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Abstract: The Cauchy problem is considered for the massive Dirac equation in the
non-extreme Kerr—Newman geometry, for smooth initial data with compact support
outside the event horizon and bounded angular momentum. We prove that the Dirac
wave function decays inS, at least at the rate /8. For generic initial data, this rate of
decay is sharp. We derive a formula for the probabpithhat the Dirac particle escapesto
infinity. For various conditions on the initial data, we show that 0,10or0< p < 1.

The proofs are based on a refined analysis of the Dirac propagator constructed in [4].
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1. Introduction

The Cauchy problem for the massive Dirac equation in the non-extreme Kerr—Newman
black hole geometry outside the event horizon was recently studied [4], and it was proved
that for initial data inL %, with L2 decay at infinity, the probability for the Dirac particle
to be located in any compact region of space tends to zere-aso. This result shows
that the Dirac particle must eventually either disappear into the event horizon or escape
to infinity. The questions of the likelihood of each of these possibilities and the rates
of decay of the Dirac wave function in a compact region of space were left open. In
the present paper, we shall study these questions by means of a detailed analysis of the
integral representation of the Dirac propagator constructed in [4]. This analysis will also
give us some insight into the physical mechanism which leads to the decay.

Recall that in Boyer—Lindquist coordinatés r, 9, ¢) with r > 0,0 < ¢ < m,
0 < ¢ < 27, the Kerr—Newman metric is given by [2]

ds® = gjkdxjxk
A dr?
= = (dt — asiP9de)?> — U [ — + dv?
U( a ®) ( AT

sin? 9
U

(adt — (r® + a®)dg)? (1.1)
with
U, ) = r? + a® cod v, A(r) = r? — 2Mr + d? + Q%

and the electromagnetic potential is

g(dt — asirt ¥dy),
U
whereM,aM andQ denote the mass, the angular momentum and the charge of the black
hole, respectively. Hereand/orQ are allowed to be zero, so that our results apply also to
the Kerr, Reissner—Nordstrém, and Schwarzschild solutions. We shall restrict attention
to thenon-extreme cas&? > a2 + Q2, in which case the function has two distinct
zeros,

ro=M—+/M2—a2— Q2 and rn=M++M2—a2— Q2

corresponding to the Cauchy horizon and the event horizon, respectively. We will here
consider only the region > r1 outside of the event horizon, and thais> O.

Our starting point is the representation of the Dirac propagator for a Dirac particle
of massn and charge established in [4, Thm. 3.6]

Ajdx! = —

2
1 % ,
W, x) =~ Z / dwe ' Z gkengkon () (gkon ygy. (1.2)
k,nez ¥~ a,b=1

HereWy is the initial datag is the energy, and|.) is a positive scalar product (see [4] for
details). The quantum numbkmrises from the usual separationexp(—i (k + %)) of

the angular dependence around the axis of symmetry, whelaasels the eigenvalues

of generalized total angular momentum in Chandrasekhar’s separation of the Dirac
equation into ODEs [3]. Thas*“" are solutions of the Dirac equation arﬁj’” are
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complex coefficients; they can all be expressed in terms of the fundamental solutions
to these ODESs. We postpone the detailed formulasifist’ andt!j,‘;’” to later sections,

and here merely describe those qualitative properties of the wave fundtférisvhich

are needed for understanding our results. Near the event horizodttego over
asymptotically to spherical waves. In the regian > m, the solutions fou = 1 are
theincoming wavesi.e. asymptotically near the event horizon they are waves moving
towards the black hole. Conversely, the solutionsdoe 2 are theoutgoing waves
which near the event horizon move outwards, away from the black hole. Asymptotically
near infinity, theij”, |lw| > m, go over to spherical waves. In the regips| < m,
however, the fundamental solutions foe= 1, 2 near the event horizon are both linear
combinations of incoming and outgoing waves, taken in such a wayfft4tandws"

at infinity have exponential decay and growth, respectively.

For technical simplicity, we make the assumption tiirgtis smoothandcompactly
supportedutside the event horizon. We point out that, while the assumption of compact
support is physically reasonable at infinity, it is indeed restrictive with respect to the be-
havior near the event horizon. Furthermore, we shall assume traigidar momentum
is boundedn the strict sense that there exist constagtandng such that

2
1 S
W) == oy ooda)e r | N gkemgken o (wEer ey | (1.3)

|k|<ko |n|<ng * — a,b=1

We expect that the rate of decay is the same if an infinite number of angular modes are
present. Namely, away from the event horizon, modes with large angular momentum
feel strong centrifugal forces and should therefore be quickly driven out to infinity,
whereas the behavior near the event horizon is independent of the angular momentum.
However, it seems a very delicate problem to rigorously establish decay rates without
the assumption (1.3), because this would make it necessary to control the dependence
of our estimates ok andn. Finally, we assume that the charge of the black hole is so
small that the gravitational attraction is the dominant force at a large distance from the
black hole. More precisely, we shall assume throughout this paper that

mM > |eQ]. (1.4)
We now state our main results and discuss them afterwards.
Theorem 1.1 (Decay Rates). Consider the Cauchy problem
(iy/D; —m)¥(t,x) =0,  W(0,x) = W(x)

for the Dirac equation in the non-extreme Kerr—Newman black hole geometry with small
charge (1.4). Assume that the Cauchy dégis smooth with compact support outside
the event horizon and has bounded angular momentum (1.3).

(i) If foranyk andn,

lim sup|(WA“" W) £0  or  limsup|(Wwh*"|wo)| # 0, (1.5)
w\Jn w/ —m

then for larger,
W(t, x)| = c178 + O~ 87%), (1.6)

with ¢ = ¢(x) # 0and anys < 3—10
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(i) Ifforall k,n anda =1, 2,
(Wwken wo) = 0

for all w in a neighborhood oftm, then|W¥ (¢, x)| has rapid decay in (i.e. for any
fixedx, W (¢, x) decays irr faster than polynomially).

Theorem 1.2 (Probability Estimates). Consider the Cauchy problem as in Theorem
1.1, with initial data¥g normalized by{Wp|Wo) = 1. Let p be the probability for the
Dirac particle to escape to infinity, defined for aRy> r1 by

p = lim / (Wyj\l’)(t,x)vjd,u, a.7)
{R<r<oo}

—>00

wherev denotes the future directed normal to the hypersurfaceconst and/ . denotes
the induced invariant measure on that hypersurface. Thengiven by

=Y Z[ ] ( —2|r’““"|2>\<w’§w”|wo>]2. (L8)

|k|<ko [n|<ng

Accordingly,1 — p gives the probability that the Dirac particles disappears into the
event horizon. Furthermore,

(i) Suppose that the outgoing energy distribution|tof > m is non-zero, i.e.
(W5 |Wo) # O

for somew with |w| > m. Thenp > 0.

