
ASTRONOMICAL ENGINEERING: A STRATEGY FOR MODIFYING
PLANETARY ORBITS

D.G. KORYCANSKY
CODEP Dept Earth Sciences, University of California, Santa Cruz, CA 95064, U.S.A.

E-mail: kory@ucolick.org

GREGORY LAUGHLIN
NASA Ames Research Center, 245-3 Moffett Field, CA 94035, U.S.A.

E-mail: gpl@acetylene.arc.nasa.gov

FRED C. ADAMS
Physics Department, University of Michigan, Ann Arbor, MI 48109, U.S.A.

E-mail: fca@umich.edu

(Received 17 January 2000; accepted 27 July 2000)

Abstract. The Sun’s gradual brightening will seriously compromise the Earth’s biosphere within
∼ 109 years. If Earth’s orbit migrates outward, however, the biosphere could remain intact over
the entire main-sequence lifetime of the Sun. In this paper, we explore the feasibility of engineering
such a migration over a long time period. The basic mechanism uses gravitational assists to (in effect)
transfer orbital energy from Jupiter to the Earth, and thereby enlarges the orbital radius of Earth. This
transfer is accomplished by a suitable intermediate body, either a Kuiper Belt object or a main belt
asteroid. The object first encounters Earth during an inward pass on its initial highly elliptical orbit
of large (∼ 300 AU) semimajor axis. The encounter transfers energy from the object to the Earth
in standard gravity-assist fashion by passing close to the leading limb of the planet. The resulting
outbound trajectory of the object must cross the orbit of Jupiter; with proper timing, the outbound
object encounters Jupiter and picks up the energy it lost to Earth. With small corrections to the
trajectory, or additional planetary encounters (e.g., with Saturn), the object can repeat this process
over many encounters. To maintain its present flux of solar energy, the Earth must experience roughly
one encounter every 6000 years (for an object mass of 1022 g). We develop the details of this scheme
and discuss its ramifications.

1. Introduction

As the Sun burns through its hydrogen on the main sequence, it steadily grows
hotter, larger, and more luminous. Stellar evolution calculations show that in∼ 1.1
billion years the Sun will be 11% brighter than it is today (e.g., Sackmann et al.,
1993). Global climate models indicate that such an increase in insolation would
drive a ‘moist greenhouse’ on the Earth (Kasting, 1988; Nakajima et al., 1992)
which will have a catastrophic effect on the surface biosphere. In 3.5 billion years,
the total luminosity of the Sun will be 40% larger than the present value. Under
such conditions, the Earth will undergo a catastrophic ‘runaway greenhouse’ effect
(Kasting, 1988), which will likely spell a definite end to life on our planet.
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Although the Earth’s ecosystem will be seriously compromised within a billion
years, the Sun is presently less than halfway through its main sequence life. Indeed,
in 6.3 billion years, the luminosity of the Sun is expected to be ‘only’ a factor of 2.2
greater than its current value. At that time, a planet located at 1.5 AU from the Sun
would receive the same flux of solar energy that is now intercepted by the Earth.

If the radius of the Earth’s orbit were somehow to be gradually increased, cata-
strophic global warming could be avoided, and the lifespan of the surface biosphere
could be extended by up to five billion years. In this paper, we study the feasibility
of altering planetary orbits over long time scales. Special attention will be given
to the specific case of the Earth, but many of the issues we address are of more
general astronomical and astrobiological interest.

The present orbital energy of the Earth is−2.7×1040 erg. Moving the Earth to a
circular orbit of 1.5 AU radius would require 8.7×1039 erg. An attractive scenario
for gradually increasing the Earth’s orbital radius is to successively deflect a large
object or objects from the outer regions of the solar system (the Oort Cloud or
the Kuiper Belt) onto trajectories which pass close to the Earth. By analogy to the
gravity-assisted flight paths employed by spacecraft directed to outer solar-system
targets (e.g., Bond and Anson, 1972, Minovitch, 1994), the close passage of such
an object to the Earth can result in a decrease in the orbital energy of the object and
a concomitant increase of the Earth’s orbital energy. For optimal trajectories which
nearly graze the Earth’s atmosphere, the energy boost imparted to the Earth is 2.4×
1012 erg gm−1 of object mass (Niehoff, 1966). Work by Sridhar and Tremaine
(1992) suggests that even bodies that are weakly held together (‘rubble piles’) can
survive passages that approach less than 1 Earth radius from the Earth’s surface,
allowing energy transfers of∼ 1012 erg gm−1.

