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Abstract: In the first part of this paper, given a smooth family of Dirac-type operators
on an odd-dimensional closed manifold, we construct an abelian gerbe-with-connection
whose curvature is the three-form component of the Atiyah-Singer families index the-
orem. In the second part of the paper, given a smooth family of Dirac-type operators
whose index lies in the subspace K (B) of the reduced K-theory of the parametrizing
space, we construct a set of Dehgne cohomology classes of degree i whose curvatures
are the i-form component of the Atiyah-Singer families index theorem.

1. Introduction

To a family of d-type operators on a Hermitian vector bundle over a Riemann sur-
face, Quillen associated the so-called determinant line bundle [24], a line bundle on the
parametrizing space with a natural connection. He also computed the curvature of the
connection. Quillen’s construction was extended by Bismut and Freed to the setting of a
family of Dirac-type operators on an even-dimensional closed manifold [4, Chapter 9.7],
[7]. The curvature of the connection is the two-form component of the Atiyah-Singer
families index theorem. A remarkable feature of the determinant line bundle is that it
is well-defined and smooth even though the kernels and cokernels of the operators may
not form vector bundles on the parametrizing space, due to jumps in their dimensions.

In the first part of this paper we perform an analogous construction for a family of
Dirac-type operators on an odd-dimensional manifold. The determinant line bundle is
replaced by an abelian gerbe-with-connection. The “curvature” of the connection is the
degree-3 component of the local families index theorem, a 3-form on the parametrizing
space B.

In the second part of the paper we give a partial extension to the case of degree
i > 3. Recall that the equivalence classes of line bundles with connection on B
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are classified by the 2-dimensional Deligne cohomology of B [10, Theorem 2.2.11].
Similarly, the equivalence classes of C*-gerbes-with-connection on B are classified by
the 3-dimensional Deligne cohomology of B [10, Theorem 5.3.11]. Hence fori > 3,
in order to realize the degree-i component of the local families index theorem as the
“curvature” of something, it is natural to look for an i-dimensional Deligne cohomology
class.

There is an apparent integrality obstruction to doing so, as when i > 3 the degree-i
component of the Chern character of the index class generally does not lie in the image
of the map H(B; Z) — H!(B; Q). Hence we make an integrality assumption. Recall
that there is a filtration K*(B) = K{(B) D Kj(B) D ... of the K-theory of B, where
K¥(B) consists of the elements x of K*(B) with the property that for any finite simplicial
complex Y of dimension less than i and any continuous map f : ¥ — B, f*x = 0
[1, Sect. 2]. There is a similar filtration of the reduced K-theory K* (B). Taking i to have
the parity of the dimension of the manifold on which the Dirac operator acts, it turns
out that we want to assume that the image of the index of the family, under the map
K*(B) — ﬁ*(B), lies in IN(;-k(B). Under this assumption, we construct a set of explicit
degree-i Deligne cohomology classes on B which only depend on the geometrical input
and whose “curvatures” are the degree-i component of the local families index theorem.
If B is compact then the set is countable. (Note that if i > 0 and dim(B) > O then
the degree-i Deligne cohomology of B is infinite-dimensional.) Roughly speaking, the
different Deligne cohomology classes in the set correspond to different trivializations
of the index bundle on the (i — 2)-skeleton of a triangulation of B.

As a special case, if B is (i — 2)-connected then the image of the index of the family
automatically lies in K:-F(B ), and we construct a unique Deligne cohomology class.

In the rest of this introduction, we give an explicit statement of the gerbe result. We
defer the statement of the Deligne cohomology results to Sect. 4 (see Theorem 2).

Information about gerbes is in the book of Brylinski [10] and the paper of Breen-
Messing [9]. We will use a concrete approach to abelian gerbes described by Hitchin
[19]. Given a manifold B with a covering {U,}yc; by open subsets, one obtains a C*-
gerbe from
1. A line bundle Lyg on each nonempty intersection Uy N Ug,

2. Anisomorphism Lyg = LE; and
3. A nowhere-zero section Oy, of Lag ® Lp, ® Lo on each nonempty intersection
Uy NUg N U, such that

4. 0pys 90{_]/15 Oups 9;/31), = 1 on each nonempty intersection U, N Ug N U, N Us.

Given another choice (foﬂ, 9(;/3)/>, if there are line bundles {Ly}qer on the Uy’s
such that foﬁ ~ L;l ® Log ® Lg, and %ﬁy is related to 6, in the obvious way, then
(L"Iﬂ, 6?(;5?) is isomorphic to (La/g, 0a,3y). Taking a direct limit over open coverings,
one obtains the isomorphism classes of gerbes on B. They are classified by H3(B; Z).

A unitary connection on the gerbe (La/g, Ga,g),) is given by the additional data of
1. A unitary connection Vyg on each Lyg and
2. A real 2-form F, € Qz(Ua) on each U,
such that
1. Veg = Vg !

Bo>
2. B4py 1s covariantly-constant with respect to Vo ® Vg, ® V4 and
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3. On each nonempty intersection Uy N Ug, we have Fg — Fy = c¢1(Vgp), the first
Chern form of the connection Vg.

Suppose that L}, = L;' ® Leyg ® Lg has connection (V‘;ﬁ, Fo/l) If there are
unitary connections V,, on L, such that
1.Vig = V;' ® Vop ® Vg and
2.F, = Fy +c1(Vy)
then (V&ﬁ, Fé) and (Vqg, Fy) are equivalent .

The curvature of the connection, a globally-defined 3-form on B, is given on U, by
dFy.

Now let# : M — B be a smooth fiber bundle with closed odd-dimensional fiber
Z.Let TZ = Ker(dm) denote the vertical tangent bundle, a tangent bundle on M. We
assume that 7 Z has a spin structure. Let SZ be the corresponding spinor bundle. Let
gT7 be a vertical Riemannian metric. Let V be a complex vector bundle on M with
Hermitian metric 4" and compatible Hermitian connection V. Put E = SZ ® V.
There is an ensuing family Do = {(Do)p}»ep of Dirac-type operators, with (Dg)p, acting

on C*® (Zb; E|Zb)'

Let T M be a horizontal distribution on M. We now describe a gerbe on B. We first
choose an open covering {Uy }4 s of B with the property that there are functions {/y }yers
in C°(R) sothat Dy, = Do + hy(Dy) is everywhere invertible on U, . It is easy to
see that such {Uy }oes and {hq}qer exist. If Uy N Ug # 0, then the eigenvalues of the

operators % - % over U,NUpg are 0,2 and —2. Let E_ | be an orthogonal projection

onto the eigenspace with eigenvalue 2 and let E4_ be an orthogonal projection onto
the eigenspace with eigenvalue —2. (The notation for E__ is meant to indicate that on
Im(E_), Dg is positive and Dy, is negative.) Then the images of E_ and E_ are
finite-dimensional vector bundles on U, N Ug. Put

Lo = A" (Im(E—_y)) ® (A" (Im(E1-)) " . (1.1)

If Uy NUg N'U, # 0 then there is a canonical nowhere-zero section Oy, of Ly ®
Lg, ® Ly (see (3.53)).

The line bundle Lyg inherits a unitary connection Vg from the projected connec-
tions on Im(E_;) and Im(E4_). We take Fy, to be the 2-form component of a slight
generalization of the Bismut-Cheeger eta-form (see [6, Def. 4.93] and (3.19) below).
Usually in index theory the eta-form is most naturally considered to be defined up to
exact forms, but we will need the explicit 2-form component.

Theorem 1. The data (La/g, Bupys Vag, Fa) define a gerbe-with-connection on B whose

curvature is
R 3
(/ A (RTZ/zm') A ch (FV/Zm')> c Q3 (B). (1.2)
A

A different choice of {Uy}uc1 and {hy}aer gives an equivalent gerbe-with-connection.

Let us give a brief historical discussion of the relation between gerbes and index
theory. This goes back to the index interpretation of gauge anomalies. Recall that from
the Lagrangian viewpoint, the nonabelian gauge anomaly arises from the possible to-
pological nontriviality of the determinant line bundle on the space of connections mod-
ulo gauge transformations [3]. From the Hamiltonian viewpoint, this same anomaly
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becomes a 3-dimensional cohomology class on the space of connections modulo gauge
transformations, namely the one that comes from the families index theorem. In [17],
Faddeev constructs a 2-cocycle on the gauge group which transgresses this 3-dimension-
al cohomology class. He interprets the cocycle as an obstruction to satisfying Gauss’
law. In [23, p. 200] Pressley and Segal note that projective Hilbert bundles on B are
classified by H3(B; Z), and they use this to view the gauge anomaly as an obstruction to
the gauge-invariant construction of fermionic Fock spaces. Gerbes (without connection)
were brought into the picture by Carey-Mickelsson-Murray [11], Carey-Murray [12]
and Ekstrand-Mickelsson [16].