(ii) If the energy distribution of the Cauchy data has a non-zero contribution in the
interval[—m, m], thenp < 1.

(i) If the energy distribution of the Cauchy data is supportefHm, m], thenp = 0.

(iv) If (1.5) holds, the® < p < 1.

The decay rate af& obtained in Theorem 1.1 quantifies the effect of the black hole’s
gravitational attraction on the long-time behavior of massive Dirac particles. Before
discussing this effect in detall, it is instructive to recall the derivation of the decay rates
in Minkowski space. We denote the plane-wave solutions of the Dirac equatigp,by
wherek is momentume = £1 is the sign of energy, and= =+ refers to the two spin
orientations. The plane-wave solutions are normalized according to

(lyks€|\ljk/s/e’) = 8(k - k/)ass’aee’a
where(.].) is the usual spatial scalar product

(V|D)(1) =/\Il(t,x)y0d>(t,x)dx.

The Dirac propagator is obtained by decomposing the initial data into the plane-wave
solutions,

W, x) =Yy / Ak Wpse (1, X) (Wpee (t = 0)|Wo),



Decay Rates and Probability Estimates for Massive Dirac Particles 205

and a straightforward calculation using the explicit form of the plane-wave solutions
yields that

4
Ut x) =2n / ﬂ(/wr m)8(k? — m?)T (w)e "y O0g(k), (1.9)
(2m)4

wherekffp(k) is the Fourier transform odg(x) (and as usuat = (¢, x), k = (w, k),
k=kjy/, andrI is the step functiom (x) = sgn(x)). Let us assume for simplicity that
the initial data is a Schwartz function. We write (1.9) as a Fourier integra] in

W(t, x) = /OO U(w, x)e " dw, (1.10)

—00

where
V(o x) = / is(/wm)a(w2 — [k|* = m*)[(@)e**y "W (k).
(27)

We consider the--dependence o¥ for fixed x. Thes-distribution gives a contribution
to the momentum integral only fdr on the spherék|? = w? — m?. Thus ¥ (o, x)
vanishes foltw| < m and has rapid decay at infinity. Furthermotejs clearly smooth
in the regionjw| > m. For|w| nearm, ¥ has the expansion

00 1,2
U(w,x) = /0 %(a)yo +m)8(w? — k2 — m?T(w)y Wo(0) (1 4+ O(k))

= —I;:;) (w0 + myo)\i—’o(O)\/ w? — m2 4 O(w? — m?).

A typical plot of | ¥ (w, x)| is shown in Fig. 1(a). Ify vanishes in a neighborhood of

k = 0, then¥(., x) is a Schwartz function, and thus its Fourier transform (1.10) has
rapid decay. This is the analogue of Case (ii) of Theorem 1.1. Howewgg(d) # O,

the decay rate is determined by the square root behavigrfof |w| nearm. A change

of variables gives that for any test functigrwhich is supported in a neighborhood of
the origin,

s ) . 3 [ u ;
/ Vo —mn(w—m)e " Ydw = e Mt 2 / ﬁn(?) e "du.
m 0

An integration-by-parts argument shows that the last integral is bounded uniformly in
and is non-zero for largeif 1n(0) # 0. From this we conclude that in Minkowski space,
|W (¢, x)| decays polynomially at the rates.

We now proceed with a more detailed discussion of our results, beginning with the
rates of decay obtained in Theorem 1.1. Naively speaking, a massive Dirac particle
behaves near the event horizon similar to a massless particle, i.e. like a solution of the
wave equation. In Minkowski space, solutions of the wave equation decay rapidly in time
according to the Huygens principle. On the other hand, at large distance from the black
hole the solutions should behave like those of the massive Dirac equation in Minkowski

space, which decay at the rates . It is thus tempting to expect that the solutions of
the massive Dirac equation in the Kerr—Newman black hole geometry should decay at
a rate which “interpolates” between the behavior of a massive particle in Minkowski
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|2 (a)

w

w

Fig. 1. Typical plot for¥ in Minkowski space) and in the Kerr—Newman black hole geomety (

space and that of a massless particle, and should thus decay at a rate no slower than

3. However, Theorem 1.1 shows that this naive picture is incorrect, since the rate of
decay we have established for a massive Dirac particle in the Kerr—-Newman black hole
geometry is actually slower than that of a massive particle in Minkowski space. Thus
the gravitational field of the black hole affects the behavior of massive Dirac particles
in a more subtle way. One can understand this fact by comparing the plots in Fig. 1,
which give typical examples for the energy distribution of the Dirac wave function in
Minkowski space and in the Kerr—Newman geometry. One sees thatin the Kerr—Newman
geometry, there is a contribution to the energy distributionddr< m, which oscillates
infinitely fast asw approaches:. When taking the Fourier transform, these oscillations
lead to the decay rate 8 given Theorem 1.1 (see the rigorous saddle point argumentin
Lemma 3.3).

The oscillations in the energy distribution in Fig. 1(b) are a consequence of the field
behavior near spatial infinity. On a qualitative level, they can already be understood
in Newtonian gravity and the semi-classical approximation. Namely, in the Newtonian
limit of General Relativity, the momentuih of a relativistic particle is related to its

energyw by
2
k|2 = <a) n ﬂ) —m2

r

Thus the particle has positive momentum evea & m, provided that the Newtonian
potential is large enougﬁ“yﬂ > m —w. This means in the semi-classical approximation
that the wave functiod () has an oscillatory behavior near the black hole,

mM

)
m—w

W(r) ~ eXp(:I:i/ kds) for r<R=

and will fall off exponentially forr > R. As a consequence, the fundamental solutions

wkon for |w| < m involve phase factors- exp(+i fR kds). In the limitw 7 m,
R — o0, leading to infinitely fast oscillations in our integral representation. This simple

argument even gives the correct quantitative behavior of the phagsas— a))‘%.

The fact that the decay rate in the presence of a black hole is slower than in Minkowski
space has the following direct physical interpretation. One can view the gravitational
attraction of the black hole and the tendency of quantum mechanical wave functions to
spread out in space as competing with each other over time. The component of the wave

function forw nearm andw < m, which is responsible for the decay rare%, has not
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enough energy to propagate out to infinity. But since it is an outgoing wave near the
event horizon (note that in (1.5) the fundamental soluti@fj@” enter only fora = 2),

it is driven outwards and resists the gravitational attraction for a long time before it
will eventually be drawn into the black hole. As a result, the Dirac particle stays in any
compact region of space longer than it would in Minkowski space, and thus the rate of
decay of the wave function is slower. According to this interpretation, our decay rates
are a consequence of the far-field behavior of the black hole. Similar to the “power law
tails” in the massless case (see [8]), our effect can be understood as a “backscattering”
of the outgoing wave from the long-range potential, but clearly the rest mass drastically
changes the behavior of the wave near infinity. We expect that result for the decay rates
should be valid even in a more general setting, independent of the details of the local
geometry near the event horizon. Furthermore, the decay rates should be independent of

the spin. This view is supported by [6, 7], who obtained the ratefor massive scalar
fields in a spherically symmetric geometry using asymptotic expansions of the Green’s
functions.

