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Abstract: For a simple vertex operator algebra whose Virasoro element is a sum of
commutative Virasoro elements of central cha%gtwo codes are introduced and stud-

ied. Itis proved that such vertex operator algebras are rational. For lattice vertex operator
algebras and related ones, decompositions into direct sums of irreducible modules for
the product of the Virasoro algebras of central chaygee explicitly described. As an
application, the decomposition of the moonshine vertex operator algebra is obtained for
a distinguished system of 48 Virasoro algebras.

1. Introduction

Vertex operator algebras (VOAS) have been studied by mathematicians for more than a
decade, but still very little is known about the general structure of VOAs. Most of the
examples so far come from an auxiliary mathematical structure like affine Kac-Moody
algebras, Virasoro algebras, integral lattices or are modifications of these (like orbifolds
and simple current extensions). We use the definition of VOA as in [FLM], Sect. 8.10.

In this paper we develop a general structure theory for a class of VOAs containing a
subVOA of the same rank and relatively simple form, namely a tensor product of simple
Virasoro VOAs of central charg%. We call this the class dfamed VOAsabbreviated
FVOAs. It contains important examples of VOAs. We show how VOAs constructed from
certain integral lattices can be described as framed VOAs. In the case that the lattice
itself comes from a binary code, this can be done even more explicitly. As an application
of the general structure theory we describe VOAs of small central charge as FVOAs,
especially the moonshine VOK? of central charge 24.
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** The second author is supported by NSF grant DMS-9623038 and the University of Michigan Faculty
Recognition Grant (1993-96).
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The modules of a VOA together with the intertwining operators can be put together
into a larger structure which is a called an intertwining algebra [Hul, Hu2]. In the case
where the fusion algebra of the VOA is the group algebra of an abelian g#plile for
lattice VOAS, this specializes to @belianintertwining algebra [DL1]; also see [M0].

The description of VOAs containing a fixed VOA with abelian intertwining algebra is
relatively simple: They correspond to the subgrofips< G such that all the conformal
weights of the VOA-modules indexed By are integral [H3]. The Virasoro VOA of rank

% gives one of the easiest examplesnoh abelianintertwining algebras. Sect. 2 can

be considered as a study of the extension problem for tensor products of this Virasoro
VOAs.

It is our hope that the ideas used in this work can be extended to structure theories
for VOAs based on other classes of rational subVOAs with nonabelian intertwining
algebras, like the VOASs belonging to the discrete series representations of the Virasoro
algebra [W].

We continue with a more detailed description of the results in this paper.

The Virasoro algebra of central charéehas just three irreducible unitary highest

weight representations, with highest weights 0, % Tle and the one witth = O carries
the structure of @impleVOA whose irreducible modules are exactly these irreducible
unitary highest weight representations. The relevant fusion rules here (Theorem 2.3) are
relatively simple-looking. A tensor product osuch VOAs, denoted,., has irreducible
representations in bijection withtuples ¢, . .., h,) such that each; € {0, %7 1—16 .

We are interested in the case of a VOAcontaining a subVOA isomorphic tB..
Such a subVOA arises from\drasoro frame a set of elementsy, ..., w, such that
for eachi, the vertex operator components.gfalong with the vacuum element span a
copy of the simple Virasoro VOA of central charéeand such that these subVOAs are
mutually commutative and; +- - - +w,. is the Virasoro element df . We abbreviate VF
for Virasoro frame. Such elements may be characterized internally up to a factor 2 as
the unigue indecomposable idempotents in the weight 2 subalgeiavath respect
to the algebra produet;v induced from the VOA structure dF..

It was shown in [DMZ] that the moonshine VOK! is a FVOA withr = 48.
Partial results on decompositions Bf into a direct sum of irreduciblé@sg-modules
were obtained in [DMZ] and [H1]. These results were fundamental in proving that
V% is holomorphic [D3]. In fact, the desire to understdréi was one of the original
motivations for us to study FVOAs.

In Sect. 2, we describe how the setreffuples which occur lead to two linear codes
C, D < F; whereD is contained in the annihilator code-. For self-dual (also called
holomorphic) FVOAs we give a proof that they are equal= D+. Associated to
these codes are normal 2-subgrotfas < G of the subgroug of the automorphism
group Aut(V) of V which stabilizes the VF (as a set). The gradgs finite. We get
an accounting of all subVOAs df which containl’?, the subVOA ofGp-invariants.

We obtain a general result (Theorem 2.12) that FVOAs are rational, establishing the
existence of a new broad class of rational VOAs. The rationality of FVOAs is a very
important aspect of their representation theory. In particular, a FVOA has only finitely
many irreducible modules.

In Sect. 3, we describe the Virasoro decompositions of the lattice V%S and
closely related VOASs, with respect to a natural sSubVGA.

In Sect. 4, we study the familiar situation of the “twisted” or untwisted lattice as-
sociated to a binary doubly-even code of lendth 8Z and the twisted and untwisted
VOA associated to a lattice. markingof the code is a partition of its coordinates into
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2-sets. A marking determineslz{ sublattice in the associated lattices and a VF in the
associated VOAs. We give an explicit description of the coset decomposition of the lat-
tices under thé)f sublattice, &4-code, and the decomposition of the VOA as a module
for the subVOA generated by the VF. As a corollary, we give information about various
multiplicities of the decompositions under this subVOA using the symmetrized marked
weight enumerator of the marked code or the symmetrized weight enumerator of the
Zy-code.

¥

Finally, Sect. 5 is devoted to applications. Two examples are discussed in detail.
Example | is about the Hamming code of length 8, the root latligeand the VOA
Vg, Here,r = 16, and we find at least 5 different VFs. Example Il is about the Golay
code, the Leech lattice and the moonshine modiife,wherer = 48. For every VF
inside V%, the codeC has dimension at most 41. There is a special marking of the
Golay code for which this bound of 41 is achieved, and for this marking the complete
decomposition polynomial is explicitly given. The,-frames inside the Leech lattice
which arise from a marking of the Golay code are characterized by properties of the
corresponding.4-codes.

Appendix A contains a few special results about orbits on markings of the length 8
Hamming code, Appendix B the stabilizer id,,4 of the above special marking for the
Golay code, and Appendix C the structure of the automorphism group of the above code
of dimension 41. Appendix D shows that all automorphisms of a lattice VOA which
correspond te-1 on the lattice are conjugate.

In [M1-M3], there is a new treatment of the moonshine VOA and there is some
overlap with results of this article. In particular, the vertex operator subalgebra similar
to ourV? (see Sect. 2) and its representation theory have been independently investigated
in [M3].

Notation and terminology.

anb The value of the endomorphisim onb (seeY (v, z))

1 The vacuum element of a VOA

Aut(V) The automorphism group of the VORI

binary composition o’ seen!” binary compostion

By The conformal block on the torus of the VOA

By The FVOA (M (0,0) & M(3, 3))®™ with binary code
C(B%) ={(0,0),(1,1)}" of length 2u

(B5)o The subVOA of37 belonging to the subcode 6{B%') consisting
of codewords of weights divisible by 4

c An element of%

C A linear binary code, often self-annihilating and doubly-even

ct The annihilator code of’

C=C(V) The binary code determined by tfie-module structure o¥°.

C[L] The complex group algebra of the grodip

C{L} The twisted complex group algebra of the lattice
it is the group algebr&[ L] modulo the ideal generated fy+ 1

Cog The Conway group which idut(A), a finite group of order
222395%7211.13.23; its quotient by the centde-1} is a finite
simple group

d The length of a binary cod€, usually divisible by 8

dy The marked binary codg0, 0, 0, 0), (1,1, 1, 1)}™ of length 4

(@o The subcode of); consisting of codewords of weights divisible by 8
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The index 2 sublattice &£™ consisting of vectors whose
coordinate sum is even (the “checkerboard lattice")

The binary code of thé C {1,...,r} with VI #0

The marked Kleinian of4-code{(0, 0), (1, 1)}"™ of length 2

The subcode of} consisting of codewords of weights divisible by 4

The number of; with c(k) = (cak—1, c2r) € {(0,1), (1,0)}
TheZ4-code associated to a lattiéewith fixed D1-frame
The root lattice of the Lie groug(C)
A vector with components + of
Abbreviation for framed vertex operator algebra
The set{ M(0), M(3), M(&)}
The subgroup ofAut(V) fixing a VF of V.
The normal subgroup aF acting trivially onT’.
The normal subgroup af acting trivially onV/°
The Golay code of length 24
An element ofZ}
A mapF3 — Z%
A mapFar — 72"
Weights of elements or modules of a VOA, usudilyc {0
The Hamming code of length 8
The hexacode of length 6, a code o¥far= {0, 1, w, w} or over
the Kleinian fourgroufZ, x Z, = {0,a, b, c}
Asubsetoff1,...,r}
The symmetric difference, for subsets{df ..., r}
A central element of order 2 in the groufp
An integral lattice, often self-dual and even
A central extension of. by a central subgroup
The dual lattice ofL
The even lattice constructed from a doubly-even c6de
The “twisted” even lattice constructed from a doubly-even a6de
The generator of a Virasoro algebra given by the expansion
Y(w,2) =Y, cn L(n)z7"72, respY (w;, 2) = 3,z L1 (n)z "2
The Leech lattice
The Monster simple group
The simple Mathieu group of ordet®233.5.7.11.23 = 244 823 040
The irreducible modules for the Virasoro algebra with central
charge}
The canonical irreducible module for Heisenberg algebras
The irreducibl€el’.-module of highest weighty, . . ., h,.)
The multiplicity of theT,.-moduleM (h, ..., h,) in the FVOAV;
We think of this as a function ofi, ..., k,) € {0, %, Tls T
A marking of a binary code
A natural number
The map x V' — V which takes the pairf b) to a.,,b
A mapF3 — C[F4]
A mapF3" — C[F*"]
A vector with components + oF.
The decomposition polynomial of a FVOK
The number of elements in a VF

11
72716
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R,
R
smwex(z, y, z)

AmapZ; — C[F?]
AmapZzZy — C[F?"]

The symmetrized marked weight enumerator of a binary code

C with marking M

411

swex(4, B, C) The symmetrized weight enumerator di.gcodeA

Sym,., Symg The symmetric group on a set obbjects, usually the index set
{1,...,r}, resp. the symmetric group on the Skt

7 TheZ4-code{(0, 0), (2, 2)}" of length 2

(Z%)o The subcode oE7 consisting of codewords of weights divisible by 4

T A faithful module of dimension 2 for an extraspecial group of
order 2*2™ for somem, or for a finite quotient of SOme.

T, = M(0)®" The tensor product of simple Virasoro VOASs of ranl%

\%4 An arbitrary VOA, often holomorphic = self-dual

V(e) The submodule of the FVOA isomorphic tolM (5)

%3 The VOA constructed from an even lattice

%3 TheZ,-twisted module of the lattice VOA,

%5 The “twisted” VOA constructed from an even lattiée

VF Abbreviation for Virasoro frame

VOA Abbreviation for vertex operator algebra

v The sum of irreduciblé’.-submodules ot/ isomorphic to
M(hy, ..., h,)with h; = L ifand only ifi € I

Vo=yo ThisisV!, for I =0

Ve The moonshine VOA, or moonshine module

W(R) The Weyl group of typeR, a root system.

Y(v,2)=>,cz0n 2~"~1  The vertex operator associated to a veetor

=1, =3 Two D{ / Dg-codes of length 1 and 3

w, w; Virasoro elements of rank 3, respectively

Q The “all ones vector” (11, ...,1) inF3.

2. Framed Vertex Operator Algebras

Recall that the Virasoro algebra of central chaégbas three irreducible unitary rep-

resentations\/ (h) of highest weights: = 0, 3, i (cf. [FQS, GKO, KR]). Moreover,
M (0) can be made into a simple vertex operator algebra with central cgle(m:ge{FZ]).
In [DMZ], a class of simple vertex operator algebr&sY, 1, w) containing an even

number of commuting Virasoro algebras of ra%ﬂmere defined.

Definition 2.1. Let r be any natural number. A simple vertex operator algebras
called aframed vertex operator algebra(FVOA) if the following conditions are sat-
isfied: There existy; € V fori = 1, ..., r such that (a) eaclv; generates a copy
of the simple Virasoro vertex operator algebra of central cha@and the com-
ponent operatorsLi(n) of Y(w;,z) = Y, o, Li(n)z7"2 satisfy[Li(m), L'(n)] =
(m—n)Li(m+n)+ "1327;7”67”,_”, (b) ther Virasoro algebras are mutually commutative,
and (C)w =w;y +--- +w,. The se{wy, ..., w,} is called aVirasoro frame (VF).

Inthis paper we assume tHatis a FVOA. Itfollows thafl” is a unitary representation
for each of the- Virasoro algebras of central charée

In [DMZ] it is also assumed thdt is one-dimensional. This assumption is now a
consequence of the simplicity of:
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Lemma 2.2. A FVOA is truncated below from zerd. = @, .,V,, and 1, is one
dimensional:lp = C 1. -

Proof. Let Y(wi, 2) = >, cz L¥(n)z~™2. SinceV is a unitary representation for the
Virasoro algebra generated by the components¥fw,z) = > _, L(n)z—"2 as
L(n) = >_I_; L(n) all weights ofV" are nonnegative that i¥; = @, Vy.-

Then each nonzero vector € 1} is a highest weight vector for the Virasoro
algebras with highest weight (0. ., 0). The highest weight module for i€ Virasoro
algebra generated hyis necessarily isomorphic t&#/(0). From the construction of
M (0) we see immediately thdt’(O)v = 0. SOL(—1) = Y, LY(—1)v = 0, i.e.vis a
vacuum-like vector (see [L1]). Itis proved in [L1] that a simple vertex operator algebra
has at most one vacuum-like vector up to a scalar. Sirisea vacuum like vector, we
conclude thaty = C 1. O

The following theorem can be found in [DMZ]:

Theorem 2.3. (1) The VOAM (0) has exactly three irreduciblé/ (0)-modules M (h),
with h = 0, 3, &, and any module is completely reducible.

