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Abstract. LetM be a module of finite length over a complete intersection
(R,m) of characteristicp > 0. We characterize the property thatM has
finite projective dimension in terms of the asymptotic behavior of a certain
length function defined using the Frobenius functor. This may be viewed
as the converse to a theorem of S. Dutta. As a corollary we get that, in a
complete intersection(R,m), anm-primary idealI has finite projective
dimension if and only if its Hilbert-Kunz multiplicity equals the length of
R/I.

1 Introduction and preliminaries

Throughout our discussion all rings are commutative, Noetherian and con-
tain a field of characteristicp. LetF (−) denote the Frobenius functor and`
the length function. Our main result is the following theorem.

Theorem 2.1Let(R,m, k) be a Noetherian local ring of dimensiondwhich
is a complete intersection andM anR-module of finite length. Then

a) `(Fn
R(M)) ≥ `(M) · pnd for all n ∈ N.

b) The sequence{p−nd`(Fn
R(M))} is monotone non-decreasing.

c) The following are equivalent:
i) M has finite projective dimension

ii) `(Fn(M)) = `(M)pnd for all n ≥ 0
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iii) limn→∞
`(F n(M))

pnd = `(M).

Statementsa) andc), i) ⇒ ii), are due to S. Dutta ([D1, Theorem 1.9]).
The proof of Theorem 2.1 depends greatly on the fact stated in parta). Using
techniques developed in [D1] we prove the converse to Dutta’s theorem, thus
obtaining a characterization of modules of finite projective dimension over
complete intersections.

Our result generalizes a characterization of regular local rings of char-
acteristicp due to E. Kunz [K1, Theorem 3.3]. His other characterization of
regularity stated in the same theorem, namely that the Frobenius morphism
is flat, was generalized by results of Peskine and Szpiro and of Herzog. We
record these results since we will be using them later.

Theorem 1.1 ([PS, Theorem 1.7]) Suppose thatM is a finitely generated
module over a ring of characteristicp. If M has finite projective dimension
overR, thenTorR

i (M, f
n
R) = 0 for all i > 0 andn > 0.

Theorem 1.2 ([He, Theorem 3.1]) Suppose thatM is a finitely generated
R-module. If there exists an unbounded sequence of positive integers(nk)
for whichTorR

i (M, f
nkR) = 0 for all i > 0, thenM has finite projective

dimension.

In Sect. 2 we give the proof of Theorem 2.1 and then specialize it to a
statement about the Hilbert-Kunz multiplicity of ideals in complete inter-
section rings in Corollary 2.3. In Sect. 3 we prove a similar result for cyclic
modules over certain one-dimensional Cohen-Macaulay rings, and we give
an example to illustrate that such results cannot be expected to hold over
general Cohen-Macaulay rings.

We end this section with a review of relevant terminology and some
properties of the Frobenius functor. The Frobenius endomorphismf of a
ringR of characteristicp > 0 is defined byf(r) = rp. Let fR denoteR as
anR-R-bimodule, with multiplication on the left viaf and on the right in
the usual way. The assignmentFR(M) = M⊗R

fR defines a functor on the
category ofR-modules to itself, where theR-module structure ofFR(M) is
via the righthand factor. We will usually writeF (M) when the underlying
ring is understood. We letFn denoten iterations of the Frobenius functorF .
In fact,Fn(M) is isomorphic toM ⊗R

fn
R, wherefn denotesn iterations

of f andfn
R denotesR as anR-R-bimodule, with multiplication on the

left via fn and on the right in the usual way. IfM is a finitely generated
R-module, thenFR(M) is also a finitely generatedR-module, and both
have the same support ([PS], Proposition 1.5):

SuppR(FR(M)) = SuppR(M).
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The behavior of the Frobenius functor on free and cyclic modules is as
follows: if s is a positive integer andI is an ideal ofR, then

Fn
R(Rs) ∼= Rs

Fn
R(R/I) ∼= R/I [pn],

whereI [pn] denotes the ideal generated by thepn-th powers of the gener-
ators ofI. If S → R is a ring homomorphism andM is anS-module,
thenFn

S (M) ⊗S R ∼= Fn
R(M ⊗S R). If M andN areR-modules, then

Fn(M) ⊗R Fn(N) ∼= Fn(M ⊗R N). In particular, if a sequence of ele-
mentsx annihilates anR-moduleM , thenFn

R(M) ⊗R R/x
pnd ∼= Fn

R(M).