Theorem 1.2 gives a precise formula for the probability that the Dirac particle either
disappears into the black hole or escapes to infinity. In c@s€ss) we give sufficient
conditions for these probabilities to occur. These results are consistent with the general
behavior of quantum mechanical particles in the presence of a potential barrier and can
be thought of as a tunnelling effect. In c488), the particle does not have enough energy
to escape to infinity. Thinking again in terms of a tunnelling effect, the Dirac particle
cannot tunnel to infinity because the potential barrier (which has finite heights
infinite width. Finally, one might ask whether = 1 can occur; i.e., that the particles
escape to infinity with probability one. This is indeed the case for very special initial data,
whose energy distribution is supported outside the intdrval, m] (see Corollary 9.3
below).

We conclude by remarking that a number of significant results are known for the long-
term behavior omasslesfelds in black hole geometries. These results do not capture our
effect, which is intimately related to the presence of a mass gap in the energy spectrum.
Price [8] discussed the rates of decay of massless fields in the Schwarzschild background
for special choices of initial data. His decay rates depend on the angular momentum and
are faster than the ones we have derived. A rigorous proof of the boundedness of the
solutions of the wave equation in the Schwarzschild geometry has been given by Kay
and Wald [5]. Beyer pursues an approach ugiflgsemigroup theory, which also applies
to the Kerr metric and the massive case [1]. An important contribution to the long-time
behavior of gravitational perturbations of the Kerr metric has been given by Whiting [9].

2. The Long-Time Dynamics Under a Spectral Condition

We begin the analysis with the case when the energy distribution of the Cauchy data is
zero in a neighborhood af = +m. The following theorem is an equivalent formulation
of Theorem 1.1(ii).

Theorem 2.1. Consider the Cauchy problem
(iy/D; —m)¥(t,x) =0,  W(0,x) = Wy(x)

for smooth initial data with compact support outside the event horizon. Assume that
angular momentum is bounded and that the energy is supported awayfeerd: m,



208 F. Finster, N. Kamran, J. Smoller, S.-T. Yau

i.e.

—m—e¢ m—e 00 2
wo=% >N </OO +[ +/ )da) D e (W o) (2.1)

Ik|<ko In|<no mte Jmte ab=1
for suitables > 0. Then for allx, ¥ (¢, x) has rapid decay im.

Before giving the proof, we recall a few basic formulas from [4]. The separation
ansatz for the fundamental solutio®§” is

Xliwn (}’) wan (19)
Xiwn (7‘) Yé{g{un (19)
xher(ryyken @) |
Xliwn (r) Y_If_wn (19)

. . 1
\Ijz]zmm (t,r, 0, ¢) = e—ta)te—l(k+§)fﬂ (22)

whereX = (X4,X_) andY = (Y4, Y_) are the radial and angular components,
respectively. The radial pak () is a solution of the radial Dirac equation [4, Eq. (3.7)]

|:i+i§2(u)<é_01>]X ﬂ( 0 "mro_k>x, (2.3)

du =r2+a2 —imr — A
where

(k+3a+eQr

a2 , A:rz—ZMr+a2~|—Q2,

Q) =w+
A isthe angular eigenvalue (which depends smoothlypandu € (—oo, co) is related
to the radius by

du r2 +a?
e = N (2.4)

To analyzeX in the asymptotic region — —oo, one employs folX the ansatz
e*iﬁou f+ (u)
X(u) = < enguf—(u) ) (25)

and obtains forf the equation

d
—f = [i(Qo - Q) (é _01)

VA ( 0 e~ 2 (imy —X)>:| 7 (2.6)

r2 4 g2 \ 2 (—imr — }) 0

Standard Gronwall estimates yield that the fundamental solutions of (2.3) have the
asymptotic form [4, Lemma 3.1]

—iQou £+

X, (u) = (6 an) + Ro(u), 2.7)

eiQou f0;
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where|Ro(u)| < c exp(du) for suitable constants ¢ > 0 and

for= (é) . fo2 = ((l)> - (2.8)

In the asymptotic region — oo, one transforms the spinor basis with a matBifu)
such that the matrix potential in (2.3) becomes equal to the diagonal matixu)o 3

(o7 are the Pauli matrices). One must distinguish between the two ¢ages m
and|w| > m. In the first case2 (1) is imaginary for large:, and thus there are two
fundamental solution¥ 1 and X, with exponential decay and growth, respectively, and
we normalize them such that

lim_1X @) = 1. (2.9)

In the caséw| > m, Q(u) is real for allu. The ansatz

e ()

gives the differential equation

X =8B (e_i¢f+(”)> with ') = Q) (2.10)

Lo mayF  with (M@ < S (2.11)
du u

which can again be controlled by Gronwall estimates. Thus one obtains the asymptotic
formula [4, Lemma 3.5]

cosh® sinh@) <ei¢(“)fgga

Xa(u) = <sinh® cosh® | \ ¢i®w = ) T Roo 1), (212)

where|Ry| < c¢/u for suitablec > 0 and

1 w+m B > 2 weQ + Mm?
O_4log<w_m>, CID_F(a))<\/a) — mu + N logu ). (2.13)

The complex factorg, in (2.12) are the so-calledansmission coefficient§urther-
more, we introduced the functiong(a), 0 < o < 2w, in terms of the transmission
coefficients by [4, Eq. (3.47)]

n(@) = fle ™ — fe  tale) = —fleT + foe” (2.14)

Finally, the coefficient$t,)4.»=12 are given by

84181 if o] <m

twh=13 1 (¥ 1.5 _ (2.15)
= | 5 daif ol > m.
2r Jo  |al®+ |t

Proof of Theorem 2.1Since (2.1) contains only finite sums, we carkfix and consider
one summand. The coefficients in the differential equation (2.6) are smoathaind
their w-derivatives are integrable on the half-linese (—oo, ug] for ug sufficiently
small. Apart from the singularities at = +m, the same is true for the differential
equation (2.11) for on the half line[u1, oo) andu1 sufficiently large. Since further-
more the ansatz (2.5) is smoothdne R\ ((—m — &, —m + &) U (m — &, m + ¢))
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and (2.10) is smooth i € (—oco, —m —e]U[m + ¢, 00), and also the coefficients of the
differential equation (2.3) depend smoothly @rin the bounded interval € [ug, u1],

we conclude that the fundamental squtidr(%w”o(x) and the transmission coefficients
fkoono qepend smoothly om € R\ ((—m — &, —m + &) U (im — &, m + ¢)). Hence the
integrand in (2.1) is a smooth functiondn(which vanishes fojw| — m < ¢). SinceWg

has compact support and the fundamental solutions fer oo go over to plane waves,
itis clear that thevo-derivatives of the integrand in (2.1) are all integrable. It follows that
the Fourier integral (1.2) has rapid decay

According to this theorem and using linearity, it remains to analyze the energy distri-
bution in a neighborhood @ = +m. Since all constructions and estimates are similar
for positive and negative, we can in what follows restrict attention to a neighborhood
of w = +m.