(2) The nontrivial fusion rules among these modules are gived\/m’%) X M(%) =
M(0), M(3) x M(g5) = M(35) and M (55) x M(35) = M(0) + M(3).

(3) Any module for the tensor product vertex operator algeBra= M (0)®", where
r IS a positive integer, is a direct sum of irreducible modul$h,, ..., h,) =
M(hy) ® -+ @ M(h,) with h; € {0,3, £}

(4) AsT,.-modules,

V= @ mhl,...,hTM(hl7"'»hr)a
hi€{0,3, %}
where the nonnegative integety, ... 5, is the multiplicity ofAM (hq, ..., h,) in V.
In particular, all the multiplicities are finite aneny, 5, is at mostlif all h; are
different fromk.

Let 7 be a subset ofl,...,r}. DefineV! as the sum of all irreducible submodules
isomorphic toM (h4, . . ., h,) such that; = Tle ifand only ifi € I. Then

v p v

IC{1,...,r}

Here and elsewhere we identify a subsefbf2, . .., r} with its characteristic func-
tion, an integer vector of zeros and ones. We further identify such vectors with their
image under the reduction modulo 2, i.e. we consider them as binary codewdls in
Interpretation should be clear from the context, e.g. we think of the codemascan
r-tuple of integers in the expressién.

For eachc € F7 let V(c) be the sum of the irreducible submodules isomorphic
to M(3ca, ..., 3c.). ThenVO = D.er; V(0)- Recall the important fact mentioned in

Theorem 2.3 (4) that for € C theT;-moduleM (3cy, .. ., 3¢,) has multiplicity 1 inV.
S0,V (c) = 0 or is isomorphic tdV/ (3cy, . . ., 3¢,).
We can now define two important binary codes C(V) andD = D(V).

Definition 2.4. For every FVOAV/, let
C=C(V)={ceF| V() #0}, andD=D(V)={I € F5 | VI #0}. (2.1)
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The vector of all multiplicitiesny, .5, will be denoted by, (V). Note that the
code<C andD are completely determined by, (V).

The following proposition generalizes Proposition 5.1 of [DMZ] and Theorem 4.2.1
of [H1]. In particular it shows” andD are linear binary codes. As usual we usgfor
the component operators Bf(u, 2) =, ., Upz "L

Proposition 2.5. (1) V° = V? is a simple vertex operator algebra and the are
irreducible V°-modules. MoreoveY ! and V7 are inequivalent iff # .J.

(2) Foranyl andJ and0 # v € V7, spau,v | v € VI} = VI*/ wherel + J
is the symmetric difference éfand J. Moreover,D is an abelian group under the
symmetric difference.

(3) There is one to one correspondence between the subgfupkD and the vertex
operator subalgebras which contairi® via Dy — V¢, where we defin&® :=
®1e5V! for any subses of Dy. MoreoverV /P is an irreduciblel Pe-module for
I € D andV!*Po andVV/*Po are nonisomorphic if the two cosets are different.

(4) LetI C {1,...,r} be given and suppose théits, ..., h,) and(hy,...,h]) are
r-tuples withh;, b € {0, 3, i} such thath; = i (resp.h} = i) if and only if
i € I.1fbothmy, . p, andm%__,,h; are nonzero themy,, ., = M, b That
is, all irreducible modules insid&” for T, have the same multiplicities.

(5) The binary cod€ is linear andspa{u,v | u € V(c)} = V(c+d) foranyc,d € C
and0 #Z v € V(d).

(6) Moreover, there is aone to one correspondence between vertex operator subalgebras
of V0 which containZ,,. and the subgroups a@f, andV is completely reducible for
such vertex operator subalgebras whose irreducible modul&® iare indexed by
the corresponding cosets ¢h

Proof. Letv € V7 be nonzero. It follows from Proposition 2.4 of [DM] or Lemma 6.1.1
of [L2] and the simplicity ofV thatV = spaqu,v | u € V,n € Z}.

From the fusion rules givenin Theorem 2.3 (2) and Proposition 2.10 of [ DMZ] we see
thatu,,v € VI*/ exactly foru € V. In particular, spafu,v |u € VO, n e Z} = V7.
So, V'’ can be generated by any nonzero vector &ridis a irreduciblel’°-module.
SinceV! andV'’ are inequivalent,.-modules if # J they are certainly inequivalent
V0-modules. By Proposition 11.9 of [DL1], we know th&{u, z)v # 0 if u andv are
not 0. ThusV/*7 = 0 if neitherV! or V' are 0. This shows thd® is a group. So, we
finish the proof of (1) and (2).

For (3), we first observe that for a subgraDgof D, (2) implies thal P is a subVOA
which containg/°. On the other hand, sindé = VP, V is a completely reducibl&?°-
module. AlsoV’’ andV'”/ are inequivalent’°-modules if and.J are different. Let/ be
any vertex operator subalgebraoéfvhich containd/®. ThenU is a direct sum of certain
V1. Let Dy be the set of € D such thati'! < U. Then 0< Dy. Also from (2) if I,

J € Dothenl +.J € Dy. ThusDy is a subgroup oD. In order to see the simplicity &f,
we take a vectov € V! for somel € Do. Then spafw,v |u € V7' nez} =V
foranyJ € Dy. Itis obvious thaf{I +J | J € Dy} = Dg. ThusU is simple. The proof
of the irreducibility of V/*?0 is similar to that of simplicity ofi . Inequivalence of
VI*Po andV /*Pe is clear as they are inequivalefit-modules.

The proofs of (5) and (6) are similar to that of (2) and (3).

For (4) we sep = myp,, .. 5, andg = mp - LetWa, o W, be submodules df
isomorphic toM (h, . . ., h,) such thad"?_, W, is a direct sum. Let = (d1, ..., d,) €
C such thatV(d) x M(ha,...,h,) = M(hy,..., k). SetW/ = spa{u,W; | u €
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V(d),n € Z}fori=1,..., p. ThenW/ is isomorphic taM (h%, ..., h.) for all i. Note
that

spadu, W, | u € V(d),n € Z}
= spaf{ upvm W; | u,v € V(d), m,n € Z}
=spau,W; |u € T,,n € Z} = W;

(cf. Proposition 4.1 of [DM]). Thu$ ">, W/ must be a direct sum i#. This shows
thatp < ¢. Similarly,p > q. O

Remark 2.6.We can also define framed vertex operator superalgebras. The analogue of
Proposition 2.5 still holds. In particular we have the binary catlaadD.

Definition 2.7. Let G be the subgroup aflut(V) consisting of automorphisms which
stabilize the Virasoro framéw; }. Namely,

G={g € Aut(V) | g{wr,...,wr} ={w1,...,w,} }. (2.2)
The two subgroup&'c and Gp are defined by:

Ge={9€G|glr, =1},
Gp={9€G|glyo=1}.

Finally, we define the automorphism grodpit(m; (1)) as the subgroup of the group
Sym,. of permutations of{1,...,r} which fixes the multiplicity functiomn;(V),

i.e. which consists of the permutationse Sym,. such thatmp, ... n, = Mh,q,....how-

r

It is easy to see that botip and andG are normal subgroups @&f andGyp is a
subgroup of7¢.

Following Miyamoto [M1], we define foi = 1,.. ., r an involutionr; on V' which
actsonl/! as—1ifi € I and as 1 otherwise. The group generated by; ad a subgroup
of the group of all automorphisms &f and is isomorphic to the dual grodpof D.

We define another group,; which is a subgroup oflut(V'°) and is generated by
o; which acts onM (hy, ..., h,) by =1 if h; = % and 1 otherwise. The grouf is
isomorphic to the dual grou@ of C.

Theorem 2.8. (1) The subgroujg-p is isomorphic to the dual grouﬁ of D.

(2) G¢/Gop is isomorphic to a subgroup of the dual gro(jp)fc.
(3) G/G¢ is isomorphic to a subgroup ofut(m,(V)) < Sym,.. In particular, G is a

finite group.

(4) Foranyg € G and aT.-submodulé¥ of V isomorphic toM (hg, . . ., h,.) thengiW
is isomorphicth(thl(l), cee hufl(r)), wherep, € Sym,. such thagw; = w,, ()
for all 4. ’ ’

(5) If the eigenvalues of € G¢ on V! are i and —i, theni and —i have the same
multiplicity.

Proof. (1) Let g € G such thatg |0= 1. Recall from Proposition 2.5 that =
@®;.p V' Since each/! is an irreducibleV’°-module we havé/’ = sparfv,u |
v € VO n € Z} for any nonzero vecton € V. Note thatg preserves each homo-
geneous subspadé!, which is finite-dimensional. Take € V! to be an eigenvec-
tor of g with eigenvaluer; and letv € VO Theng(v,u) = vogu = zv,u. Thus
g acts onV! as the constant;. For any 07 v € V! and 0% v € V’ we have
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07 Y (u,z)v € VI* [z, 271]. Sincex 4 ;Y (u, z)v = gY (u, 2)v = z2,Y (u, 2)v, we
see thatz;I:c] =xzr+y. 10 partlcularx € D andz takes values i{+1}. Clearly, each
g€ D acts onl/© trivially sinceD is generated by the. This proves (1).

For (2) we takey € G¢. A similar argument as in the first paragraph shows that
glv(e is aconstang. = £1 andy.+q = y.y4. In other words we have defined an element
y of C which maps: € Ctoy.. One can easily see that this gives a group homomorphism
from G¢ to C with kernelGop.

For (3) letg € G. Then there exists a uniqueg, € Sym, such thalgw; = w,, ().
Clearly we haveug, g, = g, 1tg, fOr g1, g2 € G. Itis obvious that the kernel of the map
g pgisGe.

In order to prove (4), we take a highest weight veatoof W. Then L'(O)v =
hsv fori = 1,..., r. So Li(Q)gv = gL"s (Z)(O)v = h,-w and gv is a highest
weight vector with highest Weighlhgq - S h sl )) That is,gW is isomorphic
to M(h patay o hu;I(T‘))'

Finally, we turn to (5). We first mention how a genegat G¢ acts onv! for I € D.
Note thatg? = 1 onV° by the proof of (2), that isg> € Gp. Sog? = +1 on each/!.
This implies thaty is diagonalizable o/ whose eigenvalues atel if g> = 1 onV!
and areti if g>=—1onV?,

Inthe second case, &t =W, @ - - @ Wy ®&M1@---®M,, whereallV;, M, are
irreducibleT’.-modules ang = i on eachi¥/; andg = —¢ on eachi/;,. On V0, gis not
1, since otherwisg is in Gp andg would have onlyt1 for eigenvalues, by (1). Take an
irreducible7’.-submoduld/ of VOsothay|y = —1.SetV] = {u,W; | u € U,n € Z}.
Theng = —i on eachiV.

Claim. >="_, W} is a direct sum.

Using associativity, we see that

spa{u,W; | u € U,n € Z} = spafunv,W; | u,v € U, m,n € Z}
=spaduv, W, |veT,, neZ}=W;.

This proves the claim. Thys< q¢. Similarly,q < p. So they must be equal. This finishes
the proof. O

The results in Proposition 2.5 (2) and (3) resp. (5) and (6) can be interpreted by the
“quantum Galois theory” developed in [DM] and [DLM2]. For example, Proposition 2.5
(2) and (3) is now a special case of Theorems 1 and 3 of [DM] applied for the group
GD:

Remark 2.9.Note thati’?is the space ofip-invariants. There is a one to one correspon-
dence between the subgroups(éh and vertex operator subalgebraslotcontaining
VOviaH — V. Infact,V# =@, ., V!, whereH' = {I € D | H|y: = 1}. Under
the identification of7p with D, the subcodél’ of D corresponds to the common kernel
of the functionals inA.

Next we prove that a FVOA is always rational. Recall the definition of rationality
and regularity as defined in [DLM1]. A vertex operator algebra is cal&nal if
any admissible module is a direct sum of irreducible admissible modules and a rational
vertex operator algebra isgular if any weak module is a direct sum of ordinary irre-
ducible modules. (The reader is referred to [DLM3] for the definitions of weak module,
admissible module, and ordinary module.)
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It is proved in [DLM3] that if V' is a rational vertex operator algebra thEérhas
only finitely many irreducible admissible modules and each is an ordinary irreducible
module.

We need two lemmas.

Lemma 2.10. LetV be a FVOA such tha (V') = 0. Then any nonzero wedk-module
W contains an ordinary irreducible module.

Proof. SinceD(V) = 0 we have the decompositidh= @ .. V(c). SinceT’. is regular
(see Proposition 3.3 of [DLM1]}} is a direct sum of ordinary irreduciblé.-modules.
Let M be an irreducibl€d’.-submodule of/. Then

N =spaqu,M |u eV, ncZ}

is an ordinaryV-module as each spé&n,M | v € V(c), n € Z} is an ordinary
irreducible T,.-module andC is a finite set. For an ordinarl/-module X we define
m(X) to be the sum of the multiplicitiesyy, ... 5, of all modulesM (hy,..., k) in
X, i.e., theT,.-composition length. Lef{ be aV-submodule ofV such thatn(K) is
the smallest among all nonzevosubmodules ofV. ThenkK is an irreducible ordinary
V-submodule ofV and of V. O

Lemma 2.11. Any FVOAV with D(V) = Qis rational.

Proof. We must show that any admissitifemodule is a direct sum of irreducible ones.
Let W be an admissibl& -module and)M the sum of all irreducibld’-submodules.
We prove thatW = M. Otherwise by Lemma 2.10 the quotient modid& M has
an irreducible submoduld”’ /M, whereWW’ is a submodule of” which contains\/.
Let U be an irreduciblel;. submodule ofi¥’ such thatU N M = 0 and setX :=
spav,U | v € V,n € Z}. ThenX is a submodule of¥’ and W’ = M + X.
Note thatU[c] := spafv,U | v € V(c), n € Z} for eachc € C is an irreducible
T,.-module. Then eithet/[c] " M = 0 orU[c] N M = Ul¢]. If the latter happens,
thenY (v, 2)(U + M /M) = 0 in the quotient modul&/ /M, which is impossible by
Proposition 11.9 of [DL]. Thug/[c]N M =O0forallc € CandW’' = M @& X. By
Lemma2.10X has anirreducibl&-submodulé” and certainlyl/ ¢ Y strictly contains
M. This is a contradiction. [

Theorem 2.12. Any FVOAV is rational.

