1
.

Obviously, this implies (iii). ut
In the following statement,|·| denotes the maximum norm inCn. Every-

where else, the choice of the norm does not matter.

Lemma 5.8. Suppose0 ≤ ε ≤ 1
2 and thatv(z′, zn) is plurisubharmonic

for |z′| < 1, |zn| < 1 and satisfies

(i) v(z′, zn) ≤ 1, |z′| < 1, |zn| < 1,
(ii) v(x′, xn) = 0 if x′, xn are real and|xn| ≥ ε.

Then for eachλ < 1 there is a constantCλ such that

(iii) v(z′, zn) ≤ Cλ(|Im z′| + |Im√z2
n − ε2|), |z′| ≤ λ, |zn| ≤ λ.

Proof. This follows from standard estimates for harmonic measure, but is
perhaps most easily seen using the following explicit formulas. Leth(ζ)
denote the harmonic measure of the real axis in the unit disk. That is, the
subharmonic function on|ζ| < 1 that is equal to0 on the real axis, equal to
1 on |ζ| = 1, and harmonic for|ζ| < 1, Im ζ 6= 0. Well-known and easily
verified formulas forh(ζ), ζ = x + y, areh(ζ) = 1

π [arg(ζ + 1) + π −
arg(ζ − 1)] = 2

π arctan |y|
1−(x2+y2) . Similarly, if kε(ζ) denotes the function

harmonic in the unit disk with the real intervals[−1, ε], [ε, 1] removed, and
with boundary values 1 on|ζ| = 1 and 0 on[−1, ε] ∪ [ε, 1], then

kε(ζ) = h

(√
ζ2 − ε2

1 − ε2ζ2

)
.
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This is easily seen by considering the sequence of analytic mapsω = ζ2, τ =
ω−ε2

1−ε2ω
, σ =

√
τ which represents{|ζ| < 1} \ ([−1, ε] ∪ [ε, 1]) as a 2-1

analytic cover of the upper half disk{|σ| < 1, Imσ > 0} with |ζ| = 1
mapping to|σ| = 1 and the intervals[−1,−ε], [ε, 1] to the negative and
positive realσ-axis, respectively.

For z = (z′, zn) ∈ C
n with |z′| < 1 and |zn| < 1, the maximum

principle easily showsv(z) ≤ h(z1) + · · · + h(zn−1) + kε(zn) for every
plurisubharmonic functionv satisfying (i) and (ii). Sinceh(ζ) ≤ Cλ|Im ζ|
andkε(ζ) ≤ Cλ|Im

√
ζ2 − ε2| for |ζ| ≤ λ < 1, it follows that (iii) also

holds. ut
Lemma 5.9. Assume thatPm and ξ = (1, 0, 0) satisfy the hypotheses of
Lemma5.6and letρ0 ≥ 1, r, s > 0, andR1 ≥ 1 be the constants which exist
by that lemma. Then there exist constantsA1, A2, A3 ≥ 1 such that for each
t ≥ R1 the following holds: Wheneveru ∈ PSH(V±(Pm)) satisfies the con-
ditions(α) and(β) of2.2(a), then forz ∈ V±(Pm)∩B(tξ; rt/2, rt/2, st/2)
we have the estimates

(a) u(z1, z2, z3) ≤ A1|Im z1| +A2t
1−m/ν if |z2| ≤ 4ρ0t

1−m/ν ,
(b) u(z1, z2, z3) ≤ A1|Im z1| +A3|Im z2| if |z2| > 2ρ0t

1−m/ν .

Proof. Since the arguments forV+(Pm) andV−(Pm) are the same, we only
treatV+(Pm). Fix u ∈ PSH(V+(Pm)) satisfying(α) and (β) of 2.2(a).
Since0 /∈ V+(Pm) it follows from Theorem 5.2 that there existsA′

0 ≥ 1,
not depending onu, such that

u(z) ≤ A′
0|z|, z ∈ V+(Pm).(5.18)

It is no restriction to assume in the sequelr ≤ 1
2 andR1 ≥ 16ρ0/r. Next

fix t ≥ R1 and definev : B((t, 0); rt) → [−∞,∞[ by

v(z1, z2) := max{u(z1, z2, z3) : Pm(z1, z2, z3) = 1, |z3| < st}.
Thenv is plurisubharmonic and by Lemma 5.6 it satisfies

v(z1, z2) ≤ 0 if z1, z2 ∈ R and ρ0t
1−m/ν ≤ |z2| < rt.(5.19)

