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Abstract. Let M be a module of finite length over a complete intersection
(R,m) of characteristip > 0. We characterize the property thaf has
finite projective dimension in terms of the asymptotic behavior of a certain
length function defined using the Frobenius functor. This may be viewed
as the converse to a theorem of S. Dutta. As a corollary we get that, in a
complete intersectiofR?, m), an m-primary ideall has finite projective
dimension if and only if its Hilbert-Kunz multiplicity equals the length of
R/I.

1 Introduction and preliminaries

Throughout our discussion all rings are commutative, Noetherian and con-
tain a field of characteristie. Let F'(—) denote the Frobenius functor afd
the length function. Our main result is the following theorem.

Theorem 2.1Let(R, m, k) be a Noetherian local ring of dimensidrwhich
is a complete intersection and an R-module of finite length. Then

a) L(FR(M)) > £(M)-pdforall n € N.
b) The sequencgp"¢(F2(M))} is monotone non-decreasing.
c) The following are equivalent:

i) M has finite projective dimension

iy 6(F™(M))=¢(M)p™foralln >0

* This research was carried out while the author was supported by a research grant from
the UIUC Campus Research Board of the University of lllinois under the supervision of S.
Dutta.
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i) Timm, o0 LG = (M),

Statements) andc), i) = i), are due to S. Dutta ([D1, Theorem 1.9]).
The proof of Theorem 2.1 depends greatly on the fact stated in p&ssing
techniques developed in [D1] we prove the converse to Dutta’s theorem, thus
obtaining a characterization of modules of finite projective dimension over
complete intersections.

Our result generalizes a characterization of regular local rings of char-
acteristicp due to E. Kunz [K1, Theorem 3.3]. His other characterization of
regularity stated in the same theorem, namely that the Frobenius morphism
is flat, was generalized by results of Peskine and Szpiro and of Herzog. We
record these results since we will be using them later.

Theorem 1.1 ([PS, Theorem 1.7]) Suppose théf is a finitely generated
module over a ring of characteristje If M has finite projective dimension
over R, thenTor*(M, " R) = 0 for all i > 0 andn > 0.

Theorem 1.2 ([He, Theorem 3.1]) Suppose th&f is a finitely generated
R-module. If there exists an unbounded sequence of positive integgrs
for which Torf*(M, 7" R) = 0 for all i > 0, thenM has finite projective
dimension.

In Sect. 2 we give the proof of Theorem 2.1 and then specialize it to a
statement about the Hilbert-Kunz multiplicity of ideals in complete inter-
section rings in Corollary 2.3. In Sect. 3 we prove a similar result for cyclic
modules over certain one-dimensional Cohen-Macaulay rings, and we give
an example to illustrate that such results cannot be expected to hold over
general Cohen-Macaulay rings.

We end this section with a review of relevant terminology and some

properties of the Frobenius functor. The Frobenius endomorpliisina
ring R of characteristipp > 0 is defined byf () = r?. Letf R denoteR as
an R- R-bimodule, with multiplication on the left vig and on the right in
the usual way. The assignmdn (M) = M @/ R defines a functor on the
category ofR-modules to itself, where thB-module structure af'z (M) is
via the righthand factor. We will usually writ(1/) when the underlying
ring is understood. We |€f” denoten iterations of the Frobenius functér.
In fact, ™ (M) is isomorphic taV/ ® /" R, wheref™ denotes: iterations
of f and/" R denotesR as anR-R-bimodule, with multiplication on the
left via /™ and on the right in the usual way. M is a finitely generated
R-module, thenFr(M) is also a finitely generate®-module, and both
have the same support ([PS], Proposition 1.5):

Suppr(Fr(M)) = Suppg(M).



Finite projective dimension 129

The behavior of the Frobenius functor on free and cyclic modules is as
follows: if s is a positive integer anflis an ideal ofR, then

FR(R®) = R*
FR(R/I) = R/IP",
whereIP"] denotes the ideal generated by fifeth powers of the gener-
ators ofI. If S — R is a ring homomorphism and/ is an.S-module,
then Fig(M) ®s R =2 Fj(M ®s R). If M and N are R-modules, then
F"(M)®pgr F*"(N) =2 F"(M ®pr N). In particular, if a sequence of ele-
mentsz annihilates ark-moduleM, thenF(M) @ R/z?"" = FL(M).