Typical masses for large Kuiper belt objects are of the order of 1022 grams,
meaning that roughly 106 passages (involving a cumulative flyby mass of approx-
imately 1.5 Earth masses) would be needed to move the Earth out to 1.5 AU. Thus,
over the remaining lifespan of the Sun, approximately one passage every 6000
years on the average would be required.

The outer reaches of the Solar System contain an ideal reservoir of material
which could be used to move the Earth. The Kuiper Belt is populated by a large
number of objects that are larger than 100 km in diameter; the Kuiper belt may con-
tain as many as 105 such bodies, totaling perhaps 10% of the Earth’s mass (Jewitt,
1999), although these numbers remain uncertain. The Oort cloud is believed to
contain about 1011 objects totaling 30 or more Earth masses (see, e.g., Weissman,
1994). As evidenced by the frequent passage of long period Sun-grazing comets
originating in this region, many Oort cloud objects would need only small traject-
ory changes in order to bring them into appropriate Earth-crossing orbits. Indeed,
strategies for modifying the orbits of asteroids and comets have been extensively
discussed in the context of mitigating the hazard posed by such objects impacting
the Earth (see, e.g., Ahrens and Harris, 1992, Melosh et al., 1994, Solem, 1991).
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Figure 1.Geometry of orbital encounters and gravity assists for a generic encounter of theO and
the Earth. a) Encounter in the heliocentric frame. The distance scale is in AU. b) Encounter in the
planet-centered frame, in which the object’s flyby past the planet is a hyperbola with close-approach
distanceb and turning angleα. The distance scale is in units of 109 cm, for a typical Earth encounter.

Alternatively, a main belt object could be deflected into an orbit which has an
aphelion in the outer solar system.

Our approach in this paper is as follows: In Section 2, we discuss the details of
our gravity assist scheme. This scheme uses an asteroid or large comet as a catalyst
to transfer orbital angular momentum and energy from Jupiter to the Earth. We
investigate the energy requirements of the scheme, the nature of the course correc-
tions demanded, and also the needed accuracy. In Section 3, we discuss additional
considerations, such as long term orbital stability, complications produced by other
planets, and larger issues. We present our conclusions in Section 4. Although this
problem raises many possible interesting (and rather speculative) issues, the present
paper discusses only a few of them.

2. The Gravity-Assist Scheme

As mentioned in the introduction, our underlying scenario uses repeated gravity
assists to (in effect) transfer orbital energy from Jupiter to the Earth, thus enlarging
the Earth’s orbit and reducing the received solar flux. Multiplanet encounter tra-
jectories have been discussed for more than 25 years (e.g., Bond and Anson, 1972)
and are now commonplace features of interplanetary exploration, as evidenced by
the Galileo and Cassini missions.

The underlying dynamics of the scheme are shown in Figures 1 and 2. The
object ‘O’, a suitable Kuiper belt object or main belt asteroid, first encounters
the Earth during an inward pass on its initial highly elliptical orbit of largeO
(300 AU) semimajor axis. The encounter transfers energy fromO to the Earth
in standard gravity-assist fashion by passing close by the leading limb of the Earth.
The resulting orbit ofO then crosses the orbit of Jupiter; with proper timing, it will
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Figure 2. Layout of successive encounters for the Earth-Jupiter scheme, for an orbit with initial
aphelionR0 at 650 AU and aphelion tangential velocityV0 = 6000 cm s−1. Note the changes of
scale from frame to frame. a) Initial orbit to Earth encounter b) Orbit post-Earth to Jupiter c) Orbit
post-Jupiter d) Initial (dotted) and return (solid) orbits compared.

encounter Jupiter on its outbound swing, pass by Jupiter, and regain the energy it
lost to the Earth. It would appear, however, thatO also gains angular momentum
relative to its incoming orbit, so that the return orbit is less elliptical than the initial
one. As a result, a modest amount of energy must be expended to restoreO’s orbit
to its initial parameters, unless further encounters are included that can minimize
the required expenditure.

As discussed below, larger orbits forO entail lower first-order energy require-
ments. On the other hand, an orbit that is too large will have too long a period
to work well in the scheme (unless multiple objects are used). For purposes of
discussion, we use an orbit with a semi-major axis of 325 AU, whose period of
5859 years is compatible with the∼ 6000 year average period between encounters.
In fact, the Sun’s brightening is slow at first and then speeds up; thus the optimum
orbit size will decrease with time.
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2.1. FORMULATION

We begin by assuming that Earth and Jupiter are on circular orbits of zero inclin-
ation with radii of 1 and 5.2 AU, respectively. Obviously, a more detailed study
would have to take into account the actual elements of the planetary orbits. To
outline the scheme, however, the idealized case is adequate. The calculation of
energy transfer and orbital parameters is made using the so-called ‘patched-conic’
approximation (Battin, 1987, Bond and Allman, 1986). In this approximation, the
orbit of the object is treated as a series of two-body problems. Far from planets,
O follows a Keplerian ellipse about the Sun. At planetary encounters,O’s path is
given by a two-body scattering encounter. Numerical integrations of the full four
body system indicate that this approximation gives perfectly adequate results.