Further, we get from Lemma 5.6 and (5.18)

v(z1, z2) ≤ A′
0

(
|(z1, z2)| + max

1≤j≤ν
|zj

3(z1, z2)|
)

≤ A′
0(1 +D)|(z1, z2)| ≤ A0|(z1, z2)|

≤ A0(1 + 2r)t ≤ 3A0t for (z1, z2) ∈ B((t, 0); rt),

(5.20)

whereA0 := A′
0(1 +D). Now let

ϕ(ζ ′, ζ2) :=
1

3A0t
v(rt(ζ ′ + 1), r, tζ2), (ζ ′, ζ) ∈ B(0; 1).
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The properties ofv imply thatϕ is plurisubharmonic onB(0; 1), bounded by
1, and equal to 0 ifζ ′, ζ2 are real and|ζ2| ≥ ε := ρ0/(rtm/ν). Hence we can
apply Lemma 5.8 toϕ to conclude that there is a constantA1, independent
of v, such that

v(z1, z2) ≤ A1

(
|Im z1| + |Im

√
z2
2 − (ρ0t1−m/ν)2|

)
,

(z1, z2) ∈ B((t, 0); rt/2).(5.21)

The estimates (a) and (b) are now easy consequences of (5.21), part (a) by
applying Lemma 5.7(i) and part (b) from Lemma 5.7(iii). ut

To formulate our next lemma, we introduce the following notation for
cones with truncated tip. Ifξ ∈ C

n, |ξ| = 1, δ > 0, andR ≥ 0 are given we
let

Γ (ξ, δ, R) :=
{
z ∈ C

n :
∣∣∣∣ z|z| − ξ

∣∣∣∣ < δ, |z| > R

}
.

Lemma 5.10. Let Pm ∈ R[z1, z2, z3] be homogeneous of degreem ≥ 2
and assume thatPm satisfies condition(4) of Theorem5.1. Then for each
ξ ∈ V (Pm) ∩ R

3, |ξ| = 1, there existδξ > 0, Rξ ≥ 1, andAξ ≥ 1 such
that eachu ∈ PSH(V±(Pm)) which satisfies the conditions(α) and(β) of
2.2(a), also satisfies

u(z) ≤ Aξ|Im z| for z ∈ V±(Pm) ∩ Γ (ξ, δξ, Rξ).

Proof. By hypothesis, we can apply Lemma 5.3. In particular, we can as-
sumeξ = (1, 0, 0). Then we apply Lemma 5.6 and Lemma 5.9 to getρ0 ≥ 1,
1
2 ≥ r > 0, s > 0, R1 ≥ 1, and constantsA1, A2, A3 such that the conclu-
sion of Lemma 5.9 holds. To prove the present lemma it suffices to show that
there existδ > 0,R2 ≥ R1, andA ≥ 1 such that eachu ∈ PSH(V±(Pm))
which satisfies the conditions(α) and(β) of 2.2(a) also satisfies

u(z) ≤ A|Im z| for z ∈
⋃

t>R2

tB(ξ; δ).(5.22)

Note that by Lemma 5.9(b), the estimate (5.22) holds withA = max(A1, A3)
on the set

⋃
t>R1

{z ∈ tB(ξ; r/2, r/2, σ/2) : |z2| > 2ρ0t
−m/ν}. To prove

(5.22) on
⋃

t>R2
{z ∈ tB(ξ; δ) : |z2| < 4ρ0t

−m/ν}, for suitableδ > 0 and
R2 ≥ R1, we will use the notation introduced in the proof of Lemma 5.6.
Then we have forz ∈ B(ξ; η, η, σ)

Pm(z) = F (z)U(z), F (z) =
ν∏

j=1

(z3 − bjz2 − gj(z1, z2)) ,

U(z) =
Pm(z)
F (z)

.
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As in the proof of Lemma 5.6 we assume without restriction thatU(1, 0, 0) =∏m
j=ν+1(−aj) = 1. Then it is easy to check that for the localization atξ we

have

(Pm)ξ = (F )ξ(U)ξ = (F )ξ = Q0, where

Q0(z2, z3) =
ν∏

j=1

(z3 − bjz2).

