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ABSTRACT

The effect of anisotropic scattering on radiative transfer
was investigated theoretically. Exact solutions were obtained for
a plane source obliquely incident on a multiply scattering, parallel
plane dispersion by numerical integration. The results are utilized
to evaluate the various approximate models which have been proposed
for radiative transfer and neutron diffusion. A new variable-order,

diffusion-type model is proposed as an improved approximation.
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INTRODUCTION

The long range objective of this research is to develop
methods for predicting the transport of thermal radiation through
the atmosphere.

The scattering of radiation by dispersed material presents a
problem of considerable mathematical difficulty. Exact solutions
have been completed only for highly idealized conditions: isotropic
or Rayleigh scattering in a one-dimensional configuration (1).
Accordingly wany approximate models have been developed (2). Examples
are the diffusion model and the various discrete flux models.

In the initial phase of this research a discrete flux model was
used to obtain approximate results for a finite, spherical source both
above and inside a haze (3). The work was then redirected to the
development of exact solutions for particular conditions as discussed
below.

The lack of exact solutions for general conditions makes it
difficult to compare and evaluate the various approximate models which
have been proposed. As a consequence of a general conference on radiant
transport (4) and subsequent discussions with Dr. S. Chandrasekhar and
AFSWP personnel in which this situation was stressed, the immediate
objective of this research was shifted to the development of exact

solutions for idealized but significant conditions. Particular attention



has been given to the development of exact solutions for anisotropic
scattering. Solutions were first obtained for parallel-plane radiation,
obliquely incident on a semi-infinite dispersion. These results are
presented in the annual report for the previous year (5). The present
report presents similar results for parallel-plane radiation obliquely
incident on parallel-plane dispersions of finite thickness. The method
of solution follows the lead of Chandrasekhar (1) and involves the
reiterative numerical solution of integral equations on a high speed
computer. (The University of Michigan IBM-704). The formulation of the
method of solution and the numerical results are presented in Part I
of the report. In Part II numerical values obtained from various
approximate models are compared with the exact values presented in Part I.
Suggested formulas for interpolation and extrapolation of the exact values
are also included. None of the approximate models which had previously
been proposed proved to be entirely satisfactory and a new variable-order,
diffusion-type model is developed in Part III.

During the period while this work was being done an approximate
but exceedingly detailed incremental model for one-dimensional radiant
transport with anisotropic scattering was developed by the Internuclear
Corporation (6). Their final results have not been availalsle for comparison
with the values obtained in this investigation but comparison of pre-
liminary values for a few cases indicates that their model may be quite

accurate.



In the continuation of this research it is planned 1) to refine
the exact method of solution to expedite the numerical calculations
2) to extend the new variable order diffusion-type model for
anistropic scattering and 3) to develop exact or nearly exact solutions
for two-dimensional problems utilizing numerical methods and/or the

model.



PART I - NUMERICAL SOLUTION OF THE TRANSPORT EQUATION

A. Mathematical Formulation

1. Geometry and Coordinate System.

This investigation is concerned with the irradiation of a
semi-infinite slab by a uniform parallel flux as indicated in
Figure I-1. The Z = O plane represents the interface between
region (1) consisting of free space containing the source and
region (2) consisting of a uniform dispersion of multiply scattering
and absorbing particles each characterized by the same absorption
cross-section, scattering cross-section and phase function, p(cos Q),
for single scattering. The slab has an optical thickness T and the
Z = T, plane represents the interface between region (2) and region
(3) consisting of free space. The obJjective of this study is to
determine the intensities of transmitted and reflected radiation as
a function of position, direction, and the characteristics of the
source and dispersion.

The coordinate system used in the analysis is shown in Figure I-2.
An incident flux of intensity Iy strikes the interface at an angle
6y with respect to the normal (Z axis). The direction at Z = O of
the reflected intensity leaving the dispersion is defined by the
azimuthal angle ©, measured from the normal, and the bearing angle ¢

measured from the Y axis. For simplicity the coordinate system is

b
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oriented so that p, =0, i.e., I lies in the YZ plane.

2. The ¥ and ¢ Functions.

The following integral equations for the two basic functions

(l)*.

m m
¢1 and ¢l have been derived by Chandrasekhar

N
m m m
¥, (T, p)= P B+ %th (-1 W, g H/k (?.,ﬂ)‘r (T, p') I-1
am
m m , m d
- (T (T EO) P ,—,—'”,,—
" T/ m "' ' m -
¥ e pr = R f'Z v | (47 @om g cmpm 12
(4
J ’
‘+i(tu}">¢* (Z,,)‘)] P‘ (/‘)'__L"‘
mzo/"/ ttey, N
L=m m+y1, ... N
where,
L = cos ©
T, = optical thickness of media (number of mean free paths
for scattering) = not
P?(u) = associated Legendre polynomials
N = number of terms in the expansion of the phase function
(W) - Z
= WP
p(p) = Z P (1)
w, = coefficients of phase function expansion
- (1-m)¢
Wi o= ¥ (T

* Hereafter referred to as R. T.



The equations may be written in more convenient form by

defining
Fr (t.,ﬂ,/t’)=;§’-§7 K I AW IER MENOT M CWTD) 1-3
Gh (Z,,ﬂ,p')=F‘%7 [ $% CCop vy (3 p) = 47 (2 p) $) (2, 4] T-h

The equations then become

N Lok !
MW ERAOR ;‘,ugm SORM AR PrCHp I-5
$7 e, my=e TR + ,"ém (G: CZ, p, )P (D 4 I-6
M=o, 1 N
t=m mef, - N

For any value of N, equations I-1 and I-2 yield N + 1 systems
of simultaneous integral equations. Each system consists of 2(N+l),
eN,..., 2 simultaneous equations corresponding respectively to
mw =N, N-1,...0. As an example, using the notation F? = F?(Tl,u,u')

and G? = G?(Tl,u,u'), the systems of integral equations for N = 2 are

for m = 0O
gz py= L gp LRI -F) 2 R4y I-7a
S OENES YA SN RN a8 VU I-70
V(T p) = s Op - ) g p (LR I G -0 I-7c
R PP R L O R N RN S KT I-7d



ea e pe e pp( (GGG I-Te

ol =t aprone ff‘f:[cr: SRR PR/ L T -7
form=1
¥, (T, p) = ('_/‘x)‘/z + + r(:[ Flo-FL)Cu-p)" dp I-8a
Vi, p=3C-p) p - Ly (.' (F! - FL13C - pryplp 1-8b
$' (T, p)= <n-r‘)'/’e't'/" + ‘H(,' (G + G;](.-,"‘)'/‘d,“ I-8c
$, (T, 1) = sa-p) e %,u(: (G v Gl ]3Ci-ph) pdp 1-84
m =2
¥, (T, p)=3C1- M) +%r(:(a‘)3<1—,:")4,«' I-%
¢ (T, p) =31 -,“‘)e-t'/ﬂ + %/‘(' (61)3C1-phydp’ I-9b



3. The Intensity of Reflected and Transmitted Radiation
The intensity of radiation reflected diffusely by a semi-
infinite slab at the plane Z = O in the direction (p, ¢) may be

expressed in terms of a scattering function¥*

1<°,/Mf’>=1*(i%'ﬁm5<f-:ﬂ'?; Fe ) 1-10
where I(-p,%¥,) = incident flux intensity in

the direction (-pg,P.).

I(o,u,¢) = dintensity of flux reflected in
the direction (u, ¢) at Z = O.

§ = Scattering function

The scattering function is*%
N »
SCT; @i Mo )= T Sf )(Z,,/‘,/,) cosm (@, - @) I-11

or for Po =0

N
S(2;pg; )= 87 (7, p o) cosme

where,

N
S\t py = (28, 0Pk T (-0 E (7 p p) I-13

{sm

* R. T. Page 161
*%¥ R. T. Pages 180 and 177

10



The diffuse reflected intensity may then be written as

w =.£L . - N - mtl _m T-1L4
T.(p0) | FT E cosme (2 So,n)g'_"( D" F, (T, M pe)

In a similar wanner the intensity of radiation transmitted
diffusely through the slab at the Z = T, plane may be expressed in

terms of a transmission function¥

I(Z'l-ﬂl‘P):i;%(f.—)'j(zji,“l‘(i /IGI‘(.) I—ls
where, I.(=po, )= 1incident flux intensity in the

direction (-uo,vo)

I (T,-p¢)= dintensity of flux at Z = 1
transmitted in the direction
(‘H: ?)
7 = transwmission function

The transmission function is¥*¥

7(’61; M, ?,‘ f‘a, ‘(.) = Z jtm,(’cl,/u, }‘a) COSM(((’-(P) I-16

mzo

or for ?O =0

N (m)
T(z; pi ¢, /““‘f'): Y T (T, B pa)cosmy I-17
where,
N
:T(m)(‘c‘l";/")=/“/“<2—50,M)Z G—:‘(Z,,/l,/ln) 1—18
[am

The diffuse portion of the transmitted intensity way then be

written as

L(C-p ) fo & smo Sy G i
1. (-fo,0) 4T Eo(z‘ Soom) € 5""(’5 G, (T, p.p) 1-19

¥ R. T. Page 161
*¥%¥ R. T. Pages 180 and 177

11



Equations I-14 and I-19 may be written in a slightly more

convenient form by noting that

cosme = A, + ¥ A cos"(( I-20

¢ =1

where, for example, for m equal to 2, Ay = -1, Ay =0, and Ay = 2.
Thus, new expressions can be derived for the reflected and

the diffuse portion of the transmitted intensities of the following

form
N
M = b, (Z., /U,/-l,) + Z l’m (tl,f‘:/'la)cosm‘p I-21
I, (-’1”0) msi
and
N
i((z‘fl: 01')() =G (z‘//" Iu‘) + z cm(t'/ /J’ /“o) cas'"‘( 1-22
o \"[o m=|

This means that for a N term phase function and a given
combination of Tys By and p,, the intensities need be calculated
at only N + 1 values of @ in order to obtain the complete angular
distributions. The explicit relations for by(ty,u,u,) and
cy(T1,0,H,) in terms of W?(Tl,u,po) and ¢T(Tl,u,uo) for N = 2 are

derived in Appendix A-1.

. 1Integrated Reflectance and Transmission

The integrated reflectance is defined as the ratio of reflected
to incident power passing through a unit area of the interface. The
flux, IO, is defined as the radiant energy passing through a unit area

normal to the direction of propagation per unit time. Therefore, the

12



incident power striking a unit area of the interface is IO X Uy -

Similarly, the reflected power passing out of a unit area of the

2

[} 114

interface is ( f 1(0./,V)fdﬂd?, The integrated reflectance
is then expressed as
1 't

i
dud _
TR, & & 1(0,p,¢)udpde I-23a

Replacing I(O,u,p) by I-14 and noting that

R =

217
g F(f)caSmth? s 2TF (M) or © for m=0 or m¥o respec'l’:velyI—EM

N | .
R=$F (-0 ( pF (T b p)dp I-230

(=0 ¢

In a similar manner the integrated diffuse transmission T,
is defined as the ratio of transmitted to incident power passing
through a unit area of interface.

Thus

+ v

T ) P I-25a
T’—I,(-;i.,))u, gc S'. 1(T,~H, PIPpap

and substituting I-19 for I(Tl,—p,?)

N ' .
T, = Jz-lz ((pe, (o, popddp 1-25b

The total transmission T is the sum of the direct transmission
and the diffuse transmission.
T M,
Thus T=s¢€ Hooy Ty I-26

Tt has been shown(5) that, since,

N !
iz p i dp T (Fce, g wop I-27
h=o °

13



then
° N ! ’
1 - vy, M) - % Z (_1)‘(g F; (T, M, u’),‘/d/“
=0 ¢

/.l
and °
R:i-w-o—)- for N?l,f‘o?o
Ho
Similarly it can be shown that, since
¢ T /p L > ' ° [ ! !
¢|(t‘1/u)=/ue +2/uﬁZ§G"(zl,;“,,“)/‘d/“
c0 °
Then
ST M) eI X o
Y ¢ -zgo | Gy (T R
and
_ R )
4 /ug
For

N2T, #, >0

The total transmission is simply

4):( e‘/ f“’)
T= M,

1L

I-30

I-31

I-32



B. Numerical Procedure

1. The General Numerical Problem.

As shown in the previous section, the intensities of reflected
and transmitted radiation for a particular phase function for single
scattering can be expressed in terms of the solutions of sets of
simultaneous, non-linear integral equations. The numerical problem,
then, is to solve these sets in order to obtain values for the intensity,
I, in terms of its parameters.

The most straightforward method of obtaining numerical solutions
of integral equations is simple iteration using the original equations.
For example, in the case of a single integral equation of the type

$(x) = g(0) +A [T £(0f(xn(x)ax I-3k
where f(x) is the function to be found

g(x) and h(x) are known functions of x

and A is some known constant,
the method involves the following:

1. Replacing the continuous function, f(x), by a tabular
function, f*(x) where f*(x) consists of a set of p values of
£(x4), {foJfl)°"fP} , corresponding to a set of values of
X4, {.xo,xl,...gp} , Where p is the number of points.

2. Choosing an initial f*(o)(x).

3. Evaluating the right side of I-34 by some mechanical

(l)(x).

quadrature method--thus, obtaining a new f*

15



(

4. Testing to see if f*(l)(x) agrees with ¥ O)(x) everywhere
within acceptable limits and, if not,
5. Repeating the process using f*(l)(x) in place of f*(o)(x).
6. The process is continued until the sequence: f*(o)(x);
f*(l)(x),..., f*(n)(x) converges to some limiting value.
Advancing one step in the iteration procedure to obtain f*(n+l)(x)
from f*(n)(x) requires making p+1 numerical integrations.

Integration by mechanical quadrature consists of replacing the

integral by a sum, or in other words

P
(' foodx = X w, £ + € I-35

(=0

where ¢ is the error. Thus, selecting a specific method of numerical
integration involves selecting the set of values of x,{xo,x, %p} )
and the set of weighting coefficients,‘{W W ...W&}.

0’ 1»

For integration by the trapezoidal rule

W, = 1/p (1=1,...,p-1)

For integration by Simpson's rule

P = 2k where k is an anteger
Xi = 1/p ‘ 1'37
Wq = Wp = 1/3p
Wi = LL/3P i=1,3, ..., p-1
W. = 2/3p 1i=2,4...., p-2

16



For integration using n-point Gaussian quadrature

X =(f,,, +1)/2 I-38
where r; is the i-th root of P, (x)
i
W = 1' g P, (X)dx
Z P,(X) X-X;

-
Thus, the definition of a specific numerical procedure involves:
1. Selecting the number of points, p+l, {xi} and {Wi}_

2. Selecting the initial function f*(o)(x).

(O)(

3. PSelecting a test to determine when the sequence f* x),
f*(l)(x),..,, f*(n)(x) has converged.
It should be noted that the fact that the function f*(x) has

converged to some limiting value merely assures that a solution has

been found to the following equation:

4 »
= 3O e A Y w o £ k) I-39

{=0
for j =0, 1,..., p. This does not, however, guarantee that

% (x)

1]
H
—~~
»
~~

Convergence in this latter sense may be tested by
comparison of the results with (a) results obtained by other wethods
(b) results obtained using more accurate methods of numerical integration,
and (c) solutions for idealized and limiting cases.

Extension of the preceeding comments to the case of N+l simultaneous
integral equations is straightforward. The general form of the eguations
is

'

N
fo) = g,(x) + 2: /\“gf,, (xX) £, XV h, (x)dx', (l=o0,4,-, N) 3-40

17



Advancing one step in the iteration prbcedure involves obtaining

(n+1) (n+1) (n) (n)
... % .
5 e fﬁ from fé N

2. Specific Numerical Techniques Used in Computation.

A computer program was written to solve equations I-1 and I-2
in their general form by the method of simple iteration. The programs
were written in a form suitable for use on the IBM 704 or 709 and are
described in detail in Appendix C. All calculations, however, were
performed on the IBM 70k4.

Every effort was wade to develop general techniques suitable for
solution of equations with an arbitrary value of N; arbitrary set
of constants in the phase function; an arbitrary wmethod of numerical
integration; any thickness, T5 any albedo for single scattering, W, ;
and any choice of starting functions. The same procedure was used for
all values of m and N to obtain all of the functions presented in this
report. The only limitation on the size of the problem that can be
solved is that of computer time required and number of storage locations
available.

In practice, almost all of the results were obtained using five
point Gausian quadrature. For this case, using numerical values given

(7N

by Lowan, Davids, and Levenson

Wo = 0.11846 by = 0.04691
W, = 0.23931 up = 0.23077
Wy = 0.2844h ko = 0.50000
W3 = 0.23931 w3y = 0.76923
W), = 0.11846 W, = 0.95309

18



In addition some values were obtained for comparison using a 10-point
Simpson's Rule technique.

The starting functions used for all calculations were

)

(o m
$r (T p) = R I-4la

™ T/ m
¢4 (2, M e el (¥ I-L1b

After considerable experimenting, it was found that for m £ O
a simple numerical test was satisfactory to determine convergence.

In other words, when

X(n+1) * (

)
Max | £ x;) - £ x| < Tolerance I-4oa
4

the iteration was stopped. For all cases the tolerance was chosen
as 0.001.
For m = 0, however, it was found that a better test was to stop

the iteration whenever

[{H"“)(X;) - ;*cn)(x‘.)][;nn) X - f*"‘"’(x;)] <0 I-42b

for ¢f or *: or whenever I-L2a was satisfied. This effectively
stops the iteration as soon as the incremental change in any function
reverses sign. This gave the best agreement with known solutions for

(8)

special cases (i.e. the X(p) and Y(p) functions of Chandrasekhar

which are the same as ¢, () and ¢,(4) in this study),

19



Some difficulty occurs when evaluating GT (o, F,fﬂ)

for the case p = pu!'

Gy (T pp) L FLIBT ) - STIT MY I-43
Ch gy HoH

However, by L'Hospital's rule the limit is

G, &, M) sy dt gy L T_h
w? dp’ dp’

d J(
In practice, :;V” and dj;?‘

p by fitting a second order polynomial to the three nearest values of

were evaluated at a given value of

the function, and differentiating analytically.

In addition, a program was written for calculating the integrated
diffuse reflection and transmission for any set of functions using
equations I-23b and I-25b.

A discussion of the effectiveness of the numerical procedures
will be deferred to section C-5 of this report after the presentation

of numerical results.
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C. Solutions to Specific Problems

1. Choice of Independent Variables.
The choice of specific values of the independent variables
was based on the following:

1. To indicate quantitatively the effect of the independent
variables for representative conditions.

2. To gain experience in techniques of numerical solution of
the problems which would be useful in solving further

problems.

3. To obtain solutions for specific problems which can be
used as a standard for evaluating approximate techniques.

In order to completely specify the problem the following para-
meters wust be chosen: 1) number of terws in the phase function, Nj
2) coefficients of the angular distribution function, a,, a),...aN;
3) albedo for single scattering, w, ; and 4) the optical thickness
of the dispersion, T,

In order to obtain a reasonable picture of the effect of w, and
T, @ winimum of three values of each variable must be used, making a
total of at least nine solutions for each phase function. There is
an almost endless number of possible phase functions. For instance,
for only a two term phase function (aO = 1) using 10 values of 8, and
a5 would require 900 solutions. For a five term phase function, 900,000
solutions would be required.

In addition, for a given value of m, the effort in solving one

set of integral equations increases with the square of the number of
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equations in a set. Also, the number of sets of equations increases
with N. For example, in comparable units of computer time, the

effort in solving the equations for N = 0, 1, 2, 3, 4, and 5 is

N =20

(1)° Y-
N=1

(12 + (2)7 = 5 units
N=2

(1)% + (2)2 + (3)° _ 1) units
N =3

(12 + (2)2 + (3)2 + (W2 - 30 units
N=14

(1)2 + (2)% + (3)2 + ()2 + (5)° = 55 units
N=5

()2 + (22 + (32 + ()2 + (5)2 + (6)2 = 91 units

(Note: in the preceeding it is assumed that all coefficients in
the phase function are non-zero)in estimating the labor required
to solve a set of equations N may be taken as the number of non-zero
terms in the phase function)

Thus, it is apparent that the selection of representative phase
functions is very important and that the number of non-zero terms in

the phase function must be kept small in order to be able to vary w, and

t1 sufficiently to achieve the previously stated objectives.
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a) Choice of the Phase Function
The construction of a phase function for scattering by
spherical particles depends on the wave length A of the radiation,
the diameter of the scattering particle D and the index of refraction m.
(9)

The problem is fully described by Chu and Churchill . In summary,

the phase function, p(cos ©) or p(u), can be written

pPCHY = 1 + T 2P () I-L5

n=j

where P(ﬂ)/4v is the fraction of randomly polarized radiation
scattered by a spherical particle into a unit
solid angle in the direction 6.

o is COS-l(p)

an( d ,m) angular distribution coefficients
P (u) are Legendre polynomials
da=1wD/)\

The phase function (I-45) is for non-aborbing particles
( w,=1.0). For partially absorbing particles with complex indices
of refraction, the angular distribution coefficients must be recomputed
for each value of W,. As a good approximation, however, the phase
function may be considered to be w,p(u) where p (u) is the phase
function of a non-absorbing particle.

Probably the most important single characteristic of any given

phase function is the fraction scattered forward and backward, F and B,
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where
F= ZWK'p(p)Jp I-46
B= 2T S. P(p)dp I-47

B=1-F, since Zv(' p(Mdp =1 I-48

A good measure of how "peaked" is the phase function is the
ratio of the second moment to the zeroth moment in the forward and
backward direction
1
P = Z‘tT( P(/‘)/lzd,"/F I-49
Qe
and
° 2
P, =2m( p(ppdp/p 1-50
]
where P = Peakedness in Forward Direction.

Py

Peakedness in Backward Direction.
In addition, other characteristics are
FP = Height of the Forward Peak, i.e. p(1.0)

BP = Height of the Backward Peak, i.e. p(-1.0)

The equations for these parameters in terms of the distribution

coefficients, ag, ..., ay are
i a a a 5a 74 214 334
F ey S _83 45 I - " 13 . .... I-51
2V 3 T Y32 T75s TR T 2046 T 406 >
B=1-F 1_18
(4,4 3 3 _ 38s a; __& au 3a, _
S s i R i T T P A 1-52
=14 i &. - as as - Ay k) Ay, 33, . _
PB _[6 3 " 3 ¥ 334 ~ T2so T 3072 614F T 32716 }/B I-53
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FP = § +a, + 4, +d; +a, + - I-54

BP

1-8 +82-23; +ay - I-55

For N = O the phase function has only one term, ay = 1. Thus,

all quantities are fixed

F=1/2
B =1/2
P=1/3
Py = 1/3
FP =BP =1

For N = 1 the phase function is completely specified by
choosing any one characteristic auch as F. For n = 2, the phase
function is cowpletely specified by choosing F and P (or any other
pair of characteristics). As more terms are added, more characteristics
of the function may be choosen independently. In order to consider
a significant range of W, and Ty with the computer time available
a two term phase function was used for all computations including
a few special cases in which some of the coefficients were zero.

A careful study was made of all possible two term phase functions
satisfying the conditions that p(p) be positive for all values of u

and that FP be greater than BP. It was found that the phase function

p) = w, [1 + aR(p) + 2, P(W)
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gave the greatest range of F and P while satisfying the conditions
that p(p)20 for O € u € 1 and FP2BP. Figure I-3 is a plot of
FP vs F with P and BP as parameters. The shaded area represents
all values of F and FP for which p(u) was always positive.

