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Introduction

Equivariant algebraic topologyusesdiscrete invariants to study spaceswith a
specified group of symmetries, typically assuming that the symmetry group
is both Lie (for actions on manifolds and related spaces) and compact (to
make the theory accessible). Since the invariants are discrete, they depend
only on homotopy classes ofG-maps. The domain of equivariant homotopy
theory therefore is the homotopy category ofG-spaces and the goal is to
describe this category in algebraic terms. In this paper, we describe a large
part of equivariant homotopy theory in algebraic terms when the compact
Lie groupG is Abelian.

We state our results in the language of localization. A map ofG-spaces
X → Y is anequivariant weak equivalencewhen the induced map on
H-fixed spacesXH → Y H is a (non-equivariant) weak equivalence for
every closed subgroupH ⊆ G. An equivariant homotopy equivalence is
therefore an equivariant weak equivalence, and a fundamental result is that
an equivariant weak equivalence is an equivariant homotopy equivalence
provided theG-spaces are suitably nice, that is, homotopy equivalent toG-
complexes. MostG-spaces of geometric interest (including allG-manifolds)
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satisfy this. If welocalizethe category ofG-spaces by formally inverting the
equivariant weak equivalences, the result is called theequivariant homotopy
category.

We can also consider weaker notions of equivalence: AG-mapX →
Y is anequivariant rationalor p-adic equivalenceif each induced map
XH → Y H is a (non-equivariant) rational orp-adic equivalence, that is,
a homology isomorphism with rational orZ/pZ coefficients. The category
obtained fromG-spaces by formally inverting the equivariant rational or
p-adic equivalences is called theequivariant rationalor p-adic homotopy
category.

The equivariant rational andp-adic homotopy categories fracture equiv-
ariant homotopy theory into a rational piece and a piece for each primep.
By the (non-equivariant) Whitehead theorem, aG-mapX → Y between
G-spaces with simply connected fixed-point spaces is an equivariant weak
equivalence if and only if it is an equivariant rational equivalence and equiv-
ariantp-adic equivalence for allp. Just as in non-equivariant homotopy the-
ory, much of equivariant homotopy theory can be recovered from rational
homotopy theory,p-adic homotopy theory, and patching information.

We describe algebraic models for rational andp-adic equivariant homo-
topy theory. In the rational case, our description is in terms of diagrams
of commutative differential gradedQ-algebras (CDGA’s) of a particular
shape. In Sect. 2, we describe a categoryD closely related to the lattice of
closed subgroups ofG. We define aD-CDGA to be a functor fromD into
the category of commutative differential gradedQ-algebras. We define a
contravariant functorA0 from the category ofG-spaces to the category of
D-CDGAs; the value at each object ofD is the Thom–Sullivan DeRham
algebra of the singular complex of a Borel construction on a fixed point
space of the givenG-space; see Sect. 3 for details. We letP 0 be a cofibrant
approximation ofA0(∗), where∗ is the one-pointG-space; essentially, this
is a minimal model forA0(∗). Then we can regardA0 as a functor fromG-
spaces to the category ofD-CDGAs underP 0. We will see thatA0 converts
equivariant rational equivalences to (objectwise) quasi-isomorphisms, and
soA0 passes to a functor on the homotopy categories. In the rational case,
our main result is the following.

Theorem A.LetG be an Abelian compact Lie group. There is a functorA0
from the equivariant rational homotopy category to the homotopy category
of D-CDGAs underP 0. On the full subcategory ofG-simply connected
G-finiteQ-typeG-spaces, this functor is full and faithful.

In thep-adic case, we useE∞ F̄p-algebras in place of rational differen-
tial gradedQ-algebras, and the cochain complex in place of the DeRham
complex, but otherwise essentially the same outline holds. We prove the
following theorem.



Algebraic models for equivariant homotopy theory 263

Theorem B.LetG be an Abelian compact Lie group. There is a functorAp

from the equivariantp-adic homotopy category to the homotopy category
of D-E∞DGAs underP p. On the full subcategory ofG-simply connected
G-finitep-typeG-spaces, this functor is full and faithful.

HereG-simply connectedmeans that each fixed-point space is sim-
ply connected in the non-equivariant sense (and may be empty or non-
connected). Likewise,G-finite Q- or p- type means that each fixed-point
space is (non-equivariantly) finiteQ- or p- type, that is, its homology with
coefficients inQ orZ/pZ is finitely generated in each degree. In the case of
each of these theorems, we can describe in homological terms the image of
theG-simply connectedG-finite typeG-spaces; see Sect. 3 for details.

Unfortunately, we are less successful at describing the objectsP 0 and
P p, and so themodels obtained fromourmain theorems are not very explicit
in general. WhendimG = 0, that is, whenG is a finite group, we can take
P 0 to be the constant diagram onQ in the rational case andP p to be the
constant diagram on̄Fp in thep-adic case. The models we obtain this way
are more complicated than the ones described in [11] (rationally) and in
[7] (p-adically), where the methods apply more generally to non-Abelian
finite groups. In the case whenG is the circle groupT, we can also describe
our rational models explicitly; we do this in Sect. 4. This is the algebraic
category described in the second author’s 1999 University of Chicago thesis
[9].

1 Diagrams of spaces

In order to produce algebraic models, we first reduce equivariant homotopy
theory to the study of diagrams of spaces and fibrations, and then apply
the algebraic models of [10] and [6]. Historically the first description of
equivariant homotopy theory in terms of diagrams is the theorem of El-
mendorf [5] that explains how to recover aG-spaceX up to equivariant
weak equivalence from its system of fixed-point spacesXH and inclusion
relations.

Tomake this precise, consider theorbit categoryOG ofG, whose objects
are the canonical orbitsG/H for all closed subgroupsH ⊆ G, and whose
maps are equivariant maps between them. Any map inOG(G/H,G/K) is
of the formgH → gaK for somea ∈ G with such thata−1Ha ⊆ K, and
moreover thata andb represent the same map if and only ifab−1 ∈ K. So
the maps in this category are given by

OG(G/H,G/K) ∼= (G/K)H .

We regardOG as a topological category, topologizing themaps by the above
isomorphism.
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Associated to anyG-spaceX there is a contravariant fixed point functor
ΦX from OG to spaces. This functor has the valueΦX(G/H) = XH ,
with morphisms induced by theG-action on the spaceX. This functor is
continuousin the sense that the map

OG(G/K,G/H)× ΦX(G/H)→ ΦX(G/K)

is a continuous map for every pair of objectsG/K,G/H ofOG. Motivated
by this example we define the categoryOGU of OG-spaces to be the cat-
egory of continuous contravariant functors fromOG to spaces. We define
weak equivalence, rational equivalence, andp-adic equivalence inOGU ob-
jectwise; we say that a mapX → Y in OGU is aweak (resp.rational,
p-adic) equivalenceif X(G/H) → Y (G/H) is a non-equivariant weak
(resp. rational,p-adic) equivalence for every objectG/H ofOG. We define
thehomotopy category, therational homotopy category, and thep-adic ho-
motopy categoryofOG-spaces by formally inverting theweak equivalences,
rational equivalences, andp-adic equivalences respectively.

We can interpretΦ as a functor from the category ofG-spaces toOGU .
The earlier definitions immediately imply that a map ofG-spacesX → Y
is an equivariant weak, rational, orp-adic equivalence if and only if the
induced mapΦX → ΦY is a weak, rational, orp-adic equivalence inOGU
respectively. It follows thatΦ factors through the homotopy categories we
obtain by inverting these equivalences. The following result shows thatΦX
contains exactly the same homotopy information as the original spaceX.

Theorem 1.1. (Elmendorf) The functorΦ induces an equivalence of:

(i) The equivariant homotopy category and the homotopy category ofOG-
spaces,

(ii) Theequivariant rational homotopy category and the rational homotopy
category ofOG-spaces, and

(iii) The equivariantp-adic homotopy category and thep-adic homotopy
category ofOG-spaces for each primep.