The incoming orbit ofO (characterized by subscripts 0) is parameterized for
convenience by an aphelion distanceR0 and tangential velocityV0. Then the in-
coming angular momentum and energy are given by

c0 = R0V0, h0 = V 2
0

2
− µ�

R0
, (1)

whereµ� = GM�. Assumingh0 < 0, the semi-major axis, eccentricity, and
longitude of perihelion of the orbit are

a0 = −µ�
2h0

, e0 =
(

1+ 2h0c
2
0

µ2�

)1/2

, and ω0 = 0 . (2)

For an Earth encounter, the eccentricity must be large enough so that the perihelion
distancea0(1 − e0) < R⊕, the orbital radius of the Earth. If this constraint is
satisfied, the Earth encounter takes place at longitudeφE, where

cosφE = 1

e0

(
p0

R⊕
− 1

)
and p0 = c2

0

µ�
. (3)

The detailed geometry of an encounter is illustrated in Figure 1. For an ‘incoming’
(pre-perihelion) encounter,π < φE < 2π . The Earth’s orbital velocity isV⊕ =
(µ�/R⊕)1/2. The object’s speedVE, and tangential and radial velocitiesVT E, VRE

at the encounter follow from conservation of angular momentum and energy:

VE =
[
2

(
h0+ µ�

R⊕

)]1/2

, VT E = c0/R⊕, V 2
RE = V 2

E − V 2
T E. (4)

In the Earth’s frame of reference, the velocities areV ′T E = VT E−V⊕, V ′RE = VRE,
and the encounter speed is given by(V ′E)2 = (V ′T E)2+ (V ′RE)2. The velocity vector
of the encounter in the Earth’s frame makes an angleβE with respect to the orbital
velocity of the Earth, where cosβE = V ′T E/V ′E.

In the two-body treatment, the effect of the encounter is to turn the velocity vec-
tor (in the Earth frame) through an angleαE, whereαE depends on the encounter
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velocity and the impact parameterBE. The encounter can be timed to produce a
specified minimum distance from the Earth,bE . The minimum distance, the impact
parameterBE, and the turning angleαE are related by

BE = bE

(
1+ 2µ⊕

bE(V ′E)2

)1/2

and αE = 2 tan−1

(
µ⊕

BE(V ′E)2

)
. (5)

For an encounter in whichO loses energy and Earth gains energy,αE > 0. The
post-encounter tangential velocity, from which the energy transfer is found, is then
given byV ′′T E = V ′E cos(βE + αE). Similarly, the post-encounter radial velocity is
V ′′RE = V ′E sin(βE + αE).

The change in energy per unit mass of the object, from pre-encounter to post-
encounter, is then given by

1QE = (1/2)[(VE · VE)post− (VE · VE)pre] = V⊕(V ′′T E − V ′T E). (6)

The corresponding change in the Earth’s orbital energy is thus−MO1QE, where
MO is the mass ofO. As mentioned above,1QE will be negative (and hence the
Earth will gain energy) ifO passes ‘in front’ of the Earth. The amount of energy
transfer depends not only on the minimum approach distance but also on the en-
counter geometry, i.e.,βE, and the encounter speedV ′E , which in turn depend on the
longitudeφE of the encounter. Generally speaking, the most effective encounters
occur for near but not quite ‘grazing’ encounters for whichφE ∼ ±0.5 rad, not far
from O’s perihelion. IfbE can be taken as small as 109 cm (about 1.6 Earth radii),
encounter transfer energies of up1QE ∼ 1012 erg gm−1 can be achieved. This
value is approximately 60% of the maximum1QE = V⊕Vcirc, whereVcirc is the
circular velocity in Earth orbit at a radiusbE from the Earth’s center.

