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1. Introduction

A classical theorem in complex algebraic geometry states that, for any
smooth projective variety, the Gauss map is finite; in particular, a smooth
variety and its Gauss image have the same dimension (with the obvious ex-
ception of a linear space). Furthermore, evenwhen the variety is not smooth,
Zak proved a lower bound on the dimension of its Gauss image in terms of
the dimension of its singular locus. Our purpose in this note is to reinterpret
Gauss maps within a more general algebraic framework, and thus recover
Zak’s bound on the dimension of the Gauss image as a special case of an
interesting new bound on the analytic spread of a module of Kähler differ-
entials. This connects that classical subject in complex geometry to recent
research in commutative algebra concerning integral closures of modules.
In particular, we give a new, purely algebraic proof of Zak’s theorem.

We recall a precise version of Zak’s theorem. LetX be an irreducible
projective variety of dimensiond defined over an algebraically closed field
k, considered with a fixed embeddingX ⊂ P(V ) for some finite dimen-
sionalk-vector spaceV . TheGauss mapis the rational map fromX to
the Grassmannian of projectived-planes inP(V ) assigning to each smooth
k-point ofX the projective tangent plane there,

Γ : X ��� G(dimX,P(V ))
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p �→ TpX.

TheGauss imageof X, denotedΓ (X), is the closure of the image of the
smooth locus ofX underΓ . Zak’s theorem states that, providedX is not
a linear subvariety ofP(V ), the dimension of the Gauss image satisfies the
inequality

dimΓ (X) ≥ dimX − dim Sing(X) − 1,

where Sing(X) denotes the closed locus of non-smooth points ofX and
dim ∅ = −1 [Z, 2.8, p.23]. In the smooth case one obtainsdimΓ (X) =
dimX, a result that was known before, at least for complex algebraic vari-
eties ([GH, 2.29]).

In this paper, we deduce Zak’s theorem from ourmain result, which is an
interesting bound on the analytic spread of a module of Kähler differentials.
Theanalytic spread is an important invariant in the theoryof integral closures
of ideals – and more recently modules – over a commutative local ring.
Roughly, the analytic spread of an idealI in a local ringR is the smallest
number of generators of any ideal having the same integral closureasI;more
geometrically it can be formulated in terms of the dimension of the closed
fiber under the blowing up morphism of the schemeSpec(R) alongV (I).
The notions of analytic spread and integral closure are well-understood for
ideals; the natural extension of these notions to modules is of more recent
interest. The precise definitions are recalled in Sect. 2.

The main objective of this work is to give a lower bound for the analytic
spread of

∧d ΩR/k in terms of the singular locus ofSpec(R), whereΩR/k

denotes the module of K̈ahlerk-differentials on a standard graded domain
R over a fieldk, andd denotes the dimension ofR. Specifically, Theorem
2.1 establishes that unlessR is a polynomial ring, this analytic spread is at
least as large as the codimension of the locus of non-smooth points ofR
overk. The fundamental importance of this result is evidenced by the fact
that it quickly recovers Zak’s bound on the dimension of the Gauss image;
indeed, one might call it an algebraic interpretation of Zak’s bound.

Our method for bounding the analytic spread of
∧d ΩR/k is to use the

so-called canonical classcR/k :
∧d ΩR/k → ωR/k, a natural map from the

module of differentiald-forms to the graded canonical module ofR. We
show that the required bound holds providedcR/k is not integral, that is,
provided that the inclusion

cR/k

(
d∧
ΩR/k

)
⊂ ωR/k

is not an integral extension of modules in the sense discussed in Sect. 2.
An essential point of our argument is that the singularity ofSpec(R) forces
this extension to be non-integral. To see this, we argue in terms of the
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homogeneous pieces ofωR/k: noting that an integral extension of
∧d ΩR/k

can contain no element of degree less thand, we then show by contrast that
ωR/k must contain an element of degreed−1. This result, which may be of
independent interest, is stated in a dual form in Theorem 2.3: thea-invariant
of R is greater than−d unlessR is a polynomial ring. To fetch a nonzero
element ofHd

m(R) of degree greater than−d the theory of tight closure is
used.

In Sect. 3 of the paper, we show how our bound on the analytic spread of
themodule of K̈ahler differentials leads to the classical theoremon theGauss
map.For this,wedevelopmoregenerally anotionof algebraic “Gaussmaps”
attached to a finitely generated gradedR-moduleM that, when applied to
the case whereR is the homogeneous coordinate ring ofX in P(V ) and
M = ΩR/k, leads to the classical Gauss map for the projective variety

X. The connection to the module
∧d ΩR/k is via the Pl̈ucker embedding.

Zak’s theorem then becomes an immediate corollary of the main bound in
Theorem 2.1.