Proof. Elmendorf [5] constructs a functorC fromOG-spaces toG-spaces,
and natural weak equivalencesCΦ→ Id andΦC → Id.

For reasons explained in the next section, we find it convenient to work
with a variant of the orbit category that we call thesubdivided orbit cate-
gory∆OG. Although Elmendorf’s theorem holds very generally, here we
need to restrict to the case whenG is Abelian. In this case, the orbitG/K
has an action by the groupG/K. The idea for the category∆OG is to
have many objects corresponding to each orbitG/K, one for each group
G/H that can act on it. We use the symbolG/K[H] to denote the or-
bit G/K thought of as aG/H space. Following this idea, for maps, we
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have∆OG(G/K[H], G/K[H]) = G/H. AsK varies, we have a canon-
ical quotient mapG/K ′[H] → G/K[H] wheneverK ′ ⊆ K. In addi-
tion, asH varies, we have a canonical group-change mapG/K[H] →
G/K[H ′] wheneverH ′ ⊆ H. To understand the variance inH (which
may appear backwards), observe that for a contravariant functorX, the map
X(G/K[H ′]) → X(G/K[H]) goes from a space with some group acting
to a space with a quotient group acting. This leads to the precise definition
of the category∆OG. We emphasize that the variance inH is opposite to
that ofK.

Definition 1.2. Let∆OG be the category that has one objectG/K[H] for
each pair of closed subgroupsH ⊆ K. Maps are defined by

∆OG(G/K1[H1], G/K2[H2]) =

{
G/H1 if H2 ⊆ H1 ⊆ K1 ⊆ K2

∅ otherwise

Composition of maps is induced by multiplication inG. We define the cate-
gory∆OGU of∆OG-spaces to be the category of continuous contravariant
functors from∆OG to spaces.

Again we define weak equivalences, rational equivalences, andp-adic
equivalences objectwise, and form the homotopy category, rational homo-
topy category, andp-adic homotopy category of∆OG-spaces by formally
inverting the corresponding equivalences.

Regarding theobjectG/K[H]as theorbitG/KwithaG/H-actiondefines
a (covariant) functor from∆OG toOG: The functor sends theobjectG/K[H]
to G/K, and sends the morphism space∆OG(G/K1[H1], G/K2[H2]) =
G/H1 to the morphism spaceOG(G/K1, G/K2) = G/K2 via the quo-
tient map whenH2 ⊆ H1 ⊆ K1 ⊆ K2. Composing with the functor
∆OG → OG, we therefore obtain a functorI fromOGU to∆OGU . Clearly
I preserves weak equivalences, rational equivalences, andp-adic equiva-
lences, and so it passes to the categories obtained by formally inverting
these equivalences. In Sect. 7, we show:

Theorem 1.3. The functorI induces full embeddings of:

(i) The homotopy category ofOG-spaces in the homotopy category of
∆OG-spaces,

(ii) The rational homotopy category ofOG-spaces in the rational homotopy
category of∆OG-spaces, and

(iii) The p-adic homotopy category ofOG-spaces in thep-adic homotopy
category of∆OG-spaces for each primep.

In order tounderstand theembeddings,wealsowant to identify the image
of I. IfwestartwithanobjectX inOGU , thenbydefinitionIX(G/K[H]) =
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X(G/K) for everyH ⊆ K. Define the categoryIm∆ to be the full subcat-
egory of the homotopy category of∆OGU consisting of those objects for
which any mapX(G/K[H])→ X(G/K[K]) is a weak equivalence for all
subgroupsH ⊆ K; likewise defineIm∆

0 andIm∆
p to be the respective full

subcategories of the rational andp-adic homotopy categories of∆OGU con-
sisting of those objects for which any mapX(G/K[H]) → X(G/K[K])
is a rational andp-adic equivalence. In Sect. 7, we prove:

Theorem 1.4. An objectX in the homotopy category, rational homotopy
category, orp-adic homotopy category of∆OG-spaces is isomorphic to
an object in the image ofI if and only ifX is in Im∆, Im∆

0 , or Im∆
p

respectively.

Thus, we have equivalences of categories between the equivariant ho-
motopy category andIm∆, the equivariant rational homotopy category and
Im∆

0 , and the equivariantp-adic homotopy category andIm
∆
p .

2 Diagrams of bundles

Since the categoriesOG and∆OG are topologized,OG-spaces and∆OG-
spaces cannot be used directly to produce algebraic models unlessG is
finite. Dwyer and Kan [3] showed that equivariant homotopy theory can be
reduced to the theory of diagrams on a certain discrete category and the
theory of fibrations. In this section, we describe a slightly different such
reduction that follows similar ideas.

We say that a map ofG-spacesX → Y is anunderlying weak equiv-
alencewhen it is a non-equivariant weak equivalence. The projection map
EG × X → X is an underlying weak equivalence, and so everyG-space
is underlying weak equivalent to a freeG-space. A basic tenet of bundle
theory is that aG-spaceX is determined up to underlying weak equivalence
by the classifying mapq : EG ×G X → BG. Precisely,X is underlying
weak equivalent to theG-space obtained as the pullback alongq of the map
EG → BG, as this is again theG-spaceEG × X. In anOG-spaceX,
theG/H-spaceX(G/H) is determined only up to underlying weak equiv-
alence, and this piece of the structure can therefore be recovered from a
classifying map. The goal is to fit these classifying maps together in such a
way that the wholeOG-space can be recovered.

The first difficulty is that the different objects in theOG diagram have
actions of different groups. For an Abelian groupG, the universal bundle
E(G/H)→ B(G/H) is covariant inG/H, whereas the spacesX(G/H) in
anOG-spaceX are contravariant. We have introduced the subdivided orbit
category∆OG in the previous section precisely to deal with this problem.
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For a mapG/K1[H1] → G/K2[H2], we have contravariance both in the
universal bundles

(E(G/H1)→ B(G/H1))←− (E(G/H2)→ B(G/H2))

and the spacesX(G/K1[H1]) ← X(G/K2[H2]). In fact, in contrast to
OG-spaces, we can define a∆OG-spaceE by

(2.1) E(G/K[H]) = E(G/H).

The final mapE → ∗ is a weak equivalence.
Before proceeding, we should note one other complication. We can re-

cover theG-spaceX up to underlyingweakequivalence from the classifying
mapEG×GX → BG, even if it is known only up to weak equivalence in
the category of spaces overBG. However, if we know the classifying map
only up to rational orp-adic equivalence, we cannot necessarily recoverX
up to underlying rational orp-adic equivalence. An instructive example is
the case ofX = S2 with the antipodal action ofG = Z/2Z. Here, the map
S2 → ∗ is not a rational equivalence but induces a rational equivalence on
Borel constructions. The classifying map therefore cannot distinguish the
freeZ/2Z-spaceS2 from the trivialZ/2Z-space∗. This problem is directly
related to the fact that the group in the example is not connected. When
G is connected,BG is simply connected, and it follows from the ideas of
Eilenberg and Moore [4] that pullbacks along the fibrationEG→ BG pre-
serve homology isomorphisms. For this reason, we base our main bundle
constructions on an action of the identity componentGe and separate out
the action of the finite groupπ0G = G/Ge. Instead of working with the
classifying spaceBG, we work instead with theπ0G-spaceEG/Ge, which
is (non-equivariantly) equivalent toB(Ge).

Now we combine these two ideas to define a categoryB of bundle dia-
gramswhose various homotopy categories are equivalent to the correspond-
ing homotopy categories of∆OG-spaces. Motivated by the observations
above, the functor from∆OG-spaces to this new category takesX to a
diagram of bundles of the form

E(G/H)×(G/H)e
X(G/K[H])→ E(G/H)/(G/H)e,

in other words, of the form

E(G/K[H])×(G/H)e
X(G/K[H])→ E(G/K[H])×(G/H)e

∗.