2 Proofs of the main results

For completeness, we include the proofs of Dutta’s of statemgn#sd
c),1) = it) in the proof of the Theorem below.

Theorem 2.1 Let (R, m, k) be a Noetherian local ring of dimensiah
which is a complete intersection aild an R-module of finite length. Then

a) ((FR(M)) > £(M)-p™forall n € N,
b) The sequencgp"4¢(F2(M))} is monotone non-decreasing.
c) The following are equivalent:
i) M has finite projective dimension
i) L(F™(M)) = ¢(M)p™ forall n >0
i) T, o0 LG = o(0).

Proof We begin with some arguments from [D1] which will be used in
several parts of the proof. By hypothediscan be writtena® = S/(x1, z2,
...,x¢), whereS'is aregular local ring and; , z, . . ., z; are elements of
which form aregular sequence. Since the dimensidgisid, the dimension
of S mustbel+t. Letz denote the idedl:y, xo, . . ., 2;), and letz”" denote
the ideal(z?", 25", ..., 2""). Consider a filtration of5/zF" by p" copies

of S/z, that is, a set of short exact sequences of the form:

0— K| — S/2"" — S/z—0
0= Ky — Ky —S/z—0

0—S/z— Kjpni_og— S/z— 0.

Tensoring the above sequences o¥ewith F¢' (M) gives a set of long
exact sequences @for; (FZ(M),—), i > 0. Using the isomorphisms
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FI(M) ®g S/zP" = F2(M) and F§(M) ®s S/xz = FR(M), one can
write these sequences as follows:

2 FI(M) ®g K1 — F2H(M) — F2(M) —0

2 F (M) @5 Ko — F2 (M) ®g K1 — FRM) =0 (x)

O nt _
L FR(M) — FE(M) @ Kyne_q — F(M) — 0.

Computing lengths gives the inequalities

(Fr(M)) + ((Fr(M)) + £L(Fg(M) © Ks)  (x)

< p"U(FR(M))

where the first line holds becauSés a regular local ring.
Part a) follows immediately from the above inequalities. Part b) follows
from part a) since for ath > 0

(F™H (M) = (F(FM(M))) > p*t(F"(M))

by a) and thus
((F"(M))
pnd

>

foralln > 0.

For c), we first note that the equivalence of ii) and iii) is immediate from
b). As in [D1], the implication iB=ii) is a consequence of a) as follows.
SupposéV/ has finite projective dimension. Lgbe a maximaR-sequence
in the annihilator of\/, and consider a short exact sequence

0—Q— (R/(y)" = M — 0.

SinceTor; (M, " R) = 0foralli > 0 andn > 0 by Theorem 1.1, tensoring
this sequence with" R gives an exact sequence

0— F"(Q) — F”((R/(g))k) — F"(M) — 0.
Computing lengths, we get that
(F (M) | HENQ) E(F”((R/(y))’“))_

pnd pnd - pnd
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Sincey is anR-sequence, the righthand side is juétR/(y)), which equals
¢(M) 4 £(Q) by the original short exact sequence. We therefore have

E(F;EdM)) N e(Fp" @) _ )+ Q).

Since{(F™(M))/p™ > ¢(M) and /(F™(Q))/p"® > £(Q), this forces
((F™(M))/p"" = ((M).

For the other implication, we note thatdfF™(M)) = £(M)p™® for all
n > 0 then the inequalities«x) derived earlier become

E(M)pn(ter) < pntf(Fg(M)) _ E(M)pn(ter)'

So, all the inequalities ifxx) must actually be equalities. This means that
each of the mapy in the long exact sequenceg must be zero. In particular
01 = 0, i.e., we have a surjective map

1 : Torf (F (M), S/a?") — Tor{ (F§ (M), S/z)

of the long exact sequence.
LetT be afinitely generatefi-module. We use to denote the natural
map
Tor{ (F§(T), S/2*") — Tor? (F§(T), S/x)

induced by the surjectiof/zP" — S/z. Letting F. be a free resolution of
T overS and using the fact that the Frobenius fundi@gf—) is exact since
S is regular, we have isomorphisms

Tor{ (F§(T), S/a"") = Hi(F§ (F.) @5 S/a"")
= Hy (F§(F.) ®s Fg(S/z)) = Hy (F§(F. ®5 S/x))
=~ F§(Hi(F. ®s S/x)) = F§(Tor? (T, S/x)).
Thus we have a map
F¥(Tor? (T, S/x)) — Tort (FY(T), S/x)

which we will also callyr. Sincez annihilates the image, the malg-
factors through a magy:

Fpi(Tor{ (T, S/x)) = F§(Tor{ (T, S/x)) ©s R — Tor{ (F§(T), S/z).