We denote post-Earth-encounter quantities by the subscript 1. For these post-
Earth variables, we use Cartesian vectors in the orbital plane, for whichR⊕ =
(X⊕, Y⊕) = (R⊕ cosφE,R⊕ sinφE). Similar formulae obtain for the post-Earth
velocity (in the solar frame)V1. In particular,

Vx1 = V ′′RE cosφE − (V ′′T E + V⊕) sinφE,

Vy1 = V ′′RE sinφE + (V ′′T E + V⊕) cosφE. (7)

The angular momentum is then given byc1ẑ = R⊕ × V1, and the Laplace vector
P1 = −µ�R⊕/R⊕ + c1ẑ × V1. With these forms, we obtain the orbital elements
of the objectO in its post-Earth orbit, i.e.,

h1 = V 2
1

2
− µ�

R⊕
, a1 = −µ�

2h1
, e1 = (P1 · P1)

1/2

µ�
, ω1 = tan−1(Py1/Px1). (8)

Examination of the post-Earth orbital elements shows that the new orbit ofO
crosses the orbit of Jupiter. We may therefore schedule an encounter with Jupiter to
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Figure 3.Energy transfer (per unit mass ofO) 1QE for encounters as a function ofφE . All orbits
have initial aphelia atR0 at 650 AU.

regain energy lost byO to Earth. As before, treating the orbit of Jupiter as a circle
and the orbit ofO as an ellipse in the plane, we find that the longitudeφJ of the
Jupiter encounter is given by

cos(φJ − ω1) = 1

e1

(
p1

RX − 1

)
, where p1 = c2

1

µ�
. (9)

The encounter ofO with Jupiter implies similar considerations (with respect to
the change in orbital parameters) as the encounter with Earth. The orbital elements
give us the tangential encounter velocityV ′T J (in Jupiter’s frame) and the encounter
speedV ′J . Our initial idea was to set the encounter geometry so as to yield an energy
gain1QJ (by O) equaling the amount lost at the Earth. As noted below, however,
a more efficient encounter (in terms of the final velocity change ofO) is one that
yields a post-Jupiter orbit with an aphelion equal to the original valueR0. In that
case, it is simplest to search numerically for the desired Jupiter encounter distance
bJ . The encounter geometry gives usβJ ; the impact parameter andαJ then follow
from bJ as above.

Finally, we must work out the orbital elementsaR, eR, ωR for O on its post-
Jupiter return orbit. The succession of encounters is shown in Figure 2, for our
example orbit with aphelion at 650 AU and and aphelion tangential velocityV0 =
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6000 cm s−1. Figure 3 shows the energy transfer for a collection of encounters
(bE = 109 cm) as a function ofφE.

In general, we find thate0 > eR, and hence the return orbit ofO has larger
angular momentum than the incoming orbit. While we have not rigorously proven
this result, it seems intuitively understandable: the ‘lever arm’ associated with the
Jupiter encounter (i.e., the radius of Jupiter’s orbit) is∼ 5 times larger than that of
the Earth encounter, resulting in a larger angular momentum. This finding spoils
some of the neatness of the scheme. It is possible to reduce the mismatch of angular
momentum by increasing the Earth encounter distancebE, but this change reduces
the efficiency of the encounter, as1QE ∝ 1/bE . An example of this behavior is
shown in Figure 4. If the return orbit were identical to the incoming orbit (modulo
its orientation), a mechanism could be set up to recycle the object for an indefinite
number of passes with a very low energy expenditure.

The angular momentum ofO can be restored to its incoming value by means
of a ‘course correction’ at aphelion. Numerical experimentation suggests that the
most efficient scheme is to adjustbJ so as to produce a return orbit with the same
aphelion as the initial orbit:aR(1+eR) = a0(1+e0). The required velocity change
is then simply1VR = cR/R0− V0, applied so as reduce the tangential velocity
of O to its original valueV0. This velocity correction is similar to the well-known
Hohmann maneuver used to transfer from one circular orbit to another with least
velocity change. Since the change1VR is inversely proportional to the aphelion
distance, it is advantageous (from the point of view of least energy expenditure) to
arrange forO’s orbit to have the largest possible aphelion. On the other hand, the
orbit must not be so large that its period is incompatible with the basic encounter
timescale of∼ 6000 years which is equivalent to a semimajor axis of∼ 330 AU.
For typical apheliaO (600) AU, the velocity change is1VR ∼ 6000 cm s−1.

2.2. MULTIPLANET ENCOUNTERS POST-EARTH

The considerations discussed above suggest that we consider the possibility of
scheduling multiple planet encounters after passage by the Earth. This added com-
plication can help optimize the scheme by reducing the primary energy expendit-
ure at the return-orbit aphelion. An encounter with Saturn, immediately after the
Jupiter encounter, is a natural candidate. Calculating the post-Saturn orbital para-
meters follows in the manner outlined above. We can then search the parameter
space of encounter distances with JupiterbJ and SaturnbS to minimize the velocity
change1VR.