Wewant our diagrams to be indexedonadiscrete categoryD, andexamining
how these bundles fit together leads us to the following definition.
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Definition 2.2. LetD be the homotopy category of∆OG: its objects are
the same as the objects of∆OG, and maps are

D(G/K1[H1], G/K2[H2]) = π0(∆OG(G/K1[H1], G/K2[H2]))
= π0(G/H1)

if H2 ⊆ H1 ⊆ K1 ⊆ K2 and∅ otherwise. We define the categoryDU of
D-spaces to be the category of contravariant functors fromD to spaces.

We emphasize that althoughD is a homotopy category, a functor inDU
has codomain the category of spaces as opposed to the homotopy category
of spaces.

The prescription

QX(G/K[H]) = E(G/K[H])×(G/H)e
X(G/K[H])

defines a functorQ from ∆OG-spaces toD-spaces. We writeB for Q∗,
where∗ is the constant∆OG-space on the one-point space. We regardQ as
a functor fromOGU toDU/B.
Definition 2.3. The categoryB is the categoryDU/B of D-spaces lying
overB.

In other words, an object ofB consists of an objectY of DU together
with a mapY → B. A map inB is a map inDU that commutes with the
maps toB.

We define weak equivalences, rational equivalences, andp-adic equiv-
alences inB objectwise for the underlyingD-space. As always, we form
the homotopy category, rational homotopy category, andp-adic homotopy
category ofB by formally inverting those maps that are weak equivalences,
rational equivalences, andp-adic equivalences respectively. It follows from
classical bundle theory (and the Serre spectral sequence) that the functor
Q preserves weak equivalences, rational equivalences, andp-adic equiva-
lences, and so we obtain induced functors between the various homotopy
categories of∆OG-spaces and the corresponding homotopy categories of
B. In Sect. 6, we show:
Theorem 2.4. The functorQ induces equivalences between the homotopy
category, rational homotopy category andp-adic homotopy category of
∆OG-spaces and the corresponding homotopy categories ofB.

Onceagain,wealsowish to identify thoseobjectsequivalent toG-spaces,
or equivalently, toOG-spaces. For anOG-spaceX, the∆OG-spaceIX has
the property that

IX(G/K[H]) = X(G/K) = IX(G/K[K])
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and the structure mapsG/K[K] → G/K[H] induce the identity isomor-
phism. It follows that for the objectQIX of B,
QIX(G/K[H]) = E(G/H)×(G/H)e

IX(G/K[H])

= E(G/H)×(G/H)e
X(G/K)

∼= B(G/H)×B(G/K) E(G/K)×(G/K)e
X(G/K)

∼= B(G/K[H])×B(G/K[K]) QIX(G/K[K]).

With this as motivation, we defineImB, ImB
0 , and Im

B
p to be the full

subcategories of the homotopy category, rational homotopy category, and
p-adic homotopy category ofB, consisting of those objectsY for which the
map

(2.5) Y (G/K[H])→ B(G/K[H])×B(G/K[K]) Y (G/K[K]).

induced by[e] ∈ π0G/K = D(G/K[K], G/K[H]) is a weak equivalence,
rational equivalence, andp-adic equivalence respectively. In Sect. 6, we
prove:

Theorem 2.5. An objectY in the homotopy category, rational homotopy
category, orp-adic homotopy category ofB is isomorphic to an object in
the image ofQI if and only ifX is in ImB, ImB

0 , or Im
B
p respectively.

3 The algebraization theorems

Armed with descriptions of the equivariant rational andp-adic homotopy
categories in terms of diagrams on a discrete category, we explain the alge-
braization theorems. The basic idea is that any (contravariant) functor from
spaces to some category of algebras defines a functor from the over cate-
gory B to the category of (covariant)D-diagrams of algebras lying under
the diagram obtained fromB. When the functor preserves rational orZ/pZ
homology isomorphisms, it induces a functor on the rational orp-adic homo-
topy categories. We apply this observation to the Thom–Sullivan DeRham
and singular cochain functors.

Definition 3.1. LetΩ∗ denote the functor from spaces to commutative dif-
ferential gradedQ-algebras obtained by applying the polynomial DeRham
functor of [10] to the singular simplicial set of a space. LetC∗ denote the
singular cochain functor from spaces toE∞ F̄p-algebras.

We consider the category of (covariant) functors fromD to commutative
differential gradedQ-algebras and likewise toE∞ F̄p-algebras. We call
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objects in these categoriesD-CDGAs andD-E∞DGAs respectively. Weak
equivalences in these categories are maps that are quasi-isomorphisms at
each object. Applying the functorsΩ∗ andC∗ objectwise to aD-space, we
obtain functors fromD-spaces toD-algebras.
Definition 3.2. LetΩ∗ be the functor fromD-spaces toD-CDGAs defined
by applyingΩ∗ objectwise. LetC∗ be the functor fromD-spaces toD-
E∞DGAs defined by applyingC∗ objectwise.

If we apply the functorΩ∗ to an objectY of B, we obtain not just aD-
CDGAΩ∗Y , but alsoamapofD-CDGAsΩ∗B → Ω∗Y . Since thestructure
mapY → B is necessary in the definition of the categoryB to obtain
the embedding of the rational equivariant homotopy category, we should
expect that to obtain an embedding of the rational homotopy category into
a homotopy category in algebra, we should need some form of the structure
mapΩ∗B → Ω∗Y . We could look at the category ofD-CDGAs under
Ω∗B, but this might not have the correct homotopy category. An analogy to
keep in mind is that the category of spaces under a given spaceX typically
does not contain all the homotopy types expected from the homotopy type
ofX if X is not homotopy equivalent to a CW complex. Similarly, we need
to look at the category ofD-CDGAs under a suitably nice quasi-isomorphic
replacement forΩ∗B.

In [7] it is shown that a diagram category of commutative differential
gradedQ-algebras or ofE∞ F̄p-algebras is a closed model category. We
therefore have a notion ofcofibrant object, and the factoring axioms allow
us to choose acofibrant approximationP 0 of Ω

∗B and a cofibrant approx-
imationP p of C

∗B. This is one precise meaning for the phrase “suitably
nice quasi-isomorphic replacement”. However, to prove the theorems we
are after, we do not need to put such a stringent requirement onP 0 and
P p; we only need to choose an objectwise cofibrant approximation. Since
we assume that the reader interested in thep-adic case is familiar with [6],
we do not review the definition of a cofibrantE∞ F̄p-algebra. It is entirely
analogous to the definition of a cofibrant commutative differential graded
Q-algebra from [1], which we do review.

Definition 3.3. Let R be a commutative differential gradedQ-algebra
(CDGA).Wesay thatR is cellular if thereexist gradedsubmodules (X0 = 0),
X1,X2, . . . of theunderlying graded module ofR such that

(i) The differential of any element inXn is in the sub- graded algebra
generated byX0,. . . ,Xn−1.

(ii) The underlying graded algebra ofR is the free graded commutative
algebra onX1 ⊕X2 ⊕ · · · .

We say thatR is cofibrant if it is a retract of a cellular CDGA.
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A standard trick inmodel category theory for finding aweak equivalence
from a cellular object to an arbitrary object is calledQuillen’s small object
argument, and it is explained for CDGA’s in [1, pp. 20–22]. In this context,
it gives a functorΓ from the category of CDGA’s to itself and a natural
quasi-isomorphismΓ → Id such that for any CDGAR, ΓR is a cellular
CDGA. We have an analogous construction forE∞DGA’s. The following
proposition is an immediate consequence.

Proposition 3.4. There exists aD-CDGA P 0 and a quasi-isomorphism
P 0 → Ω∗B, such thatP 0(G/K[H]) is acofibrantCDGAforeveryG/K[H]
in D. There exists aD-E∞DGAP p and a quasi-isomorphismP p → C∗B,
such thatP p(G/K[H]) is a cofibrantE∞DGA for everyG/K[H] in D.