3. Decay Rates of Fourier Transforms— Basic Considerations

In this section, we derive estimates of some elementary Fourier integrals. Our decay rate

8 uItimfilter comes from Lemma 3.3. We always denote byparameter in the range
O<e< 5.
30

Lemma3.1. Letg € L®(R) N C1((0, 00)) with compact support and assume that for
a suitable constant,

C
lg' ()| < " for all o > 0. (3.1)

Then there is a constant= ¢(g) such that for allr > 0,

w .
/ e g(a)da
0

Proof. Assume that sugpc [—L, L]. For givens > 0, we split up the integral as

5
<ct787°,

00 | [ 00 |
/ e g(a)da =/ e’mg((x)d(x—i—/ e g(a)da.
0 0 8
The first term can be estimated by

8
‘f eg(a)da
0

with ¢1 = sup|g|. In the second term, we integrate by parts,

0o 1 r°/d .
/ e g(a)da = ,—/ (—e“’”) g(a)da
S i Js do

1. 1 [ .
— _;glatg(g)_ ;‘/; €lmg/(05)dol,

<c16

and estimate using (3.1),

0 .
‘/ ee(a)da| < % + §(|OgL —logsd).
§
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We choosé = ¢ ¢ to conclude that
OO .
‘/ e o(a)da
0

and this has the required decay properties in0

C
< clt_g_g + % + T(IogL — |Ogt_?53_8),

In the next lemma we insert into the Fourier integral a phase factor which oscillates
infinitely fast asx \ 0.

Lemma 3.2. Letg be as in Lemma 3.1. Then there is a constaat ¢(g) such that for
allr > 0,

/Ooo exp(iat — %) gla)da| < ct™87¢, 3.2
Proof. We set
1
¢(a) = at — ﬁ.
Then
¢ (@) =1+ %a—%, 0" (@) = —Za_g. (3.3)

We integrate the Fourier integrals by parts,

/OO 2@ g(a)da = —i /00 iei‘f’("‘) Bdu=i /OO el @ g_’ — % do
0 0o \da ¢’ 0 ¢ 92 ’

and obtain the bound
o
< / 2 _28C
0

= ie@
' g(a)da -
/o ¢ P?

* 5 1 7
=/0 191757 {11915+ + lgllg 119/ 75+ | e

/ VA
g g9 Ja

According to (3.3), we can estimate the faqm(n‘%‘g from above by‘%‘g, whereas

for the factorg¢’| in the curly brackets we use the boujgd| > %a‘g. Furthermore,

we substitute in the formula fa¥” in (3.3) and obtain

0 .
‘/ 2@ g (a)da
0

s, % , 1.3, _3_3,
<t’® c1lg'la?™ 2% +colgla™472% ) da
0

with two constants; andc». Using thafg is in L andg’ satisfies the bound (3.1), one
sees that the pole in the last integrand is integrabie.

The following lemma deals with the Fourier integral when we replace the minus
sign in the integrand of (3.2) by a plus sign. Reversing this sign completely changes the
long-time asymptotics. We estimate the Fourier integral using a rigorous version of the
“saddle point method”.
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Lemma 3.3. Let g be as in Lemma 3.1. Then there are constants c(g) andc; =
4 1 ..
27337 2,/7 such that for all sufficiently large,

. .
/ exp(iat + l—) g(w)da — clei¢°g(ao)t_% < ct_%_g, (3.4)
0 Ja
whereag and¢g are given by
3
w=2)"3, ¢o= (Zt) : (3.5)
Proof. We introduce the functiop by
$(a) = ar + L
o) =0u \/&
Then
¢ () =1— %a_%, ¢ (@) = Za—g. (3.6)

One sees that («) has a minimum akg with ¢ (ag) = ¢o and
” —1,3
¢ (ap) = 2733¢3. (3.7)
We set
5= 8te.
For larget, § < ag. We split the integration range into two regioBg and D, with
D1 = (0,0 — &) U (a0 + 8, 00), D2 = [ao — &, ap + 8]

Let us first estimate the integral ovex;. An integration-by-parts argument similar to
that in the proof of Lemma 3.2 gives
g/ g¢//

9 o g(ag +6) n g(ag —6) +/ g
/Df § “‘5‘ -8 Jo o 42

@' (a0 +8)
Putting in the formulas fop’ and¢” given in (3.6), and using thate L together
with (3.1), one sees that for suitahle

f ei‘l’gdot
D1

Next we show that the leading contribution to the integral avgis given by the saddle
point approximation. To this end, we introduce the quadratic polynomial

do.

5
<ct 67¢,

1
$s(@) = do+ S¢"(@0) (@ @0)?.
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Then the mean value theorem gives for sufficiently large

/Dz (ei¢g - ei¢5g(ao)) do

2 1
< (2 4 5 suplg”18%0glloe ) 87 = (cor T e ) < e,
(670} 2 D>

< suplg’| + (¢ — ps)'gl) 82
D>

where in the last step we used that %. Finally, we compute the contribution of the
saddle point approximation,

5
/ €' g(ao)da = e’¢°g(ao)f 29" @ 4o
Do )

Introducing the new variable= %(b”(ao)az gives

. . 2 L eis
s da = &% / Z_ 4
/Dze glag)da =e g(ao),/(p”(ao) 7 s

with
1
L= §¢”(ao)32 = 27332 (3.8)

Using (3.7), we conclude that

/ ¢#5 g (ag)dar = €*g(ag) ™8 (c1 + R(1))
D7

with
1 00 eis
1= 233*?/ —ds =23372/n #0
0 s
1 00 eis
R() = —233‘?/ —ds
L s

The error termR () can be integrated by parts,

ooeis 1 3
/ —ds| < 2
L s

1 n /oo -3, 51
—+ = sT2ds = ——,
“JL 2JL 4./L

and this shows according to (3.8) thiatr) decays irr at the desired ratéR (r)| < ct°.
O
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4. The Planar Equation