From consideration of Figure I-3, the following phase functions

were selected for computation.

TABLE I-1 Phase Functions Used in Computation

al as F P Remarks
0.00000 0.00000 0.50000 0.33333 Isotropic Scattering
0.00000 0.50000 0.50000 0.40000 Rayleigh Scattering
1.00000 1.81650 0.75000 0.550k Arbitrary: same F,

different P

1.00000 1.0490k 0.75000 0.4821
1.00000 0.00000 0.75000 0.3899
1.73205 1.00000 0.9330 0.4821 largest F for N = 2
1.73458 2.24153 0.9336 0.5821 Same Phase Function as

Reference (5).

The last phase function listed in Table I-1 is the same as
that in reference (5). Computations with it were wade only for T, = ®
since p(p) was not always positive for this function. The results were
used as a check on the accuracy of the numerical techniques.

All of the phase functions are plotted in figures kha, L4b, and k4 c.
In these figures the function f(6) is plotted which is equivalent to

p(cos ©)/bn .
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b) Choice of Other Independent Variables

The independent variables other than the phase function (i.e. w,
and Tl) were selected to give as good an indication of their effect
as possible.

For most of the calculations @, was chosen as 0.90. This was
done to be able to compare results for T, = 00 with previous solutions.
For every phase function results were obtained at least for T, = 1.00.
For isotropic scattering, Rayleigh scattering and for the function
corresponding to F = 0.9330 and P = 0.4821, results were obtained
at several values of T7.

A total of 36 problems were solved; the values of the parameters

for each are listed in Table I-2.
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Table I-2 Values of the Parameters Used in Computation

Problem Number

~N O\ W N

Qo

11
12

13

1k
15
16
17
18
19
20

21
22

23

2k
25
26
27
28
29

30
31
32

33
3k
35

36

O O O O OO o

o O

O O O

o O O OO O OO0

O O

O O O O O o

o

F

.500
.500
.500
.500
.500
.500
.500

.500
.500
.500

.500
.500
.500

.500
.500
.500
.500
.500
.500
.500

. 750
.750
.750

9330
-9330
9330
9330
9330
9330

-9330
9330
9330

-9330
9330
-9330

.9336

P

o O O O O OO OO0

o O O

o O O O OO oo

O O

O O O O O o

30

-333
.333
-333
333
-333
-333
-333

333
-333
-333

-333
-333
-333

.L0oo
.40oo
.400
.40oo
400
.400
koo

.550k
k921
.3889

L4821
Lho21
L4921
L4821
4821
4821

L4821
L4821
L4821

L4821
4821
L4821

.5821

T1

.05
.25
.50
.00

N HEFEOOO

1.50

1.00
1.00
1.00

0.05
0.25
0.50
1
2

.00

O O O O O O o

o O

O O O

(@) O OO O O o o

o O

O O O O O o

@)

.90
.90
.90
.90
.90
.90
.90

.60
.60
.60

.30
.30
.30

.90
.90
.90
.90
.90
.90
.90

.90
.90
.90

.90
.90
.90
.90
.90
.90

.60
.60
.60

.30
.30
.30

.90



2. The ¥ and ¢ Functions

For each set of parameters as indicated in Table I-2
the complete set of WT and ¢T functions are calculated at the
Gaussian quadrature points. These functions are tabulated in
Appendix B. The number of iterations required to evaluate the
functions for each value of m is given. In every case except
Problem 36 for m = O, the starting functions are those given by

Equations I-4la and I-4Llb.
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3. Sample Values of the Intensity of Reflected and Transmitted Radiation
The normalized intensity of reflected radiation and the diffuse

portion of the transmitted radiation are, in general, a function of

two angles @ and 6 and four parameters: 90> “6, Ty and the phase

function.

The effect of the variables is illustrated by considering a

sample problem with

1) 6y =cos™1 0.5 (i.e. u, = 0.50)

2) o =cos ' 0.76923 (i.e. p = 0.76923)
3) @, =0.90

4) 7, = 1.00

5) A two term phase function such that F = 0.9330 and P = 0.4821
The angular distribution of the specific intensity is obtained as
a function of the bearing angle ¢ as well as these six parameters. The
effect of each variable is indicated by varying 6,, ©, %, , 7q, and
the phase function, one at a time, while holding the remaining variables

at the above, "standard values". (There are exceptions which are noted.)

The specific intensities for each case were calculated on a desk
calculator using I-21 or I-22 and the equations in Appendix A-1. The
apparently arbitrary values of p and Ko which were used correspond
to the Gaussian points for the five-point Gaussian quadrature utilized

for integration. The values of the coefficients by, by, bp, cq, s
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and A which appear in equations I-21 and I-22 are tabulated in
Table I-3.

The effect of 6, (or uo) is shown in Figures I-5a and I-5b. 1In
this case p was held at 0.50 and four different values of W, were
used. It is observed that there is a rather complicated dependence
of the intensity of reflected radiation on Mo » With some of the
curves overlapping. At @ = 180° the maximum intensity of reflected
radiation occurs for Ho between 0.23079 and 0.76923 which is not
surprising since the cosine of the angle of incidence is 0.50.

The effect of © (or p) is shown in Figures I-6a and I-6b with
all other variables at the "standard" values. In this case the dependence
of the intensity of both reflected and transmitted radiation on pu
produce overlapplng curves. The maximum intensity of reflected radiation
at ¢ = 180° apparently occurs at a viewing angle almost the same as the
angle of incidence.

The effect of W, is shown in Figures I-7a and I-7b. In this
case Ty is 0.50. It is apparent that decreasing W, simply decreases
the intensity of the reflected and diffuse portion of the transmitted
radiation without affecting the nature of the dependence on ¢.

The effect of 1, is shown in Figures I-8a and I-8b. The effect
of decressing T is similar to that of decreasing w, : the intensity

is decreased but the dependence on ? is not changed very much.
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Table I-3 Values of the Coefficients Used in Equations I-21 and I-22 to Calculate the

]

0.500

0.550
0.482
0.389

0.482

Specific Intensities of Reflected and Transmitted Radiation.

w, r
0.90 1.0
" "

" 0.25
0.60 0.50
0.90 1.0
" "

" "

" "

" "

" "

" 1.0
" "

" "

" "

" "

" "

" "

" "

" 0.50
" 0.25
0.60 0.50

0.30 "

v

0.0k69

0.7692

0.0L469
0.2308
0.7692
0.9531

0.5000

n

bO

0.1033
0.0560
0.0219
0.0205
0.0691
0.0485
0.0078
0.02kh7
0.0k23
0.0367
0.021k
0.0230
0.0132
0.0126
0.0020
0.0106
0.0204
0.02k1
0.00kk
0.0003
0.0007

0.0006
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by

0.0000
0.0000
0.0000
0.0000
0.0020
0.0091
0.0186
0.001k
0.0195
0.0225
0.1189
0.0845
0.0201
0.0063
0.0112
0.0390
0.0310
0.0120
0.01k42
0.0076
0.0076

0.0030

%o

0.0000
0.0000
0.0000
0.0000
0.0765
0.0133
0.0581
0.0300
0.0000
0.0297
0.1597
0.1163
0.028L4
0.0055
0.0150
0.0537
0.0436
0.0105
0.0232
0.0157
0.0149

0.0072

o]

0.0326
0.0429
0.017k
0.0183
0.0268
0.0388
0.0348
0,0k59
0.0571
0.0000
0.030k
0.0432
0.0601
0.0719
0.0028
0.0197
0.092k4
0.1371
0.0392
0.0245
0.0218

0.0093

¢

0.0000
0.0000
0.0000
0.0000
0.0035
0.0061
0.04k43
0.0285
0.0131
0.0000
0.0329
0.0502
0.0467
0.02L5
0.0031
0.0232
0.0718
0.0L467
0.0k425
0.0298
0.0254

0.0117

c
2

0.000C
0.000C
0.000C
0.000C
0.013C
0.0091
0.042¢
0.020¢
0.000C
0.000¢
0.028*
0.0L07
0.0197
0.00LC
0.002
0.018¢
0.030!
0.0077
0.021¢
0.015¢
0.013¢

0.006¢
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The effect of phase function is indicated in Figures I-9a and I-9b.
Results are given for isotropic and Rayleigh scattering in which F
is the same (0.50), but P is different (0.3333 and 0.40). An additional
set of results was obtained for u = 0.04691. It can be seen that the
two phase functions produce approximately the same angular distribution
of intensity except for reflected radiation with a near grazing viewing
angle (u = 0.04691) in which the "dumbell" characteristic of the
Rayleigh phase function is accentuated.

Another illustration of the effect of phase function is provided
in the polar plots of Figures I-10a and I-10b. In this case the
three phase functions for F = 0.750 and P = 0.5504, 0.4821, and 0.3899
are used with the "standard" values of the other variables. It can be
seen that the different values of P at the same value of F produce
noticeably different angular distributions for the reflected and trans-

mitted intensity.
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4. The Integrated Reflection and Transmission

The integrated reflectance, the diffuse portion of the integrated
transmission, and the total transmission were calculated for each set
of conditions and the results are tabulated with the ¢f’and ¢:
functions in Appendix B. In addition, these values are presented
graphically in Figures I-11 to I-25.

The integrated reflectance for isotropic scattering is shown as
a function of angle of incidence in Figures I-11, I-12a, and I-12b
for w, of 0.90, 0.60, and 0.30 with T, 85 a parameter. Similar plots
are presented for anisotropic scattering with F = 0.9330 and P = 0.4821
in Figures I-13, I-lka, and I-1kb.

The total integrated transmission, including both diffuse and
direct cowponents, for isotropic scattering is plotted vs. Ho in
Figure I-15 for @, = 0.90. In Figures I-16 the total transmission for
isotropic scattering is presented for T, = 0.05 and 0.50 with parameters
of ®,. Similar plots are given for anisotropic scattering in Figures
I-17 and I-18.

Values of the integrated reflectance and transmission were also
obtained for Rayleigh scattering for which F is the same (0.50) as for
isotropic scattering, but P is different (0.40 compared with 0.333).
The results as shown in Figures I-11 and I-15 are almost indistinguish-

able from those for isotropic scattering. Integrated reflectances for
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the anisotropic phase function of reference (5) for 7, = ® in
which F was 0.9336 fall on the same curve as the results for this
investigation in which F is almost the same (0.9330), but P is
different (0.4821 compared with 0.5821).

The effect of anisotropy is best indicated in Figures I-19
and I-20 where the integrated reflectance and the total transmission
are plotted versus angle of incidence with T = 1.00 for each of the
five phase functions considered in this investigation. Again, it is
noted that the results for the three different phase functions with
F = 0.750, but with different values of P are almost identical.

The integrated reflectance and total transmission are cross-plotted
versus T with Mo @S a parameter for isotropic scattering in Figures
I-2la and I-21b and for anisotropic scattering in Figures I-22a and
I-22b. This should provide a satisfactory method of interpolating
for different values of t7. As is expected, the dependence on T
is almost linear for small values of Ty

The effect of w, on the integrated reflectance is indicated in
Figures I-23a and I-23f for isotropic and anisotropic scattering. The
effect of w, on the total transmission is shown in the same
manner in Figures I-24a and I-24f. The dependence on @, is almost
linear for small values of ®w,. For small values of 71 it is linear

over the whole range of @,.
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The effect of phase function—in particular, the effect of F—is
illustrated by cross plots of R and T versus F in Figures I-25a and
I-25b where o is a parameter. This indicates the approximate error
of neglecting anisotropy and provides a means of estimating the
reflection and transmission for an arbitrary dispersion on the basis
of the value of F for the phase function. As can be seen from
Figures I-19 and I-20, the effect of P is not large. In fact, except
for the integrated transmission at the two largest angles of incidence,
the cowplete variation of reflectance and transmission with the range
of P considered in this study is indicated by the size of the circles

used to plot the points in Figures I-25a and I-25b.
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5. Discussion of Numerical Technique

It is very difficult to estimate the error involved in the
numerical solution of the integral equations. Probably the best
indication is comparison with previous solutions and with other
methods of solution. The following solutions are available for
comparison.

1. Chandrasekhar's H functions'l) for @,= 0.90, 0.60, and
0.30. The H(u) functions are the same as the ¥ (u) functions of
this report for T, = 00 and isotropic scattering. The comparison
is given in Table I-4. The values generally agree to within O.l%.

2. Chandrasekhar's X and Y functions (8) for @,= 0.90 and

T7 = 0.05, 0.25, 0.50, and 1.00. The X(pu) and Y(p) are the same as
the ?ﬂp) and ¢2(u) functions of this report for isotropic scattering.
The comparison 1s given in Table I-5. The values generally agree
to within a few percent.

3. The wg(w), ¥§(1), ¥3(k), ¥iln), ¥3(n) and y3(n) functions
calculated by Churchill, et.a1.(5) for ag = 1.00000, a; = 1.73L458,
ap = 2.24153, w,= 0.90 and T1 = oo.with iteration using a 20-point
Simpson's rule technique. The comparison is given in Table I-6.
The values generally agree to within 1%.

4. The integrated reflectance calculated for Rayleigh scattering,
w, = 0.90 and Ty = 00 using the method described in Appendix A-2.

The comparison is given in Table I-7. The agreement is very good.
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TABIE I-4 Comparison of ¢§(u) Functions for Isotropic

w
v
0.04691

0.23077
0.50000
0.76923

0.95309

Scattering and with Chandrasekhar's H Functions.

0.90
H(p)
1.0937

1.3233
1.5560
1.7299

1.8273

#S (1)
1.0936

1.3236
1.5554
1.7289

1.8259

H(p)
1.0520

1.1584
1.2485
1.3011

1.3291

0.60

ga(n)

1.0520
1.1587
1.2456
1.3009

1.3288

0.30
H(p) Po (1)
1.0233 1.0233
1.0661 1.0663
1.0976 1.0975
1.1160 1.1159
1.1249 1.1248

Table I-5 Comparison of theﬂg(p) and ¢8(“) Functions for isotropic
Scattering and w,= 0.90 with Chandrasekhar's X and Y Functions.

W
.0L4691
.23077
.50000
76923
.95309

O O O O O

.0k691
.23077
.50000
.76923
.95309

o O O o o

K
04691
.23077
.50000
. 76923
.95309

O O O o O

u
.0Lk691
23077
.50000
.76923
.95309

O O O o O

X
.0560
.0778
L0814
.0826
.0831

H e

.0810
L1967
2440
.2610
2668

H o e

.0861
2553
.3528
.3948
4122

H O e

.0902
.2933
L57h
5472
.5880

o e

T, = 0.05
Y.
1.0546
1.0726
1.0783
1.0800
1.0806

T, = 0.25
¥,
1.0797
1.1993
1.2413
1.2611
1.2694

Y
.3914
.8805
.9852
.0190
.031k

HH OO O

No)tin}
.5017
.8285
L9672
.0228

H O O O O

.0269
2769
.6506
.8636
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O O O O O

.0171
.1888
4120
L6646
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O O O oo

O OO OO0 H O O O O H KOO O

O O O OO0

g

.3838
.90L9
.9824
.0138
.0252
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.0Lk67
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.8317
.9501
.0001

(e}
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.0275
2636
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8462

.9249
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Table I-6 Comparison of the ¥ and ¢ Functions of this Report
with Similar Functions of Reference (4) Calculated Using
a 20-point Simpson's Rule Technique for a; = 1.73458,
ap = 2.2&153, w, = 0.90 and T1 = @O

O
W Vo (u) w3
Ref. This Rept. Ref. This Rept.
0.04691 1.1186 1.1185 0.0187 0.0185
0.23077 1.3538 1.3550 0.1182 0.1179
0.50000 1.4865 1.4868 0.3121 0.3121
0.76923 1.4603 1.4699 0.5413 0.5412
0.95309 1.3946 1.3948 0.7094 0.709k
3 vl
) Ref. This Rept. Ref'. This Rept.
0.04A91 0.5368 0.5370 1.0515 1.0516
0.23077 0.5110 0.5124 1.0888 1.0896
0.50000 0.2078 0.2079 0.9564 9.0561
0.76923 0.3782 0.3771 0.6578 0.6583
0.95309 0.9347 0.9348 0.2822 0.2905
vh v
" Ref. This Rept. Ref. This Rept.
0.04691 0.108Y4 0.1080 3.1399 3.1376
0.23077 0.5908 0.5911 3.1955 3.1955
0.50000 1.2591 1.2596 2.6409 2.6L06
0.76923 1.5187 1.5179 1.4697 1.4695
0.95309 0.88L0 0.9173 0.3330 0.3331

Table I-7 Comparison of Integrated Reflectance for Rayleigh Scattering,
Ty = 00 and @w,= 0.90 with Values Calculated using Method Described
in Appendix A-2.

Ky Appendix This Report
0.04691 0.660 0.656
0.23077 0.581 0.580
0.50000 0.507 0.507
0.76923 0.453 0.453
0.95309 0.424 0.424
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Tt must be noted that in all the preceeding comparisons (except
for the case of p = 0.50) the results from other investigators were
linearly interpolated to get values for comparison with the results
at the Gaussian quadrature points of this report. From the comparisons,
however, it is estimated that the functions are generally accurate to
within +0.02 which in most cases im an error of less than two to three
percent. The intensities of reflected and transmitted radiation as well
as the integrated reflectance and transmittance are of the same general
accuracy as the functions. This is evident from equations I-15, I-19,
T-29 and I-32.

The use of Gaussian quadrature seems preferable to Simpson's Rule
or to the trapezoidal rule in that five point quadrature afford the same
accuracy as the use of ten equally spaced ordinates. In addition, a
better approximation may be had by adding only one additional point
where with Simpson's rule, in order to obtain a better approximation,
it is necessary to double the number of points. The disadvantage of
the use of quadrature is that results are obtained at odd values of u.
On the other handjhin using the results they are to be integrated again,
this wmay be an advantage, since quadrature can be used to perform the
integration.

The time in seconds required for one iteration on the IBM 70k
is

Time = 0.025 (no. Points)ex(no. equations)gx(no. iterations) I-56
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For example, using five-point quadrature; for m=0, N=2; performing
four iterations

0.025 (5)°(3)2(k) I-57

Time

I

22.5 seconds

Considering the cost of 704 time at $5.00 per minute
Cost = $2.08 x 1073 (no. points)gx(no. equations)gx(no. iterations) I-5€
To scale the cost to some other machine, simply multiply the
factor $2.08 x 1073 by (cost per operation on new machine)/(cost per
operation on the IBM 70k4).
The 704 performs 40,000 operations on the average per second so
its cost per operation is
$5/(60x10,000) = $2.08 x 10-0 per operation
It is estimated that the $2.08 x 1073 factor in I-58 could be reduced

by a factor of five through the use of efficient hand-programming.
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PART IT  EVALUATION OF APPROXIMATE MODEILS

Exact solutions in closed form are not attainable by analytical
methods for problems of multiple scattering. Exact solutions are
attainable by numerical methods, as in Part I, but the required cal-
culations are lengthy and expensive, and the results are for specific
cases. Simple, approximate solutions therefore have considerable value
if reliable. In this section the reflectance and transmission obtained
from various approximate models are compared with the "exact" values

obtained in Part I.

A. Approximate Models

1. Two-flux Model(11,12)
The two-flux formulation of the slab problem with an obliquely

incident plane-parallel source is

dI,
/‘oi—{=-(|~u),F)I', *Q,BIZ II-la
M L (1 - @F)I II-1b
"Tzc (1 @F)I - @Bl

Where I, is the integrated radiant flux in the forward direction and
I, the integrated radiant flux in the backward direction, and F and B
are the forward and the backward components respectively of the phase

function for single scattering,
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Equations II-la and II-1b can be solved with the boundary conditions

I, =1lat 2 =0, and I, =0oat Z =1 to give

1

_(la)zeopty  (1-@F-pXy - e‘??-/,".)

I1-2
(Mraofe w,p(1-Lzef-p _ s2pa/i)
I -wofF +p
and
T= (1:)zs7 Mo - 2?e-Pt'/ﬂ° 1I1-3
(L)zz0Me 1~ WoF +p - (1 ~@oF - p)e 2PTu/Me
where
P = fC1-woF)! - (v BY II-4
2. 8ix-flux Model (11,12)
The six-flux formulation of the slab problem with an obliquely
incident parallel-plane source is
dr, _ c II-5a
g; = 'C.Secaol, + Cz SCCO.Iz + C35e 90(13 * 14)
%_;_, = - C,5ecQl, + C,sech,I, + C,sech, (I + 1,) II-5b
dl; CCscOI; + C,CscqT, + C3¢s¢O,(I, + I,)
Tz = ~05COI; + (05081, + € AT P! 1I-5¢
'%’Iih -G C5COT, + C,CSCO1, + C;c5cO,(1, + I,) 17-54
I,=1 = ©o X I+ I, +I,¢1 I1-6
5 6 3 4

|'woF6"ooBb
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Where Il’ Ig, 15’ Iu, I5 and I6 are the components of the radiant

flux in the forward, backward and sidewise directions, and

_ 20 X" II-Ta
C, =1 - WwFg - I - WoFg - o By

20, X*

II-Tb
)= ‘ooFb“ooss

C:= td,B‘ +

2
C,= WX + _1%__ II-Tc
|“')0F6'woB‘

where F6, Bg and X are the six-flux representations of forward,
backward and sidewise scattering components. Fg = (F)(P), Bg = (B)(P)

X = (1 -Fg - Bg)/h.

The solution for Equations II-¥a to II-6 with the boundary

conditions Il = 1 and Iz =0 at Z= o, and Iy = Iy =oat gz= T1s is
reproduced in Appendix A-3.

3. Richard's Modified Diffusion Theory (13)

The transport equation is approximated as ¥

d’

I - K= - -k I1-8

where 2 is normal distance in mean free paths for scattering, K=

43“-‘0,)/(3-2%)’ Pg is the density of unscattered photons, p is the

photon density and q is defined by
S=(l--§-«>o)€'(’4 11-9

The source strength is py = C-Z//uo
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Equation II-8 can be solved for the conditions @, =0 in

vacuum, p finite, and @ and ;% both continuous at T, =0 and Ty
Giving -7, /Mo KT, -Kg, 2
Rz_l_%% J2K(-M€  » (14KXI-KM)E - (1-KX) T KMo € (r-K)M TI-10
FodZlzeo Gex)Ye ™ - (1-Kle Y H
and ny
-1 -8 /o
T= Fo&'lzt, te 2/" . ?/
KT, =T [Me ~KC =€ /Mo
=z\<(.+/¢.)-(|+|<)(t+t</lo2e + (1-kX1-KpHo)e 7 1-k? +e-q/'u'II-11
(e k1Pe™ - (1-k)e ke -kl

The above two equations are for @W,< 1. The solutions for the case

W, =1 can be found easily and are omitted here.

4. Numerical Results

Numerical values were computed from the above approximate
solutions for comparison with the "exact" results obtained in Part I.
The computed values are given in Tables B-1 to B-5 in Appendix B and are
illustrated in Figures II-1 through II-5.

Table B-1 gives reflectances for isotropic scattering as obtained
from Richard's model, the two-flux model and the six-flux model. The
exact values are included for comparison. The six-flux results for
Rayleigh scattering are also included. The exact values for Rayleigh
scattering did not vary significantly from the values for isotropic

scattering and hence are not reproduced here. The two-flux model
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obviously gives identical values for Rayleigh and isotropic scattering.
Representative values are plotted in Figures II-1l and II-2. From the
tabulated and plotted values it can be observed that the six-flux
solution is generally better than the two-flux solution which is in
turn generally better than the Richard's solution. The simple diffusion
solution which is not given is poorer than Richard's solution. Exceptions
are for normal incidence where the six-flux solution falls off and for
infinite thickness for which the two-flux reflectance is invariant with
angle of incidence and inferior to Richard's solution. All of the
approximations improve as the albedo, «,, increases and as the optical
thickness, 77, decreases. This behavior can be attributed to the
decreased contribution of mwultiple scattering to the reflectance.