We choose and fix such objectsP 0 andP p. The functorsΩ∗ andC∗
now take objects inB to objects underP 0 andP p. We denote these under-
categories asA0 andAp respectively.
Definition 3.5. LetA0 denote the functor fromB toA0 induced byΩ∗; let
Ap denote the functor fromB toAp induced byC∗. We define the functor
A0 fromG-spaces toA0 to be the compositeA0 ◦Q ◦ I ◦Φ, and the functor
Ap fromG-spaces toAp to be the compositeAp ◦Q ◦ I ◦ Φ.

The functorA0 converts rational equivalences to quasi-isomorphisms
and the functorAp convertsp-adic equivalences to quasi-isomorphisms.We
therefore obtain functorsA0 andAp on the homotopy categories obtained
by inverting these equivalences.

We can now explain the main theorems of the introduction. We say that
an objectY of B is simply connectedif each component ofY (G/K[H])
is simply connected for allG/K[H]. Likewise, we say thatY is finiteQ-
or p- type if eachY (G/K[H]) is finiteQ- or p- type. Clearly, when aG-
spaceX is G-simply connected andG-finite type, the objectQIΦX of B
is simply connected and finite type. Theorems 1.1, 1.3, and 2.4 show that
the functorQ ◦ I ◦ Φ embeds the rational equivariant homotopy category
in the rational homotopy category ofB and embeds thep-adic equivariant
homotopy category in thep-adic homotopy category ofB. Therefore, the
main theorems are immediate corollaries of the following theorem that we
prove in Sect. 5.

Theorem 3.6.

(i) The functorA0 embeds the full subcategoryof simply connectedfiniteQ-
type objects in the rational homotopy category ofB as a full subcategory
of the homotopy category ofA0.

(ii) The functorAp embeds the full subcategory of the simply connected
finite p-type objects in thep-adic homotopy category ofB as a full
subcategory of the homotopy category ofAp.
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AsaconsequenceofTheorems1.1, 1.3, 2.4, and3.6,weobtainanembed-
ding of the equivariant rational homotopy category ofG-simply connected
G-finite typeG-spaces as a full subcategory of the homotopy category of
A0. To complete the picture we need an intrinsic characterization of the
D-CDGAs in this subcategory. For this, recall that a graded commutative
algebra is said to befinite typeif it is finitely generated as a module in each
degreeandsimply connectedif it is concentrated in non-negative degreesand
zero in degree 1. We say that it isspacelikeif in degree zero it is a cartesian
product of copies ofQ. In Sect. 6, we prove the following characterization
theorem.

Theorem 3.7. LetR be an object ofA0. ThenR is isomorphic in the homo-
topy category ofA0 toA0X for someG-simply connectedG-finiteQ-type
spaceX if and only if:

(i) H∗R(G/K[H]) is finite type, simply connected, and spacelike for all
G/K[H] in D,

(ii) The natural map
H0R(G/K[H])⊗H2P 0(G/K[H])→ H2R(G/K[H])
is injective for allG/K[H] in D, and

(iii) The natural map

TorP 0(G/K[K])(P 0(G/K[H]), R(G/K[K]))→ R(G/K[H])

is a quasi-isomorphism for allG/K[H] in D.
Condition (i) ensures that eachR(G/K[H]) is equivalent to theDeRham

functor applied to a simply connected finite type space. Condition (ii) is
needed because the Borel construction of a(G/H)e-space can be simply
connected evenwhen the original space is not. In condition (iii),Tor denotes
the differential torsion product; this condition is the algebraic analogue of
the condition 2.5 for an object ofB to be inIm∆

0 .
In the F̄p context, the cohomology of anE∞ algebra has an operation

calledP 0; we say that a finite type graded commutative algebra with an
operationP 0 is spacelike when it is generated as anF̄p-module by fixed-
points ofP 0. We have an analogous characterization theorem also proved
in Sect. 6.

Theorem 3.8. LetR be an object ofAp. ThenR is isomorphic in the homo-
topy category ofAp to ApX for someG-simply connectedG-finite p-type
spaceX if and only if:

(ii) H∗R(G/K[H]) is finite type, simply connected, and spacelike for all
G/K[H] in D,

(ii) The natural map
H0R(G/K[H])⊗H2P p(G/K[H])→ H2R(G/K[H])
is injective for allG/K[H] in D, and
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(iii) The natural map

TorP p(G/K[K])(P p(G/K[H]), R(G/K[K]))→ R(G/K[H])

is a quasi-isomorphism for allG/K[H],

In condition (iii),Tor denotes theE∞ torsion product (see for example
[6, 3.1]).

4 Simplified diagrams

The last section described our algebraic models in general, but in the case
when thegroupG is connected, that is,whenG is a torusTn, wecansimplify
these models and use smaller diagrams. The idea is to take advantage of the
fact that the mapB(G/H)→ B(G/K) is a rational equivalence when the
index ofH in K is finite and is ap-adic equivalence when the index ofH
in K is prime top. WhenG is the circleT = S1, we can specify in detail
a choice for the cofibrant approximationP 0 for the simplified diagrams in
the rational context, and we recover theT-systems of the second author’s
thesis [9].

LetD0 be the subcategory ofD consisting of only those objectsG/K[H]
with H connected, and letDp be the subcategory ofD of objectsG/K[H]
with π0H a p-group. These subcategories will form the shape of our sim-
plified diagrams. The inclusion of these categories inD induces functorsJ0
andJp from D-spaces toD0-spaces andDp-spaces. We letB′

0 andB′
p be

the over categoriesDU/J0B andDU/JpB. We therefore obtain functors
J0 : B → B′

0 andJp : B → B′
p.

To compare the simplified categoriesB′
0 andB′

p to the originalB we
produce functors going the other direction. Since we are assuming thatG is
connected, the mapping sets inD, D0, andDp are either empty or a single
point. It follows that we can define a functorK0 : D0U → DU by

K0Z(G/K[H]) = Z(G/K[He]),

whereHe is the identity component ofH. Similarly we can define a functor
Kp : DpU → DU by

KpZ(G/K[H]) = Z(G/K[Hp]),

whereHp denotes thep-Sylow subgroupofH, the subgroup ofH consisting
of those components that are in thep-Sylow subgroup ofπ0H. SinceHe ⊆
Hp ⊆ H, we have maps inD

G/K[H]→ G/K[Hp]→ G/K[He]

and these induce natural transformationsK0J0 → Id andKpJp → Id.
Using thesemaps onB, we obtain functorsK0 : B′

0 → B andKp : B′
p → B.
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Proposition 4.1. The functorK0 embeds the rational homotopy category of
B′

0 as a full subcategory of the rational homotopy category ofB. The functor
Kp embeds thep-adic homotopy category ofB′

p as a full subcategory of the
p-adic homotopy category ofB.
Proof. The functorsJ0, Jp,K0,Kp preserve the relevant equivalences and
so induce functors on the relevant homotopy categories. The composite
functorsJ0K0 andJpKp are the identity functors, and the natural transfor-
mationsK0J0 → Id andKpJp → Id are isomorphisms on objects in the
image ofK0 andKp respectively.

In order to understand the restriction of the functorsJ0 andJp to ImB
0

and ImB
p , we need the following key fact that served as our motivation

above.

Proposition 4.2. The mapK0J0B → B (resp.KpJpB → B) is a rational
(resp.p-adic) equivalence.

Proof. The map

B(G/He) = B(G/K[He])→ B(G/K[H]) = B(G/H)

is anH/He-bundle. SinceH/He is a finite group that acts trivially on the
homology ofB(G/He), thismap is a rational equivalence. Similarly,H/Hp

is a finite group with order prime top that acts trivially on the homology
of B(G/Hp), and so the mapB(G/K[Hp]) → B(G/K[H]) is a p-adic
equivalence.