2 Proofs of the main results

For completeness, we include the proofs of Dutta’s of statementsa) and
c), i) ⇒ ii) in the proof of the Theorem below.

Theorem 2.1 Let (R,m, k) be a Noetherian local ring of dimensiond
which is a complete intersection andM anR-module of finite length. Then

a) `(Fn
R(M)) ≥ `(M) · pnd for all n ∈ N.

b) The sequence{p−nd`(Fn
R(M))} is monotone non-decreasing.

c) The following are equivalent:
i) M has finite projective dimension

ii) `(Fn(M)) = `(M)pnd for all n ≥ 0
iii) limn→∞

`(F n(M))
pnd = `(M).

Proof We begin with some arguments from [D1] which will be used in
several parts of the proof. By hypothesis,R can be written asR = S/(x1, x2,
. . . , xt), whereS is a regular local ring andx1, x2, . . . , xt are elements ofS
which form a regular sequence. Since the dimension ofR isd, the dimension
ofS must bed+t. Letx denote the ideal(x1, x2, . . . , xt), and letxpn

denote
the ideal(xpn

1 , xpn

2 , . . . , xpn

t ). Consider a filtration ofS/xpn
by pnt copies

of S/x, that is, a set of short exact sequences of the form:

0 → K1 → S/xpn → S/x → 0

0 → K2 → K1 → S/x → 0
...

0 → S/x → Kpnt−2 → S/x → 0.

Tensoring the above sequences overS with Fn
S (M) gives a set of long

exact sequences ofTorS
i (Fn

S (M),−), i ≥ 0. Using the isomorphisms
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Fn
S (M) ⊗S S/x

pn ∼= Fn
S (M) andFn

S (M) ⊗S S/x ∼= Fn
R(M), one can

write these sequences as follows:

δ1−→ Fn
S (M) ⊗S K1 −→Fn

S (M) −→Fn
R(M) −→ 0

δ2−→ Fn
S (M) ⊗S K2 −→Fn

S (M) ⊗S K1 −→Fn
R(M) −→ 0 (∗)

...
δpnt−1−−−−→ Fn

R(M) −→Fn
S (M) ⊗S Kpnt−1 −→Fn

R(M) −→ 0.

Computing lengths gives the inequalities

`(M)pn(t+d) = `(Fn
S (M))

≤ `(Fn
R(M)) + `(Fn

S (M) ⊗K1)
≤ `(Fn

R(M)) + `(Fn
R(M)) + `(Fn

S (M) ⊗K2) (∗∗)
· · ·
≤ pnt`(Fn

R(M))

where the first line holds becauseS is a regular local ring.
Part a) follows immediately from the above inequalities. Part b) follows

from part a) since for alln ≥ 0

`(Fn+1(M)) = `(F (Fn(M))) ≥ pd`(Fn(M))

by a) and thus
`(Fn+1(M))
p(n+1)d ≥ `(Fn(M))

pnd

for all n ≥ 0.
For c), we first note that the equivalence of ii) and iii) is immediate from

b). As in [D1], the implication i)⇒ii) is a consequence of a) as follows.
SupposeM has finite projective dimension. Lety be a maximalR-sequence
in the annihilator ofM , and consider a short exact sequence

0 → Q → (R/(y))k → M → 0.

SinceTori(M, f
n
R) = 0 for all i > 0 andn > 0 by Theorem 1.1, tensoring

this sequence withf
n
R gives an exact sequence

0 → Fn(Q) → Fn((R/(y))k) → Fn(M) → 0.