Let us transform the radial Dirac equation (2.3) into an equation for a real 2-spinor as
follows. We first unitarily transform the spind¢ according to

X—>X=UX with U= exp(iéa"') , B= arctan%. (4.1)
ThenX satisfies the equation
%X:i(:z z)x 4.2)
with
a() = Q) + —2" A (4.3)

m2r2 4+ A2 2(r2 + a2y’
VA
Vm2r2 4 )2, (4.4)
r2 4+ a2

Notice that the transformatiati is regular for all: € R, and that the second summand
in (4.3) has nice decay properties o> +o0o. Next we employ the ansatz

%= < My ~ v ) L ov=; < P@Xx* - X7 ) (4.5)

b(u) =

—yt —il(@)y~ iXt+iT@X~
with a complex 2-spinoty. Thenyr satisfies the equation
d 0 —g
— Y = 4.6
=03 @6
with
f =lal+ b, g =lal —b. 4.7)

The coefficients in (4.6) are all real, and so we can study the real and imaginary parts
of ¢ separately. Thus we assume in what follows thas real and then call (4.6) the
planar equation

We bring the planar equation into a form more appropriate for our estimates. For
givenug we introduce the new variable

x() = 2 / JITgl@dr (4.8)
uo

and set

h—llo

g
f‘ . (4.9)

In the casg > 0, (4.6) becomes

,_d 170 —e!
4 Ew—§<e—h O)W
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Employing the ansatz

h
L [ e2 cositl
Y=e 2( ho. xzﬁ> (4.10)
2

with real functionsl (x) and¢ (x) gives the equation

—Lay+hb+A+%)ar=ay (4.11)
with
T _sinix? 0
o — cgs ll iy — sin*% ’ b co_s 5 .
sin*$2 cos*$2 —sini?

Elementary trigonometry shows that
b = coqgx + ©)ay — sin(x + ¥)ax.
Hence the planar equation takes the form
o = k' sin(x + 9), L' = h'cogx + 9). (4.12)

In the casg < 0, the ansatz

u x40
v=et ( ¢* cosh=5" ) (4.13)

e 3 sinh*2
gives similarly the equations
® = h'sinh(x + ), L' =K' coshix + ). (4.14)

We can now give the strategy for the proof of Theoren(il.Eirst, in the next section,
we will obtain estimates which will enable us to control the functidbmhich appears
in the planar equations (4.12) and (4.14). Then we will carefully analyze the solutions
(9, L) of these planar equations, and this will allow us to study the time-dependence of
the propagator (1.3). For the analysis of the planar equations, it is necessary to consider
both case® > m andw < m separately; this will be done in Sects. 6 and 7, respectively.

5. Uniform Boundsfor the Potentials

In this section, we shall derive estimates for the functigm) (as introduced in (4.9)

with x according to (4.8)) as well as for its partial derivatives with respectaodw.

The usefulness of our estimates lies in the fact that they are unifagnfione in a small
neighborhood ofz, w € (m — 3§, m+§). The main technical difficulty is thatis defined

via an integral transformation (4.8), and thus) depends ow in a nonlocal way. On

the other hand, our estimates also show the advantage of working with the vatiable
Namely, by introducing, thew-dependence df becomes small in the critical regions

near infinity and near the poles 6f in the sense thaiw — m)d,h(x) has bounded

total variation inx, uniformly in w. This will be essential for getting control of the
dependence of the solutions to the planar equation (see Lemmas 6.3 and 7.5). Since the
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technical details of the proofs of Lemmas 5.1, 5.2, and 5.3 will not be needed later on,
the reader may consider skipping these proofs in a first reading.

In what follows, we often denote derivatives by a lower index, é8.= 9,h.
Furthermore, we denote constants which are independenbgf; the value ofc may
change throughout our calculations. For clarity, we sometimes add a subserifi to
mean a fixed constant. According to their definition (4.7) and (4.3),(4.4), the functions
f andg have for large: the expansion

f=(a)+m)—M+O(i2),
u

u

g=wPWQ+ﬂﬂiﬁg+0(%).
u u

Our notationO (") implies that the error terms depend smoothlygrand that their
u-derivatives have the natural scaling behavior, i.e.

3WOWw™ =0w™ and 8,0w™) =0w"".

Our assumption (1.4) ensures that for lange is monotone decreasing, wherefss
increasing.

We begin with the case > m. In this parameter range, we fix independent ob.
By choosingug sufficiently large, we can arrange that the following estimates hold.

Lemmab5.1. There are constanis § > 0 such that for alkw € (m, m + §) andx > 0,

0<—h(x)< 1+Lx’ (5.1)
Ih" ()] < m (5.2)
/OOO I, ()ldx < — - - (5.3)

Proof. We sets = w? — m? and introduce the function

p=2/fg.

Thenh andp have the asymptotic expansions

1 e o 1

p(u) = 2\/5 + g + O(M—lz) (5.5)

with positive constanta and g, which depend smoothly o and are bounded away
from zero ass — 0. Ouir first step is to bound the function(u), (4.8), as well as
its inverseu(x). According to (5.5), there are (possibly after increasigyy constants

ai, az > 0 such that
2le+ B < pwy <2 e+ %2 (5.6)
u u
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forall w € (m, m + ) andu > ug. We introduce the functions andx by

x = 2\/u(ay + su) — by, x = 4Ju(az + eu) — by,

where the constants andb; are chosen such thatug) = 0 = x(uo),

b1 = 2\/ug(a1 + cuop), by = 4\/up(az + cuop). (5.7)

Then
oL a1t 2su - ai+¢eu -
& (M) - m — u — p(u)v
_ 2(az + 2¢u) az 4+ cu
"(u) = > 2 > ,
x () Ju(az +eu) — u z plu)
and integration yields that andx are bounds fox,
x(u) < x(u) <xu) forall u > ug. (5.8)

The functionsx andXx are strictly monotone and thus invertible. Their inverses are
computed as follows,

1
= & (e v -
3
1 e(x + b1)?
2¢ ,/a%—i—s(x +b1)2 4+ a1
1
i) = = ( 4a2 + e(x + bp)2 — 202)

e(x + bp)?