Proof. Let I be an admissibl& -module. TherdV is a direct sum of irreducibl& -
modules by Lemma 2.11. L&t/ be an irreduciblé’®-module. It is enough to show that
M is contained in an irreduciblié-submodule ofV . First note that there exists a subset
Iof {1,...,r} such that for every irreducibl€.-moduleM (hy, . .., h,) inside M we
haveh; = 1—16 if and only if i € I. Let X be thelV/-submodule generated by. Then
X =3 ,.p X[J] < W,whereX[J] = spaf{u,M |u € V', n e Z}isaV°-module.
We will show thatX is an irreduciblé’-module.

By the fusion rules, we know that for every irreduciiie-submodule of” which
is isomorphic toM (h, . .., h,) hashy = % ifand only if K € I +J. The X[J] for
J € D are nonisomorphid’®-modules as they are nonisomorpHicmodules. Thus
X =@ ,cp X1

Let Y be a nonzerd/-submodule ofX. ThenY = @, ., Y[J], whereY[J] =
Y N X[J] is a VO-module. IfY[.J] # O then spafw,Y; | v € V', n € Z} # 0.
Otherwise use the associativity of vertex operators to obtain
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0=spafu,v,Y[J] | u,v € V', m,n € Z}=spaf{v,Y[J] | v e V° n e Z}=Y[J].

By associativity again we see that spapY[J] | v € V', n € Z} is a nonzerd/°-
submodule ofM. Since M is irreducible it follows immediately that spéan,Y[J] |
v eVl neZ} =M. SoM is a subspace of. SinceX is generated by// as a
V-module we immediately hav& = Y. This shows thafX is indeed an irreducible
V-module.

It should be pointed out that eacti[.J] in fact is an irreduciblé/’%-module. Let
0 Zu € X[J]. SinceX = spaqu,u | v € V, n € Z} we see that spdm,u | v €
VO neZ}=X[J]. O

Corollary 2.13. LetV be a FVOA. Then

(1) V has only finitely many irreducible admissible modules and every irreducible ad-
missibleV’-module is an ordinary irreducibl&-module.

(2) V is regular, that is, any weak’-module is a direct sum of ordinary irreducible
V-modules.

Proof. We have already mentioned that (1) is true for all rational vertex operator algebra
(see [DLM3]). So, (1) is an immediate consequence of Theorem 2.12. In [DLM1] we
proved that (2) is true for any rational vertex operator algebra which has a regular vertex
operator subalgebra with the same Virasoro element. NoteTthé such a vertex
operator subalgebra &f. O

Theorem 2.12 is very useful. We will see in the later sections that the FMQAs
andV'? are rational vertex operator algebras. Theorem 2.12 simplifies the original proofs
of the rationality ofV’; in [D3] and V' in [DLM1]. Most important, we daot use the
self-dual property of’? (i.e., V! is the only irreducible module for itself) as proved
in [D3].

It is a interesting problem to find suitable invariants for a FV®ATwo invariants
of V are the binary codesandD of lengthr as defined before. They cannot be arbitrary
but must satisfy the following conditions:

Proposition 2.14. (1) The cod€ is even, i.e. the weightt(c) = >"._, ¢; € Z+ of every
codeworde € C is divisible by2.

(2) The weights of all codewordse D are divisible bys.

(3) The binary codéD is a subcode of the annihilator code" = {d = (d;) € F} |
(d,c)=>;dic; =0forall c = (c;) € C}.

Proof. Let W be aT,.-submodule isomorphic td/(h4, ..., h,). Then the weight of a
highest weight vector ofV’ is hy + hy + - - - + h,. which is necessarily an integer &s

is Z-graded. The parts (1) and (2) now follow immediately. To see (3), note that for
c € CandM < V! isomorphictoM (g1, ..., g-) one has from the fusion rules given in
Theorem 2.3 (2) that

M’ = spar{u, M(gs, ..., g,) | u € V(c), n € Z} < V"

is isomorphic toM (hy, . . ., h,) with h; = g; = & if i € I andh; = O (resp.h; = 3)

if ¢; +2g; = 0inTF, (resp.c; + 2g; = 1). Since the conformal weightg + --- + g,
andhy +---+ h, of M(gq,...,g.) andM(hg,...,h,) are both integral we see that
#{ie€{1,...,r} | ¢, =1} \ I) is an even integer. Thug{#< I | ¢; = 1} is also even
as wtg) is even. This implies thati(c) = 0, as required, wher@ € D is the codeword
belonging tol C {1,...,7}. O
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Here are a few remarks on the actiontit(1") on V5, which is an action preserving
the algebra produet; b coming from the VOA structure.

Remark 2.15,(1) If V is a VOA and is generated as a VOA by, then Aut(V') acts
faithfully on V5. This happens in the ca3é= V', whereL is a lattice spanned by
its vectorse such that £, x) = 4.

(2) If V is a FVOA, the kernel of the action odut(V) on V> is contained in the
intersection of the grouds¢, as we vary over all frames. Hence, this kernel is a finite
2-group, of nilpotence class at most two and order dividifigiherer = rank().

The framed vertex operator algebras with= 0 can be completely understood in
an easy way.

Proposition 2.16. For every even linear codé < F7 there is up to isomorphism exactly
one FVOAV, such that the associated binary codes @re C andD = 0.

Proof. Let Veermi = M (0) & M(%) be the super vertex operator algebra as described in

[KW]. The (graded) tensor produdfsr,,;is a super vertex operator algebra whose code
C is the complete cod®} (see Remark 2.6). It has the property, that the even vertex
operator subalgebra is the vertex operator algebra associated to the level 1 irreducible
highest weight representation for the affine Kac-Moody algébyrg if r is even and
B._1)2 if r odd (see [H1], chapter 2). The codéor this vertex operator algebra is the
even subcode df5. Proposition 2.5 (6) gives, for every even cade< 5, a FVOAV

such thaC(V) = C andD(V) = 0. The unigueness of the FVOA with cod€l’) = C

up to isomorphism follows from a general result on the uniqueness of simple current
extensions of vertex operator algebras [H3]. O

This proposition is also proved in a different way by Miyamoto in [M2, M3].

Recall that a holomorphic (or self-dual) VOA is a VOAwhose only irreducible
module isV itself. In the case of holomorphic FVOAs, we can show that the subcode
D < Ctisinfact equal ta?*.

We need some basic facts from [Z] and [DLM4] about the “conformal block on the
torus” By [Z] of a VOA V. To apply Zhu's modular invariance theorems one has to
assume that’ is rational and satisfies th@&, condition?! It was proved in [DLM4] that
the moonshine VOA satisfies th& condition. The same proof in fact works for any
FVOA. We also know from Theorem 2.12 that a FVOA is rational.

Applying Zhu's result to a FVOA/ yields thatBy is a finite dimensional complex
vector space with a canonical basg;, indexed by the inequivalent irreduciblé-
modulesM; and thatBy, carries a natura$ Lo(Z)-module structurey : SLo(Z) —
GL(By).

Let V andV be two rational VOAs satisfying th€, condition. The following two
properties of the conformal block follow directly from the definition:

(B1l) Bygw = By ® Bw asSLy(Z)-modules and 'y, gnr, = T, @ T, -
(B2) If W is a subVOA ofV with the same Virasoro element then there is a natural
SLy(Z)-module map* : By — By .

We also need the following well-known result:

1 The condition thal” be a direct sum of highest weight representations for the Virasoro algebra was also
required in [Z], but was removed in [DLM4].
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(B3) For the vertex operator algebid(0), the action ofS = (01’01) € SLy(Z) on
Ba(o) in the canonical basi§T'ns(o), Ty ), TM(%G)} is given by the matrix

12 12 1/V2
( 1/2 1/2 —1/\/2)
1/vV2 —-1/V2 0

Here is a result about binary codes used in the proof of Theorem 2.19 below:

2.3)

Lemma 2.17. Letu®™ be then-fold tensor product of the matrjx = (11 711) considered

as a linear endomorphism of the vector spagé&?] = C[F,]®™ on the canonical base
{e, | v € F3}. For a subsetX C Iy denote byxx = >, . x e, the characteristic

function ofX. Then the following relation between a linear cadeand its annihilator

C* holds:

1
— ®n
Xo+ = = - 17" (Xe)-
C
Remark 2.18.:®™ is a Hadamard matrix of size*2and the corresponding linear map
is called the Hadamard transform.

Proof. For everyZ-moduleR and functionf : F} — R the following relation holds
(cf. Ch. 5, after Lemma 2 of [MaS])

C1 Y f) =Y > (D)™ f). (2.4)

veC+ ueC vely

Now let R be the abelian grou@[F3] and definef by f(v) = e, for all v € F}. The
left hand side of (2.4) i&C| - x¢ .. Expansion of the right side gives:

Y Y [Jeveten e @en, = S ue) = 1 xe). O
ueC v1,...,v, EFy =1 ueC

Theorem 2.19. For a holomorphic FVOA the binary cod€sand D satisfyD = C+.

Proof. The vector of multiplicitiesn;, (V') can be regarded as an element in the vector
spaceC[F"] = C[F]®", whereF = {M(0), M(3), M (Z)}. Define two linear maps,
0:C[F] — C[F2] =Ceq® Cey by
1 1
T(MO)=eo, T(M(G)=eo. m(M(3g) = Ver,

and 1 1
M) =eo. BMGG) =er, HM (7)) =0.

Finally leto : C[F] — C[F] the linear map given by the matrix (2.3) relative to the
basisF. Now one hasr o o = i1 0 # and thus the following diagram commutes:

cF] 77 o
| ger | 7® (2.5)

. ®r )
C[F3] K C[F3].
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By definition, the support of®"(m,(V)) is D < F5. From Lemma 2.17%%" o
0% (mp(V)) = |C| - xcr € C[F3%]. Note that the support of.. is Ct. These facts
together with (2.5) imply the theorem if we can show that (m,(V)) = m, (V).

We identify C[F"] with the conformal block on the torus of the VOA. by identify-
ing the canonical base3/ = T),. Using (B1) and (B3) we observe that” = pr. (S),
wherepr, is the representationy,. : SLy(Z) — GL(Br,) of degree 3.

Define the shifted graded charactéry (r) := ¢~</2*3" _,(dimV;)q", where
g = €™ andc is the central charge of. SinceV is holomorphic, the confor-
mal block By is one dimensional. Thepy (S) =1 (the casep (S) = —1 is im-
possible sincechy (i) > 0, wherei is the square root of-1 in upper half plane;
cf. [H1], proof of Cor. 2.1.3). Now we use (B2). The generdipr of By is mapped
by t* t0 > mu,,..h, Tai(ha,....h,) = ma(V). Sincer* is SLo(Z)-equivariant we get
a®"(mn(V)) = pr, (S)mn(V)) = *(pv (S)(TV)) =mu(V). O

The same kind of argument was used in the proof of Theorem 4.1.5 in [H1].

3. Vertex Operator Algebras VDf

Let D, = {(z1,...,2,) € Z" | >, x; every < R", n > 1, be the root lattice of type
D,,, the “checkerboard lattice”. In this section, we describe the Virasoro decomposition
of modules and twisted modules for the vertex operator algﬁgfa

We work in the setting of [FLM] and [DMZ]. In particulak is an even lattice with
nondegenerate symmetiebilinear form(-,-); h = L ®z C; bz is the corresponding
Heisenberg algebray/ (1) is the associated irreducible induced moduléypsuch that
the canonical central element ﬁ)i acts as 1;@, ~) is the central extension af by
(k | kK2 = 1), a group of order 2, with commutator maglc, 8) = («, B) + 2Z; c(-, -) is
the alternating bilinear form given bya, 8) = (—1)°? for a, 3 € L; y is a faithful
linear character ofx) such thaty(x) = —1; C{L} = Inde)CX (~ C[L], linearly),
whereC,, is the one-dimensiondk)-module defined by; «(a) = a ® 1 € C{L} for
ael;Vi=MQA®C{Ly;1=ul);w=3"%, 6.(-17 where{s,..., 4} isan
orthonormal basis df; it was proved in [B] and [FLM] that there is a linear map

Vi — (EndVp)I[z, 2],
v Y(v,2) = Zvnz_"_l (v, € EndV7)
nez

such thatV;, = (V,Y,1,w) is a simple vertex operator algebra. et = {z € b |
(r,£) < Z} be the dual lattice oL. Then the irreducible modules &f, are theVy.,
(which are defined in [D1]) indexed by the elements of the quotient gioyfd. (see
[D1)). Infact, V7, is a rational vertex operator algebra (see [DLM1]).

Let 6 be the automorphism af such that/(a) = a~1x{®*)/2. Thend is a lift of
the —1 automorphism ofL.. We have an automorphism &f;, denoted again by,
such that(u @ ¢(a)) = 6(u) ® «(fa) for u € M(1) anda € L. (See Appendix D for
a fuller discussion.) Here the action #fon M (1) is given byf(as(n1) - - - ax(ng)) =
(=LY as(ny) - - - ag(ng). Thed-invariantsl; of V;, form a simple vertex operator subal-
gebra and the-1-eigenspac¥ is anirreduciblé/;-module (see Theorem 2 of [DM]).
ClearlyV, =V @V, .
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Now we take forL the lattice
d
= @Zam (g, ;) = 40; 5.

ThenL is an even lattice and the central extensiois a direct product oD with (k)
andC{L} is simply the group algebr&[L] with basise® for « € L. It is clear that
() = e~ fora € D{. We extend the action @ffrom VpatoVipsya = M(1)®C[L*]
such that(u ® e*) = (fu) ® e~ for u € M(1) anda € L*. One can easily verify that
6 has order 2 andY (u, 2)0~* = Y (Qu, z) for u € Vpa, whereY (v, 2) (v € VDd) are
the vertex operators OWDI)[! For anyf-invariant subspacéf of Vi« we useVi to
denote thet-eigenspaces.