We find that1VR can in fact be reduced essentially to zero by an arrangement
whereO loses energy at the Saturn encounter; the distancebJ must be decreased
from its best single-encounter value∼ 1.73× 1011 cm to compensate. There is
a dramatic decrease of1VR to nearly zero (O(10) cm s−1) for bJ ∼ 6.6× 1010

cm. Figure 5 shows the orbital geometry involved. However, to find the minimum
1VR for any specified valuebJ demands the specification ofbS (or vice-versa) to
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Figure 4.a) Energy transfer per unit mass ofO as a function of Earth approach distancebE for orbits
with R0 = 650 AU andV0 = 6000 cm s−1. b) Eccentricitiese0 (dotted) andeR (solid) as a function
of Earth approach distancebE .
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Figure 5.Successive encounters (cf. Figure 2) for an Earth-Jupiter-Saturn arrangement for an orbit
with initial aphelionR0 at 650 AU and aphelion tangential velocityV0 = 6000 cm s−1. a) Inner
portion of the successive orbits. b) Initial (dotted) and return (solid) orbits compared.

exceedingly high precision. For example, reduction of1VR to ∼ 10 cm s−1 for
bJ = 6.6× 1010 cm, requiresbS to be specified to a precision of∼ 10 cm. Less
stringent specificationsO(104) cm are sufficient if reduction1VR to a few meters
per second is satisfactory. Some examples are shown in Figure 6.

As a result, any realistic scheme will probably not attempt to strictly enforce
1VR = 0. Nevertheless, it is interesting to find that the ‘first-order’ energy ex-
penditure of the scheme can be reduced in principle to a negligible amount. Fig-
ure 7 showsbJ as a function ofbS for minimum 1VR transfers, and also the
resulting values of1VR.

3. Other Issues

3.1. ACCURACY, COURSE CORRECTIONS, ENERGY REQUIREMENTS

In general, various additional effects will interfere with the minimal-energy scheme
outlined above. These complications include planetary orbital eccentricity, non-
zero inclination angles, and non-gravitational impulses. We will not attempt to
develop a sophisticated method of guidance for the object, although such methods
have been developed (to a very high degree of precision) for the space program
and planetary exploration (cf. Battin, 1987). Instead, we will merely make some
estimates.

Planetary orbits have eccentricities and inclinationse andi (in radians) of a few
times 10−2. In order to accommodate these values, the velocity changes will be
∼ 10−2V , or about 104 cm s−1 when applied to velocities of∼ 10 km s−1, which
would be typical of the region outside of Saturn’s orbit. With sufficient planning,
one can thus easily accommodate the departures of planetary orbits from circles in
the same plane, as discussed so far.
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Figure 6. Velocity 1VR required to restore initial orbital energy and angular momentum, as a
function of differenceb − bS from Saturn encounter distance for three different values of Jupiter
encounter distancebJ . (Initial aphelionR0 = 650 AU, aphelion tangential velocityV0 = 6000
cm s−1.) a) bJ = 6.8 × 1010, bS = 5.6106641326× 1010 cm, b) bJ = 7.02 × 1010 cm,
bS = 5.8751641993× 1010 cm c)bJ = 7.2× 1010 cm,bS = 6.1022703373× 1010 cm.
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Figure 7. a) Jupiter encounter distancebJ as a function of Saturn encounter distance, required to
minimize1VR . (Initial aphelionR0 = 650 AU, aphelion tangential velocityV0 = 6000 cm s−1.)
The upper curve is for encounters in whichO gains energy at Saturn; the lower for encounters in
whichO loses energy. b) Resulting minimum velocity change1VR for the encounters specified in a).
Again, the upper curve refers to energy-gaining encounters at Saturn and the lower for energy-losing
encounters.

Undoubtedly, the need for other course corrections will occur. High accuracy
is demanded at all critical stages. Closing velocities of 40 km s−1 and encounter
distances of 109 cm translate to accuracy ofO(10–100) s in time of arrival at the
Earth. We can get some feeling for the size of velocity changes that are required
in a fairly simple way by making use of algorithms for the solution of ‘Lambert’s
problem’ (Battin, 1987, Bond and Allman, 1986), which consists of finding the
velocity vectorv0 needed to produce a 2-body orbit that takes a mass from given
positionr0 to r in a given time interval1t .