Richard Melrose informs me that he and collaborators are working on related ques-
tions from a different viewpoint. I thank Richard, Ulrich Bunke, Dan Freed, Paolo Piazza,
Stephan Stolz and Peter Teichner for discussions. I thank MSRI for its hospitality while
this research was performed.

2. Conventions

As for conventions, if V is a Hermitian vector bundle on B with connection VV and
curvature FV' = (VV)? then we write ch(FV) = Tr (e_ FV) e Q" (B). With

this convention, ch(FV/Zm') = Tr (e_ FV/Z’”) is a closed form whose de Rham

cohomology class lies in the image of H*(B; Q) — H*(B; R). We write ¢(V") =
— = Tr(FY) € Q(B).
If V is a Z,-graded vector bundle on B with a connection V" that preserves the
Z,-grading, and with curvature FV = (VV)?, then we write ch(F") = Try (e’ Fv) €

Qever(B). Again, ch(FY /2mi) = Try ( - FV/Z’”) is a closed form whose de Rham

cohomology class lies in the image of H*(B; Q) — H*(B; R). We write ¢; (V") =

— = Tr(FY) € QX(B).

If g78 is a Riemannian metric on_B with curvature 2-form RTB then we define
A(RTB) e O (B) similarly, so that A(R B /2mi) is a de Rham representative of the
usual A-class in rational cohomology.

Let®m : M — B be a smooth fiber bundle as in the introduction, with fiber Z.
Let T € Q%(M; T Z) denote the curvature of the horizontal distribution, a 7 Z-valued
horizontal 2-form on M. Let ¢(T') denote Clifford multiplication by 7.

Let 7, E be the infinite-dimensional vector bundle on B whose fiber over b € B is

Cc® (Zb; E|Zh). If dim(Z) is odd then 7, E is ungraded, while if dim(Z) is even then

7. E is Zy-graded. Using g”4 and 1", one obtains an L?-inner product /™ on 7, E.
Let V™E be the canonical Hermitian connection on 7. E [4, Prop. 9.13], [6, (4.21)].

3. The Index Gerbe

3.1. Eta-forms and their variations. We now suppose that Z is odd-dimensional.
Following [25, §5], let o be a new formal odd variable such that o = 1.

Let D be the perturbation of Dy by a smooth family of fiberwise smoothing operators
P = {Pplpep- Thatis, D, = (Dg)p + Pp. Givens > 0, the corresponding Bismut
superconnection [5, Sect. III], [4, Chap. 10.3] on w, E is

1
Ay = so D + V™E 4 4—oc(T). (3.1)
s
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If D = Dy then we write the superconnection as Ag . Define Try on (C @ Co) ®
C*®(B; End(74E)) by

Tre (o + o B) = Tr(B) € C®°(B), (3.2)

provided that & and § are fiberwise trace-class operators. Then there is an extension of
Tr, to an Q*(B)-valued trace on (Q* (B)® (C & (CU)) ®coe ) C®(B; End(7«E))
which is left-Q*(B) linear, again provided that the vertical operators are trace-class.

For any s > 0, Tr, (e_ A ) € Q% (B) represents the Chern character of the index
Ind(D) € K!'(B) of the family of vertical operators, up to normalizing constants. For
later use, we note that

A2=s*>D?* — so [V,D] + <v2 + l(Dc(T) + c(T)D))
s ’ 4

1 1 s

The meaning of Tr, (e’ Ag) is that the component in 2+1(B) is derived by means

of a Duhamel expansion around e~ s? D [4, App. to Chap. 9], and hence comes from a
finite number of terms in the Duhamel expansion.

If D = Dy then lim, .o Tr, (e_ A%s) exists and [6, (4.97)]

hmTr ( ) VT Qi) g /ZX<RTZ) A ch(FV). (3.4)

s—0

(The constants in this expression will most easily be seen as arising from (3.26)). For
general D, we do not know that Tr,, (e’ Ag) has alimitas s — 0. However, let LIM;_, ¢
denote the principal value as in [4, Sect. 9.6]. Then by expanding in a Duhamel series
around Tr, (e_ A(ZJA'), one finds that LIM;_, oTr, (e‘ Ai) exists.

Proposition 1. For all D,
LIM, .o Tr,,( ) JT Qri)y” /ZZ(RTZ> A ch (FV) (3.5)

Proof. In general, if {A;(€)}ee[0,1] 1S @ smooth 1-parameter family of superconnections
then formally,

‘ e MO = - dAs@ ]~ a2
i () = (face. 229
T, < { A,(0), dAs(e) - As@z})

de

A
= —dTr, (M e As@z) . (3.6)
de

Let {D(€)}ee[o,17 be a smooth 1-parameter family of operators D as above. Then (3.6)
is easily justified, and gives

d dD
—Tr, (e— AJ@Z) = —dTry (so ab(e) e~ As©) (3.7)
de de
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Hence

d dD
LIM;p Tt (e_ As<€>2) — —dLIM,_oTr, <s s P© - As@)z) . (38)
€

€

The Duhamel expansion of s o dD (6) — 457 i

( 1)1/ / so—e “05 D% (A ()P — s2 DY e 1
0

1=
x(As(€)? — 52 D?)...(Ay(€)* — s2 DY) e 15" D?
x8(ty + -+ +1 — Ddiy...d1. (3.9)

If we consider the component of (3.9) of degree 2k with respect to B then only a finite
number of terms in the expansion (3.9) will enter. From (3.3),

A2 — 2 D? = 572 f(s0) (3.10)

for a polynomial f with appropriate coefficients. As ’fl—? is smoothing, we can compute

LIM ¢ Try (s o % e~ As(s)z) by looking at the terms of (3.9) which contribute
to 2%*(B) and expanding the exponentials e~ /i s D% in 52, In so doing, the resulting
expression is a Laurent series of the form s o s~ 2L Zfio ¢, (so)" for some L > 0.

Then after applying Tr,, the resultis s' =25 3" ¢, s". Hence

dD
LIM,_,0 Tty (s s P© - Af@z) — 0, (3.11)
de
and so from (3.8),
a — A7) _
LIM, o —Tr, (e = 0. (3.12)
€

In our case, we can commute LIM;_, ¢ and %. Taking
D(e) = Do + € (D — Dy), (3.13)
we obtain

LIM,_ Tr, (e_ A?) — LIM,_Tr, (g‘ Aﬁ.s) — lim Tr, (e_ Aﬁ.x)

s—0

— J7 Qri)” /ZZ(RTZ) A ch(FV). (3.14)

The next result is the same as [21, Prop. 14]. We give the proof for completeness.

Proposition 2. If {D(€)}cc(o,1] is a smooth 1-parameter family of operators as above

then
) Oy 0As(©) a0 _ iTrg 0As(€) — a2
de s ds de

1
=d/ Tr, <—8A5(6) o ase? 0As(€) e—“—”“s(f)z) du.  (3.15)
0 de as
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Proof. Formally,

Oy, (04O - aer
de€ as

3%A 1 dA
= Tr, ﬁ e~ Ag(e)? _/ Tr, s(€) equx(E)z
de ds 0 de

0A
X {As(e), S(E)} e~ (710 As<€>2> du (3.16)
as
and
iTro, 8AS(€) ei Ax(é)z
as as
= Tr, 82AY(€) - AS(G)z _ /1 Tra aAY(G) e_uAs(é)z
ds de 0 as
0A
X {As(é), ﬁ} e~ (=0 As“)z) du. (3.17)
de
Then

d€ as as as
1
:f Tr, <—8A8s(€) e—MAx(G)2 {A (6), IAs (6)} e~ (1—u) As(é)z) du
0

N

1
_/ Tr, (M e—MAs(€)2 {A (6), dA; (6)} e~ (1I-w) A;(e)z) du
0 de s

1
=/ Tty <{A (o), s (6)} o= (1= As(©) aAaS(G) euAs(e)z) i
0 S

1
_/ Tr, (M o 1 AS(©)? {A (o, s (G)} e—(l—u)A.r(oz) Iy
0 e as

1
= [ 110 (fae. 22 a0 22O mumone ) g,
0 de as

1
_/ Tr, (aAas(E) o 1 Au(E)? {A (©, 24 (€>} —(1—u>A;(e>2) Iy
0 €

A e 8s

1
:/ aTr, (24 uase? M© —amnae? ) g,
0 de as

1
=d / Tr, (—M‘V(G) o as@? A i Aﬂe)z) du. (3.18)
0 de as

LR (M - As(g)z> _ <8As(e) - As(é)z)

It is easy to justify these formal manipulations. 0O
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Let {Uy}aer be a covering of B by open sets. For each o € I, suppose that Dy, is a
family of operators {(Dg)p}peu, as before, defined over U,. We assume that for each
b € Uy, (Dg)yp 1s invertible. Given {(Do)p}peu, , the obstruction to finding such a family
D, is the index of D0|U in K! (Uy) [21, Prop. 1]. For example, if U, is contractible
then there is no obstruction.