First we turn our attention to the case that 1. ThenL Za = 27, = Dq, where

(a, ) = 4. Note that the dual lattic®; is $D; and{0, 1, 3, —1} is a system of coset
representa‘uves ap;/D;.

Set
La(-1p+ 3 (a+-ﬂ)
w1 = 16a e e
: (- 1)2————7(‘1+ ). (3.1)
wyp = 16a e e .

Thenw; € Vp .
Lemma 3.1. For D; = L = Za, (o, a) = 4, we have:

(1) Vp, is a FVOA withr = 2
(2) We have the following Virasoro decomposition&’gf and V7, :

11
Vp, ¥ M(0,0), Vp, = M(5,3)

with highest weight vectorsand a(—1), respectively.
(3) The decompositions f<i/f§l+1 are:

Vi = M(5,0), Vi1 M(O,2)

with highest weight vectogz® — e~2) and(ez® + e~ 22), respectively.
(4) For VD1+% P Vle% we get, in both cases,

11

16’ 16)

(VD1+% S3) VD1— 1) ¥ M(—

with highest weight vectors:® + e~ In fact, bothV,,,1 andV,, _; are irre-
ducibleV, -modules.
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Proof. It was proved in [DMZ] (see Theorem 6.3 there) thafws, z1) = >, s
LYn)z"""2 andY (w2, 22) = >,z L?(n)2~"~2 give two commuting Virasoro alge-
bras with central charg? We first show that the highest weight@f—1) is (2, 2) Since

a(—1) € V},, has the smallest weight iiriD it is immediate to see thdt’(n)a(—1) =
if n > 0. It isa straightforward computation by using the definition of vertex operators
to show thatL}(0)a(—1) = L2(0)a(—1) = La(-1).

Clearly,1 € (Vp,)" is a highest weight vector for the Virasoro algebras with highest
weight (Q 0). SoVp, contains two highest weight modules for the two Virasoro algebras
with highest weights (@) and (% ) SinceM (0, 0) & M(z, 2) andVp, have the same

graded dimension we conclude tH&i) ~ M(0,0) & M(Z, 2) andVp = M(O, O)

Vp, = M(z, 2) This proves (2) and shows also (¥)p, is a FVOA withr =
Additionally we see thaVp, is a unitary representation of the two Virasoro algebras.
By Theorem 2.3 (3) we know thdtp,+s, for A = 0, il 1, is a direct sum of

irreducible modules (hy, ho) with h; € {0, 3, 1% }. Itis easy to find all highest weight
vectors inVp,+. Part (3) and (4) follow immediately then. O

We return to the latticd, = @7, Zay, (i, o) = 46, ;, L = D§ = (2Z)*. We
sometimes identifyl, with (2Z)?. The componenZq; gives two Virasoro elements
wp;_1 andwy;, as in (3.1), above.

Definition 3.2. The VF associated to the FVOAs derived from Brfelattice is the set
{wl, . ,de}.
Corollary 3.3. (1) The decomposition (MjE into irreducible modules fdr, is given
by
ng E &b M(ha, ..., haq).
(h2i—1, h2;) € {(0,0),(3, 3)}
(—1)lilh2i=0} = 11
In particular, V[ﬂ;, is a direct sum o241 irreducible modules fof%,.
1
(2) Lety = (y;) € (D7)? such thaty; € {0,1}. Then we get the decomposition

(Vpgr)™ % &y M(ha, ..., hza).

(0.0.(3, )} i =0,
G210 (0 3) (3.0 if 4, = 1

(—1#ilhp=0} g
(3) Lety = (1) € (Dp)4, such that2y ¢ D¢, i.e. there is at least onésuch that
vi = £3. Then(Vpa., & VDf_V)i, Vpa+., have the same decomposition:

@ M(hla"'7h2d)'
{(0,0),(3, 3)} if 7 =0,
(hai—1,h2i)€ {(%17 0), (0, )} if 7 =1,
(s ) Hri==+3
Proof. Note thatVDd is isomorphic to the tensor product vertex operator algéhrap

®VD1 (d factors) and thaYde isisomorphic to the tensor product modulg,, +, ®
- ® Vzay4y,- Thus
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(VDf+'y D VDf—’y)i = @ Vgll+'yl ng‘*’)’d
pe{+,—1d
H pi=£
The results (1) and (2) now follow from Lemma 3.1 immediately.
For (3) it is clear that the decompositions ‘%f:ﬁ:v hold by Lemma 3.1. It remains
to show that/pa., and Vpasy & Vpa )i are all isomorphid;,-modules. Note from

Lemma 3.1 thal/p,+;, andVp, _; are isomorphid»-modules for any: € {0, 1, iz}
ThusVde andVDd are |somorph|(T2d-moduIes In fact : Vpasy, = Vpa_, is
suchan |som0rph|sm Thuéflgfﬂ@VDf_ ={v+bv|v € Vpa,,}are |somorphic
to VDfW asTys-modules. 0O

~

Next we discuss the twisted moduleslaf for an arbitraryd-dimensional positive
definite even latticé. Recall from [FLM] the definition of the twisted sectors associated
to an even latticd.. Let K = {#(a)a~' | a € L}. ThenK = 2L (bar is the quotient map
L— L).AlsosetR ;= {a € L | (o, L) < 2Z};thenR > 2L. Thenthe inverse image
of Rin Listhe center of andK is asubgroup of?. Itwas proved in [FLM] (Proposition
7.4.8) there are exactly?/2L| central characterg : R/K — C* of /K such that
x(xK) = —1. For each sucl, there is a unique (up to equivalence) wreduub}@(
moduleT’, with central charactey and every irreduciblé/K-moduIe on whichk K
acts as-1is equivalent to one of these. In particular, viewifigas anL-module fa and
a agree as operators @) fora € L. Letﬁ[fl] be the twisted Heisenberg algebra. As in
Sect. 1.7 of [FLM] we also denote by (1) the unique irreduciblé[—l]—module with

the canonical central element acting bybDEefine the twisted spadéLT xX=M1Q)® 1.
It was shown in [FLM] and [DL2] that there is a linear map

Vi, — (EndV;™)[[2Y2, 271/7]],
v—Y(v,z)= Z vpz "t

nE%Z

such thatVLTX is an irreducibleg-twisted module foi/;,. Moreover, every irreducible
f-twistedVz,-module is isomorphic t(VLTX for somey.
Define a linear operatdl; on VLTX such that

0(a1(—n1) - - (=) @ 1) = (1) e¥™/Bay(—nq) - - an(—np) @ t

for a; € b, n; € 3+Zandt € T. Thend,Y (u,2)(0a) "t = Y (Ou, 2) for u € vy,
(cf. [FLM]). We have the decompositioﬁgx = (VLTX)+ & (VLTX)—, where Q/LTX)+ and
(V,/¥)~ are thef;-eigenspaces with eigenvalues?™i/8 ande?™/8 respectively. Then
both (V,/¥)* and (/,*)~ are irreducible/;’-modules (cf. Theorem 5.5 of [DLi]).

As before, we now také& = Za = D; with (o, o) = 4. ThenK = 2L, R = L and

R/K = Z,. Let x1 be the trivial character oR/K andy_; the nontrivial character.

Then bothT}, andT),_, are one-dimensiondl modules andv acts on’; ,, as+1.

Lemma 3.4. We have the Virasoro decompositions:

11

© V) = M 5)

D (Vo) = M 0)
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11

@ Vp, ™) * MG 1

Ty 1\— 1
)a (VvD1 ) - M(Ov T6)
Proof. Recall from [DL2] that

T. T.
VL X1 — Z (VL x1)1716+n

nE%Z, n>0

(see Proposition 6.3 and formula (6.28) of [DL2]). Note that

TN+ _ Ty
(VL 1) - Z (VL 1)Tles+%+”

n€e”Z, n>0

and that T T
V2™ = D (V™) gen

n€Z, n>0

Since both (/LT’“)+ and (VLT“)* are irreducibld/; -modules we only need to calculate
highest weights for nonzero highest weight vectors in these spaces. Nofg, {lista

space of highest weight vectors def“)*. One can easily verify that'(0) = is and
L2(0) = 0 onT,. Thus (/; )~ ¥ M(,0).

Also observe that(—1/2) ® T}, is a space of highest weight vectors ﬁfi’%ﬁ*.
From Lemma 3.1 we know that(—1) € V; = M(3, 3). Now use the fusion rule

given in Theorem 2.3 to conclude tha’[fol)+ = M(%, %). Part (2) is proved similarly.
O
As we did in the untwisted case, we now consider the twisted modules for the lattice
L= EBf:l Zoi = D, (i, ;) = 45; j, whered is now a positive integer divisible by
8. ThenK = 2L, R = L andR/2L ¥ Zg. Thus, there are®irreducible characters for

R/2L which are denoted by s, (whereJ is a subset of1, . ..,d}) sendinga; to —1
if 7 € J and to 1 otherwise. Then we hayg = Hj Xz;» Wherey, is a character of

Loy |Z20;; andx; = x s(ay). Moreover T, = T, ® ---® Ty, . In particular, each
T, , is one dimensional.

Corollary 3.5. We have the Virasoro decompositions:

Ty ; —
(VDf )i - @ M(hl7 sy th)'

{(&,0), (&, DHrifigJ
(h ',.,hv)e{ 16 62/
i {(o,%e),(z,é)}nfze'f
R CILYES S IRy

Proof. Recall from the proof of Corollary 3.3 thafDld is isomorphic to the tensor
product vertex operator algebva, ® - -- ® Vp,. Note thatvgy is isomorphic to the
1

Ty, TX:(: P ~ ~
tensor producVDi“1 ® - ® Vp " andfy is also a tensor produdi @ - - - ® 04. By
Lemma 3.4,

T.
Vpi! = - M(ha, ..., haq).
{({5:0). (§5 D)} if i & J
itz € { (8 & Lniies
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Sinced, = (—1)*ilhi=2}(—1)4/8 = (—1)#il1hi=0}(_1)4/8 on M (hy, ..., hay) We see
thatM (ha, . . ., hoq) embeds in(/LTXJ)i if and only if (—1)*1i17=2}(—1)4/8 = +1. The
proof is complete. [

Remark 3.6.Note thatvgﬁ" is %Z graded ifd is divisible by 8 (cf. [DL2]). In fact
1
(VE;J * is then the subspace ng consisting of vectors of integral weights while
1 1

(ngf ~ is the subspace dfgﬁj consisting of vectors of non-integral weights.
1 1

4. \ertex Operator Algebras Associated to Binary Codes

Let C be a doubly-even linear binary code of lengthe 8Z containing the all ones
vectorQ = (1,...,1). As mentioned in Sect. 2, we can regard a vectoFphs an
element inZ? in an obvious way. One can associate (cf. [CS1]) to such a code the two
even lattices

Le = {\f(c+x)|c€C x € (22)%}

and

Lo={"=(c+y) |ceC, ye(22)!, 4] Xy} U

{f
(T5(etu+ G D € Cy € (@D 4] A (-1 + )

and for ever;self -dualeven lattice there are two vertex operator algeM@andf/L =
T @ (V) (see [FLM, DGM1)).

Definition 4.1. Amarking for the codeC' is a partition M = {(i1,42), . . ., (¢a—1, %) }

of the positiond, 2, .. ., d into g pairs.

A marking M = {(i1,42), ..., (ia—1,14)} determines theD{ sublattice@f:1 Zay
inside L and L¢, whereagy,_1 = v2(ei,,_, + €5,) andagy, = v2(es,,_, — €i,,) for
k=1,..., 2 using{e;} as the standard base bf: ® Q = Q. Let us simplify notation
and arrange for the marking to el = {(1, 2), (3,4),...,(d — 1,d)}.

From Definition 3.2, we see that every such marking defines a systedrcof@mut-
ing Virasoro algebras inside the vertex operator algebras V; = VLC andV .As
the main theorem we describe explicitly the decomposition mto wredﬂi’g@lmodules
in terms of the marked code. The triality symmetr)x/@‘c givenin [FLM] and [DGM1]

is directly visible in this decomposition. (See also [G1].)
In order to give the Virasoro decompositions in a readable way, we need the next

lemma which describes~ and Ec in the coordinate system spanned by the We
use the following notation. Let?, 1%, v and+! be the map§Fs — (D;/Dq)? =

{0, 3, —3, 1}? defined by the table

(0,00 (1L1) (1,0) (0 1)
22 (0,0) (L0) (5,3 (3,-3)
Pl @1 (01) (-3,-3) (*zaé
%l (5,0 (3,0 (13 @-3)
H-41 Gy ©0-d) ©0d
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and writec(k) (k = 1, ..., %) for the pair ¢2,_1, cox) Of coordinates of a codeword
c e C.Finally letforb =0 or 1 and = (e, ..., €q/2) € {+, —}4/2,

dj2

ré(b) = @ Di +7?L, (c(k)) (4.1)

k=1
be a coset oDy.

Lemma 4.2. We have the following coset decompositioﬁ@fandic under the above

D¢ sublattice:
Le=J U rdo,
c€C ce{+,—}d/2

e=U| U v U ri

c€C | ec{+,—14/2 ee{+,—1d/2

Proof. The result follows from the definition of these two lattices. [J

We next interpret the decompositions in terms of codes dye¥ {0, 1, 2, 3} asso-
ciated toL- and L. See [CS2] for the relevant definitions fé5-codes.

Let L be a positive definite even lattice of rasikvhich contains ¢ as a sublattice.
We call such a sublattice B;-frame Note that D; /D;)? is isomorphic taZg¢. Then
A(L) := L/D{ < (D3 /D1)?is a code oveZ, andA(L) is self-annihilating if and only
if L is self-dual. For the latticeb and Lo we give the following explicit description
of the corresponding codes:

Let  bethe map fror¢ toZ¢ induced from™ F2 = D3 /D, — (D; /D1)? ¥ 72,
00+ 00, 11~ 20, 10+~ 11 and 01— 31. Let (X3)o be the subcode of thB,-code
25 = {(00),(22)}™ of length 2, consisting of codewords of weights divisible by 4.
Then we have

r=A(L¢)=C + x4/, (4.2)

A N_A d/2 ~ d/2 1,0,...,1,0,1,0), ifd=0 (mod 16),
P=A(Le)=C+(z5 ) U C+(x5/ )°+{ El, 0...103 2;, if d =8 Emod 16;.