We choose a target energy budget for velocity corrections of1V ∼ 104 cm
s−1. We then use the algorithm for Lambert’s problem to compute differential ve-
locity corrections along the incoming orbit (before the Earth encounter) that yield
changes in arrival times1t . We find that a1t of O(10–100) can be accommodated
fairly easily up to∼ 105 s before encounter. Alternatively, much larger changes in
arrival time can be allowed for at greater distances; for example, at∼ 0.5 AU
(∼ 4 × 106 s before encounter), the suggested budget could shift the encounter
time by∼ 104 s. Of course, a more realistic mission profile would not use up all
the allowed energy for one correction, and a target velocity change of1V ∼ 103

cm s−1 per course correction might represent a reasonable aim.
For the case of total1V = 104 cm s−1, and for a 1022 gm object, about 1030

erg are required to enforce the velocity changes for each encounter. About 1014
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erg gm−1 is available from H2O by deuterium-tritium fusion, assuming a terrestrial
D/H ratio (Pollack and Sagan, 1993). Thus,∼ 1016 gm of ice must be proccessed
for each encounter (at a minimum); this ice would subtend a volume about 2.2
km on a side. For every encounter, this ice volume represents about 10−6 of the
mass of objectO; as a result, the∼ 106 encounters necessary would consume the
deuterium ofO(1) large Kuiper Belt object, assuming pure H2O ice composition.
In addition, about twenty times as much rock mass is needed to provide lithium for
the production of tritium. An object of predominantly chondritic composition may
thus be required ifin situproduction is desired. Obviously, much less processing is
needed ifp–pfusion were available; in that case, a single object with an associated
processing and powerplant could be easily be used for the entire project.

Non-gravitational forces are also an issue, and they potentially demand energy
expenditures above and beyond those that we have discussed thus far. An icy ob-
ject, although attractive from the standpoint of containing fusionable material and
favorable initial location in the outer solar system, will be more subject to this
problem than an stony or metallic asteroid. On the other hand, a large main-belt
asteroid would have to be placed into a suitable orbit starting from the inner solar
system, where energy requirements are high.

3.2. TIMING

The successful implementation of this scheme demands a reasonably delicate in-
terplay between orbital time scales of a thousand or more years (forO) and arrival
times scheduled to the minute. The first major issue is how often one would expect
to have Earth and Jupiter (and Saturn) arrive in a particular configuration relative
to the argument of perihelion ofO. The objectO spends most of its time ‘hanging’
at aphelion. Small adjustments in trajectory can thus be used to time the infall
to correspond to the moment of proper planetary alignment. With this flexibility,
we could arrange forO to arrive when Earth and Jupiter are in proper position, an
alignment that takes place every 13 months or so. As a result, two-planet encounters
are easily realized; three-planet encounters (e.g., including Saturn) are a bit more
difficult.

In order for the most ideal version of our proposed mechanism to operate, Earth,
Jupiter, and Saturn must all be in the proper phases of their orbits whenO makes
its passage through the inner solar system. We can safely assume that minor cor-
rections to the orbit ofO can delay its arrival in such a way thatO’s orbital phase
is suitable for moving the Earth. The three planets, however, must have the proper
phase relative to each other. The conditions for this phase alignment can be written
in the form

(ωX − ωY)t = 2πn , (10)

and

(ω⊕ − ωX)t = 2πk , (11)
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wheren andk are integers and where theωj denote the orbital frequencies of the
planets in obvious notation.

We first consider the case in which the orbital frequencies, or equivalently the
orbital periodsPj = 2π/ωj , are constant. Expressed in years, the planetary periods
are approximatelyP⊕ = 1,PX = 11.86, andPY = 29.28.

The condition for a perfect alignment can be written in the form

k

n
= (PX − 1)PY

(PY − PX)
(12)

where we have used the orbital periods rather than the orbital frequencies. Since the
orbital periods are known, the right hand side is a known dimensionless number,
which has a value of about 18.25. We can write this expression in the form

k

n
= 18.d1d2d3d4d5 . . . , (13)

where thedj denotes digits of the number (which in general will be irrational).
The general mathematical problem is thus to represent a real number (the right
hand side above) with a rational approximation. For a given specified accuracy
(i.e., for a given number of decimal places in the above expression), we need a
minimum size of the integersk andn. The integerk is roughly the number of Earth
orbits required to attain sufficient alignment, and hence is also the approximately
number of years between alignments (more precisely,k measures time in units of
P⊕(1− P⊕/PX)−1 ≈ 1.09 years).

One possible choice for the alignment integers is thusk = 18d1d2d3d4d5 . . . dj

andn = 10j , where the last digit represented is thej th one. The time interval
between alignments is thus aboutτ = PYPXn/(PY − PX) ≈ 20× 10j years.

The above argument shows that a solution exists. A compromise must be made,
however. In order to increase the accuracy of the alignment, we need longer time
intervals between encounters. But we also need enough encounters per unit time to
move the Earth before the Sun compromises the biosphere.