Computing lengths, we get that

`(Fn(M))
pnd

+
`(Fn(Q))

pnd
=
`(Fn((R/(y))k))

pnd
.
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Sincey is anR-sequence, the righthand side is justk`(R/(y)), which equals
`(M) + `(Q) by the original short exact sequence. We therefore have

`(Fn(M))
pnd

+
`(Fn(Q))

pnd
= `(M) + `(Q).

Since`(Fn(M))/pnd ≥ `(M) and `(Fn(Q))/pnd ≥ `(Q), this forces
`(Fn(M))/pnd = `(M).

For the other implication, we note that if`(Fn(M)) = `(M)pnd for all
n ≥ 0 then the inequalities(∗∗) derived earlier become

`(M)pn(t+d) ≤ pnt`(Fn
R(M)) = `(M)pn(t+d).

So, all the inequalities in(∗∗) must actually be equalities. This means that
each of the mapsδi in the long exact sequences(∗) must be zero. In particular
δ1 = 0, i.e., we have a surjective map

ψ1 : TorS
1 (Fn

S (M), S/xpn
) � TorS

1 (Fn
S (M), S/x)

of the long exact sequence.
LetT be a finitely generatedS-module. We useψT to denote the natural

map
TorS

1 (Fn
S (T ), S/xpn

) → TorS
1 (Fn

S (T ), S/x)

induced by the surjectionS/xpn � S/x. LettingF. be a free resolution of
T overS and using the fact that the Frobenius functorFS(−) is exact since
S is regular, we have isomorphisms

TorS
1 (Fn

S (T ), S/xpn
) ∼= H1(Fn

S (F.) ⊗S S/x
pn

)

∼= H1(Fn
S (F.) ⊗S F

n
S (S/x)) ∼= H1(Fn

S (F.⊗S S/x))
∼= Fn

S (H1(F.⊗S S/x)) ∼= Fn
S (TorS

1 (T, S/x)).

Thus we have a map

Fn
S (TorS

1 (T, S/x)) → TorS
1 (Fn

S (T ), S/x)

which we will also callψT . Sincex annihilates the image, the mapψT

factors through a mapθT :

Fn
R(TorS

1 (T, S/x)) = Fn
S (TorS

1 (T, S/x)) ⊗S R → TorS
1 (Fn

S (T ), S/x).

Notice that by constructionθT is functorial inT . Furthermore,θM is sur-
jective sinceψ1 = ψM is surjective as shown above. More generally,
for any moduleT of finite length and finite projective dimension, since
`(Fn(T )) = `(T )pnd for all n > 0, the same argument shows thatθT is
surjective.
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We now argue as in the proof of Theorem 2.2 in [D1] to obtain that
TorR

1 (M, f
n
R) = 0 for all n > 0. Let y in S be a maximalR-sequence in

the annihilatorAnnSM , and consider an exact sequence

0 → K → (S/(x, y))k → M → 0.

Tensoring withS/x one obtains

0 → TorS
1 (K,S/x) → TorS

1 ((S/(x, y))k, S/x) → TorS
1 (M,S/x) → 0,

which is exact: using the Koszul resolution ofS/x overS, one sees that each
term is justt copies of the corresponding term in the first exact sequence
and the maps are the obvious ones. Applying the Frobenius functor overR
and using the functoriality ofθT in T gives a commutative diagram:

Fn
R(TorS

1 ((S/(x, y))k, S/x)) π−−−→ Fn
R(TorS

1 (M,S/x))
yθ(S/(x,y))k

yθM

TorS
1 (Fn

S (S/(x, y)), S/x)
µ−−−→ TorS

1 (Fn
S (M), S/x)

where the second row is part of the long exact sequence obtained by tensoring
the sequence

0 → Fn
S (K) → Fn

S (S/(x, y))k → Fn
S (M) → 0

with S/x = R. SinceθM andπ are surjective, so isµ. Therefore the first
connecting homomorphismδ : TorS

1 (Fn
S (M), S/x) → Fn

R(K) of the long
exact sequence is the zero map, and so the sequence

0 → Fn
R(K) → Fn

R(S/(x, y))k → Fn
R(M) → 0

is exact. This implies thatTorR
1 (M, f

n
R) = 0 since by Theorem 1.1 we

have thatTorR
1 ((S/(x, y))k, f

n
R) = 0.