Table B-2 gives transmissions for the same conditions and models
as in Table B-1, except for the omission of the infinitely thick medium.
Again the values for Rayleigh scattering are included for the six-flux
model, are identical for the two-flux model and are essentially equal
for the exact method. These values are not illustrated graphically but
study of the tabulated values indicates clearly that 1) the six-flux
values are better than Richard's values which are this time better than
the two-flux values. The two flux values are two low for small Ho but
improve for pO>O.5. Richard's values and the six-flux values are

remarkably equal for normal incidence. The greater the albedo, @,, the
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better are the approximate values. No clear cut trend in accuracy
is apparent with thickness. The predictions of transmission by
Richard's and the six-flux model are better than the predictions of
reflectance but the opposite is the case with the two-flux model.
Table B-3 and B-4 give reflectances and transmissions respectively
for anisotropic scattering with F = 0.9%3% and P = 0.4821 as computed
from the six-flux and two-flux models. The exact values are also
reproduced for comparison. Representative values are plotted in
Figures II-3 and ITI-4. It can be observed that the six-flux model is
more accurate than the two-flux model for both reflection and transmission.
The six-flux model is wost reliable near p = 0.5 and for large @, and
appears to give consistently low reflectances for normal incidence.
Table B-5 gives reflectances and transmissions for anisotropic
scattering and with F = 0.750 and P = 0.5821, 0.4821 and 0.3889 as
computed exactly and from the six-flux and two-flux models. The computed
transmissions are illustrated in Figure II-5. The six-flux model yields
a dependence or P which is in accordance with the exact values. The two-

flux model of course indicates no dependence on P.
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B. Interpolation Factors

Examination of the approximate solutions and the trend of the
exact values provided the basis for the development of several simple
relationships for approximate interpolation and extrapolation of the
computed values.

The integrated reflectance and the total transmission are observed
to be strong functions of oo @,, I and Ty but only weakly dependent on
P. Interpolation equations for o and T, Were developed for some
conditions as follows.

For isotropic scattering by a half-infinite medium simple diffusion

theory suggests the interpolation formula

R,

R sm—%—_‘:_—‘)—; II-12

where Ro and Rl are the integrated reflectance for grazing (po = 0)
and normal (uo = 1) incidence, respectively. This equation is found to
be satisfactory for interpolation of R with respect to Mo €ven though
’

the absolute values of R indicated by diffusion theory are seriously
in error. The success of this interpolation is indicated by the top
curve (for 1 = oo) in Figures II-6 and II-7, and in Table II-1.

Richard's model does not give accurate values of R for isotropic

scattering by finite slabs but the indicated dependence of R on T, is
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Table ITI-1 Interpolation and Extrapolation of R for Isotropic
Scattering with Respect to Ho and T,

Ho
.00000
.04691
.23077
.50000
.76923
.95309
.00000

H O O OO O O

.00000
.0k691
23077
.50000
.76923
.95309
.00000

H O OO OO O

X

wo=°~9°:

T, = 00

Exact* Interp.

0.684  0.684
0.664  0.66L
0.582 0.595
0.508 0.517
0.452 0.456
0.423 0.423
0.415 0.415
w, = 0.60.
T =00

*
Exact Interp.

0.368 0.368
0.334  0.3L6
0.267 0.279
0.212 0.218
0.177 0.179
0.159 0.159
0.155  0.155

T = 1.0
Exact* Extrap.
0.624  0.625
0.598 0.606
0.50k 0.511
0.394 0.401
0.316 0.322
0.279 0.284
0.271  0.274

T, = 050
Exact* Extrap.
0.345 0.3%52
0.318 0.3%21
0.232 0.23%6
0.154 0.152
0.11%4 0.109
0.097 0.091
0.093 0.087
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T,=05
Exact* Extrap.
0.584  0.586
0.548 0.561
0.h417 0.433
0.279 0.293
0.209 0.215
0.179 0.184
0.170 0.176

W, = 0-30:

T =00

*
Exact Extrap.

0.163 0.16%
0.144%  0.150
0.108 0.114
0.082  0.085
0.066  0.067
0.059  0.059
0.057 0.057

Extrapolated by Lagrange's formula for Hy = 0 and N

T, = 0.25
Exact* Extrap.
0.571 0.556
0.498 0.516
0.300 0.316
0.173 0.185
0.125 0.129
0.105 0.105
0.100 0.100

T, = 0.50

*
Exact Extrap.
0.156 0.161
0.142 0.141
0.100 0.098
0.066 0.061
0.048 0.045
0.0k1  0.03%6
0.040 0.035
= 1.0



excellent suggesting the equation

Rg ) I1-13
R = R ( %
Mo, T Mo,

R/‘"” Richards

for the extrapolation of exact values of R for Ty = 00 and any Ky

and @, to finite values of 7 The success of this formula is indicated

1
in Figures II-6 and II-7 and in Table II-1 for the finite values of Ty -

The ratios of R for Richard's solution were taken from Tables B-1 and B-2.
The success of the interpolation equations indicated that exact calculations
for isotropic scattering could be limited to normal and grazing incidence

on a half-infinite wedium.

For anisotropic scattering the expression

R= xR, + (1-XR, II-14

where x is a function of @,, 7, and Mo but not of F, can be used to
interpolate for Mo Values of % can therefore be determined from computed
values of R for isotropic scattering. A plot of % as a function of Ho

for several values of Ty and W, are shown in Figures II-8 and II-9.

These figures were prepared from the isotropic values. (The six-flux
solution erroneously indicates independence of x from T, and «, as well

as from F and P.) Values of R for intermediate values of n, were computed
from the exact values of Ro and Ry and the values of x in Figures II-%8

and II-9 using Equation II-14 and are given in Table II-2 and in Figures
II-10 and II-11 (triangles). The agreement with the exact values is seen

to be reasonably good.
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Table ITI-2 Interpolation of R with Respect to Ho for Anisotropic

Scattering

F=09330, P=o0.4821,

w°=0.9°:
T,= 00 T, =10 T =05 T, =0.25
Ho Exact? Interp. Exact? Interp. Exact* Interp. Exact” Interp.
0.00000 0.628 0.628 0.567 0.567 0.547  0.5L47 0.552 0.552
0.04691 0.595 0.599 0.530 0.530 0.500 0.502 0.466 0..468
0.23077 0.489 0.478 0.39% 0.397 0.333  0.338 0.238 0.241
0.50000 0.377 0.370 0.239 0.241 0.163 0.166 0.097 0.096
0.76923% 0.292 0.299 0.131 0.131 0.078 0.079 0.043 0.041
0.95309 0.244k  0.245 0.079 0.078 0.041 0.041 0.018 0.019
1.00000 0.23%33 0.233% 0.067 0.067 0.030 0.030 0.013 0.013
F=0.9330, P=04821,
w,=0.60, wW,=0.30;
T, = o0 T, =050 T, =00 T,= 0.50
Ho Exacé Interp. Exacﬁ’ Interp. Exacf* Interp. Exacf* Interp.
0.00000 0.33%6 0.33%6 0.330 0.330 0.157 0.157 0.151 0.151
0.04691  0.303 0.289 0.293 0.296 0.14k  0.139 0.131 0.134
0.23077 0.206 0.197 0.180 0.189 0.108 0.105 0.075 0.082
0.50000 0.124 0.121  0.085 0.092 0.082 0.081 0.034 0.04o
0.76923 0.073 0.073 0.040 0.042 0.066 0.066 0.015 0.018
0.95309 0.048 0.049 0.021 0.021 0.059 0.059 0.008 0.009
1.00000 0.043  0.043 0.016 0.016 0.058 0.058 0.007 0.007
F=0.7500, P=0.4821,
Q= 0.903
¢=1.0
Ko Exact¥ Interp.
0.00000 0.598 0.598
0.04691 0.564 0.566
0.23077 0.4k5 0.451
0.50000 0.310 0.317
0.76923% 0.218 0.221
0.95309 0.175 0.176
1.00000 0.166 0.166
= 1.0

* Extrapolated by Lagrange's formula for Ho = 0 and Ko
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The same type of interpolation, i1.e.,

T=4T + (-9, 1I-15

was also successful for the total transmission as indicated in

Table II-3.
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Table IT-3 Interpolation of T with Respect to Ho for Anisotropic
Scattering

F =0.9330, P=0.482],

We= 0.90.
2,= 1.0 T = 0.50 T, = 025
" Exacg' Interp. Exacg' Interp. Exact* Interp.

0.00800 0.761 0.761 0.90L 0.90L 0.991 0.991
0.04691 0.750 0.754 0.885 0.886 0.979 0.983
0.23077 0.692 0.698 0.833 0.841 0.933 0.951
0.50000 0.553 0.551 0.723 0.733 0.85% 0.881
0.76923 0.372 0.3%65 0.507 0.505 0.669 0.689
0.95309 0.259 0.256 0.331 0.%28 0.396 0.ko2
1.00000 0.236 0.23%6 0.291 0.291 0.297 0.297

F=09330, P=0.4821, F=0.7500, P=0482!

w,= 0.60; W,=0.30; W,=0.90;

T, =0.50 T, =0.50 Z,=1.0

Ho Exact* Interp. Exact* Interp. Exacﬁ* Interp.

0.00000 0.783 0.783 0.692 0.692 0.652 0.652
0.04691 0.761 0.761 0.668 0.665 0.645 0.646
0.23077 0.701 0.701 0.601 0.600 0.598 0.598
0.50000 0.565 0.561 0.452 0.433 0.476 0.473
0.76923% 0.319 0.309 0.198 0.189 0.3%18 0.313
0.95309 0.165 0.161 0.063 0.059 0.222 0.221
1.00000 0.143 0.143 0.052 0.052 0.203% 0.20%

* BExtrapolated by lLagrange's formula for Ho = 0 and Mo = 1.0
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PART IIT - DEVELOPMENT OF IMPROVED APPROXIMATE MODELS

A. Introduction

It is well known in classical physics that multiple scattering
processes can be described approximately by means of the classical
diffusion equation. The major difficulty in the application of
classical diffusion equation to the problems of multiple scattering
however, is in the specification of the correct boundary condition.
Various authors have investigated the use of the simple diffusion
equation in multiple scattering problems, and formulated modified
versions of the diffusion equation (13,1&,15)’ In this investigation
it is shown that the various modified diffusion equations can be
derived in a unified manner from the integral equation of transport,
and therefore can be not only refined indefinitely, but also, in
principle, can have appropriate boundary conditions derived corresponding
to each step of refinement. On this basis a new modified diffusion
equation is proposed and solutions compared numerically with known
exact solutions. Better agreement is found than with previous models.
The boundary conditions are obtained from purely mathematical reasoning
and a good physical interpretation is yet to be found. To simplify
the mathematical formulation, isotropic scattering has been considered
as an example, but the extension to anisotropic scattering is trivial,

and will be carried out in the continuation of this work.
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B. Approximate Differential Equations

For isotropic scattering, the integral equation of transport

for the photon density f(?) is

? 2 Ik e 7 (@) dv’ III-1
r)=SU+ w / T ¥ -
P = 5@+ w fff Somea P
Volame of
d&ofazrsim
where
S(?) is the source term,
We 1s the albedo of single scattering, and
Y Trepresents the space coordinates measured in
mean free paths.
Equation (1) is a linear integral equation of the Fredholm
type in three diwmensions.
>/ -2 !
PG) = S(¥) + wof//K(F’,T)f(Y’JdU TII-2

For some special forms of the kernal K(F;? ) this equation can be
reduced to a simple differential equations. In this section, it
is shown that the various forms of diffusion equation can be obtained
by such reduction after approximating the kernal
- 177
KEF) = ===

’ 4T I¥ -V

by comparatively simple forms.

Consider the class of K(?,? ) whose Fourier transform can be

represented by ratio of two polynomials*:

N &) _ Qo tak Ak A +a,,k:7
D(K) bo+b,'kz+bzé'/+.....7‘ﬁnkz

* The same derivation applied to a two dimensional case was given in
Ref. (16)
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so that,

£ iR (P-7)
K@) = gy / e’ d diy dt, ITI-3
Then, since
Vzep?(?-?’) _ _ézez%’-(?ﬁ?’) III-k4

Equation (3) may be reduced to:
A’é (}’—-

Substituting Equation (5) into (2) yields
UGS,

per) = S(7) + wyN(=V 2)%%(7)') dv’ &) y//p[#) a’%d% d% 111-6

Now, operating on both sides o!,(6) by D(—i7 ),

DEV)p)=DETISE)+ wll (7)) /f(r)(;;;%///e“" Tt dy 110

velume
of dispersion
It 1s recognized that

S 3y
o, — -2,
Lon J[[ R T g aty aty = S(2.7
the three dimensional § -function. Since Equation (7) may be

reduced to:
[D(—Vz)-*woN(’Vz)jf(?) = D[-v)S(7) ' I1I-8

Equation (8) cannot be used directly for Equation (1), because
the kernal in Equation (1) cannot be exactly expressed in the form

given by Equation (3). In fact, it is easy to see that

e’ _ LR —/
T @777)‘/‘_///‘f AT a4 a4, 44,
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Thus a whole class of approximate solutions of Equation (1) can

be obtained from approximations of the function

Flk) =" /k Y A

in terms of ratio of two polynomials.

It is interesting to note that although the classical diffusion

(13)

(14)

equation 5

and of the modified diffusion equation proposed by Grosjean

obtained from various physical and/or mathematical arguments,

also be obtained in a unified manner by different approximations of

Equation (9). These are respectively

() /k) H‘L’k = |- ’L'k “*‘ﬁkq.

so that Equation (8) takes the form

Te@) = 3(1-w.) p(F) = = (3-V) S ()

2 2

. +5 2
W) FR)z —2x = -3+ Tkt

e

so that Equation (8) takes the form:

Vo) - (E25)p7) = g )

M) Flh) & M.L = |-% 2-*-—%1{‘-1“._
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so that Equation (8) takes the form:

Vi) - Yot ey = — GEE s T
The left hand sides of Equations (11), (13) and (15) are
the equivalent terms of the classical diffusion equation, the modified
diffusion equation proposed by Richards and the modified diffusion
equation proposed by Grosjean respectively.
It is mathematically difficult to estimate the errors involved
in these approximations, perhaps the only valid criterion is to compare
the results obtained in various simple problems with exact solutions.
Intuitively, however, it seems to be reasonable to require any
approximation of F(k) to be as close as possible to the exact function
at least in the limiting case of k = 0, and k—>00. Inspection of
Equation (9), (10), (12) and (14) shows that as k-»0 all three approx-
imations are exact to the coefficient k2 of the expansion of F(k).
However, as k->00,
L im i—;“_—l— = 0
&0
and only the simple diffusion equation has the correct limit.
Based upon the above observations it is clear that a class of
differential equations based on diffusion type of approximation can be

systematically obtained as follows:

(i) First approximation:

FUk)  ER = - AA-



For which, the approximated kernal is,

AUPF) 7

)
> 3, I, 1 _
?)f@’ﬂ)sw/’é' [+5#" € /% /@ Jﬁg == W”?/] €
and the resulting differential Equation is:
Ve - 3(-wp) = (v* 3)s(¥)
(ii) Second approximation
~ -tak”
FR) = S R

For best approximation at small values of k,

8_
a = 21
2
b= 7
and L
c = 105
so that

8

F(é)—mv = |~FH+ I A

corresponding to this approximation.

_Hak® B
07) "(éfs///zﬁé%k" € A, Ak A5
[w,e"‘ —fme'g’/rd”j

where
B, = 1.2344
82 = 4.1505
are the positive roots of the equation
J 2
g —bp |

oL

ITI-17

I11-18



while
Bra - |

n, = W 0.70]3

1

and

Bia—!_

n :
Z ¢ (g:.__p‘ )

The resulting differential equation is:

fl

92987

fl

'+ 2 v+ 2 oy = [~ v+ £ Ts(7) w9

In principle, the approximations can be extended indefinitely.
But numerical calculations given in the subsequent sections indicate
that with the correct form for the boundary conditions, the first
approximation yields very good results for the photon density, and
the second approximation is almost indistinguishable from the cor-

responding exact solution.
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C. Point Source in Infinite Medium

For the problem of multiple scattering involving sources in

an infinite medium, reduction of integral Equation (1) into dif-

ferential Equations (11) and (19) enables one to find the approximate

solution by use of Green's functions. It is well known that the solution

of the equation
VG 77 - KG0T) = -5(7,7)

v dv-J]
subject to the condition that é%(ﬁ,f) is zero as r-»o0 is,
~KIZ-7

= =) — —m
G 7) =77 TP=77

This Green's function can be used to solve the equation of the 1lst

approximation

V@) —3(1-w.) p(?) = —=(3-7") S(7)

Ie
! K =/J3(l"wa)

multiply Equation (20) by‘-(3“V/t)SG%# and integrate. It is easy

to see that the solution of (11) is

FCP)Z/// 6(2?/_) [3-\7”"73}:’/) A’

af ,afaw.

* means the appropriate differentiation with respect to the primed
coordinate variables
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This yields*

’p(F) = S(7) +(3-K*) ///6(7’7?’) S(7') dv’

or more explicitly:

lp(?) = S(7) -+ 3‘”"_/// E?;T,mr /S[F”) dv'

-

Similarly, the solution of the equation

[v's acb ot B g @7) = —$(7,7)

subject to the condition that 6{273“90 as r-»00 1is,

S = o=
—T -wlv ¥l
G.77") ==,;7,“.}'7T§'/ (F—aZ) [E :(

where @,, G, are the positive roots of the equation**

o+ (@—L%:}Z) « 4 2 =

¥ Equation (22) is obtained by using the second Green's identity,

R ey os@)dr' = - SE) 7GR 7 dv!

But in view of Eguation (19)
~[s@hvga Par'= JIsPI5@ER) - K66 ] s
= S() -k [l]s®) 6P dr

*¥ TFor the present problem, w,< <l , a1, 0 exist, and are given in
Table TII-1.
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Using the Green function éi(?f?’) it is possible to write down

formally the solution of the equation in an infinite medium.

[V + a% v+ L“ ](’() [V-"V *“L‘:{S(a) TII-27

The result is:
v " <§NJ
2 > Wo / + = bl _
fn)_su)+ZF:U'5(ﬂle aq e R

where

|—ad®
M= Eahe III-29
and
. = |¢ad3
27 ([=a)e TII-30

Table TIT-1 The explicit values of @y, Gy, my, MW, as a function

of

W, X, K2 m, Ma

0 1.2344 4.1505 1.7013 9.2987
0.1 1.2039 4,037k 0.7916 9.2084
0.2 1.1683 3.9224 0.8987 9.1013
0.3 1.1264 3.8054 1.0264 8.9736
0.4 1.0765 3.6866 1.1793 8.8207
0.5 1.0159 3.5662 1.3632 8.6368
0.6 0.9408 34446 1.5847 8.4153
0.7 0.844L7 3.3221 1.8517 8.1483
0.8 0.7161 3.1996 2.1721 7.8280
0.9 0.5264 3.0778 2.5532 7.4468
1.0 0 2.9580 3.0000 7.0000
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Equation (23) and (28) can be directly applied to the simple
problem of an isotropic point source of unit strength at the origin
in an infinite dispersion. The source term may be taken as the
unscattered radiation,

e—T‘
7)) = —< IIT-31

SE 4my” 5

Substituting Equation (31) into Equation (23) and (28) yields,

respectively, for the first approximation:

5T _Wo »13\_“‘7.7))'

-RanY Brar 3 ()
+ — thc Mo
€ E.: f(l Jj() We) Yj -+ e /é”‘ |~J3(u) }

and the second approximation,
per) “‘H;k" Ty {?—[f Ef(l-i-dx)ﬂ Bl ] € L\ Hd’ ]
+/{€LYEI(H°(1>}:]"’6 E,fCHi r]+e A _]_}" I11-33

where E(x) is the exponential integral defined by

QO _t
_ % ITI-3k
E(x) f; =<—at

Some numerical results calculated from Equation (32) and
Equation (33) are compared with the known exact solution in
Figure III-1 for we = 0.3. Results of both the first and the second
approximations are very close to the exact solution whereas the solution

of the simple diffusion differs significantly.
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¢ 008
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0
0 .0 2.0 3.0 4.0

Figure III-1

with point source
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D. Boundary Conditions

The excellent numerical results obtained from the approximate
solutions in the case of an infinite medium suggests the possibility
of applying the same approximation to a finite region of dispersion.
It is well known that the classical diffusion approximation yields
very poor results near the boundaries of a dispersion. This inaccuracy
probably results from poor representation of the actual boundary conditions.
In this section, instead of using physical arguments, a rigorous mathe -
matical derivation for the boundary conditions appropriate to each
order of approximation is derived. It will then be shown that the
resulting boundary conditions yield results that are very close to the
exact solutions.

Mathematically, for a finite region, the integral equation to
be solved is

‘o(?) = s(¥) + Wa{_/[K(I?—?’J)((?’) Pk ITI-35

where V is the volume of the dispersion.
In one dimensional cases such equations are known as Weiner -Hopf
equations and has various application in electrical engineering

(17)(18)

problems For the present problem, the kernal is of the

exponential type, and may be represented by

5 =, - ‘_\’—? ’F( "*')
K(w-¥1) = I"\";]*‘:" Z i hr (zv)3////-'+‘;?ék+ckd € rdk*dkydé)
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The integral Equation (2) may be transformed to the differential
Equation
* 2 > ¢ 2 >

[CV +(mo°—b>v -+ (\—w,ﬂe(r) =—'(CV - bv -+ () S(Y)

Note that if ¢ = a = o, and b = 1/3, Equation (36) and (19)
represents the first approximation, so that the discussion that
follows is applicable to both the first and second approximation.
The complete solution of Equation (19) is in general made up of a
particular solution depending on 5(?)and a complementary function
which is the general solution of the homogeneous Equation, i.e.
Equation (19) with S(?)==O . The complimentary function would of
course involve arbitrary constants, which are to be determined by
the boundary conditions. Since Equation (19) is actually derived
from the integral Equation (36), the boundary conditions can be
derived directly by mathematical manipulation without resorting to
physical arguments.

Let V be the volume of the dispersion, 7 the boundary of V
(assume convex) and'% be the outward normal to I~ from V, then the
value of p(v) at the boundary can be directly obtained by use of
Green's identity. Values of p(v ) at the boundary [’ must satisfy

the condition
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b If {5@)-5?T v KD - k(P v [er)- ~s(?)]} 7 da

+c f[ v L) -S7] 7K (IP-71) = VIp(7- S (F)] v K PP} da
*Cff { k(P-71) 7 7 Lp(P~SP)] - VIpt) - S(r)]vvk[r P} da

+ aw, [[ [k V(P = pP) v k(PP ] - 7
= 0

for alj_?w inside V.