From the method of proof of [4, Theorem 10.32], Tr,, (

totic expansion as s — 0 of the form ) ;2 ak sk. Then by the method of proof of

Proposition 1, the degree-2k component of Tr, ( d dA e~ Ag) will have an asymptotic

dAO s = A% .
7o € 05 ) has an asymp-

expansion as s — 0 of the form s~2f > v o bk s*. Hence from [4, Lemma 9.34], it
makes sense to define 7, € Q" (U,) by

o0 dA 7A2
= LM, | Tt ds; (3.19)
] ds
compare [14, Def. 2.4]. As
d 0A
2, (e_ A7 ) — —dTr, (228 AT, (3.20)
ds as

it follows that
~ _a o din@ 1 [~ s v
iy = LIM,_ Tty (e ) e T A (R )/\ch (F ) (3.21)
A

Let As(¢€) be a smooth 1-parameter family of superconnections. As in Proposition 2,
when the terms make sense, we have

dn, 0A
Na(€) 1M, o Try (2250 - e (3.22)
de de
+d LIMt_>o/ / (E)A () e 1A aAa () - a-w A“(E)z) duds.
s
Proposition 3. Let {Dy (€)}ec(o,1] be a smooth 1-parameter family of Dy ’s as before.
Then
dna(é) _ dLIMz»O/ / (E)A s(€) —uA (€)? aAa s(€) —(1 u) Ag(€) ) duds.
s
(3.23)

Proof. This follows from (3.11), Proposition 2 and (3.22). O

Proposition 3 is closely related to [21, Cor. 4].

To give normalizations that are compatible with rational cohomology, let R be the
operator on *(B) which acts on Q% (B) as multiplication by (27i)~* and which acts
on Q%*1(B) as multiplication by (27i)*. Put

ch(Ay) = 7~ 2 R Try (e* A3) (3.24)

and
7= PR (3.25)
Then (3.21) becomes

dfy = LIM,_q ch(A,) = /Z(RTZ/zm) A ch (F"/zm'). (3.26)
Z
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3.2. The 1-form case. The degree-0 component ) e QO(Uy) of Ny, i.c.
0 1/2 oo 2 p2
7O = =V LIM,_>0/ Tr, (a Dy e™* ) ds
t
1/2 OO 2D
=na V LIM; 9 / Tr (Da e’ a) ds, (3.27)
t

is half of the Atiyah Singer-Patodi eta-invariant of Dy [2]. If Uy N Ug # ¢ then it is

well-known that 7' 8 is an integer-valued function on U, N Ug.

)| O)|

UsnUg — Mo u,nug
.~(0) .

Hence if f, : U, — S! is defined by fo = 2™ then if U, N Ug # 1,

fa|UaﬁU,3 = fp |Ua nUs° Thus the functions { fy}yecs piece together to give a function

f : B— S!'such thatf|Ua = fy. From (3.26),
1 A M)
—dnf = (/ A(RTZ/zm') A ch (FV/Zm')) eQ'(B).  (328)
27 VA

In particular, if[S'] € HY(S!; Z) is the fundamental class of S! then f*[Sl] e H(B; 7)
is represented in real cohomology by the closed form on the right-hand-side of (3.28).

3.3. The index gerbe. Let ﬁéz) € Q2(U,) denote the degree-2 component of 7.

Proposition 4. If { Dy (€)}ec(o0,1 is a smooth 1-parameter family of mutually-commuting
invertible operators as before then 7, (€)? e Q*(Uy) is independent of €.

Proof. From Proposition 3, it is enough to show the vanishing of the component of

DA, 9 A,
LIM, / / ( (©) p-uae? as(e) <1—u>As<e>2) duds (3.29)

in Q'(B). This is the degree-1 component of

1
LIM; ¢ /‘X’/ Try(so Dy e_“(x2 D2 —s0[V,Dql) o D,
t 0 de

o~ (- (s> D —s0 WaDaD) du ds. (3.30)

Using the fact that dd% commutes with Dy, the degree-1 component of

TI‘U (S o dd& e U (s2 Dg —s0[V,Dy]) o Da e~ (1—u) (s2 Dg —so [V,DM)) (331)
€

is

dD,
Tr, <so y) *uso|V, Da]e_’”zDg o D, ¢~ (=05 DG
€

dD,
de

e~ D g py e~ 170 DL (1 — )5 o [V, Da])
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dD
=Tra(sa Y uso[V,Dyle - DaaD
dD
+sad—"e—Y2DzaD (1—u)so[V,D ])
€

dD
=Tr, (—sod—ausaeszDéaDa [V, D]
€

dD
+so d: e~ Da g p, (I—u)yso[V, Doz])
dDy _ 22
= —2u)s*Tr e iDLV, Dl ). (3.32)

As fol(l — 2u)du = 0, the proposition follows. O

3.4. Finite-dimensional case. Let V be a finite-dimensional Hermitian vector bundle
with a compatible connection V over B. Let D € End(V) be an invertible self-adjoint
operator. As in [6, Sect. 2(b)], put Ay = so D + V and

~ o dA .
7= / Tr, ( S e~ Af) ds € Q" (B). (3.33)
0 ds
Put P = ‘DZIIED . From [6, Theorem 2.43], 7] is closed and, up to normalizing con-

stants, represents the Chern character of [Im(P;) — Im(P_)] € Ko(B) in H"*"(B; C).
We wish to say precisely what 7 € Q2(B) is.

Proposition 5.
7O = _ “/7; Tr ((P+ VPO - (PLV P_)2> c Q*(B). (3.34)
Proof. Let {V(€)}eclo,1] be a smooth 1-parameter family of Hermitian connections on

V.Asin (3.22), we have

dije) 1 (8A NG) A (6)2>
de de

+d/ f <8A s(€) —uager 94s(€) <1—u>Ax(e)2> du ds
S as
\Y
~ lim Tr, (d ©) -4, (e)2>
de
+d/ / <dV(e) o UA@? o p (1= uM(e))duds
_ (dV(e) we)z)
d / / <dv(€) —u Ay (G)ZO’D — (1—u) As(€) ) duds
/ f <dV(6) _MAS«)nge—(l—“)As(@z) duds. (3.35)
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The 1-form component of Tr, (% e~ U A 5 P o= (1-1) A-V(€)2> is

Tr, (dV(e) e D g p e (W D2> = —Tr<dv(6) De ¥ Dz). (3.36)
de de
Then
dij(e)@ ol (adv
n(e) = —d/ / Tr( © De_52D2> duds
de 0 0 de
av D
_ YT (D@ DY (337)
2 de |D|

Using Proposition 4 (in the finite-dimensional setting) and the spectral theorem, we
can deform D to P, — P_ without changing 77® . Hence we assume that D = P, — P_.
Letus write V. = V| + V», where V| commutes with D and V, anticommutes with
D.PutV(e) = Vi + € V,. Then

- <dV(e) D

— ﬁ) = Tr(V, D) = 0. (3.38)

Hence from (3.37), it suffices to compute 7@ when V = V. In this case,

o0 D
7= f Try (0 De ¥ DZ*V?) gs = Y7 r<— e W), (3.39)
0 2 |D]

from which the proposition follows. O

3.5. Infinite-dimensional case.

Proposition 6. For € € [0, 1], put
€
As(e) = so Dy + V&E 4+ 4—ac(T). (3.40)
s
~)
Define the corresponding 7y (€) € Q" (B) as in (3.19). Then given Dy, % €
QZ%(B) is independent of the particular choice of D.

Proof. We have 44€ — L & o(T). From (3.22),

as
dijs (e) 1 o
= —LMo - T (c(T) e ) . (3.41)

At this point we do not have to assume that D, is invertible. Furthermore, the question
is local on B, so we may assume that B = U,,.
If Dy = Dy then from standard heat equation asymptotics [18, Theorem 1.5],

o0
Tr (c(T) e Dﬁ) ~ s imZ) N 2 (3.42)
k=0
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for some 2-form-valued coefficients {r}2 . Then

Vel
1
de(e) = —  ramgen. (3.43)

In particular, this may be nonzero.