Although the alignment condition will vary as Earth changes its orbital para-
meters due to the asteroid encounters, the orbital period of Earth only changes
by a factor of two and hence the accuracy requirements will be of the same or-
der of magnitude for the entire migration time interval. The accuracy needed for
alignments is determined by the accuracy needed for the secondary encounters at
Jupiter and Saturn. We can assume that the orbit ofO will be tuned to interact with
Earth at just the right impact parameter, but no course adjustments can be made
beforeO reaches the outer planets. Jupiter and Saturn thus must be in the right
place to an accuracy of a few planetary radii (say` ∼ 1010 cm). This constraint
implies that we know the orbital phases to a relative accuracy of about`/r ∼ 10−4;
we must takej = 4 at the very least, but we would like to usej = 5 or even 6
in an ideal case. Withj = 4, for example, the time interval between encounters
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(alignment opportunities) is about 200 000 years. During the allowed few billion
year time period (until the biosphere is compromised), we thus only get about
10 000 encounters. But, as discussed above, we need nearly a million encounters
to successfully move the Earth to a viable larger orbit.

We must thus view the problem the other way around: In order for migration
to occur within a few billion years, we must have encounters every few thousand
years. For this frequency of encounters, the largest allowed value of the integerk

is about 1000 (for example, one obvious approximation would bek = 1825 and
n = 100). With this level of precision, we can tune the encounter so that Earth and
Jupiter are in the right place, but Saturn will generally be in the wrong phase of
its orbit by an amount corresponding to a fraction∼0.02 of its orbit. The spatial
displacement will be 0.02× 2πr ≈ 1.2 AU≈ 3000RS (Saturn planetary radii). In
this case, we can use Saturn to make course corrections toO’s orbit , but we cannot
obtain perfect post-encounter orbital elements (where the object has exactly the
same energy and angular momentum it started with).

Therefore a more realistic goal is to aim at reducing the aphelion1V of O to
some small value, or at least one that does not dominate the ‘energy budget’. There
is a range of possible Jupiter encounter parametersbJ that yield a final1V < 1000
cm s−1; these encounters correspond to a range of∼ 0.05 radian of encounters
along Saturn’s orbit, thus easing the timing requirement to a manageable level.

In addition there are other considerations that mitigate the problem:
− Uranus and Neptune are available, giving three times as many opportunities

as using Saturn alone.
− Multiple objects can be used for energy transfer, though this will probably

raise the energy requirements in proportion to the number of bodies involved.
− Encounters need not be scheduled at the first opportunity (as shown in Fig-

ures 2 and 5). They can also be timed to occur after multiple orbit passes at
either intersection point of the orbits. The objectO can be stored in temporary
Chiron-like orbits as well.

4. Discussion

In this paper, we have investigated the feasibility of gradually moving the Earth to
a larger orbital radius in order to escape from the increasing radiative flux from the
Sun. Our initial analysis shows that the general problem of long-term planetary
engineering is almost alarmingly feasible using technologies that are currently
under serious discussion. The eventual implementation of such a program, which
is moderately beyond current technical capabilities, would profoundly extend the
time over which our biosphere remains viable.

The main result of this study is a theoretical description of a workable scheme
for achieving planetary migration. This scheme is applied to the particular case
of the Earth. Solar system bodies, such as large asteroids or Kuiper Belt objects,
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can be used to move Earth over the next billion years. These secondary bodies
are employed in a gravity-assist mechanism to increase the Earth’s orbital energy
and thereby increase its distance from the Sun. The most favorable orbits for the
secondary bodies have a large semi-major axis, typically hundreds of AU; with this
relatively high ‘leverage factor’, the large requisite energy transfer can be achieved.

An important aspect of this scheme is that a single Kuiper Belt object or as-
teroid can be employed for successive encounters. In order to move the Earth at
the required rate, approximately one encounter every 6000 years (on average) is
needed (using objects with mass∼ 1022 gm). Due to the acceleration of the Sun’s
luminosity increase, the encounters must be more frequent as the Sun approaches
the end of its main-sequence life. In order to use the same secondary body for many
encounters, modest adjustments in its orbit are necessary. However, by scheduling
the secondary body to encounter additional planets (e.g., Jupiter and/or Saturn)
in addition to the primary Earth encounter, the energy requirements for orbital
adjustment at the object’s aphelion can be substantially reduced. In particular, the
energy consumed by such course corrections is not likely to dominate the energy
budget.

Any serious proposal for planetary engineering, or any large-scale alteration
of the solar system, raises important questions of responsibility (see Pollack and
Sagan, 1993). Compared with other astronomical engineering projects, this scheme
has both positive and negative aspects. For example, although no massive alteration
of planetary environments is proposed, this scheme would consume a number of
large Kuiper Belt objects.