Subsequently we will only treat the caseV+(Pm), since the same arguments
apply toV−(Pm). To do so note that by Lemma 3.10,

S(τ, z) := Pm

( z1
τν
, z2τ

m−ν , z3τ
m−ν

)
− 1

is a polynomial in(τ, z1, z2, z3) which satisfies

S(0, z) = zm−ν
1 (Pm)ξ(z2, z3) = zm−ν

1 Q0(z2, z3).

Since the real numbersb1, . . . , bν are distinct,gradQ0(z2, z3) 6= 0 for
(z2, z3) 6= 0. Hence

∂S

∂z2
(0, z) 6= 0 or

∂S

∂z3
(0, z) 6= 0

if z1 6= 0 and (z2, z3) 6= 0.

Next let0 < r ≤ η, 0 < s ≤ σ be the numbers which exist by Lemma 5.6
and note that

K := {(0, z) ∈ R
4 : z ∈ B(ξ; r/2, r/2, s/2), S(0, z) = 0}

is compact. Since(0, 0) /∈ K, for each(0, z) ∈ K we have∂S
∂z2

(0, z) 6= 0
or ∂S

∂z3
(0, z) 6= 0. We let

Mj := {z : (0, z) ∈ K,
∂S

∂zj
(0, z) 6= 0}, j = 2, 3.

Then for eachz ∈ M3 the implicit function theorem implies the existence
of δ(z) = (δ0(z), . . . , δ3(z)) > 0 and of a holomorphic functionhz

3 :
B((0, z1, z2); δ′(z)) → B(z3; δ3(z)) such that

V (S) ∩B((0, z); δ(z)) = {(τ, ζ1, ζ2, hz
3(τ, ζ1, ζ2)) : (τ, ζ1, ζ2)

∈ B((0, z1, z2); δ′(z))}.
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Since(0, z) ∈ R
4 ∩ V (S), the real implicit function theorem implies that

hz
3(τ, ζ1, ζ2) is real when(τ, ζ1, ζ2) is real. The same arguments apply to

the pointsz ∈ M2. Now note that{
B
(
(0, z); δ0(z)

2 , δ1(z)
2 , δ2(z),

δ3(z)
2

)
: z ∈ M2

}
∪{

B

(
(0, z);

δ0(z)
2

,
δ1(z)

2
,
δ2(z)

2
, δ3(z)

)
: z ∈ M3

}
is an open cover ofK. Hence there existz1, . . . , zk ∈ M2 andzk+1, . . . , zl ∈
M3 such that the elements of the cover with centers(0, z1), . . . , (0, zl) cover
K. Let δ0 := min{δ0(zj) : 1 ≤ j ≤ l}. Then

U :=
k⋃

j=1

B

(
(0, zj);

δ0
2
,
δ1(zj)

2
, δ2(zj),

δ3(zj)
2

)

∪
l⋃

j=k+1

B

(
(0, zj);

δ0
2
,
δ1(zj)

2
,
δ2(zj)

2
, δ3(zj)

)
is a neighborhood ofK. Hence

L0 :=
(
B((0, ξ); 1, r/2, r/2, s/2) \ U

)
∩ V (S) ∩ R

4

is compact and so is its projection in theτ -space. Therefore

ε1 := inf{τ : (τ, z1, z2, z3) ∈ L0}
is obtained at some point(τ0, w1, w2, w3) ∈ L0. If we assumeτ0 = 0, then
(0, w1, w2, w3) is inK, in contradiction to the definition ofL0. This proves
ε1 > 0.
Next note that also

L1 :=
(
B((0, ξ); 1, r/2, r/2, s/2) \ U

)
∩ V (S) ∩ ([0, ε1/2] × C

3)

is compact. Hence

ε2 := inf{|Im z| : (τ, z) ∈ L1}
is obtained at some point(τ1, ζ) ∈ L1. If we assumeε2 = 0, then(τ1, ζ)
is real and hence inL0. By the definition ofε1, this impliesτ1 ≥ ε1, in
contradiction toτ1 ∈ [0, ε1/2]. This provesε2 > 0.