4e 1/4a§ +e(x + b2)2 + 2a

where in the last step we applied the inequality + b < /a + /b (a, b > 0). The
inequalities (5.8) yield for the inverses that! (x) > u(x) > x1(x). Thus the functions
u andu defined by

(x + b1)?
JE(x + b)) +ar’

1
< =
-2

oy

1 (x + b2)?
4 Je(x + bp) + day’

=

1 (x+bp)? 1 (x+bp)?
uex) = 4 [e(x + bo) + 4a’ ueo = 2. /e(x +b1) + a1 (59)
are bounds fon(x),
u(x) <ulx) <ulk) forall x > 0. (5.10)

Let us derive (5.1). Sinc¢ andg are monotone increasing and decreasing, respec-
tively, h(u) is decreasing and thus(x) < 0. Furthermore,

g'w  f'(w)

g f
2
:;yywv—kams;%S. (5.11)

/ 1 / l
W' ()| = =|h" (W) = —
p 2p
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We employ (5.6), (5.10), and (5.9) to obtain
Wl < Gu @ +ewF < Qudan+ew?
2C1(¢E(x+b2)+4a2)5< Ve(x + b2) + day )3
(x + by)2 e(x + b2)? + da1/e(x + bo) + 16a1az
2¢1 [ (Ve + bp) + 4ap)? ]
X b2 | (e(x + bp)? + 16a1az)? |

The square bracket is bounded uniformly iandx, proving (5.1). The second derivative
of h is computed to be

1

d
R (x) = ;d_< — ') f — f(u)g)>

IA

/ / / 2 d / !
= _F (') (g W) f — fw)g)) + A du EEwf—-rwg.
Thus

c2 c2
B )| < —— + 52
W0l = s +

(5.12)
and (5.6) shows that
| (x)] < 8cau (a1 + eu) > + cou~Haz + eu) % < cau~Haz + ew) %

We substitute in (5.9),

(o)) = — 02 [ (Ve +bo) + 4ap)? }

(x1+ b1)? | (e(x + b2)2 + 16a1a)?

The square bracket is again bounded uniformkyamdx, and this gives (5.2). We finally
estimatei/ (x). Since the relation betweenande is one-to-one and smooth, we can
just as well consider the-derivativeh’ (x). Sinceh(x) is not given in closed form, we
need to computé, (x) via the formula

ghe(x) = ehe(s) + eh'(s)s: (x), (5.13)

wheres = s(u) is a suitable variable. Clearly, (x) is independent of howis chosen.
However, if we take for too simple a function (e.gs = u), then it turns out that

he(s) will develop singularities in the limit — 0, which are compensated in (5.13)

by corresponding singular contributions to the second summand, making the analysis
very delicate. To bypass these difficulties, it is convenient to chooséifpia function

with a similar qualitative behavior agu); this will make it possible to estimate the two
summands in (5.13) separately. We set [u-inverse+ b;], so thatu = u(s(u) — by);

ie.

h(s) =h(u =u(s — by))

with & according to (5.9) and € [b1, c0). Then the expansion (5.4) becomes

h(s) = %Iog (8A1+ hav/e | 43 +f0( “2) 4+ O(s —3))
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with positive constants; which depend smoothly ogye and are uniformly bounded
away from zero. Differentiating with respect4aives
hes) 1 11652 + Ao /es + /2O(s0)
& S)= = .
¢ 2 h1852 4+ 2h04/es + A3 + /2O(s0) + O(s—1)

We want to show that this function has bounded total variation. To this end, we differ-
entiate with respect to and obtain

clags2 + 265 + c34/€ + eg(’)(s) + 039 + ﬁ(’)(s‘l)
2(r1852 + 2h24/es 4+ A3+ /eO(s0) + O(s71))?

Hence by choosing small enough andg (and thush,) large enough, we can arrange
that

ehl(s) =

, 8%52+8s+ﬁ
elhel < e
(A1es 4+ A3)

for all ¢ and alls > b1. The L1 norm of the rhs is bounded uniformly in. Namely,
settingt = /A1es shows that fon =0, 1, 2,

o0 n _n+l o0 t}'l
[

——=dt,
, (h16s2 + A3)? o (%2+13)?

and the last integral is finite, independentoft remains to estimate the total variation
of the second summand in (5.13). More precisely, in order to finish the proof of (5.3),
we shall show that

o0 d ,
/O ‘Eaz ()85 (1))

dx <c. (5.14)

We first derive sufficient conditions for (5.14). The relations
0= 3e5(x(s)) = se(x) + 5" (x)xe(s) W (x) = h'(s)s"(x)
yield that
R (5)s5e(x) = —h'(x)xe (s).

Differentiating with respect ta, one sees that it suffices to bound thenorms of the
expressions

ex,(s)
x'(s)
uniformly ine. Substituting in the bounds (5.1) and (5.2), we conclude that the following
inequalities imply that (5.14) holds,

K (x) and h(x)ex.(s)

1
-<x'(s) <c, (5.15)
C
00 /
f e, (5.16)
0 1+x

< elxg(s)]
A T x)zdx <ec. (5.17)
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We begin the proof of (5.15)—(5.17) by computings),

u(s—b1)
x'(s) = %/ p)dv = p(a(s — b)) (s — by). (5.18)

0

A short calculation using (5.9) and (5.5) gives

s(es + 2a1) -
2(/es + a1)? ’

1
p%((s — b1)) = S—2<4es2 +86/es + 8Ba1) + V/eO(s™2) + O(s73),

w'(s —b1) =

and thus

V()% = (VEs)* + as(Ves)3 + - + ag + £20(s2) + £0(s) + VeO(°) + O™
a (Ves$)4 + b3(Ves)3+ -+ + bo

(5.19)

with coefficientsz;, b; > 0 andag, bp > 0. Possibly after increasing and decreasing

8, we can neglect the error terms. The fraction in (5.19) is clearly uniformly bounded
from above and below. This proves (5.15). Integrating (5.15), we obtain that the ratio
(1 + x)/s is uniformly bounded from above and below, and thus in (5.16) and (5.17)
we may replace the factortd + x) by s. Using (5.15) we may furthermore replace the
integral overx € (0, co) by the integral oves € (b1, 00). Next we differentiate (5.19)
with respect te. A short computation shows that

ar(es)" + -+ + a1(/€s)
(Ves)B 4+ b7(Jes)" +--- +bo

where the coefficients; are non-negative anbh > 0 (but thea; might be zero or
negative). Using the bounds (5.15), one sees«hat) can be estimated by

Ves((Ves)®+ 1)
(Ves)8+1

sxé ()x'(s) =

(1 + O(s—l)) ,

(5.20)

elxg(s)| < c

A scaling argument shows that

oo ’ 0 6 1 o0 t6 1
/ €|Xg(s)|ds < C/ (\/gs)8+ Jeds < C/ 8+ < 00, (5.21)
by § b (Ves)¥+1 o °+1

proving (5.16). To derive (5.17), we use that

s
elxa(s)] < / eIx(1)[d1 + elxe (b))
by

and obtain

 glxe(s)] *1 S o
s < [ S (] ell@ldr + elx bl ) ds
b1 s by S b1
0 g 1 K ,
=—/ 2(= /5|x8(t)|dt+e|xg(b1)| ds.
b1 ds \s b1
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1
~e72

Fig. 2. Typical plots forh’(x) andh),(x) in the case» > m

According to (5.20), the inner integral diverges at most logarithmically as oc.
Therefore, integrating by parts gives no boundary terms at infinity,

/ 8|x€(s)|ds§/ 8|xg(S)|ds+8Ixs(b1)|‘
b

L 52 by s b1

The integral on the right was estimated in (5.21). The last summand is computed to be

. Ixe(b1)| . |x'(b1)| 9b1
by by e’

and this is bounded uniformly inin view of (5.18) and the fact that is smooth in/e
and bounded away from zero, (5.7). This completes the proof of Lemma &.1.