The proof of Equation (37) is straight forward, and is
outlined in the following steps:

(1) Multiply Equation (19) by K(IF-F1) and integrate

over v yielding:

///K(""” [1-b7*+cV J((r) A
‘fff/((r 7)[ bv—mvjs(r)dr

- w, ,(// K(I ?’-r/)[/—av"]fc?}d(r = 0

(1i) Using Green's identity, Equation (38) is reduced to:
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fff(r) [-b7 =+ cT*] K(F-F1) di

- fff SF) [1-bve CVL“J%\(\T v du

“Mm f(YJ[\ av’“7 KE?D d

-b ffk(lr—?’/) v(’)(‘r) —p(?) V&’(/?*?')};/- 7 A

+dffv«( H)V &) —ﬂ(r)VVA(r—f x5 H4g
tc /f&(lr—r )vv‘o(‘") - V(o( VKPP [ 7 da
w/fﬁ«w )VSG) -S5O vK(FF) [ 7 da
-Cff[vs(x)vm 7)) — VS@) KT //// A4
- c'//ﬁ«ﬁ- P v USE) - s@) vk ] A Az
* W»ff [KOFP1) vp(P) = p@) VK (I7-77) ]

# da III-39

(iii) From the expression of K(W?LFW) given in Equation (36),
it can be shown that the left hand side of Equation (39) is identically
zero. Collecting the terms given in the right hand side of Equation (39)
produces the boundary condition given by Equation (37).

Equation (39) is the general boundary condition that can be
derived. TIt can, in principle, be applied to any geometry and source
distribution. However, in applying it to simple problems some simplified
version will be considered.

Before considering the simplified version of the boundary

conditions, it is to be noted that Equation (35) is a linear integral
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equation of Fredholm type, and therefore can be solved in terms of

(19)
orthogonal expansion without resorting to boundary conditions

In principle, for the particular type of K(!FL?ﬁ}it is possible to
find a complete s=t of eigenfunctions 4%(?5 corresponding to
eigenvalues A; , satisfying the monogeneous equation
=% . g L =, L .. i
4}&& a %,JJ,(& GP=7, L (F) do III-LO
If such a set can be found, then, it can be shown that the orthogonal
to each other in the sense that
=3 9 . .
/[/CE-(,?.J;\/J‘JC“ == O /‘%9
v {
This immediately leads to the solution of Equation (35) in a series
form and the result is:
2N > -
PG = AZAAEA-()') ITT-41
where

4= BM
2 PYEAN IIT-k2

and Bi is related to the source terms by
; [ s &6 av-
: JJTQ&Z(FU<10"

The approximated kernal given by Equation (36) enables one to

ITI-43

find A, and 4&(?) in a systematic way. Since qa(?) must satisfy the
homogeneous differential equation
u 2
[t 4 @y=b) v+ (-3 [ @) = o III-44
the forms of 41(?) corresponding to each )4 , are known in terms of

arbitrary constants and %x . Substituting the expression for Q(?)

105



thus obtained into Equation (40) yields the characteristic equation

for A¢, and the constants for CPA(?) In this one dimensional case,

such a procedure has frequently been used e.g. (18. The extension
to three dimensional case is straight forward.

In the present work, the primary purpose is to test the accuracy
of the approximation, so that only simple problems such as parallel
dispersion of finite and infinite thickness are considered. For such
one dimensional cases, both the integral Equation and the boundary
condition can be greatly simplified. The boundary condition used in
the present work therefore combines the idea of the above two methods
to minimize the numerical calculations. In the next section, such

simplified boundary conditions are illustrated.

106



E. Solution of One-Dimensional Problem

1. Second Approximation

a) Medium bounded by parallel planes

To test the accuracy of the proposed approximation consider
the problem of a parallel plane flux of unit intensity obliquely
incident on a parallel dispersion bounded by two planes Z = O and
7 = C, . If the direction of the incidence is inclined at an
angle © = Ck<fluo from the Z-axis, then f(?) is a function of Z
only so that Equation (19) is reduced to:

4 2 y 2
[cgdgtt *(&%“bﬁ\z’l + (l—wo>](>(z)= [Cadz‘u ‘b}?i? + |:| ()

where S(z) is obviously of the form

\S(Z> = E‘;/‘/La

The general solution of Equation (19) can be written in

the form:
-2 - oz 2 = Mo
pe)=A € + Bre ot heT + B + (HD)e 7 TII-45
where
D= %(V%) .
(Fo)+me b+ I

The constants A, A2, B Bg: can be obtained from the original

l)

integral equation. 1In the present one dimensional case, this integral

equation takes the form:

f(z) = e-%" + Wo ffff(Z‘) KA1 d e III-L7
v
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where KQ;L§ﬂ> is given by Equation (18) as
> -
>0 _ | SAEE -6.IF-7
By carrying out the integrations that are independent of Z,

Equation (47) is reduced to the form:

T ) , )
=~ Yo n, -Rlz-z'l SN ey )
(J(z) = \6% -+ %fof:;‘ C@‘ —+ gz e ]((*'z{) dz III-48
Now, substituting Equation (45) into Equation (48), and collecting

terms involving the same exponential forms of Z, the following

boundary conditions for A and B are obtained

(1) For wh
A, + A. - B . B. -+ |+ D =0
wops Tasg T T e T
A\ Az B P |+D
_— - A -+ - ==
~d,+ B oA+ (3; —dyt ?2 o+ @2 “,ﬁo'f ﬁt O
—a Ty o Ty —4,T) o Ty ) -r/,u,
Ae™ A€ | Be B.e (+p)e ™ _ o
g TaAp Twed TeeR g
et 1] £X -G 0
o o Al 4 B & B & L (pPDe A___
At B2 —o(‘-%(gz Pt tg,_ —oeﬁf&z ~k, + (%9_

The set of equations can be solved for the four constants,

so that the values of ,(Z) are completely determined.
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The above equations are valid for w,¥| . (ii) For W, =1,
(See table 1)

o= O A== T80
So that the solution of Equation (19) is

N '-0(;2 o, 2 = /Qa
Ol = A+ Mz + Be T+ Be' 4 (‘—-{-D)‘Q 7 III-L9
The "boundary conditions" for determining Ay, Ao, Bl’ B, are

slightly modified to:

A A . B0 81 1 -+P
SLALNRLAL S — .y T ==
RS R I
A A. B, B. ]+D

. +
T
Ay T, B,f(:T Bz:(‘:’ . z+D)e'%; -6

A I+E:‘C;)A2+ B Bze“ +(]+p)g'7°= 0
@’- g ’-*F "d&""(%. }Lco =+ §2.
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b) Semi-infinite medium

For a semi-infinite medium, T,—»o0o0 the results can be simplified

considerably. Following the same procedure as in the finite case,

(1) For we= 1

2

ecﬂ = Aﬁ€~QI

Z

+ Be T+ (14D)e . TTI-50

where D is given by Equation (46) and A; and B, are determined from:

A B A4D
_a+@l -up\%' +“)\I;" = O
Al B

S 2
r*é “<*EVP1 ‘)ﬁ;f(gL
(ii) For W= 1

p)= A —+ B "y (HD)Q‘%“’ ITI-51

where Al and Bl are determined from:

_AL B \+D
B *O‘L‘k( - k& ot é =0

A -+ B, U ol =
@L —dbﬂ‘él -l.*@z

2. First Approximation

= 0

The formula above were derived for the second approximation.
The corresponding formulas for the first approximation can simply
be obtained by letting a = c = o and b = 1/3. The explicit results
for the one dimensional problem, using the first approximation are

given below:
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(1)

(iii)

where

Integral Equation

"7, T
o) = 7 %ucf gFlee p@)d2’

Differential Equation

3£ - -] o) = (s -1) €%

General solution of the differential equation

pl2) = A e+ A® o+ (1+D) & e

W
D=‘-Q——_’"I—

and = [3(1_%3&'

(iv)

where

(v)

(vi)

1

=027 3R,

Semi-infinite dispersion, WoF |

o) = A+ (HD)EP

__ =(I+D)
A}" -£ 3 (ﬁf“d/)
Semi-infinite dispersion, Wo= |
~IMo
p@ = A (D) €7
A = = D) =
| {;_ja) J—-
Parallel plane dispersion Wo = |

pl2)= A< M A" (HD) & e

where A. and A2 are determined from,

A
-3

A

(=+D)

- -+
o+ {3 RS

~o N
A|€;fi -+ Alégﬂ: 4.<}+1J<L1?0__

o {3

443

e
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IIT-48"

ITI-19!

III-45"

III-L6!

ITI-50"

ITT-52

ITT-51"

ITT-53
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(vii) Parallel plane dispersion, W,= 1
Pl = A+ Az + (=7 £ TTI-Lo

where Al and A2 are determined by

__A’J«.—-_A?r.-_p_\‘:_t?-—- S O

3 3 a3
T
(,‘H-P)g;__%4 ’

(HET) .
g ! ——S’GWAL + L =z O
A' -r/bLo
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F. Calculation of Albedo

Available results on the exact solutions of the parallel
rlane problem are generally expressed in terms of the reflectance
of a half space, and the transmittance T or reflectance R of a
parallel plane dispersion. One may calculate these parameters by
direct integration of the expression for 0(Z). The resulting

expressions are given below:

1. Tirst Approximation

(i) Semi-infinite wedium, We \ III-50!

)= AT (3peT

cAl ] 0
R = g;;; {Fib«(\‘*'*n\f} + w*’“_gjLD> {l“}'{o b(l—*;&o)} TII-54!
(ii) Semi-infinite medium, W, = |
- Mo
f(z) = 74, -+ (HD) e 77/ ITI-51"
Wo
Ro= Sehv o weliD) g () 1I1-55"
(iii) Parallel plane dispersion, w,# |
)= A+ Ae® & (14D) e‘%’ TTI-h5!
Then
R = A,R,,(‘ + AR, + (HD) KL III-56"
and ' Ao

T=AT, Aﬂ;‘-\‘ (1+D) Tﬁ III-57"
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where

= - )
Ko, = 571 {1- & Ll |+€74] e < TEg) - El;;(w_a_,g]
and IIT-58
_dt -
— =Wo [ 4T - < E.t(l— )]
T = 25 (€™ + Epli-ol - @) ~E @)+ <& = Jf
and TII-59

0 X
B, = | £
n . X A X

(iv) Parallel plane dispersion, w,= |

p@)= A+ Az =+ (1+D) gﬁ/‘“ ITT-kg"

R = A ‘%DM - g )]+ Asr, -5&)-1 Eﬁqﬂﬁ'(l—)@) fj[

III-60"

T= Az % -6@] +Adr F4+4r + 50 [+ ()T,

Ao
III-61"

2. Second Approximation
(i) Semi-infinite medium w,=f |
—o|Z -2 ~yho
PR = Ae™ + B 4 (HD)e ITI50

g‘f;)% N e () S (T S eRL,

24 o
III-5k4
(ii) Semi-infinite medium We= |
p@)= A+ Bie ™+ (HD)Q“%“’ ITI-51
R - -‘::Zji {l —L,Qv\(\‘?’dz,)')r —+ =l wo Wofr + 0(+D) {l /uob‘(\_}.l )} IIT-55
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(iii) Parallel plane medium

~%2 ¥z <N, ohT V-,

p2)= A€ bl T+ BE 4 ACT+ (IHD)e 7 TTT-L5
F\ =3 A(&Q —+- A2 E_o(‘ + BIR(’(L + BZ (“NZ + (/-/-D)@JL:: III—56
T= AT+ AT,+ BT, +BTa+ (/+_D)7:ja IIT-57

where R, and T are defined as Equations (58) and (59)

respectfully.

(iv) Parallel plane dispersion Wo=|
-—‘O(;_Z O}]_Z -%0 )

f(z)'—‘ A+ bz + Be =+ Be 4+ (HD)e III-49

R=BR,*tB.Ry+ 5’7‘0 L4~ ngnf:] At % [5-£,t0)-T, 53(7,)] A, TI1-60
+(HD) Ki«'

T = Bz, + B, el 4 -] A+ 28,04 4+ E@]A, 11160
+ (D)o
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G. MNumerical Results

Some typical numerical results calculated by using the
appropriate approximate formulas derived in the previous section
are plotted in Figures III 2-8.

In Figure III-2, the integrated reflectance R for a semi-
infinite medium is plotted versus Ho for .= 0.9 and 0.5. The
results of the second approximation are indistinguishable from the
exact values. 1In Figures III 3-5 the integrated reflectance R is
plotted versus --» for several values of Ho- The numerical values
were calculated from the first and second approximations. Again,
the second approximations are indistinguishable from the exact values
and the first approximation are acceptably accurate.

In Figure III-6, the reflectance R for a finite medium is

plotted against Ho for several w Again the results of the second

o -
approximation are very good. The deviation of the first approximation
from the exact solution becomes bigger as W, increases. In Figures
IIT-7 and 8, the diffusive transmission and the integrated transmission
are plotted against ug for several W,. Only second approximations are
compared with the exact solutilons.

From all these figures, it is obvious that the results of the
second approximation are practically indistinguishable from the exact

solution for all conditions, and the simple diffusion equation with

correct boundary conditions (i.e. the first approximation) is an acceptable

approximation.
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H. Conclusions

From the excellent numerical check with the exact solutions
of one dimensional problems with isotropic scattering, it is
reasonable to believe that the diffusion-type approximation, if
used with correct boundary conditions, can yield very good results
which are adequate for all practical purposes. In the present work
a systematic approach to the diffusion-type approximation has been
developed. A method of determining the correct boundary conditions
appropriate to each order of approximation has also been developed.

Since the exact solutions of the multiple scattering problem
are generally difficult or impossible to obtain, the need for a
comparatively simple, yet reasonably accurate approximate method of
solution is obvious. It therefore seems worthwhile, to exploit
further the possibilities of using the diffusion-type approximation.
This extended investigation should proceed along the following two
directions: (i) wuse of the suggested method to find approximate
solutions for geometries where exact solutions do not exist, such as
a point source in front of a parallel dispersion, (ii) extension
of the method to anisotropic scattering, for which some exact solutions

are now available for comparison.
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SUMMARY AND CONCLUSIONS

1. A satisfactory method was developed for numerical integration of
the transport equation for parallel plane radiation obliquely incident
on a parallel-plane dispersion. The iwmportant advance is in the
allowance for strongly anisotropic scattering. Previous results were

limited to isotropic or Rayleigh (nearly isotropic) scattering.

2. The solutions are exact except for errors in the nuwerical

procedure itself. These errors arise from numerical roundoff, from
termination of the iterative procedure at an arbitrary point and from
integration by quadrature. The error due to the use of quadrature arises
from the use of a finite number of terms, i.e., from division of

the integration into a finite number of intervals. The numerical

results agree very well with previous results for special cases (isotropic
and Rayleigh scattering, and anisotropic scattering by semi-infinite

dispersions)indicating that the net numerical errors are not serious.

3. The numerical and graphical results illustrate the effects of

a) the phase function for single scattering

b) +the optical thickness of the dispersion

c) the angle of incidence

d) +the albedo for single scattering (ratio of scattered to
scattered plus absorbed radiation)
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k., The numerical results are limited to finite absorption since the
iterative procedure did not converge satisfactorily for zero absorption.
It appears feasible but unnecessary to develop a separate numerical
procedure for zero absorption since the results for small finite

absorption can readily be extrapolated to zero absorption.

5. The reflectance and transmission for strongly anisotropic scattering
was found to differ decisively from that for isotropic and Rayleigh
scattering. A similar result was previously found for semi-infinite
dispersions. It is therefore concluded that solutions for isotropic
scattering do not provide a reliable guide for the reflectance or

transmission for dispersions of liquid or solid particles.

6. The transmission and reflectance were found to be dependent primarily
on the fraction of the radiation scattered into the backward (or forward)
hemisphere. Only slight dependence was found on the other characteristics
of the phase function. This suggests that the complicated phase functions
associated with large circumference to wavelength ratios can be approxi-
mated by simple functions without serious error if the back-scattered
fraction is preserved. This result is important from a computational
point-of-view since the extent and cost of the computations goes up

rapidly with the number of terms used to represent the phase function.
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7. Many approximate models have been proposed for multiple scattering.
The solutions based on these models were compared with the "exact"
values for both isotropic and anisotropic scattering. The six-flux
model was found to be the best of these models but to be a falr
approximation, Richard's modified diffusion model and the two-flux
model were poorer in all cases and the siuple diffusion model was

seriously in error in all cases.

8. Despite their inability to provide good absolute values for the
transmission and reflectance the above approximate models were successfully
utilized to provide simple expressions for interpolation and extrapolation

of the exact values.

9. A new variable-order diffusion-type model was developed which
yields very accurate results for isotropic scattering. It is proposed

to develop this model further for anisotropic scattering.

10. All accurate solutions for multiple scattering are currently limited
to one-dimensional radiant transport. However both the numerical method
and the variable order diffusion-type model hold promise for the computation

of two-dimensional radiant transport.
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APPENDIX A

Derivation and List of Equations

1. Derivation of Explicit Relations for bm(rl, W, Hy) and

Cm(Tl) “’) “0)'

The diffuse reflected intensity is

N N
I (ol F, (() - _/‘lo - - 1"'"‘ m _
L) AT E (2 5o,m)w5m(p§( N F@ M, pe) T-1k

substituting relation I-3 for FT(ZL}L)&) and letting

m (L-m)!
Wi =90 A (L+m)} Al-1

gives

IC9, 'u'(’) = /‘.ld, N 1 ° ° ° o
L(-p)  4m(p+p) ixZ”(") A L4 g (o) - 9 (pIg (M)

+2.Zc05m<f’}:( ;) A‘(‘ -m)! [q" (h )‘?1(/‘)”4’4 ! (/"]} A1-2

i=m (d+m)!
and for N = 2
cos2¢ =2cos*@ -1

A =1

LE ,;‘f’ s {[‘f' AT ER AR MO BN (TSR TIR XA AT

A, (4 I - $0 (H) 45 (W] + A cos @ (LY (p) = $10p0 81 ()

-A, E%-"L [ ¥; (M, (P = 4 (P9, (0]
z A1-3
e 2L [pawion - picpd, (/')]}
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Therefore, let

o W,

pvTTyTry

Qo= [ 4o (MI¥I (B = S (PIPIM]Y = A [§5 (I (1) - $7 (I F1 (M)
AL [ 4L - 97 () 92 ()]
Q= AV (PIYI (M) - ¢ (M) /()] - -Q—‘ CIAL AR ACOLATD)
Q= [ Wil 2 (p)- 4L (s 41 (M)
and the expressions for bn](t”/hfﬁ) become
b, = K(Q.-Q;)
bl = KQl

br = 2KQ,

The diffuse reflected intensity may be written as

I(ou“:/‘-)

1) = b, + bycos@ + b, cosz(f

Proceeding in the same manner to derive the relations for

cm(Tl, Wy po), the expression for the diffuse transmitted intensity

can be written as

N N
1T, -H.9) | M ) . m
TR AP AR P A

Equations I-14 and I-29 are of the same form with the term
(-!)hm Fr (T, M)  in I-1k replaced by Gy (T, M, He)
in I-19. The only difference between Fﬂm and GT is that the
positions of szﬂ)and ¢TUO are interchanged and the term p +pM,
in F, 1is replaced by u-p, in Cv:‘ .
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Therefore, if
1. All signs are made positive in front of the A; s
2. u + Ho is replaced in K by u - o
3. ?;(ﬂ) and $7(H) are interchanged
The expression for the diffuse transmitted intensity may be

written directly.

K’ - Mo Do A1-10
477 (M~ He)

Q= [ (p) 0 () = SLHIE (M) + A LYT (& (o) - 4 (¥ (W)
¥ AL (4L (EIOL(p) - dL (¢ (M) Al-11
Q' = A, 2 (PP, (p)- 9, (M) ¢, (M) g‘-’ [¢:p e, (P - ¢! (1) ¢! V"J Al1-12

Q= .2_2 ([ $2(p) b2 (M) = 1 (K ¢ (1) A1-13

with the expressions for c

m
c.= K'[Q - Q) ’ Al-1ka
¢ = K'Q/ Al-1kp
C, = 2K'Q; Al-lkc

and the diffuse transmitted intensity may be written as

LM E) 2o, v cicosg + cqcoste A1-15
Ia(‘,")
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2., Integrated Reflectance of Half Space for Rayleigh Scattering
There is a section on integral formulations in reference (L).
For Rayleigh scattering (ﬁh =0) , Equation I-151 in that report then
reduces to, for k = 0 and 1,
(f@eAw=1)pUs 4 Uy & 20, Ao piU; =0 A2-1
(1 ’%“’-/‘Ao')uv‘3/“U"(2+%‘J;A;;/‘)U1=o A2-2
where A and U are defined as
¥y (M) = Ug (B)K(P) A2-3
Ak = ('u,(pﬂ?(-/ﬂ)w')a/' A2-}
K is equivalent to the H function in Chandrasekhar's Radiative
Transfer (1) and P is the Legendre polynomial. According to
Equation I-157 in reference (5).
Ug (P = P (F)  when pmo A2-5
By this additional condition Equations A2-1 and A2-2 can be solved for

Hos My 8nd po.

Uizt ¢ 3@ Ayp v £ 0 Asop’ A2-6
Up= (1- 4@ Aw + 02 A)H + [’%(' = 3 @Wo o)Az *%“’o“’z/\ulﬁzo]/lz A2-7
Uz=-%'zs-‘oaAp|fl +%(2-‘0.An)/uz AD-8

The K function is

L L A TGIKG) o
k@ = 2‘ Ry ’
and
N . ,
W)= 3 (=) @p U (P Ur (-p), A2-10

rao
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The latter can be written in terms of A's using Equations A2-6, A2-7
and A2-8
F(przwe + Fw,+(-20 0300 A0- Fwlo,Al + 3 0o, A
“135 w, w0} Al e (% W, - 2. W, W, Ay, + T‘i—w,w: A;,)/.d’4 A2-11
The A's can be cancelled out by the use of Equations (I-149) and (I-152)

in the reference (5),

N ' P (=) (M)
U GO KR = B () v LS (1), *P,(,u)gp R Vot ksod N A2-12

rzo

For k = O, multiplying A2-12 by Po(u) then integrating from O to 1
gives
2
A = 1+ *QoA:- = z"“"zAm A2-13

Similarly for k = 1 and 2.