Now chooseR2 ≥ max((2/ε1)ν , R1)so large thatmax1≤j≤l 4/(πδ1(zj)
(A1+A2)) ≤ R

m/ν
2 , and fixτ ≥ R2 andζ ∈ V+(Pm)∩tB(ξ, r/4, r/4, s/4)

satisfying|ζ2| ≤ 4ρ0t
1−m/ν . Then let

τ :=
1
t1/ν

, z1 := ζ1τ
ν , z2 := ζ2τ

ν−m, z3 := ζ3τ
ν−m.
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It is easy to check that(τ, z) ∈ V (S)∩B((0, ξ); ε1/2, r/4, r/4, s/4). Now
we fix u ∈ PSH(V+(Pm)) satisfying the conditions(α) and(β) of 2.2(a).
As we have seen in the proof of Lemma 5.9, there existsA′

0 ≥ 1 such that
(5.18) holds. Now we distinguish the following cases:

Case(τ, z) /∈ U Sinceτ ∈ [0, ε1/2], the point(τ, z) is in L1. By the defi-
nition of ε2, this implies|Im z| ≥ ε2.
Case(τ, z) /∈ U , |Im z1| ≥ ε2/3 Note first that12 t ≤ |ζ1| ≤ 2t, since

0 < r ≤ 1
2 . Hence the present hypothesis implies

|Im ζ1| = τ−ν |Im z1| ≥ ε2
3
t ≥ ε2

6
|ζ1|.

From this and (5.18) we get

u(ζ) ≤ A′
0|ζ| ≤ A′

0

(
1 +

r

2
+
s

4

)
t

≤ 12A′
0

(
1 +

r

2
+
s

4

) 1
ε2

|Im ζ|.(5.23)

Case(τ, z) /∈ U , |Im(z2, z3)| ≥ ε2/3 Then we have

|Im(ζ2, ζ3)| = τm−ν |Im(z2, z3)| ≥ ε2
3
t1−m/ν .

From this and Lemma 5.9(a) we get

u(ζ) ≤ A1|Im ζ1| +A2
3
ε2

|Im(ζ2, ζ3)|

≤
(
A1 +

3A2

ε2

)
|Im ζ|.(5.24)

Case(τ, z) ∈ U Without restriction we assume that there existsw ∈ {zk+1,

. . . , zl} such that(τ, z) ∈ V (S)∩B((0, w); δ0
2 ,

δ1(w)
2 , δ2(w)

2 , δ3(w)). By
the choice ofδ(w), we know thatV (S)∩B((0, w); δ(w)) is the graph of
a holomorphic functionh : B((0, w1, w2); δ0(w), δ1(w), δ2(w)) → C

which is real when(v, y1, y2) ∈ B((0, w1, w2); δ0(w), δ1(w), δ2(w))∩
R

3. Now note that the definition ofS implies that for(y1, y2) ∈ B((w1,
w2); δ1(w), δ2(w)) the point(τ−νy1, τ

m−νy2, τ
m−νh(τ, y1, y2)) is in

V+(Pm). Therefore, we can define a plurisubharmonic functionϕ on
B((w1, w2); δ1(w), δ2(w)) by

ϕ(y1, y2) = u(τ−νy1, τ
m−νy2, t

m−νh(τ, y1, y2)).

By Lemma 5.9(a) and the properties ofh we get

ϕ(y1, y2) ≤ (A1 +A2)(τ−ν |Im y1| + τm−ν) and

ϕ(y1, y2) ≤ 0 if (y1, y2) ∈ R
2.
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Now fix y2 real and consider forIm y1 ≥ 0 the function

ψ : y1 7→ ϕ(y1, y2) − (A1 +A2)τ−ν Im y1.

Then we have

ψ(y1) ≤ (A1 +A2)τm−ν and ϕ(y1) ≤ 0 if y1 ∈ R.

From this and an application of the standard estimate for the harmonic
measure of the real line in the unit disk it follows as in the proof of
Lemma 5.8 that

ψ(y1) ≤ 4
π

(A1 +A2)
2

δ1(w)
τm−ν |Im y1|, y1 ∈ B(w1; δ1(w)/2).