Our estimate leads naturally to a more general question. To wit, letM
be a finitely generated gradedmodule of rankr (which is not a direct sum of
a free module and a torsion module) over a standard graded domain. When
is the analytic spread of

∧r M at least as large as the codimension of the
closed locus ofSpec(R) whereM is not free?

2. The main theorem

If M is a finitely generated module over a Noetherian domainR, then the
Rees algebraR(M) is the symmetric algebra ofM modulo the ideal of
R-torsion elements. IfM = I is an ideal inR, then of courseR(I) is the
classical Rees algebra

R ⊕ I ⊕ I2 ⊕ . . .

whose associated projective schemeProj (R(I)) defines the blowup of
Spec(R) alongV (I).

Given a mapN −→ M of finitely generatedR-modules, there is of
course an induced map

R(N ) −→ R(M)

of Rees algebras. We say that the mapN −→ M is integral if the induced
map of Rees algebras is finite, that is, ifR(M) is finitely generated as a
module overR(N ). If themapN ↪→ M is an inclusion, we also say thatthe
moduleM is integral overN . For an inclusion of idealsJ ⊂ I, this notion
recovers the standard notion of integral dependence, which is commonly
defined as follows: each elementz of I satisfies some polynomial

zn + a1z
n−1 + . . .+ an = 0
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whereai ∈ J i for all i.
If M is a finitely generated module over a local domainR, then the

analytic spread�(M) is defined to be the dimension of the fiber ring

R(M) ⊗R R/m

wherem is the unique maximal ideal ofR. WhenM = I is an ideal of
R, note that the projective schemeProj (R(M)) ⊗R R/m is precisely the
scheme-theoretic fiber over the closedpointm inSpec(R)under theblowing
up morphismProj (R(I)) −→ Spec(R). Thus the analytic spread is one
more than the dimension of this closed fiber. If the residue fieldR/m is
infinite, then the analytic spread is the smallest possible minimal number
of generators for an ideal over whichI is integral. WhenM is a finitely
generated graded module over a finitely generatedN-graded ringR over a
field k = R0, the analytic spread is defined analogously, withm denoting
the unique homogeneousmaximal ideal ofR. For generalities on Rees rings
of modules, see [SUV].

Our main result reads as follows.

Theorem 2.1. LetR be a standard graded domain of dimensiond. Assume
thatR0 = k is a field algebraically closed in the quotient field ofR. If R is
not a polynomial ring, then the analytic spread of the module of differential
d-forms ofR is at least the codimension of the locus of nonk-smooth points
ofR, that is,

�

(
d∧
ΩR/k

)
≥ codim Sing(R).

By standard graded, we mean thatR is anN-graded algebra, finitely
generatedby itsdegreeoneelementsover itsdegreezerocomponentR0 = k.

In order to prove this result we develop some preliminaries. Let, more
generally,R be aNoetherianN-graded domain of dimensiond. Assume that
R0 = k is an infinite field and that the quotient fieldL ofR is separable over
k. Consider the graded canonical moduleωR/k of R, which is the graded
k-dual ofHd

m(R), the highest local cohomology module ofR with support
in its homogeneous maximal ideal. According to [E], [L] or [KW], there
exists a homogeneousR-linear map

cR/k :
d∧
ΩR/k → ωR/k,

that is an isomorphism locally on the smooth locus ofR. This map is called
the canonical classof R. In fact, cR/k can be defined by takingωR/k ⊂∧d ΩL/k as theDedekind complementarymodule ofRand showing that this

module contains the image of the localization map
∧d ΩR/k → ∧d ΩL/k.
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Proposition 2.2. LetR be a NoetherianN-graded domain of dimensiond.
Assume thatR0 = k is an infinite field and that the quotient field ofR is
separable overk. If �(

∧d ΩR/k) < codim Sing(R), then the mapcR/k is
integral.