2 2
AU = :;- - ‘4'_“0, Aﬂl - *wlAzl Ag-l)—lh
Ase = =L (we A 4@, Ass ) + F (0. A0 v @A) A2-15

Then A2-11 can be simplified with A2-13, A2-1k, and A2-15 to give
T(H)e @, + #w, - % (2"‘00)“’1/“/2 + % 4] -w.)w;/# A2-16
The numerical solution of R was carried out as follows. The
K function was first evaluated by the computer using an iterative
Procedure. Then the moments of K are computed.
A, = ('K(/‘)/‘”J/‘ A2-17
0
Then A's are computed from the values ofQ's and A2-6, A2-7, and A2-8. How-
ever it appears more convenient to use A2-6 and A2-8 to derive the

following.
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A,. =% “'i“‘z“quu + %“’z*zAzo

~Ao =K, ¢+ %“)ldiAZI "33:‘"1“3 Ao

A = "2"“0 - %"’adnAol + %(2 - Ws Ay )92

- Au =g - F oS An 4 F (27D Au)d,
Finally R can be found by

R = l--ﬂl—.‘h(,“-)

= | - -,"—‘-; U,(/‘»)K(/‘")

= | - [ - %UaAn + ‘;I‘_“"zAzo*'(%“’zAz"’

- % W, W, Ace Azn)f"-] K(He)

Sample values of the results for w,= 0.9, 0.6, and 0.3 are

tabulated in Table A-1.
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The K-functions and Related Numerical Values for

Computing the Integrated Reflectance of Half Space,
Rayleigh Scattering

Table A-1
@Wo = 0.90

My K(ng) R
0.00 1.0000 0.687
0.10 1.1863 0.630
0.20 1.314k 0.591
0.30 1.421k 0.559
0.40 1.5147 0.531
0.50 1.5976 0.507
0.60 1.6722 0.485
0.70 1.7400 0.466
0.80 1.8020 0.449
0.90 1.8591 0.433
1.00 1.9117 0.418
‘(’q qo ql
0.90 1.5582 0.8493
0.60 1.24hk2  0.6481
0.30 1.0969 0.5579

W, = 0.60

K(uy)

.0000
.0996
.1578
.2018
.2371
.2665
.2915
L3131
.3319
.3486
.3634

T A T S S S RSy S R VR

qz q3

0.5868 0.L4486
0.4391 0.3321
0.374k  0.2817
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.369
.308
273
247
.227
211
197
.186
176
.168
.161

Aco

1.5198
1.2252
1.0889

W, = 0.30
K(py) R
1.0000 0.16k
1.0436 0.128
1.0667 0.110
1.0832 0.098
1.0960 0.088
1.1063 0.081
1.1148 0.075
1.1220 0.071
1.1282 0.067
1.1335 0.064L
1.1382 0.061
"Aal “Azo
0.8223  0.0295
0.6351  0.0203
0.5525  0.0093

=Ax

0.1138
0.1165
0.1211



3. Solwtiom for the Bix-flux Formulation of the S1lab Problem

The following solution of equations II-Ta to II-8 subject to the
boundary conditions I; = 1 and 13 =Q0at Z =0 and 12 = Ih =0at 2 =1,
ig reproduced directly from a previous report to avoild errors in transcription.
For this reason the symbolism 1s slightly different. In equations A3-1 to
A%-31 T 18 used in place of T for the optical thickness of the dispersion,
Q@ 18 used in place of 6, for the angle the incident radiation makes with the
normal to the slah, but as in this report Z refers to the normal optical

distance through the slab,

All of the other symbols such as the A's, a's, b's,p , p, etc.
are defined as used: the definitions of these symbols apply only to equations
A3-1 to A3~31 and have no relation to the definition of the symbols in the
NOMENCLATURE or in the rest of this report,

I, = AL e-miZ,A12 oopy(T-2)y Ald o-poZ | Aug popp(T-z)  A>!

A A A A
T = A1 cPaZ, Ao o-bi(T-2), Asg o-Do?, Agy o-pa(T-z) A2
A A A A
- A>
Is = Asi e™PiZy Agp o-P1(T-Z), Agq e PaZy Aay o-P2(T-Z) >
A A A
and ’
I, = ﬂ:; e P12, Mgz -P1(T-2), Ags e P2Z L Agq o-DP2(T-2) A4
A A A
where}

A = (a1bg-asby)?-(agbz-agbz)? e 2P1T_(a,1, _g,b, )2¢-2DaT

+2(31b2-82b1)(aab4-a4bs)e'(P1+p2)T+(a2b4-a4b2)ae’e(P1+Pz)T AZ5

A1y = a1bg(ayba-agby)-a1b,(arby-a,by )e 2P2Tia by (agby~a bg e (P1+P2)T  A3=6

A.?l = &2b3 (Blbs-asb]_ ) v32b4 (a1b4 -8.4b1 )e -2p2T+azb2 (a3b4 -8.4b3 )e - (p1+p2 )T A5—7
A3y = Dybs(a1ba-agbi)-biby(a1bg-a,by Jo PPaTib, by (agby -a,bs Je = (P1+P2)T AS8
A1 = b2ba(ayba-asby ) +hahy (Byhe=a,b; Je "2P2T4b3 (agb, ~a,bg e~ (P1+P2)T AB=9
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Ajs = -8sbs(asbz-asbs)e PiTea b, (agby-a4bs)e-P2T "'azbh(a eba-a.bg)e (p142pp)T A3-10
Aps = -81bs(asba-8aba)e P1T-a;b; (aaby-a4ba e P2T sagb, (agby-a,ba)e” (p1+2p2 )T A3-11
Asz = -bgba(agbz-agbg)e PiTob by (agby ~a4bs)eP2T+byb, (agby-a.ba)e” (p1+2pe)T A3-12
Agz = -bibs(asbz-agba)e-PiT-by2(agbs-a bs)e-P2Tabib, (aghy-a bz e~ (P1+2P2)T  A3-13
Ayz = -azb; (a1bz-agby J+azbz(azby-azbz)e '2p1T+aab4 (a1bo-apb; Je~ (p1+pa)T A3-14
Azs = -a,by(a1bs-a3b; )+a4ba(azbs-asba)e PP1T e, b, (a1by-aby Je= (P14P2)T A3-15
Aaz = -bsby (aybg-asby J+baba(asbs-agbg)e CP1Tibgb, (a1 bp-asby Je=(P1+p2)T A3-16
A4z = -byby(a1by-agby J+byba(asbs-agbg)e-2P1T+b, 2 (a1 bo-agby Je = (P1+P2)T A3-17
A1y = -a4ba(aiba-agby )e P1Tia by (a1by-a4by Je-PaTea, by (agby -a,bp)e~(2P14Pa)T A3-18
Azy = -agba(aibz-azby)e~PiTiagby (aiby-aby JeP2Teazby(agby-a,bg)e” (2P1+02)T A3-19
Aaq = -byba(21bp-azby Je PrTab by (a1bg-aiby e P2Tb by (apby-a bz )e = (2P1+P2T  A3-20
Ags = -ba2(aybp-agby Je"PLTibab, (ayby-a, by Je P2l byby(apby-a,bs)e (2P1402T  A3-21
in which,

b1 =

1/2
-2L 1-\/1-5?2 ® [(C1-Cg)o-LC JC12-Co¥ sec @ osc @ A)-22
I (C1-C2)2
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Pz

ay

g

as

a4

by

.é- 1+J l=-sin2

+

(C1#Ca) sec
(C1+Cg) sec

(C1+Cg) sec

(C1#Cz) sec

(C14Cp) sec

(C14Cz) sec

(C14Cp) sec

2 e [(cl-c_%)zacgz}
(C1-C2)®
P1
P
P2
D2

(C1#C2) sec

(C12-C52) sec® @ - p,°

/2

(C14C2) csc © + Py

2(C14C2) Ca sec?o

(C12-C22) sec® 6 - p)°

(C14C2) csc ©

(C14C2) csc © - py

2(C14C2) Cs se o

(C14C2) csc ©

(C18-Co%) sec®6 - pa® (Ci1#Cp) csc 6 + pa

2(C14C2) C3 seo

(C12-Co%) sec®-0 pa® (Cy4C2) csc © - pa

2(Cl§C2) Ca sec2

e

(Cp4C2) csc ©

(C14C3) csc ©
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APPENDIX B

Tables of Computed Functions

The tabulated results obtained from the computer are presented
in this appendix.

In the first portion of the appendix the complete set of Yiku)
and ¢fgm functions, the integrated reflectance R, the diffuse
portion of the integrated transmission TD, and the total integrated
transmission T are given as a function of p for each of the 36 sets of
parameters used. The results are presented as one long table (Table B-0)
which is subdivided into 36 problems. The values of the parameters
corresponding to each problem are listed in Table I-2.

In the last portion of the appendix (Tables B-1 to B-5)
tabular results are given which compare the exact solution with results

obtained from approximate models.
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Table B-O The %, and ¢, Functions, Integrated Reflectances, Diffuse Portion
of the Integrated Transmission, and Total Integrated Transmission for
36 sets of Parameters (Listed in Table I-2).

PROBLEM 1 TAU = 0,050 ALBEDO FOR SINGLE SCATTERING = 0,90
A0 = 1.0000 Al = 0.0000 A2 = 0.0000 F = 04500 P = 043333

NUMBER OF ITERATIONS WAS 2

u o #° R Tp T
0404691 1.,0546 043838 0,299 0,284 04628
0023077 1.0726 0.9049 0,078 0,098 0903
0050000 1.,0783 09824 0,042 0,039 0.944
0476923 1,0800 1,0138 0,028 04025 0.962
0495309 1.0806 1,0252 0,023 0,019 0.968

PROBLEM 2 TAU = 0,250 ALBEDO FOR SINGLE SCATTERING = 0,90
A0 = 1.0000 Al = 0.0000 A2 = 00000 F = 04500 P = 03333

NUMBER OF ITERATIONS WAS &

0 0
H Vo ¢o R Tp T
0604691 1,0797 0,0467 0,498 04360 04365
0023077 141993 064990 0,300 0.268 0607
0450000 1.2413 0.8317 0,173 0.161 0.768
0676923 11,2611 0,9501 0.125 04104 0.827
0695309 1.2694 1.0001 0,105 0,085 0854

PROBLEM 3 TAU = 0.500 ALBEDO FOR SINGLE SCATTERING = 0490
A0 = 1.0000 Al = 0.0000 A2 = 00000 F = 0500 P = 03333

NUMBER OF ITERATIONS WAS 4

u o s R Tp T
0004691 140842 04,0275 0,548 0.286 0286
0623077 142530 062636 04417 06312 0¢426
0650000 143465 066497 06279 0239 064607
0676923 143896 04,8462 0,209 0,171 06693
0095309 144089 049249 0,179 0,136 0.728
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PROBLEM 4 TAU = 1.000 ALBEDO FOR SINGLE SCATTERING = 0.90
A0 = 1.0000 Al = 0.0000 A2 = 040000 F = 0500 P = 0)3333

NUMBER OF ITERATIONS WAS 6

W Wg %o R Tp T
0¢04691 1.0888 00,0165 0,598 04197 0197
023077 142915 06,1231 0.504 0,258 06271
0¢50000 1.4541 064012 00394 06263 0.398
0676923 1,5427 0.6476 0,316 0,225 0.498
0695309 145852 00,7553 0,279 0.186 0536

PROBLEM 5 TAU = 14500 ALBEDO FOR SINGLE SCATTERING = 0490
A0 = 1.0000 Al = 0.0000 A2 = 00000 F = 0500 P = 043333

NUMBER OF ITERATIONS WAS 9

n iy #° R Tp T
0004691 1.0910 04,0123 04622 04152 04152
0023077 143063 0.,0845 0,537 0,205 04207
0450000 1.5009 042769 O.444 0,248  0.298
0076923 146202 045158 0,370 0,253 04395

0695309 1.6774 046565 04330 0s242 0e449

PROBLEM 6 TAU = 2,000 ALBEDO FOR SINGLE SCATTERING = 0490
A0 = 10000 Al = 0.0000 A2 = 00000 F = 0500 P = 043333

NUMBER OF ITERATIONS WAS 9

" e ¢ R Tp T
0004691 1.0919 0,0098 0,632 04129 0.129
0423077 143122 0.0665 04552 04174 0.174
0050000 1.5204 042145 0,465 04233 04251
0076923 1.6567 044370 04395 04271 04345
0495309 1.7224 0.6056 04355 0,290 0.413
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PROBLEM 7

A0 = 1.0000

Al

TAU

= 0.0000

INFINITY ALBEDO FOR SINGLE SCATTERING = 090

A2 = 0.0000

NUMBER OF ITERATIONS WAS 16

v
004691
0423077
050000
0.76923
095309

PROBLEM 8

A0 = 140000

¥3
1.0936
143236
15554
1.7289
18259

P
0.0000
0.,0000
00000
0.0000
0.0000

TAU

Al = 00000

04654
0.581
0507
0.452
0s422

0.050

A2

NUMBER OF ITERATIONS WAS 3

v
004691
023077
0450000
076923
0095309

PROBLEM 9

A0 = 1.0000

¥o
1.0355
10477
1.0516
1.0527
1.0531

Al

o]

9,
043696
0.8694
049557
0.9877
09991

TAU

= 00000

R

0,1931
040529
0,0273
0.0182
0.0148

0,500

A2

NUMBER OF ITERATIONS WAS 5

v

0¢04691
023077
050000
076923
0095309

Vo
1.0507
141448
11958
12186
1.2283

#o
0.0145
0.1939
0.5221
0.7046
0.7827

0.318
06232
0.154
Oe114
0.097

0,000
0,000
0.000
0,000
0.000

ALBEDO

00000

Tp
0.1817
00665
00271
0.,0173
0.0132

ALBEDO

0.0000

0.154
0.168
0.134
0.101
0.083

141

F = 0500 P = 043333

T

0.000
0.000
0.000
0.000
0.000

FOR SINGLE SCATTERING = 0460

F = 04500 P = 063333

06526
0871
06932
0¢954
04962

FOR SINGLE SCATTERING = 04600

F = 04500 P = 03333

0154
0.283
0502
04623
0675



PROBLEM 10 TAU = INFINITY ALBEDO FOR SINGLE SCATTERING = 0,60

A0 = 1.0000 Al = 0.,0000

NUMBER OF ITERATIONS WAS 7

u ¥o #3

R

A2

0« 04691 1.0520 00000 0.335
0623077 141587 0.0000 0,267
0650000 142456 0.0000 04212
0e76923 143009 0.,0000 06177
0695309 1.3288 00,0000 0,158

PROBLEM 12 TAU = 0,500

A0 = 1.0000 Al = 0.0000

NUMBER OF ITERATIONS WAS 4

(o]
m Vo #3

R

A2

004691 10232 040059 041416
023077 140632 061469 040999
0¢50000 1,0844 0644323 00,0658
076923 140936 046000 00,0484
0695309 140974 046743 0,0410

PROBLEM 11 TAU = 0,050

A0 = 1.0000 Al = 00000

NUMBER OF ITERATIONS WAS 2

H Vo ?s

R

A2

0604691 11,0172 043564 00,0935
0623077 140237 048365 0,0265
050000 11,0252 0.9307 0,0132
0476923 1.0256 0.9624 0,0087
095309 11,0258 00,9740 04,0071

=

0.0000

Tp
0.000
0,000
0,000
0,000
0,000

ALBEDO

00000

Tp
0.0636
0.0696
0.0569
0.0439
0.0366

ALBEDO

00000

0,0874
0.0337
0,0139
0.,0087
0.,0067
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F = 04500 P = 043333

0000
0000
0000
0000
0.000

FOR SINGLE SCATTERING = 0430

F = 04500 P = 043333

00636
0.1842
04248
0¢5659
046284

FOR SINGLE SCATTERING = 0430

F = 04500 P = 03333

0e431
04839
0.918
0945
04956



PROBLEM 13 TAU = INFINITY ALBEDO FOR SINGLE SCATTERING = 030
A0 = 1.0000 Al = 00000 A2 = 00000 F = 04500 P = 043333
NUMBER OF ITERATIONS WAS 5

H o ?o R Tp T
004691 1.0233 060000 061438 0.0000 00000
023077 10663 06,0000 06,1079 00,0000 00000
0650000 140975 060000 040817 040000 00000
076923 11159 060000 04,0663 00,0000 00000
0095309 161248 06,0000 040588 00000 00000
PROBLEM 14 TAU = 0,050 ALBEDO FOR SINGLE SCATTERING = 0690
A0 = 1.0000 Al = 0.0000 A2 = 045000 F = 06500 P = 04400
NUMBER OF ITERATIONS FOR M = Os 19 AND 2 WERE 2 2s AND 2

o] 1 1 2 o o

" o 7 v 1 s s ) #1
0604691 140590 0,0000 -0,5158 00,0000 041409 340162 0,3864 0,0000
023077 140771 040000 -0,4452 0.0000 06760 28703 0,9132 06,0000
0650000 160799 0,0000 —=061493 040000 13040 242751 00,9835 0.0000
076923 1,0756 00,0000 063670 0.0000 144802 142387 11,0093 0.0000
0e95309 140705 060000 068457 04,0000 (08688 062799 1.0155 060000

o) 1 1 2

M fo 1 Ps P R Tp T
0604691 -0,1817 06,0000 0.0488 1.0452 00299 0.283 0.627
0623077 —0e3774 00,0000 065447 243280 06077 04100 04905
0650000 =0e61370 060000 11,1801 2,0618 0042 0.038 0.943
0676923 043433 06,0000 1.3871 1.1615 00028 0.026 06963
0695309 068015 060000 048247 042639 0.023 0.020 04969
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PROBLEM 15 TAU = 0,250

A0 = 1.0000 Al = 0.0000 A2

NUMBER OF ITERATIONS FOR M = 0O,
(o]

" W W9 v
004691 1.0857 0,0000 -0,5214
023077 142102 0,0000 —0,4690
0¢50000 1.2461 0,0000 -0.1759
0676923 1.2525 0.,0000 043446
0095309 1.2471 0.0000 0.8287

o 1 1

m Po 1 8
0004691 —0.0099 0.0000 040010
023077 =061737 060000 062340
0¢50000 -0.1237 0,0000 0.8030
0076923 042418 040000 140843
0695309 066315 0.0000 046787
PROBLEM 16 TAU = 04500
AO = 1,0000 Al = 0.0000 A2
NUMBER OF ITERATIONS FOR M = O,

[e) 0] (0]

K Vo V1 7}
0e¢04691 11,0908 060000 -0,5217
023077 12680 060000 -044723
0450000 143570 040000 -0.1809
0676923 11,3863 0,0000 063414
0695309 143909 00,0000 00,8285

o 1 1

N Po #1 ?s
0e04691 —-0.,0018 0.,0000 0,0002
0623077 -0.0584 0,0000 00,0831
0450000 -0,0838 0.0000 04,4960
0076923 0,1671 0.0000 0.7948
0495309 0.4789 0,0000 0,5304

ALBEDO
= 045000

lsy AND 2

1
vy
0.0000
0.0000
0.0000
0+0000
0.0000

)
Po
0.0257
1.0025
144149
0.9141
0.2182

ALBEDO
= 045000

ls AND 2

1

V1
0.0000
0.0000
0.0000
00,0000
0,0000

2

P
0.0049
0.3492
0.8722
0.6696
0.1700

4L

FOR SINGLE SCATTERING = 0.90
F = 0500 P = 04400
WERE 49 29 AND 3
1 2 o} o
Vo Vo ¢o ¢1
0e¢1410 30,0222 00,0487 040000
046807 248997 10,5063 00,0000
1e3161 243058 00,8379 00000
14954 142569 049439 040000
08781 042822 00,9849 0.0000
R Tp T
0500 06356 0361
0299 06267 04606
0173 O0el1l63 0770
0¢125 06107 0.830
0105 0.090 04859
FOR SINGLE SCATTERING = 0.90

F = 04500 P = 0400
WERE 59 29 AND 3
1 2 o o}
WE WE ¢o ¢l
01411 340222 0.0284 0,0000
06822 2.9054 00,2680 0.,0000
1¢3226 203157 06,6554 00000
165049 1.2638 00,8365 06,0000
08841 042839 00,9033 0.0000
R Tp T
0e553 0280 0.280
04419 0.308 0e422
0.281 04236 0,604
0212 0.170 0.692
0+183 0.138 04729



PROBLEM 17 TAU = 1.000
A0 = 1.0000 Al = 00000 A2

NUMBER OF ITERATIONS FOR M = Oy

o o

u Vo ol V2
0023077 13044 00,0000 -0.4711
050000 1.4614 0.0000 -0.1772
0676923 145334 0,0000 043485
095309 145594 0,0000 0.8387

(o} 1 1

" o 1 ¢
004691 0.0010 00000 0,0001
0423077 -0.,0014 0,0000 0,0122
050000 -0,0205 00,0000 04,1900
076923 00,0917 0.0000 064247
0695309 02876 00,0000 0.3220

PROBLEM 18 TAU = 1.500
A0 = 1.0000 Al = 0.0000 A2

NUMBER OF ITERATIONS FOR M = 0y

o

H Vo W Wg
0604691 10968 00,0000 -0.,5213
0623077 143178 00,0000 «0.4699
0450000 145056 0.0000 =0.1731
076923 11,6080 0.0000 043556
0695309 146491 0,0000 04,8476

1 1

o ¢g ¢1 ¢2
0¢04691 00,0013 00,0000 0.0001
0623077 0,0066 040000 0.,0027
0¢50000 00076 0.0000 0.0737
0676923 040656 00,0000 0,2260
095309 041937 0.0000 041945

ALBEDO
= 045000

19 AND 2

1

V1
0.0000
0,0000
0.0000

0.0000
0.,0000

2

P2
0.0010
0.,0459
0.3272
0.3550
0.1019

ALBEDO
= 045000

ly AND 2

1
v

1
0.0000
0,0000
0.0000
0.0000
0,0000

2

2
0.0003
0.0076
0.1223
0.1870
0.0608
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FOR SINGLE SCATTERING 0490
F = 06500 P = 04400
WERE 6s 39 AND
1 2 o o
Vo Vo 0 1
Del&ll 340223 10,0162 00000
066826 249065 00,1226 060000
13263 243196 0,4017 00000
165116 162671 046412 060000
0.8888 0.2848 0,7341 0.0000
R Tp T
0601 0.190 04190
06504 04253 04266
04394 0259 0.394
0e317 0.221 04493
0.282 0.180 0.530
FOR SINGLE SCATTERING = 0690
F = 04500 P = 0400
WERE 79 3s AND
1 2 Ie) o)
Vo Vo ¢o ¢1
0e¢1411 13,0223 00,0113 00000
0.6826 249066 0,0800 0.0000
163270 243200 0,2678 0.0000
1¢5132 162677 044952 0.0000
08901 042850 00,6242 0.0000
R TD T
0623 0e.142 00142
0537 06194 0,196
De443 0.238 0.288
0371 0241 04383
0e¢334 0e226 0.433



PROBLEM 19

A0 = 140000

Al

TAU

2000

= 0.0000 A2

NUMBER OF ITERATIONS FOR M = 0O,

(@]
M Wo
0604691 1,0981
0623077 1le3261
050000 145304
076923 146521
095309 1.7034
u ¢
004691 0,0012
0623077 0,0077
050000 0,0177
0076923 00,0562
0095309 061438
PROBLEM 20
A0 = 1.0000

Al

INFINITY ALBEDO

(o] (0]
LAl Vo
060000 —-045212
060000 -0,4692
0.0000 -0,1709
00000 0.3598
0.0000 0.8528

1 1

#1 Po
0.0000 0,0000
0.0000 0,0009
0,0000 0,0291
00000 0,1200
060000 0,1170

TAU
= 040000

NUMBER OF ITERATIONS FOR M = Oy

U
004691
0423077
0450000
076923
095309

W

004691
023077
0450000
0076923
0495309

g
1.0996
1e3362
1e5623
167192
167999

(o]

Po
040000
040000
000000
040000
0.0000

(0]

151
040000
0.0000
0.0000
0.0000
040000

1
#1
0.0000
0.0000
0.0000
0.0000
0.0000

(¢]

Yo
-0.5210
-0.4677
-0.1661
043701
048677

1

P
0.0000
0.0000
0.0000
0.0000
00,0000

1,

ALBEDO FOR SINGLE SCATTERING

= 045000

w
00000
0,0000
0.0000
0.0000
0.0000

2

P
0.0001
0.0018
00,0458
0.0982
0.,0361

A2 = 045000

ly AND 2

1

L2l
0.0000
0.0000
0.0000
0.0000
0.0000

2

o
0.0000
0.0000
0.0000
0.0000
040000
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F = 0500

AND 2 WERE 11s 3»

1

Vo
0.1411
0+6826
1.3271
1.5137
0.8905

04636
0554
0.468
04400
04363

090
p = 0-400
AND 3
2 o} o
Vo 2o B
30223 0,0092 0.0000
2.9066 0,0632 0.0000
243201 0,2048 0.0000
1.2678 0.4145 0.0000
02850 00,5620 0.0000
Tp T
0.118 0.118
0.161 0.162
0.215 0.233
0.248 00322
0.259 0.382