An important invariant of &4-codeA is the symmetrized weight enumerator, as
defined in [CS2].

Definition 4.3. Thesymmetrized weight enumeratorof a Z4-code A of lengthd is
given by
swey(4,B,C)= Y U, ATTUBIC,
0<r,s<d

whereU, ; is the number of codewordse A having atr positions the value-1 and
at s positions the valu@.

To describe the symmetrized weight enumerator for our cédasdT in terms
of the marked binary cod€', we introduce the analogous invariant for marked binary
codes.
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Definition 4.4. Thesymmetrized marked weight enumeratorof a binary code' of
lengthd with a markingM is the homogeneous polynomial

/2 [k/2]

SMWes(z,y,2) =Y | > Wi a2 Fyr =22l
k=0 1=0

whereW}, ; is the number of codewordse C of Hamming weighk having the value
(Cipyr_1s Cinyy) = (1, 1) for exactlyl of thed/2 pairs (iz,—1, t2:m) Of the markingM.

Remark 4.5.The concept of marked binary codes can be considered as the third step
in the sequenceég/Dg-codes, Kleinian codes, marked binary codég.codes and
VFOAs (cf. Sect. 5 and [H2], last section). It is very useful and one obtains easily the
usual code-theoretic type of results. For example, the following two hold for doubly-even
self-annihilating codes of a fixed ramak= 0(mod 8):

(1) Mass formula.

24/2(q/2)

£ A —9.3.5.....(2d/2-2 41
At (C)] ( )

(c,Mj

where the sum runs over equivalence classes of pairs of €coaéth marking M and
Aut ,(C) denotes the group of automorphismgofhat fix M. For an application, see
Appendix A.

(2) Ring of invariantsThe symmetrized marked weight enumerator belongs to a ring
Clug, v4, ug] ® Clua, va, ug] - u12 generated byuy = 2% + 62222 + 2% + 8y%, vy =

z* + 2% + 122292 + 2y* and two polynomialsig andui, of degree 8 resp. 12, subject
to one relation fom3.

From Lemma 4.2 we get:

Corollary 4.6. The symmetrized weight enumerators offaeodes” andI are given
by

swe-(4, B, C) = smwe-(A% + C?,2B2% 2A0), (4.3)
swe-(4, B, C) = % - smwe (A2 + C2,2B2,2AC) + % ((A2 - CZ)d/2> (4.4)

+% . 2d/2 ((A + C«)d/Z + (_1)d/8(A _ C«)d/z) Bd/2.

Motivated by Lemmas 3.1 and 3.4, define fore {0,1}, « € {+,—} andz €
{0, i%, 1} the 16 formal linear combinations @-modulesR(x) by the following
table:

0o 1 33

R[M(0,0) M(3,0) SM(%, &
RY |M(3,3) M(0,3) 3M (35, 45)
Ri| M3 MG 1%
RY| 5M(4,0) 5M(0, )

Forp € {+,—}™ and an element = (v;) € Z} which is identified with{0, 1, =1} we
write shortly
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Rii(7) = @) Ry, (vr)- (4.5)
k=1

We see from Lemmas 3.1 and 3.4 tRft = V55, andRy = L (VDX‘ Y*)E The
introduction of the extra facto% in the twisted case enables us to write the Virasoro

decompositions for the twisted sectgf in a neat way. The index 0 iR, refers to the

untwisted case while the index 1 L. refers to the twisted case.
Let L be a self-dual even lattice of radlcontaining aD;-frame. So L is defined by
the self-annihilatingZs-codeA = L/D§ < (D;/D1)? of lengthd which is now even

in the sense that sw¢l, z?, x) is a polynomial inz? (cf. [BS]).

Theorem 4.7. The vertex operator algebrdg, and I7L have the following decomposi-
tions as modules fdfg:

VL = @ @ RZ(V)?

YEA pe{+,—}4

= @ RNeP P RO

YEA pe{+,—3d YEA pue{+,—3d
H#k:*‘ Huk:(*)d/s

In order to determine the decomposition far, we first study the decomposition of
v

SinceL is self-dual,V;, has a unique irreducibtetwisted moduld/ [D2]. In this
casel can be constructed in the following way. L@tbe a subgroup of. containing
the D{ which is maximal such thate, 3) € 2Z for o, 3 € Q (it exists sinceL

has ascending chain conditions on subgroups)Q_be the inverse image @ in L.
Note that|L/Q| = 24/2. ThenQ is a maximal abelian subgroup afwhich contains
D¢ = D x (x) and which contain. Lett) : Q — (+1) be a character af such that
Y(kK) = —1. ThenT can be realized as the inducéemoduleT = C[L] Dcra1 Cos
whereC,, is a one dimensiona)-module defined by the charactér Fora € L, set
tla) =a®1 e T. Itis easy to see that we can choage= Df such thau; = «; for all
i andy(a;) = 1. Then fora € L,

ait(a) = a;a® 1= (1) qq; 1= (=1)(* g 1. (4.6)

Thus, C t(a) is a one-dimensional representation fof, with charactery given by
x(a;) = (=1){*:@ In factC t(a) is isomorphic tal, as D{-modules. Let3, € L for

= 1,... 2%2 represent the distinct cosets @fin L. Chooseb, € L with b, = 3
for all 1. Then {t()) | 1 = 1, ..., 292} forms a basis ofl’ and each(h;) spans a
one-dimensional module def. Denote the character @ on C ¢(b;) by x;. Then

M(1)®t(a)isisomorphic tdfgjl ase—twistedVDf—modules and &ag&,;-modules. Thus,
1
~ 2d/2

Proposition 4.8. Let® C A be a complete coset system for the indu€geubcode
Q/D§ of A. We have the Virasoro decomposition

Ty,
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=DV = D DRI

YEB® pe{+,—}d €A

where the charactegro7 is determined by, (a;) = (— 1)>: if we identifyD; /Dy =
with {0, 1, £1}.

Proof. The first equality has been proven in the previous discussion. In order to see the
second equality note that by Lemma 3.4 we have

d
TXI .
RL() =272 @V, ), 4.7)

k=1

wherex;, = (—1)*+. Observe thata, 3) € 27Z foranya, 8 € Q. Leta, b € L such that
a+Q =b+Q. Then from (4.6) M (1) ® t(a) andM (1) ® t(b) are isomorphid-twisted
Vpa-modules and are isomorphilg,-modules. ThuR’(y) = R%(y') if v and’ are in
the same coset @@/ D¢ in A. Since the coset @@/ Df in A has exactly 2/2 elements,
we immediately see from (4.7) that fore A,

= @ @ R+

ne{+,—}d oeQ/Dy
This proves the second equality. O

Proof of Theorem 4.7or a subsetV of L we denote byV the inverse image oW in
L and setV[N] = M(1) ® C{N}. ThenV;, = @, ., V[D{ +~] andV[D{ + ] is
isomorphic toVwa (defined in Sect. 3) aB’Df-modules. The decomposition fof,

follows immediately from Corollary 3.3 and Lemma 4.2.
Now we study the decomposition bf'. If ~; = i% for somej then

(VIDf +19] @ VID{ —7]D)*

is isomorphic toV/[ D§ + +] asTz4-modules and has the desired decomposition. So we
can assume that ajl; = 0, 1. In Lemma 4.9 below we will prove that thedefined on

Vwa in Sect. 3 coincides with th@on V[D{ +~]. We again use Corollary 3.3 to see

thatV[D¢ +4]* has the desired decomposition.
For the twisted part, we use Proposition 4.8 and Corollary 3.5 to obtain

VDY =PRm =P @ R O

YEA YEA pe{+—}d

Lemma 4.9. With the same notations as in the the proof of Theorem 4.9 tiefined
on Vwa in Sect. 3 coincides with thieon V[ D¢ + 4] if all v; =0, 1.

Proof. Let X be a sublattice of. containingD¢ such that(z,y) € 2Z for z,y € X.
Then the inverse imagé’ of X in L is an abelian group. We can choose a section
e: X — X such thak,e, = s%“¥/2¢,,,. Thene;! = k(#7)/2¢_, for z € X. Thus
Ou(es) = Ue—q)-
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TakeX to be the sublattice generated B§ andy. ThenV[D{ ++] is generated by
t(ey) as aVDf—moduIe and/[D{ ++]* is generated by(e.,) +i(e—_,) as aV, V7 .-module.

In fact V[D{ ++]* is an wreduubleV*d module. Letu @ Vpa,, — V[Dd +7] be a
VDd -module isomorphism such thatfﬂ = u(e,). We must prove that mapsV, Dd+
to (V[Df +4])*. As bothvgfw and (/[D{ +4])* are wreduublevgf—modules, it is
enough to show thai(e” + e~ 7) = (e,) + t(e—4) or equivalentlyue™ = u(e_,).

Let J be the subset of1,...,d} consisting ofj such thaty; = 1. Note thate™"
is the coefficient of: =2/l in Y(e=27, 2)e” and(e_.) is the coefficient o 27l in
Y ((e—2,), 2)i(e,) as (-1)77)/2is even. Also note thatRe Df. Thusue™ = i(e_,).
O

Now we return our latticed.~ and L~ associated to the codeé. We assume that
C is aself-annihilating(i.e., C = C*) doubly-even binary code. Then ti-codes’
andT are self-annihilating and even, or equivalently as mentioned above, the lattices
Lc and L are self-dual and even.

Combining Lemma 4.2 and Theorem 4.7 we will see how to read off the Virasoro
decomposition directly from the marked co@eFora, b € {0,1}, o, § € {+, -} and
z,y € {0, 1}, define the formal linear combinationsBf-modulesN g((x, y)) by

Neb(@y)= B Riv.anOh(@ ),

al,alle{+,—}

lll(‘tl/:(‘t

whereR{,, )y Was defined in (4.5). Explicitly, we get the 64 formal linear combinations
as shown in the following table:

(0,0) 1,1 (0,1),(1,0)

NY  |M(©0,0,0,0& M(3, 3,3, 3) M(3,0,0,08 M© 3, 3, 3) Mg, %6 560 1)

N M@0 3, Do M3, 3,00 M($,0 %, He MO, §,0,0) 3M(fs: 56 16 16)

N 63,043,000 MO, 4,0, 3) M0, 3,00 M3, 3,0, My, 1, 1o 1)

00 1 111 1 1

N®_ |M(3,0,0,3)® M@, 3, 3,0 M(©0,0,0,3) & M(3, 3, 3,0 1M - 16 36)

01 A01
NI N, M, F000 Mt £ D) BMO.0. £, 55 @ M3 3. 5 fo)
NO N0 IM(f, 55 3,008 M4, Tls 0, 3) 3M(3, ’%6’%6)@ 3MQO 3 55 1)

10 10 1a(L o L (i 1011 1.1 4
N, NS ?M(Evovﬁ’o)@’]”(le 7016 2) 3MO 15,0, 3 & 3M (3. 15, 3> 1)
N1 10 ik, i 4,00 iMmk,0 4. L) MG, 0 Lye Mo L 3 &)

11 11 1 11 111 1 111
Ni N2 MO, 55, 150 @ TM(3, 55 350 3) 3M(35,0,0, 1) ® 3 M(45. 35 3» 16)
11 A1l 1 11 1011 1 1 4
N, N_ 51\4(2’1&16:0)@ 3M(O, , 160 160 3) ?A/[(E’ ’16)EB 1\4(16,0,5,173)

Forpu, € € {+,—}"/2 and an element € F% we write

n/2

Ni’.(c) = @) Vv, (c(k)),
k=1

where ¢(k) = (cox—1,cor) as before. Letd(c) be the number ofc with c¢(k) €
{(0,1),(1,0)}. Recall that the latticd{ determines 2 commuting Virasoro algebras

inside the four vertex operator algebiids,,, VZC' I7LC andI7~L~C. The following is the
main theorem of this paper.
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Theorem 4.10. For the Virasoro frame coming from the marked cadewe have the
following decompositions:

V.= P NP,

c€C e {+,—}d/2

1
= 00 00
Ge® @ Mo D D N
pecdn oyt SE0, maee{,—}/2

ep=t

e G NLoO.

c€C L ec{+,—}4/2

ceC
5(c)=0

[]er=re72
~ 1
- 00 00
@ B MR @ Mo
SE5 meeln—y/2 s o meelr, =342
=t

o D N,

c€C p,ee{+,—14/2

[ wr=rd78
- 1
- 00 00
=@ @ NWez; B D N
o we{+ﬁ}d/2 5550 mee{r—}/?
M= €=t
1
o Bl D NMiwe S NMs D N
€l peef+,—}/2 wee{+,—}/2 I
[ er=re78 [ re=e/8 [Ter=]] w78

Proof. Recall (4.1). For a codeword € C ande € {+,—}%2, lety = I'’(c) and fix
s € {+, —}. Using the definition oN®" (c) we get

L€
d/2
a -_— a
@ R,L(V) = @ ®R(H;,M’)((WZ¢—1»W2¢))
pe{+—}d u"u”E{t—}d/z i=1
BE=s M;C}L;c/=5
d/2

— @ ® @ Ral‘;,lt;,)((vm_l”}/&))

pef+,—3d/2 =1 plullef+ -}
np=s whpl!=p;

d/2
= P QN
ue{tf}d/z =1

Hp=s

= P N

pe{+,—34/2
wp=s

By using the identification of*¢(c) with codewords in" and I" the decomposition
follows from Lemma 4.2 and Theorem 4.7 if we use the following two observations:
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0(c) > Owe can suplf)’?gé,s the distinction between (resp.+yy) in the decomposition
and compensate it with one fact§>r

Second, the value &', (c) (resp.N.°, (c) andN ! (c)) depends for fixed only on
€ (resp.u). a

First note thatN°_ (c(k)) = N9, .., (c(k)) for (k) € {(0,1),(1,0)}. So for

Now we discuss an action éfymg (the permutation group on three letters) defined
in [FLM] and [DGM2] on V7, andVZc in terms of our decompositions. The resulting
group of automorphisms is sometimes calledttiadity group.