The above estimates are illustrated in Fig. 2, whé@ndh/, are plotted in a typical
example. The dashed curve describes the asymptotics ned, it is the graph ot/ (x),
where forx(u) one uses the approximate formula~ 4./8(\/u — \/uo), obtained by
settinge in (5.5) equal to zero, dropping the error term and integrating, (4.8).

In the casen < m, we fix umin independent ofv € (m — §, m). By choosingumin
large ands sufficiently small, we can arrange that the functphas exactly one zero
on the half line(umin, 00). We setug equal to this zero,

g(ug) = 0.

Clearly,ug depends om. The variablex («), (4.8), is positive fou > ug and negative
on the intervalumin, o). We setxmin = x (umin)- The following lemma is the analogue
of Lemma 5.1 fow < m. The method of proof is also similar, but the polé:cdtx = 0
makes the situation a bit more complicated.

Lemma5.2. There are constants § > Osuchthatforallw € (m—3§, m) andx > xmin,

Cc c
O0<TWHh(x) < —— + —, 5.22
TR = 7 + 1 (5.22)

C + C
(X — Xmin + 1)2 |x|27

foo|h;)(x)|dx_ <. (5.24)

m—w

|h" (x)| <

(5.23)

A

Xmin
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Furthermore, for every: > 0 the constantg, § > 0 can be chosen such that for all
w € (m—3§,m)andx € [—xq, x1],

‘h(x) - %Iog le?x|| < c. (5.25)

Proof. We now set = m? — w? andp = 2/[fg|. Then
B

) =4le — = + O™
with 8 > 0. Sincep (ug) = 0,
uo = g(l + O(e)), (5.26)
and furthermore, the functiorisandp have the expansions
h(u) = %mg((wfm)z lu ;”0' (1+(9(u—1))), (5.27)
o) = 2\/‘9'”;—”0' (1+0w™b). (5.28)

Since global bounds for(x) andu(x) would be more difficult to obtain than those in
Lemma 5.1, we here construct the bounds piecewise. W&iset ug/2. By decreasing

8, we can arrange thabp/4 > umin, and furthermore we can also make the error terms
in (5.27) and (5.28) as small as we like. Thus we may assume that

3
> [ £ Sl —uol < pw) <3 |5/ lu—ugl  forlu—uol < Au.  (5.29)
uo uo

Integrating fromug to u gives

[ £ —uol? < x| <2/ qu—uol?  forju—uol < Au.  (5.30)
uo uo

Taking the inverses, we obtain for — ug| the bounds

v(x) < |u(x) — uo| < v(x) for |x| < Ax, (5.31)
where we set
5 4 5 4
v(x) = (" ”0)3, B(x) = <x “0)3, (5.32)
4e e
€ 3 3 3. _1
Ax = \/:(AM)Z =272 /sug=2"2Bc2(1 + O(e)). (5.33)
uo

If x > Ax, the second inequality in (5.30) shows that ug > 2‘3140, and thus in this
region there are constants, a; > 0 such that

a1y/e < p(u) < az/e. (5.34)
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Hence forx > Ax,
1 du 1
[
ax/e ~ dx T ai/e

Integration shows that, possibly after decreasingnd increasinga,

u(x) <ulx) <ux) forx > Ax (5.35)
with
X S
u(x) = w, u(x) = ade (5.36)

If on the other hanad < —Ax, we see from (5.30) that — ug < —2*%140, and thusp
can be estimated by

%t < pw < Zut (5.37)
with b1, b > 0. We integrate fronu i, to u,
b1v/u — b1/umin < x(u) — Xmin < b23/u — b2/umin,
and solve fow. This gives
ulx) <ulx) <ux) for xmin < x < —Ax (5.38)

with
X — Xmin 2 X — Xmin 2
Z(-x) = (b—z + Mmin) s ﬁ(x) = (b—l + «/Mmin) . (539)

For anyx; > 0, we can, by choosing small enough, arrange thatx, (5.33), is
greater tharx1. Thusu(x) is on the interval—x1, x1] bounded by (5.31). Substituting
these bounds into (5.27) and using (5.26) gives (5.25).

To show thafl" (x)4’(x) > 0, note that

h'(x) = h’(u)j—z,

Wherej—z = p~Lis positive, and the sign df (1) is obtained from (5.27).

For the derivation of the inequalities (5.22)—(5.24), we consider the three regions
x < —Ax, |x] < Ax, andx > Ax separately. We begin with the cals¢ < Ax. For
K'(x) andh”(x), we have again the bounds (5.11) and (5.12), respectively. Using that
u > up/2 as well as (5.29), (5.31), and (5.32), we obtain

c Cc _3
W ()| < —5—= < ——=lu—upl"2 < ,

u?p3 Jiige 2 ~ uoex
c c c

' (x)] < —
u
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and in view of (5.26) and (5.33), this implies (5.22) and (5.23). To compute), we
again use (5.13), but now with

[e
s(u) = —|u—uo|gr(u—uo) for |u — ug| < Au,
uo

where as befor€ is the step function (r) = sgn(t). The first summand in (5.13) is
computed as follows,

u(s) = uo+ uég—%s%r(s) for |s| < Ax, (5.40)
1
629 “(B+ (BesDIT () + O(e)), (5.41)
1 4 2
ns) @2 Liog ’338—”? (1 120G + s%‘O(s%)) — log(w + m)
2 " \B+ (BesD3T(s)

Ehels) = (2_1 (Bes?) i)
: 3 6p4 (Bes2)ir(s)

Differentiating with respect te gives the bound

) (1+ £O(s°) +e%‘(9(s%)) .