. 2p2 . ..
For general D, a Duhamel expansion around e™*" % as in the proof of Proposition
1 shows that

1 2 p2 1 _2p2
LIM; o o= Tr (c(T) e ) = LMo - Tr (c(T) e o), (3.44)

from which the proposition follows. O

We now make the assumption thatif Uy N Ug # ¥ then D, commutes with Dg. We

wish to compute n;}z) 72 € QXU NUp).
Define E_ 4 and E+_ as in the introduction. As Dg — Dy is smoothing, E_ and
E_ are finite-rank operators.

Proposition 7.
i =P = — VAT (B VE-)? = (B+m V E+)?). (3.45)

Proof. From Proposition 6, we may assume that the superconnectionon Uy, isso Dy 4V,
and similarly on Ug. For € € [0, 1], put

V)=V —eld —Ey- —E_ ) VE; + (10— Ef_ — E )VE_4
4E, V(1 —E, —E )+ Es+ VE_,
YE_, V( — E4_ — E_4) + E_+ VE+_|. (3.46)

Then
vl)=(1—-E4+——-E_\)VU—-E,_—-E_\)+E,_ VE,_ +E_(VE__. (347

Note that dv(é) is smoothing. From (3.22),
d’?a(f) — LIM, o Tr, dV(G) — Ay(e)?
S de
+d LIMt_>0/ / (dV(e) —uAs©? 5 Dy e~ (179 A“(e)z) du ds,
(3.48)
and similarly for ’7'8 © . Using the method of proof of Proposition 1, one finds
av
LIM;_, ¢ Try (% e~ As<€>2) = 0. (3.49)

Then as in (3.37),

(2)
d”la(e) / / (dV(G) e 52 Dc%) du ds. (3.50)
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Thus
d(p)® — Tu(€)?)

o0 dV(e) _s2p2 _a2p2
= — [ J— 7 Py
e d/o Tr( e (Dﬁe Dy e ) ds
_ ﬁdTr (dV(e) ( Dg B D, >>
2 de |Dgl | Dy |
JT
2

dTr(de) QE_, — 2E+_)> =0, (350

where the last line comes from the off-diagonal nature of %. Hence we may assume
that the superconnection on Uy is s 0 Dy + V(1) and that the superconnection on Ug
isso Dg + V().

Due to the diagonal form (3.47) of V(1), ﬁﬁ — 7 is the sum of contributions from
Im(/ — E4y_ — E_y)and Im(E4+_ + E_). From the method of proof of Proposition 4,
the contribution from Im(/ — E_ — E_ ) vanishes. Then 7jg — 7}, is the difference of the
two eta-forms of the finite-dimensional vector bundle Im(E_4) & Im(E_), equipped
with the connection E_ VE_ @ E,_V E,_, where the eta-form is computed first
with Dg and then with D,. The proposition now follows from Proposition 5. O

Define Lyg as in (1.1), with its connection Vyg induced from the connections
E_LVE_jand EL_V E,_.Let Fyg denote its curvature, an imaginary-valued 2-form
on Uy N Ug. Proposition 7 says that on Uy, N Ug,

~2) ~2 / B
ng" — na) = — _2(11" (3.52)

Suppose that U, NUgNU, # @.Givena, b, ¢ € {+1, —1} let Hyp. be the subbundle

S D S
\gal acts as multiplication by a, -2 acts as multiplication by » and

of . E on which > TDgl

\g_:l acts as multiplication by c. Then
L(xﬂ ; Amax (H_++) ® AMGX(H_+_)

® (Amax(H+_+))—1 ® (Am£IX(H+__))_1 ,
Lgy = A" (Hy y) ® A" (H__y)

® (A" (Hyto)) ' @ (A" (H-10)) ', (3.53)
Ly = A" (Hypo) @ A" (Hy-o)

® (A" (H_4 )" ® (A" (H_—) .

There is an obvious nowhere-zero section 6y, of Lyg ® Lgy, ® Lyg on Uy, NUgNU,,.

In general, let E be a Hermitian vector bundle with Hermitian connection V and let
E| and E» be subbundles of E such that there is an orthogonal direct sum E = E| & Ej.
We do not assume that V¥ is diagonal with respect to £ and E5. Let VE! and V2 be the
induced connections on E;| and E», respectively. We have corresponding connections
VAMHE) A" (ED gpnd VA" (B2 on AMAX(E), A™X(E}) and A% (E»), respec-
tively. Then with respect to the isomorphism A" (E) = A™*(E;) @ A" (E»),
one can check that VA" (B) = yA"@(EN @ yA"™™ (E2) Recalling the definition of
Lggp from (1.1), it follows that the section 6g, is covariantly-constant with respect to
Vag ® Vgy @ Vyq.
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Finally, if U, NUgNU, NUs # @ then the cocycle condition 64,5 907)/15 Oups 90;31)/ =1
is obviously satisfied.

In summary, we have shown that { D, },e; determine a gerbe on B with connection.
From (3.26), its curvature is

(/ZX(RTZ/zm') A ch (FV/Zm')>(3) c Q3 (B). (3.54)

To recall, the conditions that we imposed on { Dy }yc; Were
1. D, is invertible.

2. Dy — Dy is a smoothing operator.

3.If Uy N Ug # @ then Dy and Dg commute.

In order to construct a gerbe-with-connection that only depends on Dy, V™ and T,
as in the introduction we assume that D, = Do + hq(Dp) for some hy € C°(R).
From spectral theory and the continuity of the spectral projections of (Dg); with respect
to b € B, itis easy to see that such {U, }qer and {hy}oer exist. Given {Uy }oer, Suppose
that we make another choice {%),}4es. Put D), = Do + h,,(Dy). Note that D], commutes
with D Let L), 4 denote the new line bundle with connection on Uy N Ug. Let7,, denote
the new eta-form.

Define a line bundle L4, with connection, on U, as in (1.1), replacing the pair
(Dy, Dg) by the pair (Dy, D)). Let F,y denote the corresponding curvature. Then it
follows that

Ly = (Laa)™" ® Log ® Lpg (3.55)
as a line bundle with connection. Furthermore, from Proposition 7,
F /
)@ - 7P = - == 3.56
(M) Ny e (3.56)

Thus if we choose {h, }ye instead of {hy}er, We obtain an equivalent connection.
Finally, if {Uy}yer and {U (; ,}o’er are two open coverings then by taking a com-
mon refinement, we see that we obtain isomorphic gerbes and connections. This proves
Theorem 1.
It follows that (3.54), as arational cohomology class, lies in the image of H3 (B;Z) —
H3 (B; Q). Of course, one can see this directly.

Proposition 8. Equation (3.54), as a rational cohomology class, lies in the image of
H3(B; Z) — H}(B; Q).

Proof. From the universal coefficient theorem, it is enough to show that the result of pair-
ing the rational cohomology class (3.54) with an integer homology class y € H3(B; Z)
is an integer. As the map s : ©3Y(B) — H3(B; Z) from oriented bordism to integer
homology is surjective, we may assume that there is a closed oriented 3-manifold X
and a smooth map ¢ : X — B suchthat y = ¢.([X]), where [X] € H3(X; Z)
is the fundamental class of X. Then we can compute the pairing of (3.54) with y by
pulling back (3.54) under ¢ to X and computing its pairing with [X]. Let7’ : M’ — X
denote the fiber bundle obtained by pulling back the fiber bundle # : M — B under
¢ : X — B.Let Z' denote the fiber of 7/ : M’ — X and let V' denote the pullback
of V to M’. Then by naturality, it is enough to show that

[}((/Z,A\(RTZ//zni) A ch (FV’/zm')) (3.57)

is an integer.
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As T Z has a spin structure, T Z’ has a spin structure. As X is an oriented 3-manifold,
it has a spin structure. Then TM' = TZ’ & (7/)*T X has a spin structure. Furthermore
X(RTM//2m'> - Z(RTZ’/zm) U (n/)*X(RTX/zm> - Z(RTZ’/zm'). (3.58)

Hence

A(RTZ j27i) A ch (FY j2mi ) :/ A RTM//Zm'>/\Ch FY' j2ri).