FOR SINGLE SCATTERING = 0.90

F = 06500 P = 04400
WERE 16s 3s AND 3
1 2 o o)
¥y ¥y Po 7
0e¢1411 340223 0,0000 0.0000
06826 2.9066 00,0000 0.0000
163271 243207 00,0000 0.0000
1¢5138 12679 0,0000 040000
0¢8906 042850 00,0000 0.,0000
R Tp T
0656 0.000 0,000
0580 0.000 0000
0507 0.000 0,000
04453 0.000 0,000
O0el24 0.000 0.000



PROBLEM 21 TAU = 1,000 ALBEDO FOR SINGLE SCATTERING = 090
A0 = 1.0000 Al = 1.0000 A2 = 148165 F = 0750 P = 045504

NUMBER OF ITERATIONS FOR M = 0Os 1s AND 2 WERE 4»s 1l1s AND 5

1 o o

" w9 W o ¥ s s 32 #7
004691 161075 0.0211 -045329 160266 001242 301069 0.0164 00089
0e23077 143101 06,1331 -04,5012 160228 066458 31140 00,1332 00665
050000 163954 043549 -0,2024 00,8819 13221 2¢5446 064580 0e2319
De76923 1¢3537 066124 063586 066120 165497 144059 00,7536 044677
095309 1.2821 07956 0,.8892 062757 09220 063175 0.8755 0e6381

1 1
" #a By o ¢§ R Tp T
0404691 0,0006 0.0027 040044 0,0052 00563 04203 0,203
0023077 -040034 0,0397 0,0494 0,0788 0+438 04290 04303
0650000 -0,0162 0.2019 042957 044097 0.303 04337 04472

0676923 061277 043034 0.5826 064311 06213 0333 0.605
00695309 063629 062116 064639 061220 0.173 0307 06657

PROBLEM 22 TAU = 1,000 ALBEDO FOR SINGLE SCATTERING = 0490

A0 = 1.0000 Al = 1.0000 A2 = 140490 F = 04750 P = 0.4821

NUMBER OF ITERATIONS FOR M = 0s 1y AND 2 WERE 5» 59 AND 4

o o} o 1 1 2 o o)

u Yo 41 o ¥1 ¥ Vo Po 1
0604691 10984 040207 -065263 140276 061228 360559 0,0185 040102
0623077 162944 061295 =064847 140351 066288 249865 0.1422 040727
0e¢50000 163958 063481 =061923 069181 162706 24050 00,4702 042396
0676923 163865 066065 063426 066611 14793 13195 0607712 044682
0095309 13458 067926 068450 043063 08782 062971 06,9051 066317

2
" % 61 ¢z o R T T
0604691 060011 060023 060036 0,0024 0e564 06222 0e222
023077 -0.0002 060334 06,0392 060574 06445 06305 0.318
0650000 =0e0134 061777 042572 043569 06310 0e341 0476
0676923 061145 042583 065119 043825 0.218 06325 0.598
0695309 063290 061647 063853 00,1092 06175 04295 0.645
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PROBLEM 23 TAU = 1.000 ALBEDO FOR SINGLE SCATTERING = 0490
A0 = 1.0000 Al = 1.0000 A2 = 0.0000 F = 0750 P = 0.3889

NUMBER OF ITERATIONS FOR M = O AND 1 WERE & AND 4

o o) o) 1 1 2 o) o

H Vo V1 Vo V1 12 Vo o 1
0004691 140856 040208 0,0000 1.0288 00000 0.0000 00198 040112
0023077 142689 041282 00,0000 11,0498 0.0000 0.0000 061464 040767
050000 143856 063445 0,0000 0,9607 040000 040000 064720 042433
0676923 144151 046033 00,0000 0,7185 00,0000 060000 067817 044675
0695309 144126 067913 0.0000 043424 0.0000 0.0000 069396 046300

o 1
W #o 1 ¢ i R D T
0404691 0.0000 0.0018 04,0000 0.0000 0s559 0.238 0,238
0423077 0,0000 0,0269 0,0000 0,0000 0.448 0.316 0.329
0450000 0,0000 041540 040000 0.0000 04315 0.345 0.480
0476923 0.0000 042180 040000 0.0000 0.220 0.324  0.596
0495309 0.0000 0,1312 0.0000 0.0000 0.174 0.296 0.846

PROBLEM 24 TAU = 0,050 ALBEDO FOR SINGLE SCATTERING = 0490
A0 = 1.0000 Al = 1.7321 A2 = 1,0000 F = 049330 P = 0.4821

NUMBER OF ITERATIONS FOR M = Os 1y AND 2 WERE 25 4s AND 3

1 1 o o

u Vo Yt 2 " ¥ v b #1
0004691 140622 040336 -0,5187 1.0385 061182 340397 00,3903 0,0300
0023077 140745 042166 -0,4485 11,0213 066486 269005 10,9285 062142
0450000 1.0643 044890 ~041510 0,9086 12790 243066 11,0007 0,4807
0676923 1,0438 067628 00,3689 00,6676 1e4635 142528 11,0309 067542
0095309 140262 0.9499 0,8511 0.3151 08916 042812 11,0390 069415

o 1 1 )

" #o #1 N Po R Tp T
0004691 -041837 043718 0.,0703 1.0601 0¢287 04295 0,639
0023077 -0.3821 048605 04,5889 243706 04060 04117 0.922
0050000 ~041373 048387 11,2127 2.0874 04023 04055 0,960
0076923 0e3473 046440 144139 141753 0009 0045 0,982
0095309 048097 043108 048396 0.2670 04004 04040 0,989
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PROBLEM 25 TAU = 0,250
A0 = 1.,0000 Al = 1.7321 A2

NUMBER OF ITERATIONS FOR M = O,

(o] (o]

M Vo w% Vo
0¢04691 1.0890 00,0251 -04,5256
023077 141976 061758 =0.4792
0650000 11,1860 044514 -0,1851
0676923 141337 067363 063424
0695309 1.,0806 09348 0.8344

o) 1

u Po #1 ?o
004691 ~-0,0116 00,0303 00,0248
023077 =061771 044320 043258
0650000 =061199 066730 049280
0676923 00,2664 00,5879 1.1875
0695309 04,6743 063072 00,7458

PROBLEM 26 TAU = 0,500
A0 = 1.0000 Al = 1.7321 A2

NUMBER OF ITERATIONS FOR M = 0y

0 o o

M Vo Lak wg
0e04691 11,0926 060235 -0,5262
0623077 142466 061545 -0.4854
0e50000 162615 044199 -041968
076923 1.1958 0,7115 063311
0695309 1.1267 049164 0.8262

1

" #2 ¢ ¥
0e 04691 -0,0023 0.,0014 00160
0623077 -0.0588 061901 0.1720
0650000 —=0.0779 0.4782 06520
0676923 061919 064925 069454
0695309 065234 06,2768 06,6291

ALBEDO
= 10000

ls AND 2

1

V1
1,0522
1.0859
069716
0.7104
0.3328

2
P
0.0378
1.0475
1.4696
069455
0.2255

ALBEDO
= 10000

ly AND 2

1
V1
1,0532
1¢1044
1.0005
047317
043421

g
0,0098
0.3764
069228
0,7034
0.1781
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FOR SINGLE SCATTERING = 0.90

F =

WERE 69

7
061068
05918
162777
164325
08507

06466
0238
0.097
06043
0.018

09330 P = 0.4821
10y AND 3
2 o o
Wg ¢o ¢l
30524 0,0541 0.0186
2¢9633 00,5391 041543
23655 049148 044269
1¢2914 11,0700 067177
062901 11,1597 069336
Tp T
0394 04396
06335 0669
0.256 0.853
0.226 0933
0.230 04979

FOR SINGLE SCATTERING = 0.90

F =

WERE 5o

1
Vo
01057
05701
1.1953
144104
048419

0500
0¢333
0¢163
0078
0041

049330 P = 0.4821
109 AND 4
(0] (0]

Wg ¢o ¢l
30527 0,0337 040156
29763 00,3067 061173
2¢3878 047653 043632
163067 11,0156 066422
062939 1,1318 048434

TD T
0.331 04331
0392 04507
0355 06723
0.311 0.833
0.293 0.885



PROBLEM 27 TAU = 1,000 ALBEDO FOR SINGLE SCATTERING = 0,90
A0 = 1.0000 Al = 1.7321 A2 = 1.0000 F = 069330 P = 0.4821

NUMBER OF ITERATIONS FOR M = Os 1s AND 2 WERE 5y 10s AND 4

(o)

u 3 W 3 v 3 5 #e 7
0e04691 140951 06,0223 —-0,5262 1.0537 041051 340528 00,0212 060119
023077 le2736 061408 -0.4859 141107 065618 2¢9790 0.1630 0.0852
050000 1e3347 003832 -0,1988 10178 1e1727 23969 005354 0.2784
0676923 162749 066723 063281 067470 13913 163145 00,8972 045418
0695309 161966 0.8816 00,8239 063493 0e8334 062959 1,0802 Q67334

o 1 1

" #o ¢ ¥y #5
004691 0.0016 00,0053 060080 06,0023 06530 0e259 0e259
023077 0.0028 0.0544 00,0677 00,0563 0e396 0e359 06372
0¢50000 -0,0043 04,2286 00,3185 063540 06239 Oe4s18 0e553
0e76923 061298 063207 05855 063758 06131 Oe&l9 06692
0695309 043496 062072 064387 0,1085 06079 0400 04750

PROBLEM 28 TAU = 1.500 ALBEDO FOR SINGLE SCATTERING = 0490
A0 = 1.0000 Al = 17321 A2 = 1.0000 F = 09330 P = 0.4821

NUMBER OF ITERATIONS FOR M = Os 1y AND 2 WERE 7» 1lls AND 3

0 o} o 1 1 o) o o

m Vo ¥i Vo V1 Yo ¥5 g $1
00604691 140972 040212 -065262 140537 001050 3.0528 00,0171 0.0100
0623077 1.2882 061331 -0,4855 141115 065606 209792 0,1231 0.0702
0650000 13974 063589 -061968 140214 141674 23981 00,4058 0.2253
0676923 143398 046369 063314 047513 143850 163159 0,7702 0.4588
00695309 142661 0.8436 048278 043516 068302 062963 0,9945 066437

1
u #3 #1 g g R Tp T
0404691 040020 0.0027 0.,0043 0,0007 0.551 04215 0,215
0.23077 040118 0.0234 04,0341 0,0118 0.426 04303 0,305
0050000 042515 041108 041606 041347 0e286 00397  Q.447
0476923 041036 041991 043554 0,2022 0e176 Oesé6 0,588
0695309 042542 041496 043044 0,0653 0e118 04456  0.663
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PROBLEM

A0 = 1.0000

29

Al

TAU

INFINITY ALBEDO

= le7321 A2

NUMBER OF ITERATIONS FOR M = O,

W
0¢04691
223077
050000
0676923
0495309

Kl

0404691
0023077
050000
076923
0495309

PROBLEM

A0 = 10000

o)
Vo
11010
1643142
1.4608
1.4964
14740

72
040000
040000
040000
040000
040000

30

Al =

o

V1
0.0190
0.1180
0.3115
0.5451
0.7213

g1
0.0000
0.0000
0.0000
0.0000
0.0000

0

VD
-045257
-0.4825
-0.1869
0.3511
0.8547

1
¢
0,0000
0.0000
0.0000
0.0000
0.0000

TAU = 0,050

1.7321 A2

NUMBER OF ITERATIONS FOR M = Oy

"
0¢04691
023077
050000
0e76923
095309

u
0e04691
023077
050000
076923
095309

(0]

¥
1.0%02
1.0492
1.0421
1.0287
1.0172

o)

2
-0. 1790
-0.3659
-0.1291
0.3528
0.8127

o}

v
0.0383

0.2212
0e8927
00,7649
09509

1

0.3%18
0.8338
0.8214
0.6286
0.3025

Vo
-0.5109
-0,4387
-041419

043755
0.8552

1

0.0536
0.5738
1,2013
1.4027
0.8327

= 140000

19 AND 2

1.0538
le1116
10222
067530
003527

0,0000
0.0000
0.0000
0.0000
00000

ALBEDO
= 10000

le AND 2

1

U1
160247
1.0051
0.,8937
0.6575
0.3108

2

g

2
1.0501
23420
2,0703
1e1661
0.2649
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FOR SINGLE SCATTERING 0.90
F = 09330 P = 0-4821
WERE 21s 69 AND 4
1 2 O fe)
Vo Vo fo 1
01049 340528 00,0000 0.0000
05604 209792 10,0000 060000
161659 23983 00,0000 000000
163823 13163 00,0000 00000
0e¢8283 062965 0,0000 00,0000
R TD T
0595 0.000 0,000
0489 0.000 0,000
06377 0000 0,000
0292 0000 0,000
0e244 0.000 0000
FOR SINGLE SCATTERING 0.60
F = 069330 P = 044821
WERE 29 3s AND
1 2 0 0
Vo Yo B g1
061261 340240 00,3734 060249
06568 248803 00,8846 0.2046
162862 262836 049689 064716
1e4676 12134 00,9992 007431
0¢8630 062791 11,0083 069290
R Tp T
Oel84 0.188 0.531
0042 0.080 0.887
0015 0.038 0.943
0006 0.029 06966
0003 0.026 0.974



PROBLEM

A0 = 1.0000

31

Al

TAU = 0,500

= 1.7321 A2

NUMBER OF ITERATIONS FOR M = 0O,

"
004691
023077
050000
076923
095309

v

004691
023077
050000
0476923
095309

PROBLEM

A0 = 1.0000

o
Vo
1.0558
1.1385
141435
1.1049
10662

o
po
-0,0010
‘0.0526
-0,0593
0.2020
045251

32

Al

3
0.,0332
0.1894
Oet574
07390
069338

1

#1
0.0077
041566
0.4118
044266
042327

TAU = INFINITY ALBEDO

o

Vo
-045145
-0.4584
-041660
043567
0.8444

1

Pa
0.0091
0.1321
045804
08720
0.5743

= 147321 A2

NUMBER OF ITERATIONS FOR M = O,

W
004691
023077
050000
076923
095309

u

004691
0023077
050000
076923
0095309

o
Vo
1.0568
141499
11795
141517
1,1128

(o]
po
040000
040000
040000
040000
040000

Vol
0.0327
0.1833
044381
Oe7134
00,9074

1

P
00000
00000
00000
00000
00000

(0]

Vo
-0.5148
-044583
-041652
043589
0.8483

1
Po
040000
0.0000
040000
040000
040000

1,

1,

ALBEDO

1.0000

1
Uy
1.0331
1,0523
069453
0.6924
003252

2

P
0.0063
0.3578
0.,8883
06804
0.1726

10000

1
V7
1.0332
1.0551
049540
047003
043286

2
%
00000
0.0000
00000
00000
00000
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AND 2

AND 2

FOR SINGLE SCATTERING = 0460
F = 069330 P = 044821
WERE 49 49 AND
1 2 o o)
WQ WQ ¢O ¢l
01189 3.0322 00,0166 0.0077
06123 29283 0.2128 06,0737
12398 243389 00,5810 0.2827
14399 162776 00,7966 045394
0e8533 062871 08951 067262
R Tp T
06293 0e165 0165
0.180 0.204 04319
0.085 0.197 06565
0040 0.178 0.701
0.021 0169 0.761
FOR SINGLE SCATTERING 0460
F = 09330 P = 044821
WERE 8s 59 AND
1 2 o o)
¥ Vo Po 1
0e¢1187 3.0322 10,0000 0.0000
066084 249300 0,0000 0.0000
162279 243452 0,0000 0,0000
164298 1.2833 00,0000 0.0000
0¢8493 2.8867 10,0000 0.0000
R TD T
0303 0000 0.000
0206 0000 0000
O0e¢l24 0000 0000
0073 0000 0000
0048 0000 0000



PROBLEM

A0 = 1.0000

33

TAU = 0,050

Al = 1.7321 A2

NUMBER OF ITERATIONS FOR M = Oy

v

004691
023077
050000
0076923
095309

"
0s04691
023077
050000
076923
0695309

PROBLEM

A0 = 1.0000

¥o
10195
10243
1.0206
10146
1.,0086

#2
"0.1748
-043513
-001216

0.3581
048157

34

Al

(o]

Uy $g
000427 ‘005036
062260 -0,4293
0¢4964 -041333
0.7671 00,3817
09520 048590

1 1

#1 P
0.3526 040553
0.8080 0.5581
0.8028 1,1889
006137 1,3923
0.2948 0,8268

TAU = 0,500

= 1l.7321 A2

NUMBER OF ITERATIONS FOR M = 0,

W
0404691
023077
0450000
076923
0495309

"
004691
023077
0450000
076923
0095309

s}

wo
1.0257
1.0598
1.0600
1.,0421
1.0249

o

P
“000004
-000496
-0.0502
0.2046
05202

0 o

Wl WQ
040408 -0,5052
002135 -0.4374
0.4831 -0.1432
067579 043743
09464 04,8553

1 1

#1 P

0.0033 0.,0040
0.1312 0.1015
0.,3602 045241
043757 0.8164
02030 065400

ALBEDO
= 140000

1y AND 2

1
LAl
1,0115
0.9889
0.8796
0.6480
043066

2

2
1.0404
243141
2.,0531
11569
062629

ALBEDO
= 10000

1» AND 2

1
LAl
1,0152
1.0093
0.9015
0.6624
0e3124

2

%
0.0030
0+3409
0.8568
046591
0.1674
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FOR SINGLE SCATTERING 0.30
F = 049330 P = 0.4821
WERE 2s 29 AND 2
1 2 o) o
WQ Vo ¢o ¢l
061335 3.0086 0,3581 0.0204
066652 28602 00,8435 001952
162928 242667 069371 064622
164712 12341 00,9681 07321
068643 062769 049785 069167
R TD T
0090 0.089 0¢435
0.021 0.040 0.845
0.008 0.019 06924
0.003 0.015 0e952
0.001 0.013 0.961
FOR SINGLE SCATTERING 0430
F = 09330 P = 0.4821
WERE 4 3s AND 3
1 2 o] o
A Vo 2o 9,
061304 3.0125 00,0064 0,0030
066460 248831 00,1539 060456
1¢2733 262931 00,4567 062259
14604 12504 046399 0.4624
0eB8609 042808 0,7238 046369
R TD T
0.131 0.064 0,063
0075 0.083 04198
0034 0.084 06452
0015 0.079 0.601
0008 0.076 0668



PROBLEM 35 TAU = INFINITY ALBEDO FOR SINGLE SCATTERING = 0430
A0 = 1.0000 Al = 1.7321 A2 = 1.0000 F = 09330 P = 0.4821

NUMBER OF ITERATIONS FOR M = Os 1s AND 2 WERE 4» 3» AND 3

o) o 0 1 1 2 o e

" Vo U U ' Vo 12 2. N
0604691 1,0258 040407 -0,5052 11,0152 041304 3.0125 0,0000 0.0000
0623077 160620 062124 =044374 140102 06448 28838 0,0000 00000
0e50000 160670 064793 -0,1433 00,9042 162696 242959 0,0000 00000
0676923 1,0499 047538 043744 00,6646 14578 12530 0,0000 040000
0095309 160313 049427 048559 043132 068602 248149 0,0000 0.0000

0 1 1 2
m Po ?1 ?s 25 R Tp T
0004691 040000 000000 040000 0.,0000 0133 0.000 0,000
0023077 0.0000 000000 00,0000 0.0000 0.080 00000 0,000
0450000 00000 0¢0000 060000 0+0000 0042 04000 0,000
076923 040000 0.0000 0.0000 0.0000 0s020 04000 0,000
0495309 0.0000 0.0000 00,0000 00,0000 0.011 06000 0,000

PROBLEM 36 TAU = INFINITY ALBEDO FOR SINGLE SCATTERING = 0.90
A0 = 1.0000 Al = 147346 A2 = 242415 F = 069336 P = 0.5821

NUMBER OF ITERATIONS FOR M = Oy 1s AND 2 WERE 2y 59 AND 5
(NOTE--FOR M = 0 INITIAL FUNCTIONS WERE THOSE OF REFERENCE 4)

o o 1 1 2 o 0

u Vg " Vo W v2 v ¢ 3,
0604691 161185 060185 =065370 140516 01080 361376 00000 040000
0623077 163550 061179 -065124 160896 045911 341955 00,0000 00,0000
0650000 1.4868 063121 -062079 04,9561 1¢2596 246406 00,0000 00000
0076923 164699 065412 063771 00,6583 165179 144695 00,0000 00000
0095309 163948 067094 069349 062909 069173 043331 0,0000 06,0000

o 1 1 2
[ ¢2 ¢l ¢2 ¢2 R TD T
0004691 040000 0.0000 0.0000 0.0000 06604 0.000 0,000
0023077 040000 000000 00000 060000 00486 0.000 0000
0¢50000 040000 00000 00000 060000 06376 0.000 04000
0076923 00,0000 040000 040000 0.0000 00296 0.000 0,000
0095309 Q40000 0.0000 0.0000 00,0000 00256 0.000 0,000
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Table B-1 Comparison of Exact and Approximate Integrated Reflectances

Isotropic and Rayleigh Scattering

Ho Exact. iso¥ Six-flux,iso. Six-flux,Ray. Two-flux,iso. Richards,iso.
and Ray.
w,= 0.90,1,=00:
0.00000 0.677 0.569 0.569 0.519 0.500
0.04691 0.654 0.560 0.560 0.519 0.489
0.23077 0.581 0.527 0.527 0.519 0.448
0.50000 0.507 0.484 0.485 0.519 0.400
0.76923 0.452 0.4%0 0.4h41 0.519 0.361
0.95309 0.4k22 0.389 0.391 0.519 0.338
1.00000 0.416 0.333 0.337 0.519 0.333
w,= O.9O,Tl=l.0:
0.00000 0.624 0.533 0.534 0.519 0.457
0.04691 0.598 0.520 0.521 0.519 0.446
0.23077 0.50k4 0.466 0.467 0.496 0.393
0.50000 0.394 0.375 0.376 0.421 0.316
0.76923 0.316 0.303 0.30k4 0.330 0.257
0.95309 0.279 0.259 0.260 0.293 0.227
1.00000 0.271 0.137 0,138 0.28%4 0.220
u%=0.90,11=0.50:
0.00000 0.584 0.507 0.509 0.519 0.428
0.04691 0.548 0.492 0.494 0.519 0.413
0.23077 0.417 0.390 0.391 0.420 0.333
0.50000 0.279 0.267 0.267 0.285 0.231
0.76923 0.209 0.199 0.199 0.211 0.171
0.95309 0.179 0.166 0.167 0.182 0.147
1.00000 0.170 0.079 0.079 0.175 0.141
@,=0.90,7,=0.25:
0.00000 0.571 0.488 0.491 0.519 0.405
0.04691 0.498 0.463 0.467 0.505 0.388
0.23077 0.300 0.283 0.283 0.302 0.243
0.50000 0.173 0.166 0.166 0.175 0.146
0.76923 0.125 0.117 0.117 0.124 0.103
0.95309 0.105 0.096 0.096 0.103 0.084
1.00000 0.101 0.043 0.043 0.099 0.081
@,=0.60,717=0.50:
0.00000 0.345 0.235 0.234 0.225 0.176
0.04691 0.318 0.228 0.227 0.225 0.168
0.23077 0.232 0.190 0.193 0.211 0.135
0.50000 0.154 0.137 0.138 0.164 0.092
0.76923 0.11k4 0.103 0.104 0.129 0.069
0.95309 0.097 0.082 0.084 0.112 0.059
1.00000 0.093 0.034 0.035 0.108 0.057
@,=0.30,17=0.50:
0.00000 0.156 0.091 0.091 0.089 0.06k4
0.04691 0.1k42 0.088 0.088 0.089 0.061
0.23077 0.100 0.075 0.076 0.089 0.048
0.50000 0.066 0.056 0.057 0.086 0.033
0.76923 0.048 0.042 0.043 0.079 0.025
0.95309 0.041 0.032 0.034 0.074 0.021
1.00000 0.04%0 0.012 0.014 0.072 0.020

* Extrapolated by Lagrange's formula for =o0 and p, = 1.0.
Ho o)
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Table B-2 Comparison of Exact and Approximate Total Transmissions

Isotropic and Rayleigh Scattering

Mo Exact. 1so.*
w, =0 .90,'1'1:1.0:
0.00000 0.183
0.04691 0.197
0.23077 0.271
0.50000 0.398
0.76923 0.498
0.95309 0.536
1.00000 0.541
©,=0,90,717=0.50:
0.00000 0.257
0.04691 0.286
0.23077 0.426
0.50000 0.607
0.76923 0.693
0.95309 0.728
1.00000 0.742
w,=0.90,7,=0.25:
0.00000 0.277
0.04691 0.365
0.23077 0.607
0.50000 0.768
0.76923 0.827
0.95309 0.854
1.00000 0.861
w,=0.60,17=0.50:
0.00000 0.139
0.04691 0.154
0.23077 0.283
0.50000 0.502
0.76923 0.623
0.95309 0.675
1.00000 0.694
w,=0.30,7,=0.50:
0.00000 0.057
0.04691 0.06k4
0.23077 0.184
0.50000 0.425
0.76923 0.566
0.95309 0.628
1.00000 0.651

* Extrapolated by Lagrange's formula for u,

Six-flux,iso.