We defineIm
B′

0
0 to be the full subcategory of the rational homotopy

category ofB′
0 consisting of those objectsZ for which the maps

Z(G/K[H])→ B(G/K[H])×B(G/K[K]) Z(G/K[K]).

are rational equivalences for allG/K[H] in D0. Likewise, defineIm
B′

p
p to

be the full subcategory of thep-adic homotopy category ofB′
p consisting

of those objects for which the analogous maps arep-adic equivalences for
allG/K[H] inDp. Then the previous proposition and the Eilenberg–Moore
spectral sequence give the following.

Proposition 4.3. The functorsJ0 andK0 restrict to inverse equivalences

of Im
B′

0
0 andImB

0 . The functorsJp andKp restrict to inverse equivalences

of Im
B′

p
p andImB

p .

In algebra, we have analogous functorsJ∗ andK∗ between the functor
categories onD and the functor categories onD0 andDp. We abbreviate
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J0P 0 andJpP p toP
′
0 andP

′
p, and we letA′

0 andA′
p denote the categories

of D0-CDGAs underP ′
0 and ofD-E∞DGAs underP ′

p respectively. The
same argument as that of Proposition 4.1 shows thatK0 andKp embed the
homotopy categories ofA′

0 andA′
p in the homotopy categories ofA0 and

Ap respectively. We obtain the following version of our main theorems.

Theorem 4.4. LetG be a torus.

(i) The functorA0 from the equivariant rational homotopy category to the
homotopy category ofA′

0 is full and faithful on the full subcategory of
G-simply connectedG-finiteQ-typeG-spaces.

(ii) The functorAp from the equivariantp-adic homotopy category to the
homotopy category ofA′

p is full and faithful on the full subcategory of
G-simply connectedG-finitep-typeG-spaces.

The obvious analogues of the characterization Theorems 3.7 and 3.8 are
also immediate consequences.

Finally, we close this section with a concrete description of the rational
models we obtain whenG is the circle groupT = S1. SinceT has pre-
cisely two connected subgroups,e andT, the categoryD0 therefore consists
of the objectsG/H[e] for H ⊆ T and the objectG/T[T]. Observe that
J0B(G/H[e]) = BT and the map induced byG/K[e] → G/H[e] is the
identity.J0B(G/T[T]) = B(T/T) = ∗. SinceH∗BT is the polynomial al-
gebra on a generatorc in degree2, choosing a representing cycle gives amap
of CDGA’s fromQ[c] toΩ∗BT. The unit mapQ→ Ω∗∗ is an isomorphism.
Definition 4.5 (Rational models for the circle group).Define theD0-
CDGAP ′

0 byP ′
0(G/H[e]) = Q[c], andP ′

0(G/T[T]) = Q. This is a cofi-
brant approximation ofJ0Ω

∗B. The categoryA′
0 is the under category of

D0-CDGAs, under thisP ′
0.

This is the category described in [9].

5 Proof of Theorem 3.6

Theorem 3.6 compares an over category of diagrams of spaces with under
categories of diagrams of algebras. In the present context where our objects
are indexed on the discrete diagramD, we can use the singular complex and
geometric realization functors to translate the problem into the analogous
problem for simplicial sets. LetS denote the category of simplicial sets, let
DS denote the category ofD simplicial sets, the category of contravariant
functors fromD toS. We denote byBs the singular complex ofB; in other
words,Bs is theD simplicial set withBs(G/K[H]) the singular complex
of B(G/K[H]). LetBs be the categoryDS/Bs of D simplicial sets lying
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overBs. We can regard the singular complex as a functor fromB to Bs;
as such, it preserves weak equivalences, rational equivalences, andp-adic
equivalences. Standard arguments give the following observation.

Proposition 5.1. The singular complex functor induces equivalences of:

(i) The homotopy category ofB and the homotopy category ofBs.
(ii) The rational homotopy category ofB and the rational homotopy cate-

gory ofBs.
(iii) The p-adic homotopy category ofB and thep-adic homotopy category

ofBs.

The functorsA0 andApthat we consider in Theorem 3.6 are defined
by objectwise application of a functor on simplicial sets to the singular
complex of an object ofB. In other words, both of these functors factor
through the categoryBs. We denote the corresponding functors onBs by
the same symbols:A0 applies the polynomial DeRham functorΩ∗ andAp

applies the cochain functorC∗ objectwise to an object ofB. Thus, to prove
Theorem 3.6, it suffices to prove the following simplicial analogue.

Theorem 5.2.

(i) The functorA0 embeds the full subcategory of simply connected fi-
niteQ-type objects in the rational homotopy category ofBs as a full
subcategory of the homotopy category ofA0.

(ii) The functorAp embeds the full subcategory of the simply connected
finite p-type objects in thep-adic homotopy category ofBs as a full
subcategory of the homotopy category ofAp.

The advantage of working in the simplicial context is that now the func-
torsA0 andAp have adjoints. In [1], Bousfield and Gugenheim construct an
adjointU0 to the DeRham functor and essentially the same construction in
[6] givesanadjointUp to the cochain functor. LetU0 andUp denote the func-
tors fromD-CDGAs andD-E∞DGAs toDS obtained by applyingU0 and
Up objectwise. Aneasyexercise in category theory proves that these functors
are then adjoint to the functorsΩ∗ andC∗ defined in 3.2. SinceU0P 0 is gen-
erally notBs,U0 does not define a functor fromA0 toBs. On the other hand,
the(Ω∗, U0) adjunction does give us a mapBs → U0Ω

∗Bs → U0P 0, and
so we can define a functorV0 : A0 → Bs by

V0R = Bs ×U0P 0
U0R.

A check of universal properties shows thatV0 is adjoint toA0. Similarly, we
defineVp : Ap → Bs by VpR = Bs ×UpP p

UpR, andVp is adjoint toAp.
The next obstacle is that the functorsV0 andVp do not preserve weak

equivalences. In fact, the functorsU0 andUp already do not preserve weak
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equivalences. This is handled in [10] by using minimal models, and simi-
larly in [1] and [6] by using cofibrant approximation. It is shown in [1] and
[6] that U0 andUp do preserve weak equivalences between cofibrant ob-
jects. In current jargon, the(Ω∗, U) and(C∗, U) adjunctions formQuillen
adjoint pairs, which means that in additionU0 andUp convertcofibrations
to Kan fibrations of simplicial sets. We recall the definition of cofibration of
CDGA’s.

Definition 5.3. LetA → B be a map of CDGA’s. LetA� denote the un-
derlying graded commutative algebra ofA. We say thatA→ B is cellular
if there exist graded submodules (X0 = 0), X1, X2, . . . of theunderlying
graded module ofB such that

(i) The differential of any element inXn is in the sub- gradedA�-algebra
generated byX0,. . . ,Xn−1.

(ii) The underlying gradedA� algebra ofR is the free graded commutative
A� algebra onX1 ⊕X2 ⊕ · · · .

We say thatA → B is a cofibration (writtenA � B) if it is the retract of
some cellular mapA′ → B′.

The definition of cofibration ofE∞algebras is entirely similar. The def-
inition of cofibration is just a relative form of the definition of cofibrant: An
object is cofibrant if and only if the map from the initial object is a cofi-
bration. Although it may not be obvious from the definition given above, it
turns out that the composition of cofibrations is a cofibration; this is one of
the axioms of a closed model category structure.

A relative formof the constructionof the cofibrant approximation functor
alluded to in section 3 gives a factorization functor that takes amapf : A→
B to the composite of a cofibrationA � B′ and a weak equivalenceB′ →
B, functorially in f . Functoriality here means that when the diagram on
the left commutes, the construction gives a mapB′ → D′ that makes the
factorization diagram on the right commute.