[ A rmm) m (e i) = [ 2 (1" 2r0)
(3.59)

The right-hand-side of (3.59) is an integer by the Atiyah-Singer index theorem. 0O

4. Deligne Cocycles

‘We now assume that Z, the fiber of the fiber bundle 7 : M — B, is even-dimensional.
We let D denote the ensuing family D = {Dp}pep of Dirac-type operators, with Dy
acting on C*® (Zh; E | Zb)' (We previously called this Dy.)

Given s > 0, the corresponding Bismut superconnection [5, Sect. III], [4, Chap.
10.3] on . E is

1
Ay = sD + V&E EC(T). 4.1

For any s > 0, the supertrace Tr; (e_ Ag) € Q¢ (B) represents the Chern character

of the index Ind(D) € K°(B) of the family of vertical operators, up to normalizing
constants.
We have [4, Theorem 10.23],[5]

}E}%Trs (e— A%,.v) = Qni)” o /ZX(RTZ) A ch (FV> . (4.2)

4.1. The case of vector bundle kernel. We now make the assumption that Ker(D) has
constant rank, i.e. is a Z,-graded vector bundle on B. We give Ker(D) the projected
connection VK¢ (P) from V7™E It preserves the Z;-grading on Ker(D). Let FXer(?)
denote the curvature of VKer (D),

As in [6, Def. 4.33] and [13, p. 273], define 5 € Q°¢¢(B) by

N ©  dA
¥ o= / Tr5< S e~ Af) ds. (4.3)
0 ds

Then from [6, Theorem 4.35] and [13, Theorem 0.1],
di = Qui)~ i@ / X(RTZ) A ch (FV) — ch (FK"’(D)) ) (4.4)
z

To give normalizations that are compatible with rational cohomology, let R be the
operator on Q*(B) which acts on Q% (B) as multiplication by (27i)~* and which acts
on SZZk‘H(B) as multiplication by (27§ )_k. Put

1

g




56 J. Lott
Then (4.4) becomes
a7 = / X(RTZ/zm') A ch (FV/Zm') — ¢h (FK”(D)/ZJU'>. (4.6)
VA

We now make the assumption that for each b € B, the index of Dj vanishes in
Z. Equivalently, the vector bundles Ker(D)y and Ker(D)_ have the same rank. For
sirerlplicity of notation, we will abbreviate VX¢" (P)+ by V* and write its curvature as
F*.

Let {Uy}oer be a covering of B by open sets such that over Uy, there is an iso-
metric isomorphism W, : Ker(D)+|Ua — Ker(D) . For example, if each U, is
contractible then such W, ’s exist.

Define the Chern-Simons form CS,, € £°%(U,) by

~lu,

2
1 1 (zv++(1 —wy LoV oW

CSy = —— [ Tr (v+ —wilovTo Wa) e~ 7 dt. (4.7)
27‘[1 0

By construction,
dCS, = ch (F*/2mi) = ch (W' o F~ o Wo/2mi) = ch(FK“® 7). 438)

Then from (4.6),
d(@ + CSq) = /ZX(RTZ/zm') A ch (FV/2m'> 4.9)

on Uy,. Thus we wish to attach the odd form 77 + CS,, to U,.

If Uy N Up # ¥ then we wish to write (7 + CSg) — (@ + CSq) = CSp — CSq
as an exact form on Uy, N Ug. Then we wish to repeat the process if Uy, NUg NU,, # 0,
etc. In order to streamline things, we use a construction which is similar to the “descent
equations” in the study of anomalies [3, 26].

For simplicity, we assume for the moment that U, = B. We write 7 = Isom
(Ker(D)4, Ker(D)_). It is acted upon freely and transitively by the groups of gauge
transformations Isom(Ker(D)) and Isom(Ker(D)_). We let W denote a “coordinate”
on Z and we let § denote the differential on Z, so that W—! §W denotes the canonical
left-Isom(Ker(D)_)-invariant 1-form on Z, with values in End(Ker(D)).

Consider the vector bundle Z x B x Ker(D)y onZ x B. It has two canonical
connections, § + Vtand W lo(8 + V)oW =8 + WlsW + W loVv-oW.
Consider the corresponding Chern-Simons form CS € Q%% (Z x B) given by

1 1
CcS = — — Tr(8+V+—W_lo(5+V_)oW)
2ri Jo
(tE+vhH+a-n W_Io(5+V_)oW)2
X e~ 2 dt

1 1
- - Tr(v+—W*‘5W—W*‘ov*oW)
L Jo
B (+vr+a-nw! aw+w*lov*oW))2

x e iz dr. (4.10)
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By construction,

(8 + d)CS = ch (F*/2i) — ch (W—‘ 0oF o W/2m'> — ¢h (FK”(D)/Zm').

@.11)
Let us work out CS in low degrees. To do so, we use the fact that
1 1 2
(3 VTR (- Wlsw + W ov—ow)
=tFt+ (0 —-nDW'loF oW -1 -1
2
x <v+ —wlsw — wo! oV_oW) . (4.12)
4.1.1. H?. The 1-form component of CS is
) 1 + -1 -1 -
cs =—TTr<V —wlsw — wlov oW). (4.13)
i

Then (4.11) becomes

T c1l(VH) — a(v)),
Tl

—dTr Wl sW) + 5Tr(v+ - W_loV_oW> -0,

1
d (— —Te(vVt — wlov o W))

5Tr (W—‘ 5W) 0. (4.14)

Given {Uq}aer and {Wy}aer as before, suppose that U, N Ug # . Let Zyg be the
space 7 defined above when the base is Uy, N Ug. Suppose that there is a smooth path
o4p : [0, 1] — Zyg from WQ|U U to Wﬁ}U mUﬂ.Forexample, if UyNUg is contractible

then there is such a path, as the unitary group is connected. We put g4 (1) = ogg(1 —1).
It makes sense to write

/ o;ﬁTr(W_ISW)zf Tr(oa,s(t)‘
[0,1] [0,1]

and from (4.14),

d L/ o Tr(W_18W) __ 'y (v+ — W_loV_oW)
2mi [0,1] ap 2mi p p

f—Tr (v+ — W lov o Wa) (4.16)

o

d t
1 U‘;—ﬂt()) dr € Uy NUp), (4.15)

— csf;) — csh. 4.17)

It Uy NUg NU, # @, let Z,p, be the space Z defined as above when the base
is Uy NUg NUy. Let pgpy : S' — Tup, be a smooth concatenation of agg, ogy

and o0,,. Then % f 1 /,L:ﬂy Tr(W~! 8W) is a continuous integer-valued function on
U, NUgNU,.
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We can summarize the discussion so far by saying that

1 1
— (=D (1) * -1 * —1
C = (7] + CS,7, Oup TE(W™" 6W), s /S' Kapy TE(W™" W)

2mwi [0,1]
5 (4.18)
forms a 2-cocycle for the Cech-cohomology of the complex of sheaves

Z— Q' — Q! (4.19)

on B, where Q7 denotes the sheaf of real-valued p-forms.
Now suppose that {W&}ae ;7 1s another choice of isometries, with each W(; connected

to Wy in Zy. Let o g be a path from W, |U U to W/; |U NUs" We obtain a corresponding

cocycle

1 1
¢ = (»V +cs:®H, — * L Tr(W™Lsw), —/ * o Tr(WLsw) ).
(’7 + o 2i [O,I]Gaﬂ 1( ) i g Maﬂy 1( )
(4.20)

In order to compare C and C’, for each @ € I choose a path o4 : [0, 1] — Z, from
Wy to W, If Uy N Ug # ¥ then define jy/p/pe - st — Zyp in the obvious way. Then

. - 1 _
@ + ¢S,y — @ + csP)y = d(—, / ok Te(W 15W)),
2mi [0,1]

1

gy THOW ™1 8W) — g TI(W ™! 6W)

2mi [0,1] 2mi [0,1]

1 1
= — ohy TOW ™' 8W) — — ol Tt(W=sw)
2mi [0,1] 2mi [0,1]
1

—/ Mg TEOW L SW),
2ni Jgt

1

= | Mg JTe(W W) — — | uhs, Tr(W ™' sW)

2xi Jgr OV 2wi Jg1 14

1 -1 -1 —1
= fS 1 (M;,ﬁ,ﬁa Te(W ™ SW) 15,6 TEOW ™ 8W) 4150, THW SW)).
4.21)
In other words, C' — C is the coboundary of the 1-cochain
1 / o, Te(W™' sW) L / W wa TH(W L SW) (4.22)
2mi [0,1] oo ’ 2mi s1 o'p'po ’ '