0.181
0.194
0.265
0.413
0.523
0.567
0.562

0.240
0.256
0.415
0.611
0.710
0.749
0.742

0.277
0.308
0.597
0.768
0.837
0.86k4
0.859

0.102
0.109
0.255
0.491
0.618
0.668
0.661

0.038
0.040
0.168
0.417
0.561
0.622
0.626

= o and Ho = 1.0.
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Six~flux,Ray.

173
.185
.256
412
.523
.568
564

O O O0OO0OO0O0O0o

.228
2Lk
b2
0.610
0.710
0.749
0.743

O O O

0.264
0.294
0.594
0.768
0.837
0.864
0.859

0.095
0.101
0.252
0.491
0.620
0.670
0.664

0.035
0.037
0.167
0.418
0.562
0.622
0.629

Two-flux,iso.

0.
0.
0.
420
.549
.609
621

o O O O

O O OO O0OO0OOo O O OO O0OO0OOo O OO0 0O O0OO0Oo

OO0 OO O0OO0OOo

000
001
189

.000
.025
.395
621
.72k4
767
776

.000
2137
.600
776
8Lk
871
877

.000
.000
.061
.269
L2
496
512

.000
.000
.026
.186
.335
RNaE
.430

Richards,iso.

211
221
.269
.385
492
.549
.562

O OO O0OO0OO0O0

.278
.292
403
.582
.686

- 733
L7h2

OO O0000Oo

.322
.3%0
STh
.748
.823
.853
.859

O OO O0OO0OO0Oo

.1o4
.108
217
sk
.588
648
661

O O OO0 0o

.039
.04t
.156
.399
546
612
0.626

O O OO OO0



Table B-3 Comparison of Exact and Approximate Integrated Reflectances

Anisotropic Scattering, F = 0.9330, P = 0.4821

Ho Exact* Six-flux Two-flux Exact¥* Six-flux Two~flux
w, = 0.90 @©,=0.90
-rl = 00! -rl=l.0:
0.00000 0.628 0.467 0.195 0.567 0.433 0.195
0.04691 0.595 0.457 0.195 0.530 0.421 0.19%
0.23077 0.489 0.425 0.195 0.396 0.362 0.143
0.50000 0.377 0.383 0.195 0.239 0.259 0.089
0.76923 0.292 0.338 0.195 0.131 0.196 0.064
0.95309 0.24k4 0.286 0.195 0.079 0.161 0.054
1.00000 0.233 0.228 0.195 0.067 0.07k4 0.052
W, = 0.90
T = 0.50: w,= 0.90
T,= 0.25:
0.00000 0.547 0.417 0.195 0.552 0.405 0.195
0.04691 0.500 0.400 0.186 0.466 0.371 0.155
0.23077 0.333 0.277 0.098 0.238 0.183 0.056
0.50000 0.163 0.170 0.052 0.097 0.099 0.028
0.76923 0.078 0.120 0.035 0.043 0.068 0.019
0.95309 0.041 0.098 0.029 0.018 0.055 0.015
1.00000 0.030 0.041 0.028 0.013 0.022 0.01k4
w, = 0.60 @,= 0.60
'rl = 00? = 0.50:
0.00000 0.336 0.165 0.046 0.330 0.162 0.046
0.04691 0.303 0.160 0.046 0.293 0.157 0.046
0.23077 0.206 0.142 0.046 0.180 0.119 0.039
0.50000 0.124 0.120 0.046 0.085 0.077 0.027
0.76923 0.073 0.097 0.046 0.040 0.055 0.020
0.95309 0.048 0.071 0.046 0.021 0.041 0.017
1.00000 0.043 0.041 0.046 0.016 0.012 0.016
w, = 0,30 W= 0.30
Tl = 00: 11! 0.50:
0.00000 0.153 0.057 0.014 0.151 0.056 0.014
0.04691 0.133 0.05k4 0,014 0.131 0.054 0.014
0.23077 0.080 0.047 0.014 0.075 0.043 0.013
0.50000 0.042 0.039 0.014 0.034 0.029 0.011
0.76923 0.020 0.030 0.01k4 0.015 0.020 0.008
0.95309 0.011 0.020 0.014 0.008 0.01k4 0.007
1.00000 0.010 0.008 0.014 0.007 0.003 0.007

* Extrapolated by Lagrange's formula for Hg = © and 1.0.
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Table B4 Comparison of Exact and Approximate Total Transmissions

Anisotropic Scattering, F = 0.9330, P = 0.4821

Ho Exact* Six-flux  Two-flux Exact* Six-flux Two-flux
w, = 0.90 w, =0.90
T 1.0: 71=0.50:
0.00000 0.236 0.220 0.000 0.291 0.269 0.000
0.04691 0.259 0.233 0.041 0.331 0.288 0.198
0.23077 0.372 0.339 0.511 0.507 0.515 0.711
0.50000 0.553 0.523 0.730 0.723 0.707 0.853
0.76923 0.692 0.632 0.814 0.833 0.790 0.902
0.95309 0.750 0.673 0.847 0.885 0.821 0.920
1.00000 0.761 0.662 0.853 0.904 0.811 0.923
w, = 0.90
T = 0.25:
0.00000 0.297 0.299 0.000
0.04691 0.396 0.354 0.439
0.23077 0.669 0.698 0.842
0.50000 0.853 0.835 0.923
0.76923 0.933 0.889 0.949
0.95309 0.979 0.905 0.959
1.00000 0.991 0.900 0.961
w, = 0.60 @, =0.30
T = 0.50: T =0.50:
0.00000 0.143 0.100 0.000 0.041 0.033 0.000
0.04691 0.165 0.106 0.009 0.063 0.035 0.000
0.23077 0.319 0.303 0.386 0.198 0.175 0.210
0.50000 0.565 0.550 0.644 0.452 0.44s 0.487
0.76923 0.701 0.671 0.751 0.601 0.587 0.626
0.95309 0.761 0.716 0.794 0.668 0.645 0.686
1.00000 0.783 0.710 0.803 0.692 0.652 0.698

* Extrapolated by Lagrange's formula for My =0 and 1.0
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Table B-5 Comparison of Exact and Approximate Integrated Reflectances and Total Transmissions

Anisotropic Scattering, Fy = 0.750, w,= 0.90, 7; = 1.0

Integrated Reflectances Total Transmissions
Ho Exact* Six-flux Two-flux Exact* Six-flux Two-flux
P = 0.5821: 0.00000  0.600 0.48k4 0.402 0.184 0.171 0.000
0.04691  0.563 0.471 0.402 0.203 0.183 0.006
0.23077 0.438 0.411 0.357 0.303 0.289 0.310
0.50000  0.303 0.315 0.261 0.472 0.467 0.560
0.76923 0.213 0.248 0.201 0.605 0.583 0.678
0.95309 0.173 0.209 0.173 0.657 0.629 0.727
1.00000 0.165 0.105 0.168 0.665 0.621 0.738
P = 0.4821:
0.00000  0.598 0.483 0.402 0.203 0.191 0.000
0.04691  0.56k4 0.470 0.402 0.222 0.203 0.006
0.23077 0.445 0.410 0.357 0.318 0.295 0.310
0.50000  0.310 0.31k4 0.261 0.476 0.469 0.560
0.76923 0.218 0.247 0.201 0.598 0.582 0.678
0.95309 0.175 0.207 0.173 0.645 0.626 0.727
1.00000 0.166 0.103 0.168 0.652 0.618 0.738
P = 0.3889:
0.00000  0.589 0.480 0.402 0.221 0.213 0.000
0.04691  0.559 0.467 0.402 0.238 0.225 0.006
0.23077 0.448 0.409 0.357 0.329 0.308 0.310
0.50000 0,315 0.314 0.261 0.480 0.471 0.560
0.76923 0.220 0.246 0.201 0.596 0.580 0.678
0.95309  0.17k4 0.205 0.173 0.646 0.622 0.727
1.00000 0.164 0.101 0.168 0.656 0.614 0.738

* Extrapolated by Lagrange's formula for p, = o and 1.0
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APPENDIX C
Computer Programs

All computer programs were written in MAD (Michigan Algorithm
Decoder) compiler language and were compiled and executed on the
IBM-704. A description of the language is given in reference (10).
Programs written in this compiler language may be compiled and run
on either the IBM-704 or 709 and in the near future provision will
be made for processing MAD programs on the IBM-7090.

The programs are presented in the following pages with brief
explanatory notes.
1. Solution of the Integral Equations

a) Input Data

One general program was written to solve any set of integral
equations for an arbitrary value of N and m. In order to specify the
problem and its method of solution the following information is
required. (The MAD symbols are placed in parenthesis for use in
reading the listing of the programs).

1) Run Number A five-character number for identification
of output (RUN)

N Number of terms in expansion of phase
function (NTERM)

jo) Number of points to be used in numerical
integration (NPOINT)
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T Optical thickness of dispersion (TAU)

1
TOL Iteration will be stopped whenever the
maximum absolute value of the change in
any function is less than TOL (TOL)
w, Albedo for single scattering (ALBEDO)

2) a, . ay Coefficients of an angular distribution
function, A(O)...A(NTERMS)

3) Hos+ e e sk Set of values of the independent variable
for use in numerical integration (See
equation I1-35 ), U(0)...U(NPOINT)

4) WO,. Wy Weight coefficients for numerical integration

(See equation I-35 ), W(0)...W(NPOINT)

5) ¢ (I.,:)‘° Tnitial value of Psi Functions, PSI(0,L,I)

i=0,-, )4
A =m,-, N
m (0)
6) ér(m) Tnitial values of PHi Functions, PHI(0,L,I)
‘= o'...’P
13 m:"'/N

The preceeding six groups of information are referred to as the
"basic data package." They completely define a solution to the integral
equations or any trial solution. Thus, the computer starts with a basic
data package as an initial approximation; it then performs a certain
number of iterations; and, finally, produces as output a new basic

data package. The basic data package is preceeded by a header card
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giving the maximum number of iterations allowable and information

as to which of the special options (described next) are desired.

o)

Special Options

The following options are available in the routine:

1)

2)

3)

Items 5 and 6 (i.e. the initial values of the functions)
of the data above may be deleted in which case the following
expressions will be used for the initial functions.

" o) m
Y, (,“z)( = Py (p0)
$7 M) e-n/ﬂ‘. Py (M)

The results of a computation may be punched on cards in
the form of a basic data package for use in performing
more iterations later or for use in another program if
desired.

A reversal of direction of the change in V: or ?: may
be interpreted as convergence and the iteration stopped when
this occurs if desired.

In addition the following features are available for speeding

up the solution under certain special circumstances.

a)

b)

if T, 280, calculation of the ¢u)will
be deleted and ¢T(u‘> will be set to zero

if any angular distribution coefficient is zero (for
example 1if ap = 0) then calculation of the corresponding
functions will not be calculated but set to zero

W:(,") =0
P (M =0

The number of equations in a set for use in estimating the

computer time or cost in I-56 or I-58 is equal to the number of

non-zero terms in the phase function.
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c) Restrictions

At the time of compilation of the MAD program an upper limit
must be placed on the following so that the computer may properly
allocate storage to the various arrays.

1) Maximum value of N, i.e. the maximum number of terms in
the phase function (MAXL)

2) Maximum number of consecutive approximations which may be
stored in the computer at one time (NMAX). Iteration will
proceed computing £*(0), £*(1),....,f*(MMAX) after which
£%(0) will be set to f*(NMAX) and the process repeated.

3) Maximum number of points to be used in numerical integration
(MAXPT)

Large values of NMAX result in a slightly more efficient program,
however NMAX may be any value greater than zero. The total storage
required including the approximately 5000 locations required by the
program and its subroutines is given by

STORAGE (NMAX + 1)(MAXL + 1)(MAXPT + 1)

=2
+ L(MAXL +1)(MAXPT +1) + 4(MAXPT) + 5000

In practice, the large computer time required fo£ large values
of N and/or large values of p is a more serious restriction than the
limitation on storage.

An additional restriction is that all numbers expressed in

floating point form must be of the following range.

37 -37
10 > |X}> 10
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Thus, if pyi, is the smallest non-zero value of My then
-7 . -18
e W/ fmin must be greater than Jo
in order to evaluate F;(’C.,/lm.n,)lw.,,) which is needed in
performing some of the integrations. (Note: This does not apply if
T12 80 as the ¢? are not computed in this case.)
The only restriction on the integration procedure is that
P _1 P .1
ZW"=1.01'|0' ZW;}‘:’O-;SIO
i=o izo ,

or in other words, the integrals
] !
( dx =1, (xdx:o.S‘
© o

must be done correctly.

d) General Outline of the Programs

The general outline of the programs is as follows:

1) A few initializing calculations are performed to give the

computer information as to the maximum size of various arrays.

2) The header card is read followed by the basic data package.

3) Iterations are performed until convergence is indicated
or until the allowable number of iterations is exceeded.

4) The results are punched and/or printed.

A printed copy of the MAD Program follows.
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$SCOMPILE MADs PUNCH OBJECTs PRINT OBJECT 5THIQQO01

R

R GENERALIZED PROGRAM FOR SOLUTION OF LIGHT SCATTERING
R INTEGRAL EQUATIONS
R

BOOLEAN Cls C2y C4s C59 PCHs BL9BJIsBKsCONVGsTHICKIOMITsSIGN,
1 CONVGL

INTEGER I9JsKsLsMgNINPOINTyNTERMSyMAXITSITCNTSINT1»INT2,

1 FIXARGsRUNSNMAX1sTYPESTIME« 910411512

DIMENSION BLOOP(100)

VECTOR VALUES NMAX = 3

VECTOR VALUES MAXL = 3

VECTOR VALUES MAXPT = 20
R FOLLOWING DIMENSIONED (NMAX+1)*(MAXL+1)*(MAXPT+1) - 1
DIMENSION PSI(3354PSIDIM) sPHI(335,PHIDIM)
R FOLLOWING DIMENSIONED (MAXL+1)*(MAXPT+1) + 1

DIMENSION S(83+SDIM)sPOL(83+POLDIM)sCHPSI(83sCHPSID)

1 CHPHI (83 9yCHPHID)
R FOLLOWING DIMENSIONED MAXPT

DIMENSION SS(20),W(20)sU(20)+BJ(20)
R FOLLOWING DIMENSIONED MAXL

DIMENSION PSIDEV(3)sPHIDEV(3)sOMEGA(3) A(3)4BL(3)sBK(3)s
1 OMIT(3)

DIMENSION PSIDIM(3)sPHIDIM(3)sSDIM(2)sPOLDIM(2),CHPSID(2))

1 CHPHID(2)

VECTOR VALUES PSIDIM
VECTOR VALUES PHIDIM
VECTOR VALUES SDIM =
VECTOR VALUES POLDIM
VECTOR VALUES CHPSID
VECTOR VALUES CHPHID
PSIDIM(3) MAXPT + 1
PSIDIM(2) MAXL + 1
PSIDIM(1) PSIDIM(2)*#PSIDIM(3) + PSIDIM(3) + 1

PHIDIM(3) MAXPT + 1

PHIDIM(2) MAXL + 1

PHIDIM(1) PHIDIM(2)#PHIDIM(3) + PHIDIM(3) + 1

SDIM(2) = MAXPT + 1

SDIM(1) = SDIM(2) + 1

POLDIM(2) MAXPT + 1

POLDIMI(1]) POLDIM(2) + 1

CHPSID(2) MAXPT + 1

CHPSIp(1) CHPSID(2) + 1

CHPHID(2) MAXPT + 1

CHPHIpD(1l) = CHPHID(2) + 1

START EXECUTE ZEROe (BLeweBLIMAXL) 9BJeeeBJI(MAXPT) 9BKeqeoBK(MAXL))

READ FORMAT INBOOL»s IsBLeooBLI(I)

READ FORMAT INBOOLs [9BUeeeBU(I)

READ FORMAT INBOOLs I1+sBKeoeeBK(I)

READ FORMAT INl, MAXITs TYPESPCH,SIGN

READ FORMAT INA, RUNJMsNTERMSsNPOINTsTAUs TOL »ALBEDO

PRINT FORMAT FORMl,y, RUNJMINTERMSsNPOINTsMAXITsTOL TAUSALBEDO
THICK = 0B

WHENEYER TAU «GEes 80es THICK = 1B

WHENEVER TYPE oEes O

PRINT FORMAT FORM9, $READ INS
OR WHENEVER TYPE JEe 1
PRINT FORMAT FORM9s $CALCULATED FROM LEGENDRE POLYNOMIALSS

END OF CONDITIONAL

3
3

Ha NN

2
2
2

Ha o8N

"

L I ]
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READ FORMAT IN2s AeeeA(NTERMS)
PRINT FORMAT FORM2
PRINT FORMAT FFls AeeceA(NTERMS)
EXECUTE ZEROe (OMEGA« ¢+ e OMEGA(NTERMS) 9sOMIToe e e OMIT(NTERMS) )
THROUGH ST6s FOR L = MslslL eGeNTERMS
OMEGA (L) = A(L)*FACTe(L—-M)/FACT«(L+M)*ALBEDO
STé WHENEVER OMEGA(L) «Ee Oes OMIT(L) = 1B
PRINT FORMAT FORM3
PRINT FORMAT FFls OMEGA. e «OMEGA(NTERMS)
READ FORMAT IN2s UeeoU(NPOINT)
PRINT FORMAT FORM4
PRINT FORMAT FFls UeeeU(NPOINT)
READ FORMAT IN2s Wee oW(NPOINT)
PRINT FORMAT FORMS
TEST = "005
WEIGHT = =140
THROUGH SL6s FOR I = O9s191eGeNPOINT
TEST = TEST + W(I)*U(I)
SLé WEIGHT = WEIGHT + Ww(I)
PRINT FORMAT FFlys WeeoeW(NPOINT) sWEIGHTSTEST
WHENEVER +ABSWEIGHT «Ge0,0000001
PRINT FORMAT BCDs $1SUM OF WEIGHTS NOT 1.0%
OR WHENEVER «ABSeTEST«G¢0.0000001
PRINT FORMAT BCDs $1SUM OF W(1)*U(I) NOT O.5%
OR WHENEVER MeGoNTERMS
PRINT FORMAT BCDs $1M IS GREATER THAN NTERMSS
OTHERWISE
TRANSFER TO AWAY
END OF CONDITIONAL
EXECUTE ERROR.
AWAY CONTINUE
THROUGH S1s FOR L = MslsL ¢GeNTERMS
THROUGH S1s FOR J = 0919JeGeNPOINT
Sl POL(L,J) = LEGe(U(J)sMyL)
PRINT FORMAT FORM6
THROUGH ST3s FOR L =Ms1lsLeGeNTERMS
ST3 PRINT FORMAT FF&44,0L sMsPOL(L90)eeePOL(LINPOINT)
WHENEVER TYPE +Ee O
THROUGH SL1s FOR L = MslsLeGeNTERMS

SL1 READ FORMAT IN2s PSI(O9sL30)eeePSI(OsLsNPOINT)»PSIDEV(L)
THROUGH SL2s FOR L = MslsLeGeNTERMS
SL2 READ FORMAT IN2y PHI(QOsLs0)eeePHI(OsLsNPOINT)sPHIDEV(L)

OR WHENEVER TYPE +Ee 1

THROUGH SLT7As FOR L = MslslLeGeNTERMS

PSIDEv(L) = O

PHIDEv(L) = O.

WHENEVER OMIT(L)
EXECUTE ZEROG(PSI(O9sL90)eeePSI(OsLsNPOINT))
EXECUTE ZEROG(PHI(OsLs0)eeePHI(OsLsNPOINT))
TRANSFER TO SL7A

END OF CONDITIONAL

THROUGH SL7s FOR J = 0s19JeGeNPOINT

PSI(O4LsJ) = POL(LsJ)
WHENEVER U(J) ¢Ge Oe eANDe TAU/U(J)eLe80,
PHI(OsLsJ) = EXPe(=TAUZU(J) )*POLI(LsJ)
OTHERWISE
PHI(OsLsJ) = O,
SL? END OF CONDITIONAL
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SL7A CONTINUE
OTHERWISE
EXECUTE ERROR.
END OF CONDITIONAL
PRINT FORMAT FORM7
THROUGH ST4s FOR L = MslsLeGeNTERMS
ST4 PRINT FORMAT FF2,LsMsPSI(0sLs0)eeePSI(OsLsNPOINT)
PRINT FORMAT FORMS
THROUGH ST59 FOR L = MslsLeGeNTERMS
STS PRINT FORMAT FF34LsMsPHI(OsLs0)eeePHI(OsLsNPOINT)
CONVG = 0B
ITCNT = 1
PRINT FORMAT BCD,$1BEGINNING OF ITERATIVE SOLUTIONS
TIME1l = TIME.(O)
R..........................'...................‘...'..........
LOOP THROUGH S6s FOR N = 191 9NeGeNMAXeOReCONVGeOReITCNTeGeMAXIT
EXECUTE ZERO«(PSIDEV(M)eeoPSIDEV(NTERMS))
THROUGH Als FOR L = MslsL eGeNTERMS
WHENEVER OMITI(L)
EXECUTE ZEROG(PSI(NsL90)eesePSI(NsLsNPOINT))
TRANSFER TO Al
END OF CONDITIONAL
THROUGH A2s FOR J = 0s19JeGeNPOINT
WHENEVER U(J) «Ee Oo
PSI(NsLsJ) = POL(LsJ)
TRANSFER TO A5
END OF CONDITIONAL
EXECUTE SETCHKe
SUMX = O.
THROUGH A3s FOR I = Os1s1eGeNPOINT
XXX = O
THROUGH A4s FOR K = MyslyKeGeNTERMS
WHENEVER OMIT(K)s TRANSFER TO A4
TS1 = (=1e0)ePe(K+L)*Fo(0)
WHENEVER C19sS(KsI) = TS1
XXX = XXX + TS1
A4 CONTINUE
WHENEVER C29SS(1) = XXX
A3 SUMX = SUMX + W(I)%XXX*POL(LsI)
PSI(N,LsJ) = POL(LsJ) + Oe5%U(J)®SUMX
A5 TS1 = PSI(NsLsJ) = PSI(N=1sLsJ)
EXECUTE CHECK.
A2 WHENEVER +ABSeTS1eGePSIDEV(L)s PSIDEV(L) = oABS, TSl
Al CONTINUE

R.ooco.0.0.0...0.0..0.00.0.00ooooo.o‘iuolco‘.oo...ocoooooooooo
EXECUTE ZERO.(PHIDEV(M)ee oPHIDEV(NTERMS))
WHENEVER THICK
THROUGH SL10s FOR L = My1lsLeGeNTERMS

SsL10 EXECUTE ZERO«(PHI(NsL90)eeePHI(NsLsNPOINT))

TRANSFER TO ON

END OF CONDITIONAL

THROUGH Bls FOR L = MslysL «GeNTERMS

WHENEYER OMITI(L)
EXECUTE ZERO&(PHI(NsLsO)eeePHI(NsLyNPOINT))
TRANSFER TO B1

END OF CONDITIONAL

THROUGH B2y FOR J = 0Os19JeGeNPOINT

WHENEVER U(J) «Ee Oo
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PHI(NsLsJ) = 0o
TRANSFER TO B5S
OR WHENEVER TAU/U(J) «Ge. 80
EXPON = 0.
OTHERWISE
EXPON = EXPe(~=TAU/U(J))
END OF CONDITIONAL
EXECUTE SETCHK.