Recall from Chapters 11 and 12 of [FLM] and Sects. 7 and 8 of [DGMZ2] that the
triality group is generated by distinct involutiomsand r. Also recall from Sect. 4
thata, ..., ag form a Di-frame in L. A straightforward computation shows that
Owgi—3 = Wai_3, Owa; = wy ando interchangesvy;_» = wg;_g foralli =1, ..., g.
Similarly, 7 interchangesi; 3 = wa; 2 and fixesvs; 1 andwy;. Thus the triality group
is a subgroup of7 defined in (2.2) for bothv;, andf/zc. Itsimage inG/Ge < Symag
is the above described permutation of the elements of thé€/F.

Additionally, the involutiono defines an isomorphism betwebquc andXN/Lc.

Definition 4.11. Following [DMZ], the decomposition polynomialof a FVOAV =
@D mn,,...n. M(ha,...,h,)is defined as

Py(a,b,c) = Z Ak a'bick,
i,5,k

where 4, ; ;. is the number off.-modulesM (h4, . .., h,) in a1, composition series
of V for which the number of coordinates (h, . .., h,) equal to0, 3, i is 4, j, k,
respectively.

The polynomial is homogeneous of degreand, in general, depends on the chosen
Virasoro frame{ws, . .., w, } inside ofV.
The following corollary is an immediate consequence of Theorem 4.10.

Corollary 4.12. Using the symmetrized marked weight enumersttionve: (x, v, z) one
has

Py, (a,b,¢) = smwe:(a®* + 6a°b” + b*, 2c*, 4a®h + 4ab®),
1 4 1
Py (a,b,0)= 5 (a* — 2a%0% +b*) 2 + 5 smwe:(a* + 6a2b? + b*, 2¢*, 4a>b + 4ab®)
Lc
1
+5-272 (@ + )"+ (-2)"*a —1)7) ¢,

PvLc (a7 b7 C) = PV’ZC (a7 b7 C)?

4
2

1
P;Z (a,b,¢) = 7 3(a* — 2a%p* +b7)
C

=

+= smwe-(a* + 6a2b? + b4, 2¢*, 4a%b + 4ab®)

+3.

NpR P

21/ ((a +5)d + (—1)¥8(a — b)d) o,
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Remark 4.13.From Theorem 4.10 we can deduce tﬁgg is a self-dual rational vertex

operator algebra. The proof for the special cas& dbjiven in [D3] works in general
since the Virasoro decompositions were the only information needed.

5. Applications

In this section we discuss some important applications for Theorem 4.10. The simplest
example is for the Hamming codég of length 8. WhenC' is the Golay cod&j,, of
length 24 there is a special marking and we obtain a particular interesting decomposition
of the moonshine modulg® = VZg under 48 Virasoro algebras.
24

Example I. The Hamming codég, the root latticeFg, and the lattice vertex operator
algebraVg,. The Hamming codéfg is the unique self-annihilating doubly-even binary
code of length 8. Its automorphism group is isomorphiA(éL(IFg). The root latticeFs
of the exceptional Lie groups(C) is the unique even unimodular lattice of rank 8. It has
the Weyl grouplV (Es) as its automorphism group. The lattice vertex operator algebra
V&, Whose underlying vector space is the irreducible level 1 highest weight represen-
tation of the affine Kac-Moody aIgebrEél), is a self-dual vertex operator algebra of
rank 8 whose automorphism group is the Lie grdiggC). One can show, under some
additional conditions on the vertex operator algebra, #gtis the unique self-dual
VOA of rank 8 (cf. [H1], Ch. 2).

The uniqueness of the lattidgs implies Eg = Ly, ¥ Ly, andVg, = VLHS =

VZ E VLH8 > V for the vertex operator algebras, since one!@s E VLC in

general (see [DGMl DGMZ2] and the remark after Theorem 4.10).

We will determine up to automorphism all markings for the Hamming code, all
Ds-frames of thekg lattice, and five Virasoro frames insidg;, and describe the cor-
responding decompositions. They are all coming from markings of the Hamming code.

To fix notation we choos§00001111)(00110011)(11000011)(01010101) as a
set of base vectors for the Hamming code.

Theorem 5.1. There are3 orbits of markings for the Hamming codg underAut(Hsg).
Their main properties can be found in the next table. The last column shows the sym-
metrized marked weight enumerator.

orbit  orbit representatives stabilizer  orbit size smyyér, y, z)

a {(1,2),(3,4),(5,6),(7,8)} 23 Symy 7 z* + 62222 + 2% + 8y*

8 {1,2),(3,4),(5,7),(6,8)} 22.Dihg 42 2+ 22222 + 24 + 8xzy? + 4yt
¥ {(1,2),(3,5),(4,7),(6,8)} Symg 56 2+ 24+ 12z2y2 + 294

The proof is an easy counting exercise (see Appendix A).

We remark that every paii,(j) of the eight positions is the component of exactly one
of the seven markings of type Every marking contains 4 pairs, so we coved/= 28
pairs. There ar¢}) = 28 different such pairs on whichut(Hs) transitively acts.

As explained in the last section before Lemma 4.2 in general, every markilg of
determines aD‘l3 sublattice insidd. g, = Eg andEH8 ~ F.

The following theorem shows that all possilile-frames inEg are obtained in this
way.
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Theorem 5.2 (Conway-Sloane [CS2])There are4 orbits of D sublattices inside’s
under the action oV (Eg). Their main properties are shown in the next table. The
column “origin” lists the corresponding (untwisted, resp. twisted lattice) Hamming code
marking andswex (4, B, C) is the symmetrized weight enumerator of the decomposition
codeA = Eg/D8 < (D;/D1)® =~ 7Z8.

orbit  origin stabilizer orbitsize  swa (4, B,C)

Ks a 75. - Symg 135 AB +2842C6 + 7044C* + 28A45C2 + 8 + 128B8

Ky  Ba 27(41)? 9450 A8+ (C8+1242C%(A% + C%) +38A%C4+
64AC(A% + C?)B* + 64B8

Ls 7.8 28.41 113400  A®+ CB+ 4A2C2(A% + C%) + 224%C*+
96AC(A? + C?)B* + 32B8

Og 5 2.AGL(3,2) 259200 A8+ (C8+14A%C* +112AC(A% + C?)B* + 16B8

Proof. It was also explained in the last section that evBRsublattice insideZg defines
aZs-codeA < (DI/Dl)8 = Zﬁ. SinceLy is self-dual and even is self-annihilating

and even as a code ovEy. All self-annihilatingZ4-codes of length 8 are classified

in [CS2], Theorem 2. OnlyCg, Kg, L£g andOg are even (see also [BS]). The order of
Aut(A) and swa (A4, B, C) are also described in [CS2]. To show that these codes arise
from the markings of the Hamming code as in the table we apply Corollary 4.6

The remark after Theorem 5.1 about the Hamming code has an analogue here: every
vector of squared length 4 insidg; is contained in exactly on®;-frame belonging to
the orbit of typefCs since 135 16 = 2160, the number of vectors of squared length 4,
andW (Fs) acts transitively on such vectors. These IZ5sublattices are in bijection
with cosets of Zg in Eg which have coset representatives of norm 4.

Every D;-frame insideFg determines 16 commuting Virasoro vertex operator al-
gebras of ranlégL insideVg, andVg, = Vg,. Altogether, one gets at least five different
systems of commuting Virasoro subVOAs:

Theorem 5.3. Let{ws, . ..,wie} be a Virasoro frame insid®f,. The possible decom-
position polynomials are displayed in the next table. They correspond by the untwisted
or twisted lattice construction to thD;-frames insidells as indicated in the column
origin. Furthermore, the first four cases belong to four distinct orbits of Virasoro frames
under the action of the Lie groupg(C). In the fifth case2, at least thelig-module
structure is unique.
case origin PVE8 (a,b,c)
r Ks 3 [(a+b)1®+(a — b)o] +128c10
T KL Ks  al®+b1+56@402+ a2bl4) + 924 @1264 + a® b12)+
3976 @196° + a®b10) + 6470a8 b8+
(128@"b+ ab’) +896 @5 b° +a° b)) c® + 64c10
U £g, Ky al®+b18+ 24 @402 + a2 b14) + 476 @126% + o b12)+
1960 @19 58 + b b10) + 327048 bB+
(192@" b +ab?) + 1344 65 1% + a®b%) ) B + 3216
® Og, Lg al6+pl6 4+ g (a14 b2 + a2 b14) + 252 @12 v+ a? b12)+
952 @101° + a8 110)1670a8 b8+
(2247 b +ab?) +1568 @2 b° + a®b%) ) B + 1610
Q Og  a®+b10+140 @120 + a? b12) + 448 @100° + 4B b10) + 87048 18+
(2407 b +ab?) + 1680 (° b® + a3 b%)) ® + 810
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Proof. Using Corollary 4.12to comput@y,, (a, b, c) for the different Virasoro subVOAs

Tie coming fromVpg,, and Vi, and a givenD? sublattice inEg one checks that the
polynomials forT", X, ¥, ® and<2 correspond to thé;-frames ofFEg as indicated.

We show that there are no other possibilities for the decomposition polynomial
Py, (a,b, c) and we will see directly that there is a unigdet(Vg,)-orbit of T35 Sub-
VOAs corresponding to each of the case<, ¥ and®.

Assume a vertex operator subalgefitg in Vg, is given. First we determine the
possible decomposition polynomials.

As described in the proof of Theorem 4.1.5 in [HEL,(Z) = (S,T) with S =

(_0110) and7 = ((1) }) acts onC[a, b, c] by

/2 12 1/v2 10 O
p(S)=| 1/2 12 —1/v2|, p(I)=e#/%8[0-1 0
1/v2-1/vV2 0 0 0 ¢2ri/16

via substitution. Sincé/g, is a self-dual VOA of rank 8, the decomposition polyno-
mial must be invariant under the action &(f5) and p(7°®) (cf. proof of Theorem 2.19

or Th. 2.1.2 and Th. 4.1.5 in [H1]). They generate a matrix gr@up (p(S), p(T)*) of

order 384 as can easily be seen with the help of the program Gap [Sgap]. The dimension
of the space of invariant polynomials of degrees the multiplicity of the trivial repre-
sentation in thex™ symmetric power op. This multiplicity is given by the coefficient

of t™ in the expression

1 1
t) = — _
pc) = (o QEZG det(id— gt)

For degree 16 we obtain that the space of invariant polynomials is two dimensional; a
possible base is given b%ES (a,b,c) andP‘S}E8 (a, b, c). The only polynomialsP(a, b, c)
inside this space having positive coefficients and satisfying the necessary conditions
P(1,0,0) = 1 andP(1,1,0) = |C| = 2, 0 < [ < 15 with integrall, are the five
polynomials given in the theorem.

Next we claim that the codé is uniquely determined from its weight enumerator
P(a, b, 0): The weight enumerator of its annihilator cagte is a6 + (2¢ — 2)a8h8 + 16,
with £ = 16— =1,..., 5. Fork = 5 the uniqueness ¢f- and so ot is the uniqueness
of the simplex code (see Theorem C.3). For smadllét can also be seen from a proof
of Theorem C.3.

The codeC contains fork = 1, 2, 3 and 4 the subcodg = {(00), (11)}2. By Corol-
lary 3.3 and the uniqueness statement of Proposition 2.16 the corresponding subVOA
must beV/ps. Recall thal/s, = M (1)@ C{Eg}. The weight one subspacks,) is a Lie
algebra undernl], v] = ugv, which is isomorphic to the Lie algebra of typg and ([/D§)1

is a Cartan subalgebra dff,);. From the construction dfz, = M (1)@ C{Es} we have
a canonical Cartan subalgehVa(1); of (Vg,)1 which is identified withh = C @z Es.
Since all Cartan subalgebras are conjugate under the adjoint action of the Lie group
Eg(C) we can assume thavgf)l = M@A)x < (Ve
It is well-known thatC{Es} = 1® C{Es} = {u € Vg, | hyau =0, h € h, n >
0}, which is the vacuum space for the Heisenberg algghresee Sect. 3). Similarly,
C{D?} = {u € Vps | hyu=0, h € h, n > o}. Thus,C{Df} is a subspace {Ls}.
Note thatC{Eg} andC{D?} are direct sums of weight spaces for the Cartan algebra
h and the corresponding weight lattices are exafgyand D$. This determines &%
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sublattice ofF’s, unique up to the action ¥ (Eg). Thatis, fork = 1, 2, 3, 4 the Virasoro
frames{ws, ..., w1} come from one of the foub,-frames inside&s by the untwisted
lattice-VOA construction.

It remains to show that fot = 5, i.e. in the cas&, the obtained Virasoro decompo-
sition is unique. As stated before the catfe, which is equal tdD by Theorem 2.19, is
the simplex code and gbis the extended Hamming code of length 16. The uniqueness
of the cod&” implies by Theorem 2.3 (4) thé/tEOs is unique as §1g-module. Letl € D
such that 7| = 8. Take an irreducibl@ie-moduleW in V!, Using the action of/©
on W we see that all SUch/(hq, ..., hig) occur inV?!, whereh; = 1—16 if ¢ € I and
h; € {0,3} if i ¢ I and the number of with 2; = 1 is odd. So, there are’ honiso-
morphicTis-modules insidd/ . SinceD has 30 codewords of weight 8, we get at least
30 27 such nonisomorphi@ie-modules. But 30 27 is exactly the coefficient of® in
P(1,1, ¢). This shows that all these modules have multiplicity one. Finally the multi-
plicity of M(l—ls, e 1—16) is 8. Therefore the decomposition in the last case is unique.
(I

Remark 5.4.(1) We expect that also in the fifth case the vertex operator algebra structure
is unique, i.e2 corresponds to a uniqués(C)-orbit of Virasoro frames.