Arguing similarly forIm y1 ≤ 0, we conclude fory2 real:

ϕ(y1, y2) ≤ (A1 +A2)τ−ν |Im y1|
(

1 +
8τm

πδ1(w)

)
≤ 2(A1 +A2)τ−ν |Im y1|,

by our choice ofR2. Next we fixy1 and argue in the same way to get

ϕ(y1, y2) ≤ 2(A1 +A2)τ−ν |Im y1|
+(A1 +A2)

8
πδ2(w)

τm−ν |Im y2|

for (y1, y2) ∈ B((w1, w2); δ1(w)/2, δ2(w)/2). In particular, we get

u(ζ1, ζ2, ζ3) = ϕ(z1, z2) ≤ 2(A1 +A2)(|Im ζ1| + |Im ζ2|),(5.25)

provided thatR2 is large enough.
Now it follows from (5.25), (5.26), and (5.27) that (5.24) holds provided
that we chooseδ > 0 small andR2 andA ≥ 1 large enough.

As we have noted at the beginning, this completes the proof. ut
After all these preparations we can finally prove Theorem 5.1.

Proof of Theorem5.1. (1)⇒ (2): By Lemma 2.5, the hypothesis implies
thatV (Pm) hasPL(R3, log). HencePm is real up to a complex constant by
Meise, Taylor, and Vogt [13], Lemma 2. If we assumePm = λQm for some
λ ∈ C \ R andQm ∈ R[z1, z2, z3], thenV+(Pm) = {z ∈ C

3 : Qm(z) =
1/λ}. SinceQm has real coefficients and1/λ /∈ R, V+(Pm) ∩ R

3 = ∅.
Obviously, this implies thatV+(Pm) fails (SPL) in contradiction to the
present hypothesis. HencePm has real coefficients. Therefore (2) follows
from (1) by the result of Meise and Taylor [9], Theorem 3.4, which we
recalled in Theorem 2.7.
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(2) ⇒ (3): This holds by Lemma 2.5(a).
(3) ⇒ (4): Let P̃m denote the polynomialPm, regarded as an element of

C[z1, . . . , z4], and note that̃Pm is the principal part ofP . By Meise, Taylor,
and Vogt [15], Theorem 4.1,V (P̃m) hasPL(R4, log). SinceV (P̃m) =
V (Pm)×C, this implies thatV (Pm) satisfiesPL(R3, log) and hence(SPL)
by Lemma 2.5. As in the proof of (1)⇒ (2),Pm must be real up to a complex
constant. However, by Meise and Taylor [9], Lemma 2.1, a polynomial of the
formPm(z1, . . . , zn)+λzn+1 wherePm has real coefficients cannot satisfy
PL(R4, log) unlessλ is also real. ThereforePm must have real coefficients.
Then the last condition in (4) follows from (3) by Theorem 4.1.

(4)⇒ (1): We will only prove thatV+(Pm) satisfies(SPL), since one can
argue in the same way forV−(Pm). To do so, Proposition 4.5 of Meise and
Taylor [9] will be applied. This result shows thatV+(Pm) satisfies(SPL) if
and only if the following three conditions hold:

(i) V+(Pm) satisfiesPLloc(ξ) at eachξ ∈ V+(Pm) ∩ R
3,

(ii) there are constantsA,B > 0 such thatu(z) ≤ A|z|+B for all plurisub-
harmonic functionsu onV+(Pm) satisfyingu(z) ≤ |z| + o(|z|) onV
andu(z) ≤ 0 onV+(Pm) ∩ R

3,
(iii) for eachξ ∈ V (Pm)∩R

n, |ξ| = 1, there existAξ, δξ, andRξ > 0 such
that eachu ∈ PSH(V+(Pm)) which satisfies the conditions(α) and(β)
of 2.2(a), also satisfiesu(z) ≤ Aξ|Im z| for z ∈ V+(Pm)∩Γ (ξ, δξ, Rξ).