Proof. Assume that�(
∧d ΩR/k) < s wheres is the codimension of the

non-smooth locus ofR. Multiplying the inclusionim(cR/k) ⊂ ωR/k by a
fixed nonzero homogeneous element ofR, we get an inclusionJ ⊂ I of
homogeneous ideals ofR. In this setup one has to prove thatI ⊂ J̄ , where
J̄ denotes the integral closure ofJ . Clearly, it is enough to verify the latter
inclusion after localization at each associated prime ofR/J̄ . SinceR is
universally catenary, a result due to McAdam [M, 4.1] shows that

dimRP ≤ �(J̄) = �(J)

for any primeP associated toR/J̄ . Since�(
∧d ΩR/k) < s by our assump-

tion, we know that�(J) < s, so that for any primeP associated toR/J̄ , we
have the inequalitydimRP < s. This forcesP to be in the smooth locus of
Spec(R). Thus, as seen above,JP = IP . It follows thatIRP ⊂ J̄RP for
every prime idealP associated toR/J̄ , and the proposition is proved.��

Proof of Theorem 2.1.Replacingk by k(t), where t is an indetermi-
nate, we may assume thatk is infinite. We may further suppose that
codim Sing(R) > 0 in which case the quotient field ofR is separable
over k andR is geometrically reduced. According to Proposition 2.2, it
suffices to show that the canonical class

cR/k :
d∧
ΩR/k → ωR/k

is not integral unlessR is a polynomial ring. To do this, we make use of the
following easy-to-prove fact: ifN ⊂ M is an integral extension of torsion-
free finitely generated graded modules over a graded domainR, then no
element ofM can have degree less than the smallest non-zero degree that
occurs inN .

Recall that thea-invariant ofR can be defined as

a(R) = −min {n ∈ Z | [ωR/k]n �= 0}
where[ωR/k]n denotes then-th graded part ofωR/k. If a(R) > −d, then
ωR/k has nontrivial elements of degree less thand. On the other hand,

becauseR is generated by elements of degree one, the module
∧d ΩR/k

is generated in degreed, as the elementsdx1 ∧ . . . ∧ dxd generate it for
x1, . . . , xd ranging through all the degree one algebra generators ofR. So



876 A. Simis et al.

because the mapcR/k is degree preserving, the extension of torsion-free
modules

cR/k

(
d∧
ΩR/k

)
⊂ ωR/k

cannot be integral whena(R) > −d. Thus Theorem 2.1 follows from the
next theorem.

Theorem 2.3. LetR be a standard graded domain of dimensiond. Assume
thatR0 = k is a field algebraically closed in the quotient field ofR, and
that R is geometrically reduced. IfR is not a polynomial ring, then the
a-invariant ofR satisfiesa(R) > −d.
Proof. The moduleωR/k is the gradedk-dual ofH

d
m(R), wherem denotes

the homogeneous maximal ideal ofR. Thus it suffices to show thatHd
m(R)

has a nonzero element of degree−d+ 1. We may assume thatk is infinite,
in which caseR admits a homogeneous system of parametersx1, . . . , xd of
degree one.

Recall thatHd
m(R) can be identified with the cokernel of the map

Rx/x1 ⊕ . . .⊕Rx/xd
−→ Rx(

s1x
t
1

xt
, . . . ,

sdx
t
d

xt

)
�→

∑d
i=1(−1)isix

t
i

xt

wherex = x1 · · ·xd. Thus we represent an elementη of Hd
m(R) by an

equivalence class of fractions

η =
[
w

xt

]
.

It is not difficult to check that the elementη is zero if and only if there exists
a natural numbers such thatxsw ∈ (xt+s

1 , . . . , xt+s
d ). Now, provided that

R is not regular, the maximal idealm is not generated byx1, . . . , xd, so we
can find an elementz of degree one not in the ideal(x1, . . . , xd). Consider
the element

η =
[
z

x

]

in Hd
m(R). This element has degree−d + 1, provided it is nonzero. So we

need only show thatη �= 0.
Supposing to the contrary, there existss such that xsz ∈

(xs+1
1 , . . . , xs+1

d )R. By the colon-capturing property of tight closure ([HH1,
7.9], [HH3, 4.1.7]) this implies thatz belongs to the tight closure
(x1, . . . , xd)∗ of (x1, . . . , xd). But the tight closure of an ideal generated
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by elements of a fixed degreee in a ring satisfying the hypothesis of Theo-
rem 2.3 contains no element of degreee not already in the ideal ([S2, 2.4]).
Soz ∈ (x1, . . . , xd), contrary to our choice ofz. This contradiction estab-
lishes thatη = [ z

x ] is a nonzero element of degree−d+ 1, and the theorem
is proved. ��
Remark 2.4.Here is an alternate proof of Theorem 2.3, perhaps more intu-
itive, in the case wherek is an algebraically closed field of positive charac-
teristic. Note that ifx1, . . . , xd form a regular sequence onR, thenη = [ z

x ]
is zero if and only ifz ∈ (x1, . . . , xd). Now if η is zero inHd

m(R), its
image inHd

m(R+gr) is also zero, whereR+gr is agraded absolute integral
closure ofR, that is, the subring of the integral closure ofR in an algebraic
closure of its quotient field generated by homogeneous elements of inte-
ger degree. SinceR+gr is a Cohen-MacaulayR-algebra ([HH2, 5.15]), if
η = [ z

x ] ∈ Hd
m(R+gr) is zero, thenz ∈ (x1, . . . , xd)R+gr. Sincez ∈ [R]1

and[R+gr]0 = k̄ = k, it follows thatz ∈ (x1, . . . , xd)R, and we arrive at
the same contradiction as in the above proof of Theorem 2.3.