Thus C and C’ are cohomologous.
In summary, our input data consisted of points W,, € Z,, defined up to homotopy,
with the property that if U, N Ug # @ then there is a path in Z,g from Wo,| UaUp to

Wg | UanUs* From this we obtained a Deligne cohomology class on B of degree 2 [10,
Chap. 1.5]. From (4.9), its “curvature” is the 2-form

(fZA\(RTZ/an) A ch (FV/2m'>)(2) c 2(B). “23)
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In view of the isomorphism between the 2-dimensional Deligne cohomology of B and
the isomorphism classes of line bundles with connection on B [10, Theorem 2.2.12], we
also obtain a line bundle with connection on B which is, of course, the determinant line

g * —1
bundle. To see this explicitly, let us first note that o % TrOV=18W) U(1) depends
only on W, and Wg, and not on o,g. To evaluate it, formally

f ok Te(W ™' 5W) =/ 075 8 In det(W) =f d o}g Indet(W)
[0,1] [0,1] [0,1]

= Indet(Wp) — Indet(W,) = Indet(W,' Wp). (4.24)

These equations make sense modulo 27iZ, to give
* -1
efm’” Tap Tr(W=' §W) — det(Wa_l Wﬂ) (425)

Consider the imaginary-valued 1-form A, = —2mi ('rf + CS&1)> on Uy . Equations

(4.21) and (4.25) show that the forms { Ay }y <7 fit together to give a connection on the line
bundle whose transition functions are ¢og = det(W, 1 Wg). This is the same as the de-
terminant line bundle [4, Chap. 9.7], which in our case is equal to A”“* (Ker(D))™' ®
A (Ker(D)_). The connection that we have defined on the determinant line bundle is
the same as that defined in [4, Chap. 9.7]. Its curvature is given by (4.23). Of course the
determinant line bundle can be defined without the assumption that Ker(D) is a vector
bundle on B, or our other assumptions.

4.1.2. H*. The 3-form component of CS is

1 1
cs® = — — | =Tr (VF = W'V W) A (FT + W lF W
@Qri)? |2

— %(W - wlv™ W)Z))

1
- 5T (W—15WA(F+ +WIlEF W - (vt - Wl W)z))
1
- 5T (W_18W AWSW oA (VE — wolye W))
1 L\
+ T (W— 3W) } (4.26)

Then (4.11) becomes

1
dTr((v+ —wlvTw) A (F+ + W lFw-— 5(V+ - wlv- W)2>>

=Tr(F*)’ — Tr(F)’,
1
— szr(W*lésvv/\(F+ + W FTW - (vVE - Wl v w)?))
1
+§8Tr((V+ —wl'vTw) A (F+ + W lF-w
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1
—5dTr (W—‘ SW AW Lsw A (VH — Wy W))

1
—50Tr (W—laWA(F+ FWIlEW - (vt — wlye W)2)> -0,
1 —1 3 1 —1 —1
—dTr (W 8W> — T (W lsw A wlsw
6 2

ANVT - wlv™ W)) =0,

5 Tr (W—1 8W>3 — 0. 4.27)

Given {Uy}qec; We suppose that there exist
1. Maps o, : DY > T,
2. Maps o4 : D' — T,g such that

doup = <;,3|Uam8 — Uaiuamuﬂ’ (4.28)

3. Maps 048, : D? - Zypy such that

00upy = Opy|y,cupnu, — %arluynumno, + %eBlu,nusnu, (4.29)

and
4. Maps ogpys : D3 — Typys such that

d0apys = O-/S)’5|UaﬁUlgﬂUyﬂU5 - O-aV5|UaﬂU,gﬂUyﬂU5

+U“55|UaﬁUﬁﬂUyﬂU5 — Oapy |UaﬂUﬁﬂUyﬂU5' (4.30)

The right-hand-side of (4.29), for example, means a concatenation oqg Uog, Uoyy. A

priori this is a continuous map from S to Zyp, but after an appropriate reparametrization
we may assume that it is smooth. Equation (4.29) means that o4 U 0, U 0, €xtends

to a map from D? to Zyp. Again we may assume first that it extends continuously and
then obtain a smooth extension. (We could also work with piecewise smooth maps.)
If Uy NUg NU, NUs N Ue # 0, define piapyse : S° — Zopyse by
Hapyse = Opyse |UmﬂUﬂﬂUyﬂU,sﬂU€ - Uay5€|vamuﬁmUmUmUe
+ Oapse ‘Uamuﬁmuyﬁumue ~ Oapye ’Uanuﬂmuymumue

+ O—O‘ﬂ}’aanﬂUﬁﬂUyﬂUgﬂUg' 4.3D)

— /lajﬁ Tr(W—1 SWA(FY + W lFw
D

— (v = Wl W),
1

1 x -1 -1 + -1y
Gaﬁyzszmaaﬁﬂr(w WA WTLSW A (VE = W VTW)),
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1 1 —1 —1 —1
Gepys = = & iyt /Dg“;ﬂ” Te (W W A WThsW A wTlsw),
1 1 -1 -1 -1
Gaprse = = ¢ it /83 Wy TE(WTHSW A WTloW A WThsW). (432)

Then Gy € Q*(Uy), Gop € Q2(Uy NUp), Gapy € LUy NUg N U,) and Gapys €
QO(UD, N Ug N U, N Us). Also, Gggyse is an integer-valued continuous function on
Uy, NUg NU, NUs N Ue. The meaning of G4, for example, is

_ 1 1 1 1 dw + —1 -
Gaﬁ = 5 W /(; dt Tr(W(t) W(F + W() F~W(@)
-Vt —wmn v~ W(t))z)). (4.33)
From (4.27),

dGop = Gﬁ‘uamuﬂ - G“‘Uamu,g’
dGopy = GﬂV\UamUﬂmUy - G“V|UaﬁUﬁﬁUV + Gaﬂ‘UaﬂUﬁﬂU},’

dGapys = GﬂV5|UaﬁUﬂﬂUVﬂU5 - Ga75|UamU,gnUynU5

+ Gaﬂ3|UumUﬂmUme5 - G“5V|UamUﬁmUme,;' (4.34)
Also,
Gapyse = GﬂV55|UaﬂU,gﬁUVﬁU3ﬂU€ - GaV‘35|UaﬂUﬁﬁUVﬁU3ﬂU€
+G“ﬂ3€|UaﬂUﬁﬂUyﬂUaﬂUé - G“ﬁV€|UaﬂUﬁﬂUVﬂUaﬁUE
+ Gapys |UaﬂUﬁﬂUyﬂU5ﬁUE' (4.35)
Thus
C = (Ga. Gap, Gapy. Gapys: Gapyse) (4.36)
is a 4-cocycle for the Cech-cohomology of the complex of sheaves
Z— Q' — Q' — @ — o (4.37)

on B.
Now suppose that (0&, Oups Ouy Oupy 3> is another choice of maps. Let C’ be the

ensuing cocycle as in (4.36). We assume that there is a smooth 1-parameter family of

maps {0 (1), 0a (1), Oupy (1) }re(0,1) s0 that for each 1 € [0, 11, (04 (1), 0ap(t), Tapy (1))
satisfies (4.28) and (4.29),

(0a(0), 0ap(0), 0apy (0)) = (0, Oap, Oapy) (4.38)

and
(00 (1), 0up(1), oy (1)) = (a;,a;ﬂ,a;ﬂy). (4.39)

We do not assume that the homotopies from g, to a(;ﬁy extend to a homotopy from

/
Ogpys 1O Uaﬁya'
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Define ¥, : [0,1] x D° — T, by Xy(f,x) = (04(t))(x), and similarly for
Zop ¢ [0, 11 x D! — Top and Seg, : [0, 1] x D? — Topy. Put Wegys = — Zpys +
Says — Zaps + Tapy + a(;ﬂya — Oupys, a map from s3 t0 Zogys-

Put

1o
Hy = 5 G /O OE;H(W’] SWA(Ft + W lFw
[0,1]x D
— (VT - WV w),
1 1 * —1 -1 + -1
s = 3 i ETe(WTew A WThsW A (VE = W Y)),
[0,1]x D
11
Hopy = = ¢ G Eip, T (W A W W A W W),
[0,1]xD
11
Hapys = = & G /} Wig s Tr(W_l(SW AWTLSW A W‘l(SW).
S;

Then Hy € Q%*(Uy), Hop € 2 (Uy N Up), Hypy € QUUy NUpg NU,), Hypys is an
integer-valued continuous function on Zyg,, s and
G, — Gy = dH,,
Gup — Gap = dHep + Hp — Hy,
G(/Jtﬁ]/ — Gupy = dHypy, + Hg, — Hyy + Hyg, (4.40)
Gupys — Gapys = Hupys + Hpys — Hays + Haps — Hapy.