To check these conditions, note first thatV+(Pm) is a manifold at each point
by Euler’s rule. That is,

3∑
j=1

zj
∂Pm

∂zj
(z) = mPm(z) = m, z ∈ V+(Pm),

sogradPm(z) 6= 0 for eachz ∈ V+(Pm). HencePLloc(ξ) holds at each
point ofV+(Pm) as we have noted in Remark 3.2. Thus condition (i) holds.
Next note that the hypotheses in (4) obviously imply thatPm is square-free.
Hence condition (ii) follows from Theorem 5.2 applied toQ(z) = −1. Since
condition (iii) holds by Lemma 5.10, we conclude thatV+(Pm) satisfies
(SPL). ut
Remark.Let Pm ∈ R[z1, . . . , zn] be homogeneous of degreem. By Meise
and Taylor [9], Theorem 4.8,V±(Pm) satisfies(SPL) wheneverPm is of
principal type (i.e.,

∑n
j=1|∂Pm

∂zj
(ξ)|2 6= 0 for ξ ∈ R

n \ {0}) and each irre-
ducible factor ofPm has at least one nontrivial real zero. Forn = 2 this
sufficient condition is also necessary and equivalent toPm being strictly
hyperbolic. Note that in several steps of the proof of Theorem 5.1 we have
used that(Pm)θ is hyperbolic at eachθ ∈ V (Pm)∩ R

3, |θ| = 1. Forn = 3,
Theorem 5.1 shows that the condition thatPm is of principal type is not
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necessary, sinceV (Pm) ∩ R
3 may contain non-zero singular points, as the

following examples show.

Example 5.11.(a) ForP3(x, y, z) := y2z − x(x − z)2 the varietyV (P3)
is singular exactly at the points{(λ, 0, λ) : λ ∈ C} and the varieties
V±(P3) satisfy(SPL).
To prove this, note first that

gradP3(x, y, z) = (−3x2 + 4xz − z2, 2yz, y2 + 2x2 − 2xz).

From this it follows easily that

{ξ ∈ C
3 : P3(ξ) = 0 and gradP3(ξ) = 0} = {(λ, 0, λ) : λ ∈ C}.

This proves the first assertion. To prove the second one we show that the
conditions in 5.1(4) are satisfied. Obviously,P3 has real coefficients. To
show thatV (P3) satisfiesPL(R3, log) and hence(SPL), note first that
a simple computation shows forθ = (1, 0, 1)

(P3)θ(x, y, z) = y2 − (x− z)2.

Hence(P3)θ is the product of two distinct real linear forms and therefore
square-free. Moreover,P3 is locally hyperbolic in the sense of Anders-
son (see Ḧormander [8], 6.4). Thus it follows from Ḧormander [8],
Theorem 6.5, thatP3(D) is a surjective differential operator from the
space of all analytic functions onR3 into itself. SinceP3 is irreducible
and not elliptic, by Meise, Taylor, and Vogt [15], Corollary 3.14, and
Lemma 2.5 it follows thatV (P3) has(SPL). Therefore, Theorem 5.1
implies thatV+(P3) andV−(P3) satisfy(SPL).
Note that{(x, y) ∈ R

2 : P3(x, y, 1) = 0} is a well-known algebraic
curve, namely Newton’s knot.

(b) ForP3(x, y, z) = x3 + y3 − 3xyz the varietyV (P3) is singular exactly
at the points{(0, 0, λ) : λ ∈ C} and the varietiesV±(Pm) both satisfy
(SPL).
This can be shown similarly as in part (a). Note that{(x, y) ∈ R

2 :
P3(x, y, 1) = 0} is the Cartesian leaf.

The following example shows that the Phragmén-Lindel̈of property is
not inherited by quasihomogeneous principal parts.

Example 5.12.SetP (z1, . . . , z4) = z1z2(z2
3−z2

1)−z4. By Theorem 5.1, its
varietyV (P ) satisfiesPL(R4, log). Define the weightd = (1, 1, 2, 6), and
denote byQ(z) = z1z2z

2
3 −z4 thed-quasihomogeneous principal part ofP .

The principal partQ4 of Q is not square-free, hence by Corollary 4.6, the
varietyV (Q) does not satisfyPL(R4, log). This shows thatPL(Rn, ω) is
not inherited by quasihomogeneous principal parts. Note that the classical
principal partPm of P satisfiesPL(Rn, ω) wheneverP does, as Meise,
Taylor, and Vogt have shown in [15], 4.1.
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partielles avec coefficients constants surE(Rn) admettant un inversèa droite qui est
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