A great deal of energy must be expended to implement this migration scheme.
However, the energy needed to move Earth is relatively modest compared to that
needed for interstellar travel. For example, an optimistic minimum energy ex-
penditure is about 1036 erg, which corresponds to the kinetic energy of a∼ 1023

gm object moving at a velocity of 50 km s−1 (this mass is less than 10−4 M⊕). As
a means of preserving the entire biosphere, this scheme is thus highly efficient
compared to interstellar migration, even if we have underestimated the energy
requirements by many orders of magnitude. The energy requirements and overall
ease of implementation also compare favorably with various terraforming projects
(Pollack and Sagan, 1993).

As noted near the beginning of this paper, the required change in orbital energy
of the Earth is∼9× 1039 erg. In the basic scheme we have outlined, the energy is
essentially transferred from Jupiter to the Earth. As a result, Jupiter’s semi-major
axis a4 decreases by1a = a4 1E/E4 ∼ 2.5×10−3a4, whereE4 = GM�M4/a4 =
3.5×1042 erg is Jupiter’s orbital energy; this change amounts to∼0.01 AU. While
small, this orbital change could destabilize some asteroidal or other orbits by the
shift of position of Jupiter’s orbital resonances. The multi-planet scheme would
involve similar-sized orbital changes for Jupiter and Saturn (or other planets).

Potentially more serious questions involve the rotation rate of the Earth and the
Moon’s orbit. We expect thatO will raise a tide in the Earth during its encounter.
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The tide could be substantial; althoughO would be a relatively small body, the
closeness of its passage means that the transient forcing potential would beO(10)×
as strong as that of Moon, for a 1022 gm body passing 109 cm from the Earth’s
center. Calculating the size and phase of the tide would require detailed work, but
qualitatively we would expect any tidal bulge to lag in phase behindO, asO moves
more quickly than the Earth rotates. This in turn implies a spin-up of the Earth
(similar resoning accounts for the spin-down of the Earth by the Moon). Given the
very large number of encounters planned, a serious increase in the Earth’s rotation
rate could result.

However, the above picture, leading to spin-up, takes place only for ‘incoming’
encounters, such as depicted in Figures 1 and 2. The symmetry of the encounters
equally allows ‘outgoing’ encounters, in whichO passes by the Earth after its
perihelion. Such encounters also pass by the Earth’s leading limb from inside the
Earth’s orbit. They are thus retrograde with respect to the Earth’s rotation, and the
same considerations as above now lead to spin-down of the Earth rather than spin-
up. Thus, by careful planning of encounters, we can cancel any unbalanced torques
exerted on the Earth.

As for the Moon, reasoning by analogy with cases of stellar binaries and third-
body encounters suggests that the Moon will tend to become unbound by encoun-
ters in whichO passes inside the Moon’s orbit. (As well, there is the non-zero
probability of collisions betweenO and the Moon, which must be avoided.) Again,
detailed quantitative work needs to be done, but it seems that the Moon will be
lost from Earth orbit during this process. On the other hand, a subset of encoun-
ters could be targeted to ‘herd’ the Moon along with the Earth should that prove
necessary. It has been suggested (cf. Ward and Brownlee 2000) that the presence
of the Moon maintains the Earth’s obliquity in a relatively narrow band about its
present value and is thus necessary to preserve the Earth’s habitability. Given that
the Moon’s mass is 1/81 that of the Earth, a similarly small increment of the number
of encounters should be sufficient to keep it in the Earth’s environment.

The fate of Mars in this scenario remains unresolved. By the time this migration
question becomes urgent, Mars (and perhaps other bodies in the solar system) may
have been altered for habitability, or at least become valuable as natural resources.
Certainly, the dynamical consequences of significantly re-arranging the Solar Sys-
tem must be evaluated. For example, recent work by Innanen et al. (1998) has
shown that if the Earth were removed from the Solar System, then Venus and
Mercury would be destabilized within a relatively short time. In addition, the Earth
will traverse various secular and mean-motion resonances with the other planets
as it moves gradually outward. A larger flux of encounters might be needed to
rapidly escort the Earth through these potential trouble spots. In this case, addi-
tional solar system objects may require their own migration schemes. Alternately,
this technology could be used, in principle, to move other planets and/or moons
into more favorable locations within the solar system, perhaps even into habitable
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zones. As another application, the basic mechanics of this migration scheme could
be employed to clear hazardous asteroids from near-Earth space.

An obvious drawback to this proposed scheme is that it is extremely risky and
hence sufficient safeguards must be implemented. The collision of a 100-km dia-
meter object with the Earth at cosmic velocity would sterilize the biosphere most
effectively, at least to the level of bacteria. This danger cannot be overemphasized.
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