Notice that by constructiofiy is functorial inT". Furthermoref,, is sur-
jective sinceyy; = s is surjective as shown above. More generally,
for any moduleT’ of finite length and finite projective dimension, since
((F™(T)) = £(T)p™ for all n > 0, the same argument shows tifiat is
surjective.
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We now argue as in the proof of Theorem 2.2 in [D1] to obtain that
Torf(M,/"R) = 0 foralln > 0. Lety in S be a maximalk-sequence in
the annihilatorAnng M, and consider an exact sequence

0— K — (S/(z,y)* - M — 0.
Tensoring withS/z one obtains
0 — Tor} (K, S/z) — Torls((S/@,y))k,S/g) — Tor{ (M, S/z) — 0,

which is exact: using the Koszul resolution$)fz overS, one sees that each
term is justt copies of the corresponding term in the first exact sequence
and the maps are the obvious ones. Applying the Frobenius functoiover
and using the functoriality o in 7" gives a commutative diagram:

Fp(Tor? ((S/(z,9))", §/z)) —— F(Tory (M, S/z))

l%/@,g))k leM

Tory (F§(S/(2,y)),S/x) —— Tor{ (F§(M), S/x)
where the second row is part of the long exact sequence obtained by tensoring
the sequence
0 — F(K) = F§(S/(z,y))" — F§(M) =0

with S/x = R. Sincef); andr are surjective, so ig. Therefore the first
connecting homomorphisi: Tor{ (F2(M), S/z) — F&(K) of the long
exact sequence is the zero map, and so the sequence

0 = FR(K) = FR(S/(z,9)* — Fi(M) =0

is exact. This implies thaforf*(M, 7" R) = 0 since by Theorem 1.1 we
have thatTorf((S/(z,y))*, /" R) = 0.
Since the sequence

0= FR(K) = FR(R/(y)* — FR(M) — 0

is exact, we also obtain that
UFR(K)) = UFR(R/(y)") — U(FR(M))
= U(R/(y)p"" — ((M)p"? = ((K)p™.
The argument above applied t& instead of M then gives that
Torf' (K, R) = 0. However, Tor}(K,/" R) = Torl}(M,’"R) since
Tor*((S/(z,y))*,/" R) = 0 for anyi > 0 by Theorem 1.1.
In the same way one easily sees tiat*(M, 7" R) = 0 forall i > 0

andn > 0, and so by Theorem 1.2 the modulé has finite projective
dimension. O
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In view of [D1] and [D2], the numberé&( F"(M)) /p™¢ may asymptoti-
cally approact(M), but not a priori equad(M ). A particular case where
this occurs naturally is the following:

Definition 2.2 For anm-primary ideall of R, the limit

o (U (R/T)

n—0o0 p”d
is known as the Hilbert-Kunz multiplicity éf cf. [K2] and [Mo].
Thus we have the corollary:

Corollary 2.3 Let R be a local Noetherian ring of dimensiahwhich is a
complete intersection. Létbe anm-primary ideal of R. Then the Hilbert-
Kunz multiplicity of] equals the lengtli(R/I) if and only if I has finite
projective dimension.

Corollary 2.4 Let R be a local Noetherian ring of dimensiehwhich is
a complete intersection. Lét/ be an R-module of finite length. Then for
1 > 0 the sequence of numbers

¢(Tor;(M,'" R))
pnd

is nondecreasing.

Proof The casei = 0 is just a restatement of part b) of Theorem 2.1.
Fori: > 0, let y be a maximalR-sequence in the annihilator éf/. By

Theorem 1.1Tor;(R/(y),/"R) = 0 for all i > 0 andn > 0. Thus, by
replacingM with the (i — 1)-th syzygy ofM over the ringR/(y), we may
assume that = 1 in the statement to be proved. As before, we get an exact
sequence,

0 — Tor{'(M,""R) — F™(Q) — F"((R/(y))*) — F"(M) — 0

Computing lengths, we get

{(Tor{'(M,”"R)) _ €(F™(Q)) L) k- L(F"(R/(y)))
pnd pnd pnd pnd
The first two terms on the right hand side are nondecreasing by part a) of
Theorem 2.1, whereas the last is the constant(R/(y)) sincey is an

R-sequence. This proves our assertionl
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Corollary 2.5 Let R be a local Noetherian ring of dimensiahwhich is a
complete intersection. Let/ be an R-module of finite length. If for some
1>0

{(Tor®(M, /" R))

nh—golo pnd =0 ’

then M has finite projective dimension (and thiisr*(M, /" R) = 0 for
alli > 0andn > 0).