(2) A different proof would follow if the list of the 71 unitary self-dual VOZandi-
datesof rank 24 given by Schellekens [Sch] is complete:
The fusion algebras fab/(0) and the Kac-Moody VOA/p, , are isomorphic and one
can identify the corresponding intertwiner spaces (cf. [MoS], Appendix D). From this,
one can define for every VOX of rank ¢ containing/(0)®%¢ a VOA W of rank 3
containingV,$>°. There are five candidatdd’ on Schellekens list contamm?g’®16
namerWDm, Wpz, »Wpe , Was andWAls They correspond tb, X, ¥, © andQ

in this order. Agaln the unlquenessWTAm is unknown The decomposition WAls as

V®16 module obtained in [Sch] by a computer calculation follows from our analysis
of the case.

The next table summarizes the relation between the markindégfdhe D;-frames
inside Eg and the Virasoro frameguy, . . . ,wis} insideVg, as obtained in the last three
theorems. The arroy” (resp.y\) denotes the untwisted (resp. twisted) construction.
For a detailed explanation of the second row of the table see [H2]. Selideiaian
codesare a generalization of the so callggelV codes oveif'4. Especially, the notation
of amarkingof a Kleinian code is defined in [H2]. Finall§, is the D / Dg-code{0, s}
of length 1, where thég-cosets € Dg/Dg has minimal squared length 2.

type object marking/frame
D / Dg-code: =1 A
VN
Kleinian codes: € a b
VN VN
binary codes: Hg «a Jé] o'
VN 7N\ VN

lattices: Eg Kg K Lg Og

7N\ N \ VN VN
VOAs: Veg | T ) v ®

Example . The Golay codg., the Leech lattice\, and the moonshine modul&’
The moonshine modulE? is theZ,-orbifold vertex operator algebra ®f, associated
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to the Leech lattice\ which is itself the twisted latticd g,, coming from the Golay
codeGyq (cf. [B, FLM]). That is, V! = Vi, .
24

To describe Virasoro decompositions of the moonshine module coming from mark-
ings of the Golay code, we must study these markings first. For the decomposition
polynomial Py« (a, b, ¢) only, it is enough to compute the coefficiemts, ; of the sym-
metrized marked weight enumerator. The possible valueldgr(and so foriVs,) for
the Golay code were computed by Conder and McKay in [CM]. They found 90 possi-
bilities. It is not clear if the numberd/;»;, which are also needed, can be determined
from theWg ; alone.

The markings for the Golay code are classified by the double c@3étSym;»
\Symaa/Mas. (The first subgroup is the stabilizer of a partition of the 24-set into 2-sets;
the second id\/,4, the automorphism group @f,4.) In fact there are 1858 different
classes of markings [Be].

The binary linear cod€ < F38 as defined in Sect. 2 depends also on the chosen
marking. Since for the moonshine module we have Hfm: 0 the minimal weight of
C is at least four. The following easy result gives an restriction on the dimension of

Lemma 5.5. For every frame ofl8 Virasoro vertex operator algebras of rar%«inside
the moonshine module the dimensioi€ @ smaller than or equal td1.

Proof. Deleting one coordinate of the codewords @fdimensional cod€ of minimal

weight 4 leads to a code of length 47, dimensgi@md minimal weight at least 3. Minimal
weight 3 implies that the spheres of radius one around the codewords of this code are all
disjoint, i.e. we have the sphere packing conditibn@ +47)< 24’ ork < 41. O

There is indeed a special markivig*, whereC meets this bound. A good way to
define it, is to describe the Golay code itself by a “double twist” construction. Starting
from the glue code=; of the Niemeier lattice with root sublattidég one gets first the
hexacodeHg, a code over the Kleinian fourgroup, and from the hexacode one obtains
the Golay code,4:

As a code oveD§/Dg = Zy x Zy = {0,1,s,s} (where 1,s, s are theDg-cosets
represented by {01), ((3)7, £3), respectively) one has (cf. [V])

=3 = {(000), (s11), (1s1), (11s), (055), (505), (550), (s55)} .

The hexacode as a code oM@t /Dy = Z x Zy = {0, a,b, c} (wherea = [(0, 0,0, 1)],
b=1[(3,3. % Hlandc =[(3, 3, 3, —2)]) can be defined by
He =55 = (23 + (52)0) U (23 + (630 + (bOboca)) .

Here  is the map induced from: Dg/Dg — (D} /Dg)?, 0+ 00, 1+ a0, s — bb
ands — cb, and ¢%)o is the subcode of the Kleinian codg := {(00), (aa)}"™ of
length 2 consisting of codewords of weights divisible by 4.

In a similar way one gets

Gos = He = (ﬁe + (di)o) U (ﬁs + (d)o + (1000 1000. .. 1000 0111> :

where ~ is the map induced from : D; /D, — (D3/D2)? = F4, 0 — 0000,
a — 1100,b — 1010,c — 0110, and {})o is the subcode of the binary codg :=
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{(0000) (1111)}" of length 4 consisting of codewords of weights divisible by 8. This
is the usual MOG or hexacode construction of the Golay code and is a special case of
the twisted construction of binary codes from Kleinian codes (cf. [H2], last section).

In this description of the Golay code we l&t* = {(1,2), ..., (47,48)} the special
marking mentioned above. The marking used in [DMZ and H1] arose from the way the
Golay code was written there as a cyclic code.

The symmetrized marked weight enumerator for the markiigof the Golay code
is easily computed (using for example the above description) and one gets

smwe;,, (z, y, 2) = 222+ 212 + 39 (¢ 28 + 28 2%) + 4825 2° (5.1)
+ (96 @5 2% + 22 2%) + 1922% 24) vt
+ (576 (2° 2 + 2 2°) + 192023 23) y®
+ (48 @* + 2%) + 28827 2%) B + 128y™2.
Another property of the marking1* is, that it has the largest stabilizer insidi,

among all the different markings, namel$. BSym, x Syms] of order 2032 = 9216
(see Appendix B), as was noted in [CM].

Remark 5.6.Assume that a marking is represented by the standard parfi(io®2),
(3,4),...,(23,24)}. The markings of the Golay code that arise from markings of the
hexacode in the sense of Kleinian codes (cf. end of last subsection) are exactly the ones
for which the codedj), is a subcode of3,, a code equivalent tG,4.

From Lemma 4.2, we get the decomposition of the Leech latticg Lg,, under
the D;-frame belonging to the marking1*. For the symmetrized weight enumerator

of the corresponding code < Z3* (see (4.2)). Corollary 4.2 gives:

swex(4, B,C) = A%+ C** + 23439 (416 C8 + AB C16) + 4032 (4° C18 + A8 CH)
+378 (A* C?0 + A%0C*) + 60480 (410 C1* + A14 C10) + 85484412 C1?
+(3072 (4% C* + A C?) + 43008 @2 C* + A% C12)
+193536 410 C® + A8 C19 + 30720048 C8) B8
+(86016 (411 C + A CM) + 1576960 4° C° + 4 C°)
+5677056 (47 C° + A°CT)) B'?
+ (6144 (45 +C®) + 172032 4° C? + A% CF) + 4300804 C*) B®
+262144B%,

As stated before, the markings for the Golay code are classified by the double cosets
25%.Syma2\Symoa/Maa.

The classification of allD;-frames in the Leech lattice would seem to be more
complicated. From Eq. (4.2), we see that in the case wherBikeame comes from a
marking of the Golay code the correspondifigcodel” contains the subcoded?)o.

The following result gives the converse. Recall thatFoelidean weighof a codeword
is the minimal Euclidean squared norm of a coset representative;)?{

Lemma 5.7. Every self-annihilating evefi,-code A of length24 and minimal Eu-
clidean weight containing the subcodg32), can be obtained from a marking of the
Golay code as in Eq. (4.2).
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Proof. Let K = @ Z a; alattice of typed34in R?4, i.e. theu; are pairwise orthogonal
vectors of squared length 2. Set= @2 Zb;, With by 1 = ap_1 + ap andby =
azi—1 — ag fori =1,..., 12, i.e.L is a lattice of typeD?*. Finally let M = 2K.
On K, the groupZ3* Sym.4 acts by monomial matrices with entriesl with respect
to the basis{a; | ¢ = 1,...,24}. The latticeL is fixed at least by the group of sign
changes. Clearly* /K = 73% L*/L = 72% M*/M = 72 with the induced action
of Z3* Symos onZ3* andZ3* and ofZ3* on K.

The codeA < L*/L determines a self-dual even lattiseof rank 24 and minimal
length 4. (This must be the Leech lattice since it is the unique self-dual even rank 24
lattice of minimal length 4.)

To prove the lemma we have to find a doubly-even self-annihilating binary code
Gy, < K*/K equivalent to the Golay codg;, such thatg,, determinesA = T as
in (4.2). (Instead of changing the marking = {(1, 2), .. ., (23, 24)}, the choice which
is determined by the relation betwe&hand L, we are permuting the code; these
procedures are equivalent.)

The lattice A defines a self-annihilating eveéfg-codeQ = A/M < M*/M of
minimal Euclidean weight 4. If we start with our standard copy of the Golay ¢agle
we get a latticeA, aZ4-codeA C L*/L, and aZg-codeQ2 C M* /M.

Since £32) is contained im\, we see easily that the cogecontains al(3}) vectors
of type (#0%?). As a main step in the uniqueness proofroin [Co], it was shown that
such a code is unique up to the actiorZgf: Symoq, i.e. we have a in this group such

thatr(A)/M = £. The copyGy, = m(G2a) Of the Golay code gives the codein L*/L.
O

Finally we come to the Virasoro decomposition of the moonshine mddie XN/Z

g
The following theorem gives a precise description of the cadasdD as defined
in Sect. 2.

Theorem 5.8. The code associated to the special marking* of the Golay code has
length48 and dimensiod1. Its annihilator codeC* = {d € F38 | (d,c) = Oforall ¢ €
C} is of dimensiory and equals the codP which has generator matrix

1111111111211111 0000000000000000 0OO000000000P000
0000000000000000 11111111111121111 0000000000009000
0000000000000000 0000000000000000 11111111211113111
0000000011111111 0000000011111111 0000000011113111
0000111100001111 0000111100001111 0000111100001111
0011001100110011 0011001100110011 001100110011¢011
0101010101010101 0101010101010101 0101010101010101

Proof. Recall the description of the Golay code given above. The cbidesdg,, are
unions of two parts. The first part we call the untwisted part and the second is called the
twisted part.

Firstwe show thatthe above matrix is a parity check matriféirom Theorem 4.10
we see that a codeword= Go4 gives us an irreduciblé,g-moduleM (hy, . . . , hag) With
all h; different froml—l6 if and only if ¢(k) € {(0,0),(1,1)} for all k. The codewords
with this property are exactly the ones that are coming from the codeword €08Q)
This gives the first three rows of the parity check matrix. The next two rows correspond
to the selection of the subcode$) C 43 and @5)o C dS. Let By be the FVOA

(M(0,0) & M(3, 3)™ with binary codeC(By) = {(0,0), (1, 1)}" of length 2. The
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SubVOA (B3)o is the FVOA belonging to the subcode®({535') consisting of codewords

of weights divisible by 4 (cf. Proposition 2.16). Then the last two rows of the parity

check matrix correspond to the selection of the subcoﬂ&(( - 2%2 andC((B3%)) C

C(B2%: these are the conditiof§ ¢, = +and][] u. = +. There are no further conditions.
To determineD note first that the inclusio® < C* is Proposition 2.14 (3). To see

C+ < D observe that the codewords11), (1s1), (11s)} C =5 correspond to the first

three lines of the generator matrix, the twisted parts{gfandG,,4 to the next two, and

two of the last three summands BGf = KN/ZQ in Theorem 4.10 correspond to the last
24
two lines of the generator matrix.

Alternatively, one can comput® by using the self-duality of the moonshine
VOA [D3] and apply Theorem 2.19. O

The codeC is also the lexicographic code of length 48 and minimal weight 4 (see
[CS3], Th. 6). As mentioned there, itis a “shortened extended Hamming code" of length
64 in the following sense: If we extend the generator matri®ddy the block

1111111111112117
11111111111121211
111111111111111
000000001111111
000011110000111
001100110011001
010101010101010

)

we obtain a parity check matrix for the extended Hamming ddgleof length 64. The
vectorse € FS*with 0's in the last 16 coordinates belongf&, if and only if the vector
of the first 48 coordinates belongsdo

The automorphism group of this code is of tygé[2 L (4, 2) x Syms] and has order
495452160 (see Appendix C for a proof).

For future references we give the decomposition polynomial as obtained from Corol-
lary 4.12 in full. Remember that, b andc count the modules of conformal Weight§),

resp.:= (see Definition 4.11).

Corollary 5.9. The complete decomposition polynomial for the moonshine module be-
longing to the special marking1* is given by

P2 (a,b,¢) = a®® + b8+ 3300 @* b* + o* b*) + 189504 (2 1° + a® 1*?)
+5907810¢*° 18 + a® b*%) + 102156864438 b1 + 1° %)
+1088684372(%° b2 + a2 %) + 75359961603 b4 + a4 b>%)
+3523258148742% b8 + 010 532) + 114215080192,° b8 + 018 p*0)
+2614969133528 %0 + 0?0 b%®) + 427898196864L° v?? + 1?2 b2°)
+503871835740%4 p%*

+ (6144 @*°0% + a? b*°) + 430080 62 b* + a° v?®)
+10881024¢2°b° + a® b%°) + 126197760¢>* b + a® v?%)
+7741992964%2 b1° + a0 b??) + 2709417984¢*° b2 + a2 b?°)
+565736448048 b'* + o4 5'®) + 72128102400 b1°) (1°

+ (184320 6% b + a b*%) + 155443207 b* + o> b**)
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+3264307204*°b° + a° b1%) + 265807872041 b” + o’ b17)
+100416307204*°5° + a” b'°) + 191703859204*3 b + a1 %))

+ (3072 @'%) + b'%) + 368640 ¢'* b* + a® b**)
+5591040 ¢*? b* + a* b*?) + 24600576 4*°b° + a® b'°)
+39536640¢° %)) 3%+ 131072

It was shown in Chapter 4 of [H1] that for a self-dual vertex operator algébtae
decomposition polynomial belongs to the ri@u, b, c] of invariants for some X 3-

matrix groupG of order 1152. The space of invariant homogeneous polynomials of
degree 48 is 7-dimensional and it can be checked that the above polynomial indeed
belongs to this space by using the explicit base given in [H1].