Since the sequence

0 → Fn
R(K) → Fn

R(R/(y))k → Fn
R(M) → 0

is exact, we also obtain that

`(Fn
R(K)) = `(Fn

R(R/(y))k) − `(Fn
R(M))

= `(R/(y)pnd − `(M)pnd = `(K)pnd.

The argument above applied toK instead of M then gives that
TorR

1 (K, f
n
R) = 0. However,TorR

1 (K, f
n
R) = TorR

2 (M, f
n
R) since

TorR
i ((S/(x, y))k, f

n
R) = 0 for anyi > 0 by Theorem 1.1.

In the same way one easily sees thatTorR
i (M, f

n
R) = 0 for all i > 0

andn ≥ 0, and so by Theorem 1.2 the moduleM has finite projective
dimension. ut
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In view of [D1] and [D2], the numbers̀(Fn(M))/pnd may asymptoti-
cally approach̀(M), but not a priori equal̀(M). A particular case where
this occurs naturally is the following:

Definition 2.2 For anm-primary idealI ofR, the limit

lim
n→∞

`(Fn(R/I))
pnd

is known as the Hilbert-Kunz multiplicity ofI, cf. [K2] and [Mo].

Thus we have the corollary:

Corollary 2.3 LetR be a local Noetherian ring of dimensiond which is a
complete intersection. LetI be anm-primary ideal ofR. Then the Hilbert-
Kunz multiplicity ofI equals the length̀(R/I) if and only if I has finite
projective dimension.

Corollary 2.4 LetR be a local Noetherian ring of dimensiond which is
a complete intersection. LetM be anR-module of finite length. Then for
i ≥ 0 the sequence of numbers

`(Tori(M, f
n
R))

pnd

is nondecreasing.

Proof The casei = 0 is just a restatement of part b) of Theorem 2.1.
For i > 0, let y be a maximalR-sequence in the annihilator ofM . By
Theorem 1.1,Tori(R/(y), f

n
R) = 0 for all i > 0 andn > 0. Thus, by

replacingM with the(i− 1)-th syzygy ofM over the ringR/(y), we may
assume thati = 1 in the statement to be proved. As before, we get an exact
sequence,

0 → TorR
1 (M, f

n
R) → Fn(Q) → Fn((R/(y))k) → Fn(M) → 0

Computing lengths, we get

`(TorR
1 (M, f

n
R))

pnd
=
`(Fn(Q))

pnd
+
`(Fn(M))

pnd
− k · `(Fn(R/(y)))

pnd

The first two terms on the right hand side are nondecreasing by part a) of
Theorem 2.1, whereas the last is the constantk · `(R/(y)) sincey is an
R-sequence. This proves our assertion.ut
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Corollary 2.5 LetR be a local Noetherian ring of dimensiond which is a
complete intersection. LetM be anR-module of finite length. If for some
i > 0

lim
n→∞

`(TorR
i (M, f

n
R))

pnd
= 0,

thenM has finite projective dimension (and thusTorR
i (M, f

n
R) = 0 for

all i > 0 andn > 0).

Proof Again, lettingy be a maximalR-sequence in the annihilator ofM
and using the fact thatTor1(M, f

n
R) = 0, we get the equality

`(Fn(M))
pnd

+
`(Fn(Q))

pnd
=
`(Fn((R/(y))k))

pnd
= `(M) + `(Q).