G&ﬂyae - Gaﬂy&e = Hﬁyzis - Hay&e + Haﬁ&e - Haﬁye + Haﬁy&-
In other words, C' — C is the coboundary of the 3-cochain
(Ha. Hap. Hagy, Hapys) - (4.41)

In summary, our input data consisted of the maps (ao,, Oups Uaﬂy) satisfying (4.28)
and (4.29), defined up to homotopy, with the property that if Uy N Ug N U, N Us # 0,

2 .
then the map from S$° to Zyg, s, given by GﬂV5|UaﬂUﬁﬂUyﬂU5 = Oays|y,nusnu,nus T

aaﬂ5|UamUﬁnUynU5 ~ %apy |y, nupnu,nuy extends to a map from D? to Z,p,s. From
this we obtained a Deligne cohomology class on B of degree 4 [10, Chap. 1.5]. From

(4.9), its “curvature” is the 4-form
R 4
(/ A (RTZ/zm') A ch (FV/Zm')> e Q4(B). (4.42)
VA

4.1.3. H?*. Let us write the degree-(2k — 1) component CS*~! of CS as CS?~! =
ST Csh =1 with €SI e @N(T) @ Q2171(B). Given {Uy)ger, We sup-
pose that for 0 < [ < 2k — 1 there exist maps oy, o D! — Zoy...p SUCh
that

I
00ug..cr = D (=1)" Oug. ..t (4.43)
m=0
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If Uyy N ... N Usy, # 0, define gy o, : S — Ty oy bY

2k
:l'l“()t()‘..olyc = Z (_l)m o'a().“&;‘..olz]( Ua0m~~~ﬁUu2k. (4’4’4)

m=0

Again, we assume that the map fiq,...«y, has been parametrized so as to be smooth. Put
Gy = 77D 4 CSL2~1 For1 < I < 2k — 1, put

Gapooy = / Oy CSPHTL, (4.45)
D
and put
2k—1,0
Gop..on = /S o P CS . (4.46)

Then Gy .y € QFE 1 (Uyy N...NUy).
Lemma 1. Gy, q,, is an integer-valued continuous function on Ugy N ... N Ugy,.

Proof. From (4.10) and (4.12),

1 2%-1 1
cs# 0 = ——— T (wsw f (1= nftdr
Qrik (k— 1)1 r< ) 0 (=0
1 (k=1 Lo N2k
= T (wltsw) . 447
Qri)k 2k —1)! r( ) (447
Thus
o 1 k=1 / s (W_l(sW)z"*l (4.48)
0% = Omik 2k — D)1 g Moo T ‘ '

From [8, p. 237], this is integer-valued. For this to be true, it is important that we are
integrating over S~ and not over an arbitrary (2k — 1)-dimensional manifold. O

We have
R (2k)
dGqyy = (f A(RTZ/2ni> A ch (FV/zm)> e Q%*(B), (4.49)
Z
andforl < [ < 2k — 1,
1
dGag.cr = D (=" Gyl 1.0, (4.50)
m=0
Also,
2k
G(xo..qu = Z (_l)m GO[()..‘&;.‘.OQ](|Uaonana2k~ (4’51)
m=0
Thus

C = (Gag:---» Gag..on) (4.52)
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is a 2k-cocycle for the Cech-cohomology of the complex of sheaves

7 — QY — ... — Q%1 (4.53)
on B.

Now suppose that (O’O/(O, <+ O ey, ) is another choice of maps. Let C’ be the ensu-
ing cocycle asin (4.52). We assume that for 0 < [ < 2k —2 there is a smooth 1-parameter
family of maps {0...a; (t)}re[0,17, 0 that for each € [0, 1], (0 (1), . . . , Oay...qq (1)) sait-
isfies (4.43),

Oug...oq 0) = Ouy...qq (4.54)
and

Oy (1) = 0oy (4.55)
We do not assume that the homotopies from ooy, , t0 0, 0ot extend to a homotopy
from oy gy O a&o‘.mkil.

Proposition 9. Under these assumptions, C and C' are cohomologous.

Proof. For0 = I < 2k — 2, define Y. .y : [0, 1] x D' — Loy..op bY By (8, X) =
(0wg...q; (1)) (x). Put

2k—1
Yop.an1 = Ga/zo...az;(,l — Ouag..opp—1 — Z(_l)m Xog... k10 (4.56)
m=0
a map from $%~! to Loy...anp -
ForO0 <[ <2k — 2, put
Hyy.oy = / X CSITHHT2, (4.57)
[0,1]x D!

Then Hyy.op € Q¥ 72 (Ugy N ... N Uy,). Put

— 2k—1,0
Hyg.ompy = /;ZIH \IJ;O_““Zkil CS . (4.58)

Then Hy,.. a,,_, 18 an integer-valued continuous function on Zy,,.. «,, , . Furthermore, for
0 <1l <2 -2,

l

Gy — Gopoos = dHoycp + > (=" Hoy ..t (4.59)
m=0
2%k—1
G:xo...ogk,l = Gagooyy = Hogooayy + Z =n" Hy..y . (4.60)
m=0
and
2k
Glyoan — Gapae = Y (=1)" Hoy_ - 4.61)
m=0
In other words, C' — C is the coboundary of the (2k — 1)-cochain
(Hao, e, HaO,_az,H) . (4.62)

Thus C and C’ are cohomologous. O
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In summary, our input data consisted of the maps (oao, R Ga0~~-a2k—2) satisfying
(4.43), defined up to homotopy, with the property that if Uy, N ... N Uy,,_, # ¥, then
2k—1
e

the map from §2k=2 to Tog..am» Elven by —o (D" 0uy..a5. 00 |Ua0ﬂ...ﬂ

U"‘Zk—l ’
extends to a map from D*—1yg Zoy...an_, - From this we obtained a Deligne cohomology
class on B of degree 2k [10, Chap. 1.5]. From (4.9), its “curvature” is the 2k-form

(/ZX(RTZ/zm') A ch (FV/Zm')>(2k) c Q*(B). (4.63)

4.1.4. Topological interpretation. Let us note that we can always add a trivial vector
bundle B x CV, with a trivial connection, to both Ker(D)+ and Ker(D)_ and carry out
the preceding constructions for this stabilized vector bundle. Thus it is only the stabilized
class of Ker(D) that matters.

Recall that the nerve A of a covering {Uy }oc; is a certain simplicial complex which
has one k-simplex for each nonempty intersection Uy, N ... N Uy,. Let N &) denote the
k-skeleton of .

Consider the space X obtained by gluing together {(Ug, N ... NUy;) X A! 172, using
the embeddings (Uyy N ... N Uy,) X dnAl — Uge N ... N Ty, N...NUy) x Al
There is a continuous map p : X — N which contracts each Uy, N...N Uy, to a point.
We now assume that {Uy }4es is a good covering, meaning that each Uy, N ... N Uy, is
contractible. Then each preimage of p is contractible and in our case it follows that p is
a homotopy equivalence [15].

There is an obvious Z5-graded vector bundle V on X whose restriction to (U, N
.NUy) x A! pulls back from Ker(D) |Ua0ﬁ...ﬁUa,' Suppose that we have the maps

{0ag...; }ﬁgl of the previous subsubsection. Then these isometries show that V is trivial

as a Z,-graded vector bundle on p~! (/\/ (2"’])), i.e. that there is an isomorphism there
from V to V_.

Recall that there is a filtration K*(X) = K{(X) D Kj(X) D ... of K-theory, where
K¥(X) consists of the elements x of K*(X) with the property that for any finite simplicial
complex Y of dimension less than i and any continuousmap f : ¥ — X, f*x = 0[1,
Sect. 2]. By definition, the filtration is homotopy-invariant. It gives rise to the Atiyah-
Hirzebruch spectral sequence to compute K*(X), with E-term Eg 1 = HP(X; K9(pt.))

and Eco-term E& = KJ™ (X) /KD T4 (X).

Using the homotopy equivalence given by p from X to the simplicial complex N,
we see that the K-theory class of the Z-graded vector bundle V on X lies in ng(X ).
Equivalently, the K-theory class of the Z,-graded vector bundle Ker(D) on B lies in
K%, (B)

Conversely, suppose that the K-theory class of the Z;-graded vector bundle Ker(D) on
Bliesin ng (B).Then V hasits K-theory class in ng (X).This means that V ’p,l (NCk-D)

vanishes in K° (,0_1 (N (2]‘_1))). After possibly stabilizing by trivial bundles, so that
Vi |p,1 (N@k-D) is isomorphic to V_ | p-l (N @Dy WE obtain the existence of the maps
(0. }lzigl of the previous subsection.