We expect that the analog of Remark 5.6 and Lemma 5.7 holds: Every self-dual
FVOA of central charge 24 and minimal weight 2 (i.e. difn = 0) containing the
subVOA (854)0 can be obtained from B;-frame of the Leech lattice as in the second
equation of Theorem 4.7.

Appendix
A. Orbits on Markings of a Hamming Code

Notation A.1.Let H be the unique binary code with parametersi8&l], the Hamming
code. We take it to be the span of (00001111), (00110011), (01010101), (11111111)
Let A := Aut(H) = AGL(3,2) (see Theorem C.3).

A markingis a partition of the index set into 2-sets.

The number of markings i§) (3) (5) (5) /4! = 2520/24 = 105. We show that there
are three orbits ofl on the set of markings and determine the stabilizers. This group is
triply but not quadruply transitive on the eight indices.

Notation A.2.It helps to interpret the index set & =~ Ff with the obvious action

of A. So, 2-sets correspond to affine subspaces of dimension 1. Take a linear subspace
U < V ofdimension 1. Lef" be the translation subgroup dfand letL := Stab 4(0) =
GL(3,2). Let M be a markingS := Stab.(M). By double transitivity, we may assume

U € M. Let R < T be the group of order 2 corresponding.fo

Casea. We assume that all four parts of the markihfare cosets of/. ThenS =
TStabr,(U) = 23: Symya, a group of index 7 im.

CaseS. We assume that exactly two parts of the marking are cosétssayU andiV.
Let P and@ be the other two parts. TheXi := U U W is a dimension 2 linear subspace
of V.andY := P U Q is its complement. Botl® and@ are cosets of a common linear
1-dimensional subspadé&" # U of X.

Let R* be the fours group ifi' which corresponds t&; R* > R. Then,R* stabilizes
both{U, W} and{P, @}, whenceR* < S;infact, R* =T N S.

Since A acts transitively on pairs of parallel affine 1-spacgscts transitively on
{X,Y};letSp := Stabs(X) = Stabs(Y). ThenSy has index 2 ir6 and acts transitively
on{U, W}, let.S; be the common stabilizer, index 2 f. Also, Sy acts transitively on
{P, @} letS, be the common stabilizer, index 243. ThenS; # .S, (sinceR stabilizes
U andW but interchange® and®), andS, := S1N Sz <5 andS/Ss = Dihg, a Sylow
2-group ofSymy (via its action on the marking).
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It suffices to show thdtS,| = 4. Clearly, elements &f4 have square 1. The involution
which is trivial on X and interchanges the points within eachibnd(Q is in L. The
same idea, witl/, W replaced byP, @ gives an involution which is in a conjugate of
L,sayinL9, whereg € Ainterchanges{ andY. Since these involutions are different,
|S4| > 3.1f 1 #u € S4 has a fixed point, say € V, it may be interpreted as a linear
transformation by taking as the origin; since is an involution, its fixed point subspace
has dimension 2, and is a union of memberd/hfso is one ofX or Y'; this means. is
one of the two involutions already defined. Therefdfa| < 4, whence equality.

Case~. We assume that all parts of the marking besilieare not cosets ob. It
follows thatS N T = 1, soS embeds inL. Clearly, 7 does not dividgs|, so.S embeds

as a proper subgroup of order dividing 24. Thus, the orbit here has length divisible by
8-7 = 56. By our above count of the number of markings, this must be the exact number.
We conclude thab = Symyg, since the only subgroups of odd indexd.(3, 2) are
parabolic subgroups [Ca], 8.3.2.

B. Automorphisms of a Marked Golay Code

We settle the stabilizer if,4 of the special marking1* we obtained in our description
of the Golay code and identif1* with the exceptional marking of Blackburn, Conder
and McKay [CM] with parameters (4876 96, 0, 39).

As noted in Sect. 5 our construction @fis equivalent to the usual hexacode con-
struction, as in [G2] (5.25). The markinlg(* in this notation is gotten from the usual
sextet partition of the 24-sé1

€& rO
e & o o
o o o o
e & o o
e o o o
o o o o
e o o o

by intersecting the columns with the unioRswg U Row; and Row,, U Rowg:

0O o e o o o o
1

w [ ] L] [ ] [ ] [ ] L]

w o L] ° ° [ ] L]

The set of twelve resulting 2-sets fouvi *.

In [G2], the action of the associated sextet groupSpiis described. The group
has shapéf := 263 - Syme and may be thought of &%: Aut*(H), the affine hexacode
group (H denotes the hexacode) (5.25). Asin[G2], Chapters 5 and 6, we use the notation
K; for the 4-set inQ occurring as thé™ column above andg;; . denotes the union
K,UK;U---

The obvious subgroup @ which preserves\ is H : P, whereP = S x (t) ¥
Symy x 2, whereS is generated by the groups of permutations (1) the four-group of
row-respecting column permutations which interchange columns within evenly many
coordinate block€(1,, K34, K56, (2) the copy ofSym3 obtained by permuting the three
coordinate blocks (respecting the order within the blocks); (3) the permutati@iven
by the following diagram
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> > >

KX X
[G2] (5.38), UP2.

The corresponding subgroufym, x 2 of Symg is maximal (since it is the sta-
bilizer of a 2-set in a sextuply transitive action). Since the “scalar” transformation
UP9 (5.38) [G2] (fixes top row elementwise, cycles rows 2, 3, 4 downward)

U A A
does not stabilizeM, it follows thatH : P is the stabilizer ofM in H.
Notation B.1. R := Stabg(M), G := Mp,.

The next step is to determine we know thatR N H = H: P.

We take a clue from the symmetrized marked weight enumerator g{mwg z) of
the Golay code as given in (5.1) and see that the parameters in the sense of [CM] are
(48,576,96, 0, 39). The next result is an exercise.

Lemma B.2. (i) The octads which contribute to contribute 49 = 48 are those with
even parity and which are labeled by a hexacode word of the {00nxxx), where
z = w or w and where the zeroes occur in any of the three coordinate blocks; these
octads are unions d-sets which are subsets of columns labeled by

(i) The octads which contribute to contribute ¢p = 39 have even parity and are
one of K;; (15 of these) or are octads labeled by hexacode w¢@dd111) with the
zeroes occurring in any of the three coordinate blocks; these octads are unions of parts
of M which occur in columns labeled iy(24 such octads).

Clearly, R permutes the sets of octads (i) and (ii).

Lemma B.3. The orbits ofH : P on X, the set of octads in (ii), are the following:

(@) K12, Kas, Ksg (length 3);
(b) K;;, forall {ij} # {12}, {34}, {56} (length12);
(c) octads labeled by son{@01111)(length24).

Theorem B.4. R is a subgroup of index 7 in the stabilizer of the trio (a), whence
|[R: RN H|=3andR ¥ 25:[Sym4 x Syma).

Proof. We consider the action af on X. The octads inX which have only a 0- or a
4-set as intersection with all membersXfare the three in (a). S& preserves this trio
and so is in the trio group], of the form 2[GL(3,2) x Syms]. The groupH : P is

a subgroup of/ of index 21. We consider the possibility that 7 dividéd. Letg € R

be an element of order 7. Thenfixes at least 1 of the remaining 36 membersXof

An element of order 7 irG fixes exactly three octads and clearly these are just the
octads of our trio (a), a contradiction. SB,has order 3 or 21032, We eliminate the
former by exhibiting a permutation i® \ H; UP13 from (5.38) [G2] does the job.

111111
ANV O
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Finally we can identify our marking1* with the one in [CM]. This is not completely
obvious since the labelings chosen in [CM] are different from the standard ones, e.g. in
[Atlas] or [G2].

There are|G|/|R| = 26565 markings equivalent td1*, but this is exactly the
number of markings obtained in [CM] with parameters, &85, 96, 0, 39), i.e. there is
only one orbit of markings with these parameters.

C. Automorphism Group of Certain CodesC and D of length 3. 2¢

We are studying binary codés< FS, where|Q| = 3- 2¢ andD := C* is spanned by
thed + 3 rows of the matrix

1111... ... 1111 000Q.. ... 0000 000Q.. ... 0000
0000... ... 0000 1111.. ... 1111 o00Q.. ... 0000
0000... ... 0000 000Q.. ... 0000 1111.. ... 1111
A o= | 00...0011...11 00...0011...11 00...0011...11

0011......0011 0011 .....0011 0011 .....0011
0101... ... 0101 0101 .. ...0101 0101.. ...0101

Our problem is to find?" ;= Aut(C) = Aut(D) < Symg.

Notation C.1.We partition2 into three coordinate blocks; := {1,2,...,2%}, '3 :=
{2¢+1,...,2-24}andl' :={2- 2% +1,...,3- 2%},

Here is our main result; it was referred to after Theorem 5.8{ feid.

Theorem C.2. F ¥ 23[GL(d,2) x Syms], where the2>! may be interpreted as a
tensor product of @ and3 dimensional module for the factors 6f.(d, 2) x Syms.

The two main parts of the proof consist of showing thapreserves the partition
{T';} and the description the automorphism groups of the related lefigthdes.

Theorem C.3. (i) The codeJ spanned by thé vectors

0000...0000 1111 ..1111
0000...11110000..1111

0011...0011 0011..0011
0101...0101 0101..0101

has automorphism grou@L(d, 2).

(i) The code spanned h¥and the all ones vector has automorphism graupL(d, 2);
the normal translation subgroup is the group of automorphisms which are trivial
modulo the span of the all ones vector.

(i) There is a unique binary code of leng®#f and dimensionl in which all nonzero
weights are2?—1. It is equivalent to the code of (i).

Proof. See [AK], Chapter 5, for example. O
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Notation C.4.Let R be the span of the first three rows bf and letS be the span of

the lastd. Note that the projections & or D to anyT'; block is a code as described by
(C.3). We observe that every elementhas cardinality 0,2, 2- 27 or 3- 2¢ and that
every element oD \ R has cardinality 32¢~1. To check this, just verify it for elements

of S, a triply thickened [G2] (3.19) extended Hamming code, and note that the effect of
adding an element 0® to an element € D is, for eachi, to take the™ projection of

d to itself or its complement with respectIy. So, F fixesR.

Lemma C.5. F' := Aut(D) permutes the partitiol;, i = 1, 2, 3, asSyms.

Proof. Since F' preservesk, we deduce that’ preserves the partition by examining
the three minimal weight elements®f On the other hand, any blockwise permutation
fixes the set of rows of/ (permutes the first three, fixes the rest). O

Notation C.6.Let H be the subgroup of’ which fixes each’;; the codeS (C.4) is a
triply thickened version of the-dimensional length 2code associated G L(d, 2), as
in (C.3). Itis clear that the natural action of a gratip= G L(d, 2) x Syms (first factor
F3 acting diagonally and the secoid as block permutations) is iff and stabilizesS.

Note that the second factor acts trivially 8n

Proof of Theorem C.Z here is a grouff; acting as translations dr, identified withF4
asin (C.3), andtrivially oii';, for j # ¢; we choose these identifications to be compatible
with the action ofF;. The direct produci” :=T7 x T, x Tzisin F.

Since H fixes R, we consider the action df on D/R. The kernel of this action
corresponds naturally to a subgrofpm(D/R, R), order 2¢, and may be interpreted
as an element f as in the above paragraph. Sirite< H and|T| = 229, this kernel
isT. SinceFy; < H inducesGL(D/R)onD/R, H =TF, andF = TF. O

D. Lifting Minus the Identity

Definition D.1. Let L be an even integral lattice. ¥t of —1 is an automorphism of
the lattice VOAV,, such that for allr € L, there is a scalar, so thatf: e” — c,e 7.
(Here,e” meansl ® e”, wherel is the constant polynomial.)

As usual, there is an epsilon function in the description of the lattice QA
e : L x L — C*, which is bimultiplicative and satisfiegz, y)e(z, y) ™t = (—1)®¥),

Lemma D.2. Letx, y € L. For some integek and scalare, efe? = ce**V (a;b means
the value of the:™ binary composition om, b). In fact, we takeé: = —1 — (z,y) and
¢ = ¢(z,y), which is always nonzero.

Proof. This is obvious from the form of the vertex operator representing [

Lemma D.3. If the setS = —S spansL, then the set of ali*, for x € S, generates the
associated lattice VOAT,.

Proof. By Lemma D.2, we may assume tifat L. LetV’ be the subVOA so generated.
Note that for anyw € L, a(—1) = e, , o6~ ThusV’ contains alle® and a(—1)
for o € S. Itis clear thatl;, is irreducible under the component operator§'¢¢“, z)
andY (a(—1), 2) for a € S, henceV’ contains allp ® ¢*, wherep is a polynomial
expression inx(n), for n < 0. It follows immediately that”’ = V. O



446 C. Dong, R. L. Griess Jr., G.gHn

Notation D.4. Let M be the set of lifts of-1 andT" the rank¢ torus of automorphisms
of V7, associated td.. There is an identificatioff” = C‘/L*sothatt =v+L* €T
sends:?® to 27 iv:z) e

Lemma D.5. Let A be an abelian groupiu) be a group of order 2 which acts ofby
lettingu invert every element of. SetB := A(u), the semidirect product. Every element
of the cosetdw is an involution, and two such involutiors and du are conjugate in
B (equivalently, by an element g iff cd—? is the square of an element df This last
condition follows ifA is divisible, e.g. a torus.

Theorem D.6. M forms an orbit under conjugation B in Aut(V7).

Proof. Let z4, ..., z, form a basis ofL. Given an element of/, we may compose it
with an element € T to assume it satisfies™: — T, for all 7. The conditions
et s T characterize an automorphism, since thesei@ments generate the VOA,
by Lemma D.3. This composition is the same as conjugation®dy” such thats? = r
orr~. So, we are done if we prove thet — e~ for all z € L. But this is clear from
Lemma D.2 since(—x, —y) = e(z, y). O

Corollary D.7. Given two lifts of~1 on 'V, their fixed point subVOAs are isomorphic.
In fact, these subVOAs are in the same orbiflaf (V).
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