SUMY = 0.
THROUGH B3s FOR I = 0s1s1eGeNPOINT
YYY = 0O,

THROUGH B4y FOR K = Ms19KeGeNTERMS
WHENEVER OMIT(K)y TRANSFER TO B4
TS1 = Ge(O)

WHENEVER C&4y S(KyI) = TS1

YYY = YYY + TS1

B4 CONTINUE
WHENEVER C5s SS(I) = YYY
B3 SUMY = SUMY + W(I)*YYY®*POL(LsI)
PHI(N,LsJ) = EXPON¥POL(LsJ) + Qe5%U(J)*SUMY
B5 TS1 = PHI(NsLsJ) = PHI(N=1sLsJ)
EXECUTE CHECK.
B2 WHENEVER ¢ABSeTS1 «Ge PHIDEV(L)s PHIDEV(L) = oABSe TSl
B1 CONTINUE
Rooooo.ooo.cocooo'toocoo.oo.oooo'iooldoocoodOtiog.ooooocoooooo
ON PRINT FORMAT HEAD1sITCNT
PRINT FORMAT FFly UeeeU(NPOINT)
CONVG = 18

CONVGY1 = 0B

THROUGH STAs FOR L = MslsLeGeNTERMS

WHENEVER OMIT(L)sTRANSFER TO S7A

THROUGH S11s FOR J = 0s19JeGeNPOINT

TS1 = PSI{NsLsJ) = PSI(N-=1lsLsJ)

WHENEVER LeNE«Os TRANSFER TO S11

WHENEVER TS1%#CHPSI(LsJ)eLeOs «ANDe ITCNTeGel «ANDe SIGN)
1 CONVG1 = 1B

Sl1 CHPSI(LsJ) = TS1
PRINT FORMAT FF2sLsMyCHPSI(L90)eeoeCHPSI(LsNPOINT)»PSIDEV(L)
STA WHENEVER PSIDEV(L)eGeTOLs CONVG = 0B

THROUGH S7Bs FOR L = MslsLeGeNTERMS

WHENEVER OMIT(L)s TRANSFER TO 578

THROUGH S12y FOR J = 09s1sJeGeNPOINT

TS1 = PHI(NsLsJ)=PHI(N=1sLsJ)

WHENEVER LeNE.Os TRANSFER TO S12

WHENEVER TS1*CHPHI(LsJ)eLeOe oANDe ITCNTeGel «ANDe SIGN,
1 CONVG1 = 1B

S$12 CHPHI (LsJ) = TS1

PRINT FORMAT FF3sLsMsyCHPHI(L90)eeosCHPHI(LsNPOINT) sPHIDEV(L)
S78 WHENEVER PHIDEV(L)eGeTOLs CONVG = 0B

CONVG = CONVG «ORe CONVG1
S6 ITCNT = ITCNT + 1

NMAX1 = N-1
WHENEVER CONVG
PRINT FORMAT BCD»$4SUCCESSFUL SOLUTIONS
OR WHENEVER ITCNT «Ge MAXIT
PRINT FORMAT BCD»$4DESIRED ACCURACY COULD NOT BE OBTAINED
1 IN SPECIFIED NUMBER OF ITERATIONSS
OTHERWISE
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ALPHAS

S13

Sl4

SL3

SL4

THROUGH ALPHAS5, FOR L
THROUGH ALPHAS, FOR 1

non

M’l’LoGoNTERMS
09191.GQNPOINT

PSI(OsLsl) = PSI(NMAX1sLsI)
PHI(OsLsI) = PHI(NMAX1sLos1)

TRANSFER TO LOOP
END OF CONDITIONAL
TIME2 = TIME.(O)

PRINT FORMAT
PRINT FORMAT
N = NMAX1
THROUGH S13»
PRINT FORMAT
THROUGH S14»
PRINT FORMAT
WHENEVER PCH
PRINT FORMAT
INA(4) = RUN
IN2(3y = RUN
PUNCH FORMAT
PUNCH FORMAT
PUNCH FORMAT
PUNCH FORMAT
THROUGH SL3»
PUNCH FORMAT
1 PSIDEVI(L)
THROUGH SL&4»
PUNCH FORMAT
1 PHIDEVI(L)

FTIMES(TIME2-TIME1)*#3.6
BCDsy $OVALUES OF FUNCTIONS AFTER LAST ITERATIONS

FOR L = MylslLeGeNTERMS
FF2sLsMsPSI(NsL90)eeePSI(NsLsNPOINT)sPSIDEV(L)
FOR L = MslsLeGeNTERMS
FF3sLsMePHI(NsL9sO)eoePHI(NsLsNPOINT)»PHIDEV(L)

BCDy $SORESULTS PUNCHEDS

INASRUNSMSNTERMSyNPOINT s TAUs TOL s ALBEDO
IN2s AeoeA(NTERMS)

IN2s UeoeeUINPOINT)

IN2s WeooeW(NPOINT)

FOR L = Ms1lsLeGeNTERMS

IN2y PSI(NMAX1sL30)eeePSI(NMAX1sL ,NPOINT)

FOR L = Ms1lsLeGeNTERMS
IN2y PHI(NMAX19sL90)eeePHI(NMAX1 oL NPOINT)

END OF CONDITIONAL
TRANSFER TO START

R

R INTERNAL FUNCTIONS

R

INTERNAL FUNCTION

ENTRY TO Fo

FUNCTION RETURN OMEGA(K)*(PSI(N-1+sKsJ)#PSI(N=1,4K,1)
1 — PHI(N=1sKoJ)*PHI(N=1sKsI))/7(ULII+U(J))

R

ENTRY TO Ge
WHENEVER IeNEeJ
FUNCTTION RETURN OMEGA(K)* (PHI(N=1sKsJ)¥PSI(N=-1,KyI)

1 — PSI(N=1sKsJ)*PHI(N=-1sKsI))/Z(U(J)~U(I))
OTHERWISE
WHENEVER IeEWO
10 =0
I1 = 1
12 = 2
OR WHENEVER 14E«NPOINT
10 = NPOINT - 2
I1 = NPOINT -1
12 = NPOINT
OTHERWISE
10 = I-1
11 = 1
12 = 1+1
ENp OF CONDITIONAL
X = u¢l)
X0 = yll10)
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= HI1)

= y(12)

FO = pHI(N—=1sK»s10)
= PHI(N=1sKsIl)
= PHI(N=19KsI2)

PHPR = (F2-FO0)/(X2-X0) + (24%X-X0-X2)*
1 ({X2-X1)%FO0 = (X2-XO0)*F1 + (X1-X0)*F2)/
2 ((x1-X0)*(X2-X0)*(X2-X1))

FO = pPSI(N-1sK»10)

F1 = PSI(N-1sK»I1)

F2 = PSI(N-1»KsI2)

PSPR = (F2-=F0)/{X2=X0) + (2e¢%X-X0-X2)%*

1 ((X2-X1)#FO0 - (X2-XO)*F1 + (X1-XO0)*F2)/
2 ((X1-X0)*(X2-X0)*(X2~-X1))

FUNCTION RETURN OMEGA(K)*(PSI(N-1,KsJ)*#PHPR
1 - PHI(N=1sKsJ)®PSPR)

END OF CONDITIONAL
END OF FUNCTION
R
INTERNAL FUNCTION (FIXARG)
INTEGER FIXARG
ENTRY TO FACT.
TS1 = 1.
THROUGH ALPHA2s FOR INT1 = 1s1sINT1.G.FIXARG
ALPHA2 TS1 = TS1*INT1
FUNCTION RETURN TS1
END OF FUNCTION
R
INTERNAL FUNCTION
ENTRY TO CHECK.
WHENEVER BJ(J)eANDeBL(L)
PRINT FORMAT NGFOs$JSsJsU(J)
THROUGH SL59 FOR K = M»lsKeGeNTERMS

SLS WHENEVER BK(K)s PRINT FORMAT NGEOs $K$sKs
1 S(Ks0)eeeS(KaNPOINT)
PRINT FORMAT GEO» J9S5SeesSS(NPOINT)»TS1,
1 PST(NsLsJ)sPHI(NsLsJ)

END OF CONDITIONAL
FUNCTION RETURN
R
ENTRY TO SETCHK,
WHENEVER BL(L)eANDeBU(J)
Cl = 1B
c2 = 1B
C4 = 1B
¢5 = 18
OTHERWI SE
C1 = 0B
Cc2 = 08B
C4 = 0B
c5 = 08B
END OF CONDITIONAL
FUNCTION RETURN
END OF FUNCTION
R
R FORMAT SPECIFICATIONS AND PRE-SET CONSTANTS
R
VECTOR VALUES INA = $C54315%+553F106%59559522+3,%
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1 $*%
VECTOR VALUES IN1 $41595F1045%%

VECTOR VALUES IN2 $1P5E145+5¢79529%9% 5HS 93 $93%$

VECTOR VALUES INBOOL = $15555,6011/(7011)%$

VECTOR VALUES HEAD1 = $37THOCHANGE IN FUNCTION DURING ITERATIO
1IN I13%$

VECTOR VALUES GIO
VECTOR VALUES GFO

"won

$1H019511110/(S10511110)%$
$1HO»I5954510F1166/(S5S10910F1146)%8

VECTOR VALUES GEO $1HO»159S491P10E11e3/(S1091P10E1143) %S
VECTOR VALUES BCD $20C6*%

VECTOR VALUES NGFO = $1HOsCls2H =413953y10F11le6/

1 {S10510F11.6)%%

VECTOR VALUES NGEO = $1HOsCly2H =,13553,1P10E11,3/

1 (S1091P10E11.3)*$

VECTOR VALUES FORM1 = $40H1SOLUTION OF INTEGRAL EQUATIONS FOR
1 RUN C5//6H M = 159559 18HNUMBER OF TERMS = 15455,
219HNUMBER OF POINTS = 15/32H MAXIMUM NUMBER OF ITERATIONS
3= 15555933HDESIRED DEGREE OF CONVERGENCE = 1PE10.1/

4 TH TAU = 1PE11e¢39S5532H ALBEDO FOR SINGLE SCATTERING =

5 1PE11.3%*%

VECTOR VALUES FTIME
1 8H SECONDS *s
VECTOR VALUES FORM2
VECTOR VALUES FORM3
1 $4THOMODIFIED PHASE FUNCTION——OMEGAee+OMEGA(NTERMS) *$
VECTOR VALUES FORM4 = $28HOVALUES OF MU=-—Uee sU(NPOINT) *$
VECTOR VALUES FORM5 = $30HOWEIGHT FACTORS—=Wee W(NPOINT) *$
VECTOR VALUES FORM6 =

1 $47THOLEGENDRE POLYNOMIALS-=P(LsM) FOR Uee s U(NPOINT) *$
VECTOR VALUES FORM7 =

nouonou

$19HOTIME REQUIRED WAS F6elys

$30HOPHASE FUNCTION—=AeceA(NTERMS) *$

1847THOINITIAL FUNCTIONS-—=PSI(LsM) FOR UeeoU(NPOINT) *$
VECTOR VALUES FORM8 =
1$4THOINITIAL FUNCTIONS--PHI(LsM) FOR UeeoeU(NPOINT) *3$

VECTOR VALUES FORM9 = $19HOINITIAL FUNCTIONS 8C6*$
VECTOR VALUES FF1 = $1H0»S9»1P9E1244/(S1051P9E12,4)%S
VECTOR VALUES FF2 = $5HOPSI( Ils 1Hs Ils 2H) 1P 9E1244/
1 (S10s1P 9E12.4)%$

VECTOR VALUES FF3 = $SHOPHI( Ils 1Hs Ils 2H) 1P 9E12.4/
1 (S1ps1P 9E12.4)#$

VECTOR VALUES FF4 = $SHO P( Ils 1H»s I1s 2H) 1P 9E12.4/
1 (S1gslP 9E12.4)*$

END OF PROGRAM
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2. Subroutine to Calculate Associated Legendre Polynomials
A subroutine was written to calculate PT(X)'

The program should be self explanatory.
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*#COMPILE MADsPUNCH OBJECT LEG 001
EXTERNAL FUNCTION (XsMsN)
INTEGER NsMsKsFIXARGsINT19»TWOLOG.
ENTRY TO LEG.
WHENEVER XeGele eORe X oL eOe eORe MaGe N
PRINT FORMAT BCD»$4BAD ARGUMENT FOR LEGENDRE POLYNOMIAL SU
1BROUTINES
PRINT FORMAT FORMAsXsMsN
ERROR RETURN
END OF CONDITIONAL
U = (1e=X)/20
T = FACTe (N+M)/(FACTe (M) *FACTe (N=M))
SUM = T
THROUGH S1s FOR K = 1919KeGeN-M
T = —TH#(N+M+K) ¥ (N-M-K+1) /(K*¥(M+K))
WHENEYVER TWOLOGG(T) + TWOLOGe(U) oLe —115»
1 TRANSFER TO OuT

T = T»U
s1 SUM = SUM + T
ouT WHENEVER MeE+Os FUNCTION RETURN SUM

WHENEVER XeEeles FUNCTION RETURN O
V = SQRTe(le=X¥*¥X)/2¢

FUNCTION RETURN SUM¥%V.P.M

INTERNAL FUNCTION (FIXARG)

ENTRY TO FACT.

TS1 = 1,
THROUGH BETA2s FOR INT1 = 1s19INT14GeFIXARG
BETA2 TS1 = TS1#INT1

FUNCTION RETURN TS1
END OF FUNCTION
VECTOR VALUES BCD = $20C6%$
VECTOR VALUES FORMA = $1HO 1PE154692115%$%
END OF FUNCTION
*ASSEMBLEsPUNCH OBJECT 2LOG 001
ORG O
PGM
PZE SIZE
PZE
BCD 1TwWOLOG
PZE START
REL
ORG O
START CAL 14
STA *+1
CLA %%
sSSP
SUB TwO
ARS 27
TRA 244
TWO 0oCT 200000000000
SIZE SYN *
END
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3. Program to Calculate Integrated Reflectance and Transmission

The program to calculate the integrated reflectance and
transmission follows the same general outline as the program to solve
the integral equations. It accepts as input a basic data package.

The results for R(uo) and T(u,) are calculated using A-4.2 and A-l. .k,
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*COMPILE MADs PUNCH OBJECT sPRINT OBJECT REF

START

STé6

SL1

SL2

ST3

ST4

A4

R
R INTEGRATED REFLECTANCE PROGRAM
R

INTEGER I39JsKsL sMyNsNPOINTSNTERMS,INT19»INT2sFIXARGYRUN
BOOLEAN PCH

VECTOR VALUES NMAX 0

VECTOR VALUES MAXL 6

VECTOR VALUES MAXPT = 50
R FOLLOWING DIMENSIONED (NMAX+1)#*(MAXL+1)*(MAXPT+1l) - 1
DIMENSION PSI(356,PSIDIM)s PHI(3564PHIDIM)

R FOLLOWING DIMENSIONED MAXPT

DIMENSION W(50),U(50)sT(50)sR(50)

R FOL{LOWING DIMENSIONED MAXL

DIMENSION OMEGA(6)sA(6)sPSIDEV(6)sPHIDEV(6)

DIMENSION PSIDIM(3)sPHIDIM(3)

VECTOR VALUES PSIDIM = 3

VECTOR VALUES PHIDIM = 3

PSIDIM(3) = MAXPT + 1

PSIDIM(2) = MAXL + 1

PSIDIM(1) = PSIDIM(2)*PSIDIM(3) + PSIDIM(3) + 1
PHIDIM(3) = MAXPT + 1

PHIDIM(2) = MAXL + 1

PHIDIM(1) = PHIDIM(2)*PHIDIM(3) + PHIDIM(3) + 1

READ FORMAT INl, PCH
READ FORMAT INly RUNsSMsNTERMSsNPOINTsTAUs TOLsALBEDO
WHENEVER MeNE. O
PRINT FORMAT BCDs $1M NOT ZEROS
EXECUTE ERROR,
END OF CONDITIONAL
READ FORMAT IN2s AeeosA(NTERMS)
EXECUTE ZERO« (OMEGAe e« OMEGA(NTERMS))
THROUGH ST6s FOR L = MslsLeGeNTERMS
OMEGA(L) = A(L)*FACTe(L~-M)/FACT.(L+M)*ALBEDO
READ FORMAT IN2s UeesU(NPOINT)
READ FORMAT IN2s WeeoW(NPOINT)
THROUGH SL1s FOR L = MslsLeGeNTERMS
READ FORMAT IN2y PSI(OsL30)eeePSI(OsLsNPOINT)sPSIDEV(L)
THROUGH SL2s FOR L = MslsLeGeNTERMS
READ FORMAT IN2s PHI(OsL30)eeePHI(OsLsNPOINT)sPHIDEV(L)
PRINT FORMAT BCDs $1INPUT DATAS
PRINT FORMAT GIOs NPOINTs Ms NTERMSs RUN
PRINT FORMAT GFOs NTERMSs OMEGA.+ OMEGA(NTERMS)
PRINT FORMAT GFOs Os UeesU(NPOINT)
PRINT FORMAT GFOsOsWee «W(NPOINT)
PRINT FORMAT GEOsQOsTAUsTOL
THROUGH ST3s FOR L = MslsLeGeNTERMS

PRINT FORMAT GEOsLsPSI(O09L30)eeePSI(OsLsNPOINT)PSIDEVI(L)

THROUGH ST4s FOR L = MslsLeGeNTERMS

PRINT FORMAT GEOsLsPHI(OsL90)eeePHI(OsLsNPOINT),PHIDEV(L)

THROUGH A2s FOR J = 0919JeGeNPOINT
SUMX = O.

SUMY = O.

THROUGH A3s FOR I = 09191 eGeNPOINT
XXX = Oe

YYY = 0,

THROUGH A&4s FOR K = MslsKeGeNTERMS
XXX = XXX + (=1e0)ePeK * Fo(O)

YYY = YYY + Ge(0)
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A3

A2

SUMX SUMX + W(I)*U(I)%XXX

=
SUMY = SUMY + W(I)*U(I)*YYY
R(J) = 0e5%SUMX
T(J) = 0e5%SUMY

PRINT FORMAT BCDs SOREFLECTION AND TRANSMISSION COEFFICIENTSS
PRINT FORMAT GEOs1sReeeR(NPOINT)
PRINT FORMAT GEOs2sTees T(NPOINT)
WHENEVER PCH
PUNCH FORMAT INls RUNs My NTERMSs NPOINTs TAUs TOLs ALBEDO
PUNCH FORMAT IN2s ReeeR(NPOINT)
PUNCH FORMAT IN2s TeeeT(NPOINT)
END OF CONDITIONAL
TRANSFER TO START
R
R INTERNAL FUNCTIONS
R
INTERNAL FUNCTION
INTEGFR 10sI1»12
ENTRY TO Fe
FUNCTION RETURN OMEGA(K)* (PSI(N=1sKsJ)¥PSI(N=14Ko1)
1 —- PHI(N=1sKsJ)¥PHI(N=1sKsI))/(U(I)+U(J))
R
ENTRY TO Ge
WHENEVER IeNEeJ
FUNCTION RETURN OMEGA(K)*(PHI(N-1,4KsJ)*¥PSI(N=1,K,1)
1 = PSI(N=1sKsJ)%¥PHI(N=1sKsI))/(U(J)=U(I))
OTHERWISE
WHENEVER Te¢El.O
10 =0
Il 1
12 2
OR WHENEVER I+E«NPOINT
I0 = NPOINT - 2
I1 = NPOINT - 1
12 = NPOINT

o

OTHERWISE
10 = I-1
11 =1
12 = I+1
ENp OF CONDITIONAL
X = U(l)
X0 = y(10)
X1 = y(ll)
X2 = y(l12)
FO = PHI(N=1sK»10)
F1 = pHI(N-=19Ks11)
F2 = PHI(N-1sKsI2)

PHPR = (F2-FO0)/(X2-X0) + (2¢%X-X0-X2)*
1 ((x2-X1)*F0 - (X2-XO0)*F1 + (X1-XO0)¥F2)/
2 ((X1-XO0)*(X2-X0)*(X2-X1))

FO = PSI(N-14Ks10)
F1 = PSI(N-19KslI1l)
F2 = PSI(N-14KsI2)

PSPR = (F2-F0)/(X2-X0) + (2¢%X-X0-X2)%*

1 ((X2-X1)*FO0 = (X2-XO0)*F1 + (X1-XO)*F2)/
2 ((X1-X0)*(X2-X0)*(X2-X1))

FUNCTION RETURN OMEGA(K)*(PSI(N=14KsJ)*¥PHPR
1 - PHI(N-1sK9sJ)%PSPR)
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END OF CONDITIONAL
END OF FUNCTION
R

INTERNAL FUNCTION (FIXARG)

INTEGER FIXARG

ENTRY TO FACT.

TS1 = 1.

THROUGH ALPHA2s FOR INT1 = 1s19sINT1leGeFIXARG
ALPHA2 TS1 = TS1*INT1

FUNCTION RETURN TS1

END OF FUNCTION

R

R FORMAT SPECIFICATIONS AND PRE-SET CONSTANTS
R

VECTOR VALUES IN1 $41595F10,5%8

VECTOR VALUES IN2 $1P5E14.7952%%

VECTOR VALUES GIO
VECTOR VALUES GFO
VECTOR VALUES GEO
VECTOR VALUES BCD
VECTOR VALUES N =
END OF PROGRAM

$1HO0I9»11113/¢(S10511110) %8
$1HO9I5954910F11e6/(S10510F11e6) %%
$1HO9I15+5491P10E11e3/(S1051P10E11,3)#*$
$20C6%%

- 0o N
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