As a further point, if tk(Ker(D) ) # rk(Ker(D)_) originally then after adding trivial

vector bundles, we may assume that tk(Ker(D)) = rk(Ker(D)_). Thus it is enough to
only consider the image of the K-theory class of Ker(D) in the reduced K-theory group

K’(B).
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The Deligne cohomology class depends, a priori, on the choice of {oy,. .« }12262. We
now examine how many such choices there are. We implicitly stabilize the vector bundle
V.Let BU(p — 1) denote the (p — 2)-connected space which appears in the Whitehead
tower of Z x BU. Then [N, BU{p — 1)], the set of homotopy classes of continuous
maps from A to BU(p — 1), is isomorphic to the homotopy classes of vector bundles
which are trivial on A'?~2) and which are trivialized on N ?=3)_ Suppose that we have
suchamap ¢ : N'— BU(p — 1). The obstruction to lifting ¢, with respect to the map
BU(p) — BU(p — 1), toamap ¢ : N — BU(p) corresponds to the obstruction to

trivializing the vector bundle over N (P=1) That is, IN(O (N) is the same as the elements
of [V, BU] which lift to [NV, BU(p)]. The number of such liftings corresponds to the
number of trivializations of the vector bundle on N7~ Let F » denote the homotopy
fiber of the map BU(p) — BU(p —1). As BU(p) — BU(p — 1) is a principal fibration,
the number of liftings to [N, BU(p)] of a liftable element of [N/, BU{p — 1)] is given
by

[N, F,] = [N, K(z,_1(BU), p—2)] = H""2(B; 7,_;(BU)). (4.64)

Proceeding inductively over the skeleta, we see that the set of possible degree-2k Deligne
cohomology classes that we can construct is countable if B has a finite (2k — 3)-skeleton.
Thus under the assumption that Ker(D) is a vector bundle on B whose reduced K-

theory class lies in ng(B), we obtain a set of Deligne cohomology classes of degree
2k.

If B happens to be (2k — 2)-connected then there is a unique lifting of an element
of [B, BU] to [B, BU(2k)], so there is no obstruction to the existence of the Deligne
cohomology class and we obtain a single such class.

4.2. The general case. We no longer assume that Ker(D) forms a vector bundle on B.
We will essentially reduce to the case of vector bundle kernel by means of the method
of [20, Sect. 5].

From a general result in index theory, there are smooth finite-dimensional subbundles
K4 of (m E)+ and complementary subbundles G+ such that D is diagonal with respect
to the decomposition (7.E)+ = G+ @ Ky and writing D = Dg + Dk, in addi-
tion (Dg)+ : C*°(B; G+) — C™(B; Gg) is fiberwise L?-invertible [22]. Give K+ a
Hermitian metric /%% and compatible connection VX% Let FX+ denote the curvature
of VK=,

Put

H:I: = (n*E):I: @ K$ = Gj: @ Ki ® K¢, (465)

where the factor K+ has the metric 1%+ and connection VE*. Let ¢ : [0, 00) — [0, 1]
be a smooth bump function such that there exist §, A > 0 satisfying

o = D ire 0

For s € R, define Ry (s) : C®°(B; Hy) — C*(B; H_) by

00 0
Ris) = [0 0 ad(s) |, (4.67)
0 ap(s) 0
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and let R_(s) be its adjoint. Define a family A of superconnections on H by
A = (A; ® VE) + s R(s). (4.68)

Ifs € (0,8) then A, = A; @ VX, whileifs > A then the component of A of degree
zero, with respect to B, which maps C*°(B; H4) to C*°(B; H_) is s times

(Dg)+ O 0
0 (Dg); «a |. (4.69)
0 o 0

If « is sufficiently large, which we will assume, then the operator in (4.69) is L2-invert-
ible.

Define 7 and 7 as in (4.3) and (4.5), using A, instead of Ay; the idea of this sort of
s-dependent definition of A; is taken from [21]. Then using the formula

;—STrS (e*A?) — —dTr, (djsls e““?>, (4.70)
one finds
a7 = /ZZ(RTZ/zm') A ch (FV/zm') — ¢h (FK/Zm'). “.71)

Now suppose that the image of Ind(D) under the map K°(B) — KO(B) lies in

IN(gk(B). After possibly adding trivial bundles to K, we can perform the constructions of
Subsubsect. 4.1.3, replacing Ker(D)+ by K 4. For example,

Goy = 171 + CSO, (4.72)

where 7 is defined using A and ngfk ~1 is defined using K+ and VX*_ In this way, we
obtain an explicit Deligne cocycle on B of degree 2k.

Theorem 2. The Deligne cohomology class is independent of the choices of K, hX, VK,
o and ¢. Its curvature is the 2k-form

(/ZZ(RTZ/zm') A ch (FV/zm)>(2k) c Q*(B). 4.73)

Proof. Suppose first that we fix K, hK and VK. Let {or(€)}eero,17 and {@ (€)}eelo,1] be
smooth 1-parameter families.

From the Z-graded analog of (3.22), as the small-s behavior of A is independent
of €, it follows that Z—Z is exact. Thus 77(1) — 7(0) = dS for some S € Q" (B).
Then the difference of the Deligne cocycles defined using («(1) and ¢ (1)) vs. («(0) and

¢(0)) is the coboundary of the cochain (S (2k=2) |U ,0,...,0). As any two choices of
a0

o and ¢ can be joined by such paths, it follows that the Deligne cohomology class is
independent of the choices of « and ¢.

Now suppose that we have smooth 1-parameter families {hK (€)}eero,1] and
{VK(E)}GE[OJ]. From the Z;-graded analog of (3.22), on B we have

dni 1 dv¥k .
e _ — Ty (o e 52T} (mod Im(d)). (4.74)
de 2mi de
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On the other hand, on 7 x B,

dese) _ 1 (de

T 2mi de

= : e FE2m)  (mod Im(5 + d)). (4.75)
de 2

It follows thaton Z x B,
(D + e ) ) - (A + csF O = 6+ DS @476

for some S € Q°V"(Z x B). Then with respect to the cocycle C of (4.52), C(1) — C(0)
is the coboundary of the cochain

* Q0,2k—2 1,2k—-3 * 2k—2,0
(fDO ol S ,/Dl 5 aS ...,/DZH 0L sS ,o). 4.77)

Finally, suppose that K' is another choice of K. Asboth [K| — K_]and [K/ — K’ ]

represent Ind(D) in K°(B), there are vector bundles L and L’ such that there are topo-
logical isomorphisms

t Ky ®L—>K, &L,

t K- ®L— K o L. (4.78)

Choose Hermitian metrics % and A, and compatible connections VL and V', Put
Ki = K1 & L and KjE = K & L’. Now 7 is unchanged if we define it in the
obvious way on - -

=G ® Ky @ K, (4.79)

instead of H.. Similarly, 77/, the eta-form corresponding to K’, can be computed on
=G @ K. @ K. (4.80)

The isomorphism ¢ induces an isomorphism 7 : H. — H, . Hence we can also consider
7’ to be computed on Hi using the pullback superconnectlonq‘.A’ Now let us compare
G‘A’ to A. The differences in the components of degree zero and two, with respect to
B, are finite-rank and, as in the preceding arguments, the ensuing Deligne cohomology
class is unchanged. Hence we may assume that 7% 4’ and A have the same components
of degree zero and two. The difference in the degree-one components comes from the

difference between r*VX' and VK. We can apply the preceding argument concerning
the independence with respect to the choice of connection, to conclude that the Deligne
cocycle computed with K is cohomologous to that computed with K.

The curvature statement follows from (4.71). O

Finally, suppose that dim(Z) is odd. Consider the fiber bundle (S! x §' x M) —
(S x B). Give the fiber circle a length of 1. As in [7, Pf. of Theorem 2.10] there is a
canonical family D of Dirac- -type operators on the new fiber bundle, whose index can
be trivialized on {1} x B c S! x B. Suppose that Ind(D) lies in K2k_1(B) Then the

image of Ind(D) under the map K°(S! x B) — K°(S! x B) lies in I’ng(S1 x B), and so
we can construct the corresponding Deligne cohomology classes on S' x B of degree

2k. Integrating over the circle in Deligne cohomology [10, Sect. 6.5], we obtain Deligne
cohomology classes on B of degree 2k — 1.
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