By part b) of Theorem 2.1, the equality`(Fn(M))/pnd = `(M) is forced,
and soM has finite projective dimension.ut

3 Certain one-dimensional Cohen-Macaulay rings and an example

Using a result of Regnath and Seibert, we will show that Theorem 2.1 holds
also for cyclic modules over Cohen-Macaulay rings of dimension one which
are geometrically unibranch in the sense of Grothendieck.

Definition 3.1 A local ring S is called geometrically unibranch if the re-
duced ringSred is a domain, the integral closureSred of Sred is local,
and the residue field extension ofSred overSred is purely inseparable. In
particular, a complete local ring with algebraically closed residue field is
geometrically unibranch.

We will use the following result of Regnath and Seibert to prove our next
result.

Theorem 3.2 ([RS], part of Theorem 1) LetR be a Noetherian local ring
of characteristicp > 0. Suppose thatR is geometrically unibranch and has
dimension one. Then for any idealI of R, there exists ann > 0 such that
I [pn] is principal.

Theorem 3.3 Let R be a Cohen-Macaulay local ring of dimension one
which is geometrically unibranch. LetI be anm-primary ideal ofR. Then
R/I (or, equivalently,I) has finite projective dimension if and only if
limn→∞ `(Fn(R/I))/pn = `(R/I).
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Proof Suppose first thatlimn→∞ `(Fn(R/I))/pn = `(R/I). By the result
of Regnath and Seibert, for somen0 > 0, I [pn0 ] is principal, say generated
bya. If I is generated byf1, . . . , fr, thenI [pn0 ] is generated byfpn

1 , . . . , fpn

r .
SinceR is local, we can takea = fpn

i for somei. Then for alln ≥ n0 we
have thatI [pn] = (fpn

i ) and so we get that

`(Fn(R/I))
pn

=
`(R/I [pn])

pn
=
`(R/(fpn

i ))
pn

= `(R/(fi)).

Lettingnapproach infinity, we get that`(R/I) = `(R/(fi)), but then(fi) ⊆
I implies that(fi) = I. ThereforeR/I has finite projective dimension (fi

is a non-zero divisor sinceR is Cohen-Macaulay).
For the converse, see [D1], formula (18).ut
In fact, the equalitỳ(Fn(M)) = `(M)pnd holds over Cohen-Macaulay

rings of dimension less than or equal to two (see [D1, 1.14]). We next look at
an example which shows, on the other hand, that the equality does not hold
in general for modulesM of finite length and finite projective dimension
over Cohen-Macaulay rings. This example is explained in [R2, Chapter 13].
In [R1, Sect. 4], Paul Roberts uses the counterexample of Dutta, Hochster
and McLaughlin in [DHM] to construct an example of a moduleN of
finite length29 and finite projective dimension over a Cohen-Macaulay non-
Gorenstein ringR of dimension3 such that the length ofN∨ = Ext3R(N,R)
is not equal to the length ofN . LetF. be a free resolution ofN overR. To
show that these lengths are unequal, Roberts determines the values of the
local Chern characterschi(F.) of the complexF. applied to the components
τi(R) of the Todd classτ(R) of R for eachi = 0, . . . , d. He obtains that
ch3(F.)(τ3(R)) = 30, ch2(F.)(τ2(R)) = −1, ch1(F.)(τ1(R)) = 0, and
ch0(F.)(τ0(R)) = 0. The explanation on pp. 429–430 of [R1] shows that

lim
n→∞

`(Fn(N))
p3n

= ch3(F.) = 30,

but the local Riemann-Roch Theorem formula for the Euler characteristic
χ(F.) states that

`(N) = χ(F.) = ch(F.)(τ(R)) =
3∑

i=0

chi(F.)(τi(R)) = 29.

So, clearly

lim
n→∞

`(Fn(N))
p3n

6= `(N).

For Gorenstein domains of dimension less than or equal to three, the
equality does hold for modules of finite length and finite projective dimen-
sion (see [D1]), but it has recently been shown not to hold in general over
Gorenstein rings [MS].
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