A ��

��

B

��

A �� ��

��

B′ ∼ ��

��

B

��
C �� D C �� �� D′ ∼ �� D

Applying this toD diagrams, we obtain objectwise cofibrant approximation
functor inA0.

Proposition 5.4. There exists a functorΓ 0 : A0 → A0 and a natural
quasi-isomorphismγ : Γ 0 → Id, such that for everyR, the initial map
P 0 → Γ 0R is an objectwise cofibration, that is, the mapP 0(G/K[H])→
(Γ 0R)(G/K[H]) is a cofibration of CDGA’s for everyG/K[H] in D.
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Similarly, we obtain an objectwise cofibrant approximation functorΓ p
in the categoryAp.
Proposition 5.5. The functorV0Γ 0 converts quasi-isomorphisms inA0 to
rational equivalences inBs. The functorVpΓ p converts quasi-isomorphisms
in Ap to p-adic equivalences inBs.

Proof. The functorU0 preserves weak equivalences between cofibrant
CDGA’s and converts cofibrations of CDGA’s to Kan fibrations. It follows
that U0Γ 0 preserves weak equivalences between objectwise cofibrant
objects and converts objectwise weak equivalences to objectwise Kan fibra-
tions. Thus,U0P p(G/K[H]) is a Kan complex andU0Γ 0R(G/K[H])→
U0P p(G/K[H]) is a Kan fibration for everyR inA0 and everyG/K[H] in
D. SinceBs is simply connected,U0P 0 is simply connected, and it follows
from theEilenberg–Moorespectral sequence that thepullbackBs×U0P 0

(−)
preserves rational equivalences. We conclude that

V0Γ 0(−) = Bs ×U0P 0
U0Γ 0(−)

converts quasi-isomorphisms to rational equivalences. Thep-adic case is
entirely similar.

We obtain an induced functorV0 from the homotopy category ofA0 to
the rational homotopy category ofBs, and an induced functorVp from the
homotopy category ofAp to thep-adic homotopy category ofBs. A standard
model category argument then gives the following result, but we include a
self-contained proof.

Proposition 5.6. The derived functors(A0,V0) and(Ap,Vp) are adjoint
pairs.

Proof. Let η : Id→ V0A0 andε : Id→ A0V0 be the unit and counit of the
(A0, V0) adjunction.We obtain a natural transformationε′ : Γ 0 → A0V0Γ 0,
and using the natural transformationγΓ 0 → Id, we obtain a natural trans-
formationη′ : Id→ V0Γ 0A0. For an objectY in Bs, the composite

Γ 0A0Y
ε′−→ A0V0Γ 0A0

A0η′
−−−→ A0Y

is the natural transformationγ. Conversely, for an objectR inA0, the com-
posite

V0Γ 0R
η′
−→ V0Γ 0A0V0Γ 0R

V0Γ 0ε
′γ−−−−−→ V0Γ 0R

is the identity. In the homotopy category ofA0, the natural mapγ is an
isomorphism, and using the inverse natural isomorphismγ−1, an easy check
verifies that the derived functorsA0 andV0 are adjoint. The argument in
thep-adic case is entirely similar.
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We can now prove Theorem 5.2.

Proof (Proof of Theorem 5.2).We treat the rational case in detail; thep-adic
case follows by analogous arguments. Using the previous proposition, it
suffices to show that the unit of the adjunction

η′ : Y → V0Γ 0A0Y

is a rational equivalencewheneverY is a simply connected and finiteQ-type
object ofBs.

By construction, eachCDGA(Γ 0A0Y )(G/K[H]) is a cofibrant approx-
imation of(A0Y )(G/K[H]) = Ω∗(Y (G/K[H])). The main argument of
[1] is that the map

Y (G/K[H])→ U0(Γ 0A0Y )(G/K[H])

is a rational equivalence sinceY (G/K[H]) is a simply connected finite
Q-type space. SinceU0 converts cofibrations to Kan fibrations, the map

U0(Γ 0A0Y )(G/K[H])→ U0P 0

is a Kan fibration between simply connected Kan complexes, and it follows
that the maps

Y (G/K[H])→ Bs×U0P 0
U0Γ 0A0Y (G/K[H])→ U0Γ 0A0Y (G/K[H])

are rational equivalences. Since the first map isη′ onG/K[H], it follows
thatη′ is a rational equivalence.

6 The sections functor and the proof of the characterization theorems

In this section, we prove the characterization Theorems 3.7 and 3.8. It turns
out that it ismucheasier to prove these theoremsusing the category of∆OG-
spaces rather than the categoryB. For this reason, we introduce thesections
functorS inverse to the bundle functorQ. This functor is also exactly what
is needed to prove Theorems 2.4 and 2.5 from Sect. 2, giving the passage
from diagrams of spaces to bundles, and so we begin with the proof of these
theorems.

The most concise way to define the functorS is to note that the map
that takes a space to its set of components defines a functor∆OG → D
that allows us to regard aD-space as a∆OG-space. Recall thatE is the
∆OG-space defined in (2.1) asE(G/K[H]) = E(G/H), andB is given
by B(G/K[H]) = E(G/H)/(G/H)e (as aπ0G space). Then we have a
map of∆OG-spacesE → B. For an objectY of B, we define

SY = E ×B Y ,
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the pullback in the category of∆OG-spaces. In concrete terms
SY (G/K[H]) = E(G/K[H])×B(G/K[H]) Y (G/K[H])

= E(G/H)×(E(G/H)/(G/H)e) Y (G/K[H]).

ThenS defines a functor fromB to∆OGU .
ThemapE(G/H)→ E(G/H)/(G/H)e is a fibration, and so the func-

torS preservesweakequivalences.Moreover,E(G/H)/(G/H)e is amodel
for B(G/H)e and is therefore connected and simply connected; it follows
from the Eilenberg–Moore spectral sequence thatS also preserves rational
equivalences andp-adic equivalences.

Proof (Proof of 2.4).Consider the composite functorSQ. For any∆OG-
spaceX, we have

SQX(G/K[H])
= E(G/K[H])×(E(G/K[H])×(G/H)e∗) (E(G/K[H])×(G/H)e

X(G/K[H]))
∼= E(G/K[H])×X(G/K[H])

= (E×X)(G/K[H]).

These isomorphisms are natural inG/K[H] and so we obtain a natural
isomorphismSQX ∼= E× X. The weak equivalenceE → ∗ induces a
natural weak equivalenceSQ→ Id.

Now consider the other composite. By definition,

QSY (G/K[H]) = E(G/H)×(G/H)e
SY (G/K[H])

∼= E(G/H)×(G/H)e
(E(G/H)×B(G/K[H]) Y (G/K[H]))

∼= (E(G/H)×(G/H)e
E(G/H))×B(G/K[H]) Y (G/K[H])

There is a homotopy equivalence

B(G/K[H]) = E(G/H)/(G/H)e → E(G/H)×(G/H)e
E(G/H)

whose composite with both projection maps toB(G/K[H]) is the identity;
it is constructed using the diagonal map ofE(G/H). Using this, we can
define a mapY (G/K[H]) → QSY (G/K[H]) which commutes with the
projections toB(G/K[H]), and this map is also a homotopy equivalence.
These maps fit together to give a natural weak equivalenceId→ QS.

Proof. (Proof of 2.6.)An easy bundle argument shows that the functorQ
takes objects inIm∆, Im∆

0 , andIm
∆
p to objects inImB, ImB

0 , andIm
B
p .

Likewise, aneasybundleargument togetherwith theEilenberg–Moore spec-
tral sequence implies that the functorS takes objects inImB, ImB

0 , andIm
B
p

to objects inIm∆, Im∆
0 , andIm

∆
p .
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Now we move on to the proof of the characterization theorems.

Proof (Proof of Theorems 3.7 and 3.8).
Let X be aG-simply connected andG-finite Q- or p- typeG-space.