Proof Again, lettingy be a maximalk-sequence in the annihilator aff
and using the fact thafor; (M, /" R) = 0, we get the equality

mn n (F™*((R k
e(ppgw)) +z(1~;)n(dQ)) _ U ((pn{l(y)) D) _sn) 1 0(Q).

By part b) of Theorem 2.1, the equalityF™ (M))/p"? = ¢(M) is forced,
and soM has finite projective dimension.O

3 Certain one-dimensional Cohen-Macaulay rings and an example

Using a result of Regnath and Seibert, we will show that Theorem 2.1 holds
also for cyclic modules over Cohen-Macaulay rings of dimension one which
are geometrically unibranch in the sense of Grothendieck.

Definition 3.1 A local ring S is called geometrically unibranch if the re-
duced ring.S,.q is a domain, the integral closuré,.; of S,.q is local,
and the residue field extension 8f.; over.S,.4 is purely inseparable. In
particular, a complete local ring with algebraically closed residue field is
geometrically unibranch.

We will use the following result of Regnath and Seibert to prove our next
result.

Theorem 3.2 ([RS], part of Theorem 1) LeR be a Noetherian local ring
of characteristicp > 0. Suppose thak is geometrically unibranch and has
dimension one. Then for any ideAbf R, there exists am > 0 such that
IP"]'is principal.

Theorem 3.3 Let R be a Cohen-Macaulay local ring of dimension one
which is geometrically unibranch. Létbe anm-primary ideal of R. Then
R/I (or, equivalently,I) has finite projective dimension if and only if
lim, o0 ((F™(R/T)) /p" = €(R/1).
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Proof Suppose first thatm,, ,~, ¢(F™"(R/I))/p™ = ¢(R/I). By the result
of Regnath and Seibert, for somg > 0, I?"°] is principal, say generated
bya.If Iisgenerated by, ..., f,, thenI""lis generated by”", ..., f2".
SinceR is local, we can take = f;f”n for somei. Then for alln > ng we
have that’?"] = (f7") and so we get that

n [p"] P"
UF(RID) _ URITPY) _ URIUEY) _ gy
p p p
Lettingn approach infinity, we getthédtR/I) = ¢(R/(f;)), butthen(f;) C
I implies that(f;) = I. ThereforeR/I has finite projective dimensiorf(
is a non-zero divisor sinck is Cohen-Macaulay).

For the converse, see [D1], formula (18)2

In fact, the equality(F™(M)) = ¢(M)p"? holds over Cohen-Macaulay
rings of dimension less than or equal to two (see [D1, 1.14]). We next look at
an example which shows, on the other hand, that the equality does not hold
in general for moduled/ of finite length and finite projective dimension
over Cohen-Macaulay rings. This example is explained in [R2, Chapter 13].
In [R1, Sect. 4], Paul Roberts uses the counterexample of Dutta, Hochster
and McLaughlin in [DHM] to construct an example of a moduie of
finite length29 and finite projective dimension over a Cohen-Macaulay non-
Gorenstein ring? of dimensiors such that the length &f ¥ = Ext3, (N, R)
is not equal to the length @Y. Let F. be a free resolution oV over R. To
show that these lengths are unequal, Roberts determines the values of the
local Chern characterd; (F.) of the complext’. applied to the components
7i(R) of the Todd class(R) of R for eachi = 0, ...,d. He obtains that
chs(F.)(13(R)) = 30, cha(F.)(12(R)) = —1, chy(F.)(m1(R)) = 0, and
cho(F.)(m0(R)) = 0. The explanation on pp. 429-430 of [R1] shows that

ECaitis)
n—oo p

but the local Riemann-Roch Theorem formula for the Euler characteristic
X (F.) states that

= chy(F.) = 30,

So, clearly
((F™(N
LC )
n—00 p>T
For Gorenstein domains of dimension less than or equal to three, the
equality does hold for modules of finite length and finite projective dimen-
sion (see [D1]), but it has recently been shown not to hold in general over

Gorenstein rings [MS].
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