Actually, the argument is essentially the same as the original. Indeed,
for any idealI generated by a homogeneous system of parameters in a
graded domain of prime characteristic, it is known thatI∗ = IR+gr ∩ R
([S1, Theorem 1]). We can use the above alternative, more generally, by
using reduction to prime characteristic, and then passing to the case where
the base field is algebraically closed. These steps are somewhat technical,
but of course our proof above hides the technical difficulties behind the
definition of tight closure in characteristic zero.

3. Algebraic “Gauss maps”

In this section we develop a general algebraic theory of Gauss maps, which
will allow us to deduce Zak’s bound on the dimension of the Gauss image
of a projective variety as a corollary of the main theorem of the preceding
section.

Let R denote a standard graded domain withR0 = k an algebraically
closed field, and letm be the homogeneous maximal ideal ofR. WriteX =
Proj(R). Thinking ofX in thisway, we have essentially fixed an embedding
X ⊂ P(V ) whereV = R∗

1 is the k-vector space of linear functionals
on the space of degree one forms inR. LetM be any finitely generated
gradedR-module of rankr generated by homogeneous elements of the
same degree, and letF be a graded freeR-module generated by a finite set
of homogeneous elements of the same degree mapping surjectively ontoM
by a degree-preservingmap.WriteW for thek-vector space(F ⊗RR/m)∗,
thek-dual ofF ⊗R R/m.
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For any closedk-point p = [a0, . . . , an] ∈ X ⊂ P(V ), pick a maximal
idealma: = (x0 − a0, . . . , xn − an) of R corresponding to a representative
of p on the affine cone overX in V . Note that there is a natural isomorphism
of vector spacesF ⊗RR/ma � W ∗. Thus the surjectionF → M induces a
k-linear surjectionW ∗ → M⊗RR/ma: = Ma and therefore an embedding
of k-vector spaces

M∗
a ↪→ W.

The imageM∗
a inW depends only onp, and for anyp in the free locus of

M , is ak-vector space of dimensionr. This yields a well-defined map on
the free locus of the moduleM ,

γM : X ��� G(r − 1,P(W )) ⊂ P

(
r∧
W

)
,

where the last inclusion is the Plücker embedding ofG(r−1,P(W )). In the
casewhereM = ΩR/k, one recovers the ordinaryGaussmap ofX ⊂ P(V ),
by identifyingW with V . The following result shows thatγM is indeed a
rational map onX and, furthermore, identifies the coordinate ring of its
image inP(

∧r W ). (By definition, the image of a rational mapγ is the
closure of the image ofγ restricted to a dense open set whereγ is regular.)

Proposition 3.1.With notation as in the preceding paragraph,γM is a
rational map onX and the homogeneous coordinate ring of the image of
γM in P(

∧r W ) is

R
(

r∧
M

)
⊗R R/m.

Proof. Consider the exact sequence of graded modules0 → U → F →
M → 0whereF is a free module generated by finitely many homogeneous
elements of the samedegree. There exists a homogeneous freeR-submodule
U ′ of U which coincides withU at the minimal prime ofR, and hence
generically onX. LetM ′ = F/U ′. The natural surjectionM ′ = F/U ′ →
F/U � M is obtained by factoring out a torsionR-module, so similarly∧r M ′ surjects onto

∧r M with anR-torsion kernel, and the natural map
of Rees ringsR(

∧r M ′) → R(
∧r M) is an isomorphism. Thus, without

loss of generality, we may replaceM byM ′ and therefore assume thatM
has projective dimension one, i.e., thatU is free. Letc be the rank ofU .