ThenH∗A0X andH∗ApX are isomorphic as commutative algebras to the
cohomologyofBorel constructionsonXK ; since thesearesimply connected
and finiteQ- or p- type spaces, their cohomology satisfies condition (i).
We have that each spaceXK is (non-equivariantly) homotopy equivalent
to the fiber of the mapIΦX(G/K[H]) → B(G/K[H]), and so itsQ- or
Z/pZ- cohomology is calculatedby theEilenberg–Moorespectral sequence.
Looking at this spectral sequence, we see thatH1XK is the kernel of the
differential

H0XK ⊗H2B(G/K[H])→ H2XK .

Since eachXK is simply connected, condition (ii) holds. Finally, we have
thatIΦX(G/K[H]) is isomorphic to the fiber product

B(G/K[H])×B(G/K[K]) IΦX(G/K[K])

and the mapIΦX(G/K[K]) → B(G/K[K]) is a fibration, and so by [1,
3.1] or [6, 5.2], condition (iii) holds.

In proving the converse, consider first the rational case. SupposeR sat-
isfies conditions (i), (ii), and (iii). We can assume without loss of generality
thatR is objectwise cofibrant by replacingR by Γ 0R if necessary. Now
B is not rational, butE is, and so (as mentioned above) it is much easier
to make the arguments in the category of∆OG-spaces than it is inB. Let
X = S|V0R| where| · | denotes geometric realization. Explicitly,

X = E ×B |Bs ×U0P 0
U0R| ∼= (E ×B |Bs|)×|U0P 0| |U0R|.

It is convenient to abbreviateE×B |Bs| toE′. SinceE → B is an objectwise
fibration and|Bs| → B is an objectwise weak equivalence, we have thatE′
is objectwise contractible. It follows thatX(G/K[H]) is a rational space for
all G/K[H]. By condition (i),U0R(G/K[H]) is finiteQ-type and simply
connected for allG/K[H], and soX is finite Q-type. To see thatX is
simply connected, it suffices to show thatH1X(G/K[H]) = 0, and this
follows from condition (ii) and the Eilenberg–Moore spectral sequence (and
[1, 3.1]). Finally, condition (iii) implies that the map

U0R(G/K[H])→ U0P 0(G/K[H])×U0P 0(G/K[K]) U0R(G/K[K])

is a rational equivalence, and so the map

X(G/K[H])→ (E′(G/K[H])×U0P 0(G/K[K]) U0R(G/K[K])

→ E′(G/K[K])×U0P 0(G/K[K]) U0R(G/K[K]) = X(G/K[K]),
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obtained by pulling back along the mapE′(G/K[H])→ P 0(G/K[H]), is
a rational equivalence. Thus,X is a finiteQ-type simply connected object
of Im∆

0 . ThereforeX is rationally equivalent toIΦX for someG-simply
connectedG-finiteQ-typeG-spaceX. We have quasi-isomorphisms inA0

R
∼−→ A0V0R

∼−→ A0QS|V0R| = A0QX � A0QIΦX = A0X.

Thep-adic case is identical, with [6, 5.2] taking the place of [1, 3.1].

7 Proof of Theorems 1.3 and 1.4

In this section, we prove the equivalences of categories claimed in Sect. 1.
We prove both equivalences together, by constructing a left inverse forI on
the various homotopy categories.

The first step is to construct a functorL from∆OG-spaces toOG-spaces
and a natural transformationLI → Id that is always a weak equivalence.
We constructL as a homotopy colimit.L preserves weak equivalences, ra-
tional equivalences, andp-adic equivalences, and so it induces a functor
on the various homotopy categories. This gives us retractions. To prove the
equivalences, we need to analyze the other compositeIL. Rather than com-
paringIL to the identity functor directly, wemust construct an intermediate
functorΨ from∆OGU to itself and natural transformations

(7.1) Id
ψ←− Ψ α−→ IL

We show that the backwards transformationψ is homotopy equivalence at
each object. It follows that the functorΨ preservesweak equivalences, ratio-
nal equivalences, andp-adic equivalences, and so induces a functor on the
various homotopy categories. The zigzag (7.1) then defines a natural trans-
formationη : Id → IL in each of these homotopy categories. Finally we
show thatα is a weak equivalence, rational equivalence, andp-adic equiva-
lence at each object when we restrict to the subcategoriesIm∆, Im∆

0 , and
Im∆

p respectively. We conclude thatη is an isomorphism exactly for the
objects inIm∆, Im∆

0 , andIm
∆
p respectively (as it cannot be an isomor-

phism for objects not inIm∆, Im∆
0 , andIm

∆
p ). Theorems 1.3 and 1.4 are

immediate consequences.
Since our arguments make extensive use of homotopy colimits, we be-

gin by recalling a few facts about them. First, since we are working with
contravariantfunctors to spaces, we have:

Lemma 7.2. If C is a category with initial objectc ∈ C andX is a con-
travariant functor fromC to spaces, then the inclusionX(c)→ HocolimC X
is a homotopy equivalence.
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We understandHocolim always to denote the geometric realization of
the usual categorical bar construction.Wewill use the following observation
extensively to construct maps between homotopy colimits in what follows.

Observation.LetC andD be categories, andX andY contravariant func-
tors fromC andD to spaces respectively. IfF is a functorF : C → D,
we denote the composite functorY ◦ F from D to spaces asF ∗Y . Then
a natural transformation fromX to F ∗Y induces a mapHocolimC X →
HocolimD Y .

We use the notion of aleft cofinalfunctor introduced by Bousfield-Kan
in [2]. Given a functorF : A→ B and an objectb ∈ B, letF ↓ b denote the
category whose objects are pairs(a, φ) wherea ∈ A andφ : F (a)→ b is a
map inB. Morphisms inF ↓ b between(a1, φ1) and(a2, φ2) are given by
mapsα : a1 → a2 inA such thatφ2F (α) = φ1. The functorF is left cofinal
if for every objectb ∈ B, the nerve of the categoryF ↓ b is contractible.
This notion is useful because of the following:

Lemma 7.3. If F : A→ B is a left cofinal functor andX is a contravariant
functor fromB to spaces, then the induced map

HocolimA F
∗X → HocolimB X

is a weak equivalence.

Proof. The proof follows that of TheoremXI.9.2 in [2]. The only difference
is that we are dealing with contravariant functors and direct limits rather
than covariant functors and inverse limits.

We now describe the construction ofL. LetE be the category which has
the same objects asOG but only the maps corresponding to the unite ofG.
ThereforeE(G/H,G/K) is either a single map ifH ⊆ K, or is empty. We
define∆E similarly, as the category with objects the same as∆OG and only
the unit maps. LetEH be the full subcategory ofE with objectsG/A such
thatH ⊆ A; let∆EH be the full subcategory of∆E with objectsG/B[A]
such thatH ⊆ A. DefineLX(G/H) = Hocolim∆EH

X.
To makeL into a functor onOG, observe that ifg : G/H → G/K is a

map inOG, thenH ⊆ K and∆EK is a subcategory of∆EH . Moreover,
the action ofg is well-defined onX(G/B[A]) for H ⊆ K ⊆ A ⊆ B, and
sog induces a natural transformation on the restrictionsX | ∆EK → X |
∆EH . Using the observation, we get induced structure mapsLX(G/K)→
LX(G/H) from the inclusion of categories and the twisting action of the
natural transformation. This makesLX into a functor onOG. ThereforeL
defines a functor from∆OGU toOGU .

Next we examine the composite functorLI.
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Proposition 7.4. There is a natural transformationLI → Id that is a weak
equivalence at each object.

Proof. The functorI is defined as composition with the projection∆OG →
OG. This projection also induces a projection∆EH → EH . Therefore
we have a natural mapHocolim∆EH

IX → HocolimEH
X. Observe that

for any objectG/K ∈ EH , the categoryI ↓ G/K has a final object
given by(G/K[H], id). Therefore the nerve of this category is contractible
and so∆EH → EH is left cofinal. Invoking Lemma 7.3, we see that
Hocolim∆EH

IX → HocolimEH
X is a weak equivalence.

SinceG/H is the initial object inEH , themapHocolimEH
X→ X(G/H)

is a homotopy equivalence. The composite maps

IX(G/H) = Hocolim∆EH
IX → HocolimEH

X → X(G/H)

fit together to give a natural transformationLI → Id which is a weak
equivalence at each object.

The construction of the endofunctorΨ has a similar flavor. Recall that
∆E denotes the subcategory of mapse in ∆OG, and define∆EG/K[H] to
be the full subcategory of∆E consisting of objectsG/B[H] with B > K.
Define

ΨX(G/K[H]) = Hocolim∆EG/K[H] X

We make this a functor of∆OG in the same way we did forL: Given
a mapg : G/K1[H1] → G/K2[H2], we have a functor∆EG/K2[H2] →
∆EG/K1[H1] that takes the objectG/B[H2] in ∆EG/K2[H2] to the object
G/B[H1] ∈ ∆EG/K1[H1]; note thatB > K1 becauseB > K2 > K1. Also,

g induces a twisting natural transformation via the actionX(G/B[H2])
g→

X(G/B[H1]). The∆OG structure maps are induced by these as in the
observation. This makesΨ into a functor from∆OGU to itself.

The category∆EG/K[H] has an initial objectG/K[H]. For any
G/B[H] in ∆EG/K[H], the initial mapG/K[H] → G/B[H] induces a
mapX(G/B[H])→ X(G/K[H]), and we obtain a map

ΨX(G/K[H]) = Hocolim∆EG/K[H] X → X(G/K[H])

that is a homotopy equivalence by Lemma 7.2. These maps assemble into
the natural transformationψ : Ψ → Id.

Wedefine thenatural transformationαas follows.ForeachG > K > H,
consider the functor from∆EG/K[H] to∆EK that sends the objectG/B[H]
toG/B[K]. SinceH ⊆ K ⊆ B, we have a mape : G/B[K] → G/B[H]
in∆E (or∆OG) that induces a mapX(G/B[H])→ X(G/B[K]). By the
observation, this induces a map

ΨX(G/K[H]) = Hocolim∆EG/K[H] X → Hocolim∆EK
X

= ILX(G/K[H]).
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These maps assemble into the natural transformationα : Ψ → IL.
Finally, all that remains is to prove the following theorem.

Theorem 7.5.WhenX is in Im∆, Im∆
0 , or Im∆

p the natural transforma-
tion α is a weak equivalence, rational equivalence, orp-adic equivalence
respectively.

We begin with a few reductions. Recall thatX in Im∆, Im∆
0 , or Im

∆
p

means that each mapX(G/K[H])→ X(G/K[K]) is a weak equivalence,
rational equivalence, orp-adic equivalence for allH ⊆ K respectively. It
then follows thatΨX(G/K[H]) → ΨX(G/K[K]) is also a weak equiva-
lence, rational equivalence, orp-adic equivalence since these are homotopy
equivalent toX(G/K[H]) andX(G/K[K]). Thus, it is enough to show
that the map

ΨX(G/K[K])→ ILX(G/K[K]) = LX(G/K)

is a weak equivalence, rational equivalence, orp-adic equivalence. More-
over, we see from the argument above that the inclusion ofX(G/K[K])
in ΨX(G/K[K]) at the zero simplicial level (as the value ofX on the
objectG/K[K]) is a homotopy equivalence. The mapα carries this copy
of X(G/K[K]) to a corresponding copy inLX(G/K) at the zero sim-
plicial level. The theorem now becomes an immediate consequence of the
following lemma.

Lemma 7.6. LetX be inIm∆,Im∆
0 , orIm∆

p . The inclusionofX(G/K[K])
in LX(G/K) is a weak equivalence, rational equivalence, orp-adic equiv-
alence respectively.

Proof. We argue by induction. LetC be the set of finite collectionsC of
closed subgroups ofG such thatK ∈ C andK ⊆ J for eachJ ∈ C;
partially orderC by inclusion. Note that the single element collection{K}
is the smallest element ofC. For any collectionC in C, let ∆EC be the
full subcategory of∆EK with objectsG/B[A] where bothA andB are
in C. Let ΛC = Hocolim∆EC

X. Observe thatΛ is a functor onC, since
C ⊂ D induces a mapΛC → ΛD. ThenLX(G/K) = ColimC Λ, and
the maps in the colimit system are induced by maps of simplicial spaces
which are just inclusions of disjoint summands in each simplicial degree.
Therefore, if we can show that the inclusionX(G/K[K]) in eachΛC is
an equivalence, passing to the colimit system, we will have shown that the
inclusion inLX(G/K) is an equivalence.

We induct on the number of elements ofC. If C has only one element,
thenC = {K} andΛC = X(G/K[K]). For the inductive step, letM
be a maximal subgroup inC, so that ifK ⊆ M ⊆ N thenM = N .
LetC

M̂
be the complement of{M} in C. WhenC �= {K}, we must have
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M �= K, andwe can assume by induction that the inclusion ofX(G/K[K])
inΛC

M̂
is an equivalence. Let∆E

C; ̂G/M [M ]
be the full subcategory of∆EC

consisting of all objects exceptG/M [M ]. LetM be the full subcategory of
∆EC with objectsG/M [A] such thatA ∈ C, and letM ̂G/M [M ]

be the full

subcategory ofM consisting of all objects exceptG/M [M ]. Observe that
the only objects of∆EC which have a map to or fromG/M [M ] are inM,
and so

Hocolim∆EC
X

= (Hocolim∆E
C; ̂G/M [M ]

X) ∪
HocolimM

̂G/M [M ]
X

(HocolimMX)

This is a pushout along a cofibration, and so we just need to show that
the inclusion ofΛC

M̂
in Hocolim∆E

C; ̂G/M [M ]
X and the inclusion of

HocolimM ̂G/M [M ]
X in HocolimMX are equivalences.

To show the first, we show that the inclusion of∆EC
M̂
in ∆E

C; ̂G/M [M ]
is left cofinal and invoke Lemma 7.3. LetG/P [J ] ∈ ∆E

C; ̂G/M [M ]
, and

consider the categoryincl ↓ G/P [J ]. If P �= M thenG/P [J ] ∈ ∆EC
M̂

and(G/P [J ], id) is afinal object, so thenerveof this category is contractible.
If P = M , thenJ ⊆M,J �= M and(G/J [J ], G/J [J ]→ G/M [J ]) is an
initial object; again the nerve of this category is contractible.

For the second inclusion, note thatG/M [K] is the final object of
M ̂G/M [M ]

. Therefore the nerve ofM ̂G/M [M ]
is contractible and the map

X(G/M [K])→ X(G/M [K])×NM ̂G/M [M ]

= HocolimM ̂G/M [M ]
X(G/M [K])

is a homotopy equivalence. NowX is in Im∆, and so all the maps in
M ̂G/M [M ]

induce equivalences onX. Thus,

HocolimM ̂G/M [M ]
X(G/M [K])→ HocolimM ̂G/M [M ]

X

is the geometric realization of a simplicial (weak, rational, orp-adic)
equivalence, and hence an equivalence. The inclusionX(G/M [K]) in
HocolimM ̂G/M [M ]

X is therefore an equivalence. On the other hand,

M has an initial objectG/M [M ], so the inclusion ofX(G/M [M ]) in
HocolimMX is a homotopy equivalence. Furthermore the composite map

X(G/M [K])→ X(G/M [M ])→ HocolimMX

is homotopic to the inclusion ofX(G/M [K]) in HocolimMX. Thus, the
inclusionHocolimM ̂G/M [M ]

X inHocolimMX is aweak, rational, orp-adic

equivalence as required.
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