Using the natural identification of the set ofr-dimensional subspaces of
the vector spaceW with the set of complementary-dimensional subspaces

ofW ∗, we can interpret the mapγM as a mapX
εM��� P(

∧c W ∗) sendingp
to the image of thek-linear mapU ⊗R R/ma → F ⊗R R/ma = W ∗. It
suffices to show thatεM is a rational map and that the coordinate ring of the
image ofεM is isomorphic toR(

∧r M) ⊗R R/m. Now fix homogeneous
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generators forU and homogeneous generatorse0, . . . , en for F , and letφ
be the matrix corresponding to the presentation mapU → F in these bases.
Let∆j1...jc be the maximal minor ofφ indexed by the rowsj1, . . . , jc. Then
the mapεM described above sends a pointp ∈ X to the point[∆j1...jc(p)]
of P(

∧c W ∗) = P(⊕kej1 ∧ . . .∧ ejc). This shows thatεM is a rational map
which is regular on the locus whereφ has full rank (the free locus ofM ).
Furthermore, ifI denotes the ideal of maximal minors ofφ, thenR(I) is
the bigraded coordinate ring of the graph ofε considered as a subscheme of
P(V )×P(

∧c W ∗). ThusR(I)⊗RR/m is the homogeneous coordinate ring
of the projection of the graph ontoP(

∧c W ∗), which is to say, the image
of ε.

Thus it remains only to show thatR(I) = R(
∧r M). The mapU

φ→F
induces a map

r∧
F �

(
c∧
F

)∨
(∧cφ)∨
−→

(
c∧
U

)∨
� R

whose image isI, where−∨ = Hom(− , R). This map factors through∧r M , and thus induces a surjection
∧r M → I. Because

∧r M has rank
one, the kernel is torsion, soR(

∧r M) � R(I).

As a corollary to Proposition 3.1, we obtain the following result.

Corollary 3.2. LetX be a reduced and irreducible variety of dimension
d−1 over an algebraically closed fieldk and fix an embeddingX ⊂ P(V ),
whereV is a finite dimensionalk-vector space. LetR be the homogeneous
coordinate ring of this embedding and letm denote its homogeneous maxi-
mal ideal. Then the homogeneous coordinate ring of the Gauss image in the
Plücker embeddingΓ (X) ⊂ P(

∧d V ) is

R(∧dΩR/k) ⊗R R/m.

It is now clear that Zak’s inequality for the dimension of theGauss image
of X is an immediate consequence of Theorem 2.1 and Corollary 3.2.

Remark 3.3.It is of course also possible to study a “local Gauss mapping”
and askwhether Theorem2.1 holdsmore generally. Let(R,m) be aNoethe-
rian local domain essentially of finite type over an algebraically closed field
k, and setd = dimR+ trdegkR/m. A local version of Zak’s theoremwould
predict that the analytic spread of

∧d ΩR/k is greater than or equal to the
codimension of the singular locus ofR (provided thatR is not regular).
Does this hold true? In other words, is�(

∧d ΩR/k) ≥ heightFd, whereFd

is thed-th Fitting ideal ofΩR/k?
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One approach to this question is to try to carry out the same sort of
argument we used to settle the graded case. One still has the canonical class

cR/k :
d∧
ΩR/k → ωR/k

that is an isomorphism locally on the smooth locus ofR. We ask: IfR is not
regular, is it true thatcR/k is not integral? Proposition 2.2 can be adapted to
this setting, so a positive answer to this question would establish the local
version of Zak’s theorem proposed above. In addition to our work here in
the graded case, there is some evidence to support this approach.

For example, assumingR is Cohen-Macaulay, a positive answer follows
from work of Kunz and Waldi ([KW, 5.20]). Also, a positive answer can be
shown in the quasi-Gorenstein case (that is, whenωR/k is free), using the
Dedekind different and the theorem on the purity on the branch locus. It
seems reasonable to conjecture that in the general setting described above,
cR/k is never integral unlessR is regular.

Remark 3.4.It is natural to investigate whether the local version of Zak’s
theorem might hold much more generally. Namely, ifR is a Noetherian
local domain andM is a finitely generatedR-module of rankr (which is
not a direct sum of a freemodule and a torsionmodule), when is the analytic
spread of

∧r M at least the codimension of the non-free locus ofM? In
other words, when is�(

∧r M) ≥ heightFr(M), whereFr(M) is the
r-th Fitting ideal ofM? In light of Proposition 3.1, this inequality in the
graded case implies a general statement analogous to Zak’s theorem on the
dimension of the Gauss image for the mapsγM discussed above.

Remark 3.5.In more geometric language, a key point of our approach to
Zak’s theorem is to show that there is a non-zero global section of the sheaf
ωX(d−1). This should be compared to the work of Ein in [Ei], in which it is
shown in the casewhereX is smooth, that theglobal generation ofωX(d−1)
implies thefinitenessof theGaussmap. Ein establishes the global generation
of ωX(d− 1) in the smooth case using vanishing theorems in characteristic
zero; the global generation ofωX(d− 1) in the prime characteristic case is
proved in [S3]. This recovers the finiteness of the Gauss map in the smooth
case in arbitrary characteristic.
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