, 11 21
elh (s)] < ce3s™ 3 +ce3s3,

and thus
axo 1 2 2 4
glh,(s)lds < ce3(Ax)3 4 ce3(Ax)3.
—Ax

Using (5.33), we conclude that the total variatior bf (s) is bounded uniformly . In
order to estimate the total variation of the second summand in (5.13), we first compute
x'(s),
16
K67 = (o' (60 = s
This is uniformly bounded from above and below, proving (5.15). Differentiating with
respect te using (5.41) gives the estimate

(1 + SO(SO) + E%O(S%)) .

elx.(s)] < cedss. (5.42)

Sincex (s = 0) = 0 for all ¢ (from (5.40)), integration yields that

e 1 533y 1
glxs(£AX)| < / elx, (s)|ds| <ce3(Ax)3 < ce™ 2 (5.43)
0
Ax /
/ O, cedant <. (5.44)
—Ax N

Furthermore,

Ax Ax 1 s
/ 8|x82(s)|ds < / = < / e|x;(t)|dt> ds. (5.45)
—Ax s —Ax S 0
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Using (5.42), the inner integral is for smalbounded by a constant time® Thus when
integrating by parts, we get no boundary terms at 0 and obtain

Ax 1 Ax t
/ ”Lz(s)ds < A—xf e|x;(z)|dr+/ LA ()' s<e,  (5.46)
—Ax Ax

—Ax N

where in the last step we used (5.42) and (5.44). Combining (5.44) and (5.46) with the
estimates (5.22) and (5.23), we conclude that the total variation of the second summand
in (5.13) is bounded uniformly in. This shows that (5.24) holds if the integration domain
is restricted toc € (—Ax, Ax).

In the caser > Ax, (5.34), (5.35), and (5.36) yield, again using (5.11) and (5.12),

c 1 633

c c
I (x)| < < < - < -
u?p3 ~ x2,/e T x JeAx x

W) < c € € € _¢

X ——t =< —F—+ 5= < —,

= Wb T uBph = xAg T 335 — X2

proving (5.22) and (5.23). To compute the total variation gfc), we apply (5.13) with

JE
s(u) = ——=u foru > ug + Au.
\/E 0
Using that
3uo\ (533
s(ug+ Au) =s - =" Ax,
we see that
32
u(s) = \/_s fors > Ax.
e

Moreover, from (5.27) and (5.28),

l I3 Sﬁs—ﬂs’% 0 1
his) = 3 g<(w+m)2 375 (l—l—e(’)(s)—i—\/g(’)(s )) ,
1
1 Be 2 0 1
ehe(s) = = ——————— | (1+0G") + VeO(s ™)
’ 2( 6«/25‘—2,38 )( ’ ’ )
, c
elhy(s)| < W,
o0 , c
/Ax elhg(s)lds < NS <c

* ()% = (p()u'(5))% = 72 (1 3¢£¢E> (1+ 0% + «/EO(S*)).
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Sinces > Ax,we conclude from (5.33) that (5.15) holds. Differentiating the last relation
with respect ta and integrating gives

C
i
<
elx ()] < e
o0 /
/ el oo ¢ (5.47)
Ax s JEAX

0 1 §
/ el s < / _2( / s|x;<r)|dr+sxe<m>)ds
Ax N Ax S Ax

o
< &lxs (Ax)| +/‘ 8|xe(S)|ds§C,
Ax Ax s

where in the last step we used (5.43) and (5.47). This proves (5.24) iAx.
Finally, if x < —Ax, the bounds (5.38) and (5.39) give

)| (Sil) c <8c -1 c
X < < —=u 2=
u?p3 b? baJu
C < C
X — Xmin + bZ«/umin T X — Xmint 1
512 ¢ c c c
W' ()| < —=+ <-=

T outp®  wPpt T u T (v — xmin+ D2
This concludes the proof of (5.22) and (5.23). In order to prove (5.24), we apply (5.13)
with

1
s(u) = E\/,Bu — 2Ax for umin < u < ug— Au.

Similar as in the case > Ax,

u(s) = %(s +2Ax)2 for smin = %«/ﬂumm —2Ax <5 < —Ax, (5.48)
1 1 BZ(L+ O(e) 2
h(s) = log ((w g (4(S oy s) (1+ O((s + 2Ax) ))) ,

cO((s + 2Ax)2)
14 O((s + 2Ax)72)

e A(s +2Ax)% + B20O(e)
T 2B2(1+ O(e)) — de(s + 2Ax)2
e 4(s + 2Ax)2 4+ €O(s%)
T T2 B2 _4e(s + 2Ax)2
glh,(s)| < ce(s + 2Ax).

ehe(s) = +50G0) +

1+ £0(%) 4 £O((s + 2Ax)72),

Integration yields that

—Ax
(548 1 (5.33),(5.26)
/ £|h;(s)|ds < c¢ (sz _ Zﬂumm> < ;ce(ug — Au — umin) < c.

Smin

Moreover,
X ()% = (p(s)u' (5))?
=64 (1 — %s(s + 2Ax)2) (1 + 0% + O((s + ZAX)_2)> .
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h (x) (h')w (x)
' - X
\ Xmin —AX
\
\\
- === x
Xmin T T T - X AX

Fig. 3. Typical plots forh’ (x) andh), (x) in the case» < m

Using that(s + 2Ax)2 < (Ax)2, we conclude that’(s) is uniformly bounded from
above and below. We differentiate with respect tmd integrate to finally obtain similar
to (5.15)—(5.17),

elx}| < ce(s + 2Ax)2, (5.49)
A glx[(s)]
/;min 5 +62Ax ds < ce(uo — Au — umin) < c, (5.50)

A el (9)] o ;
————ds < _ "(t)|dt —A d
/Sjmin (S + 2Ax)2 = v/;min (S + ZAX)Z </Ax 8|x6( )l * 8|x6( x)|> ’

elxe (—Ax)| 1 f_Ax / f_Ax elx.(s)]
< H)|dt ds <c,
- Ax +smm+2Ax P elxe (Dldt + s+ 2Ax $=¢

min Smin

where in the last line we integrated by parts and used (5.43) and (5.49),(5.50). This
yields (5.24) and completes the proof of Lemma 5.2.

The above estimates are illustrated in Fig. 3. The dashed curve is the gréhb of;
it is the x-derivative of the asymptotic functio%mlog(szx) which appears in (5.25).
The next lemma controls the behaviorngfi,.

Lemma 5.3. There are constants § > 0 such that for allw € (m — 8, m),

NI

min + 4B(m? — ) 73| < ¢, (5.51)
\aw (min + 4Bm? — 0?73} < < (5.52)
m—w
Proof. According to the definition of and (5.28),
o “0 [ lu = uo
Xmin = —2/ ,O(M)dl/t = —2/ \/8— (1+ O(u‘l))du, (5.53)
Umin Umin u

and a calculation using (5.26) shows that the leading contributiQ/kito this integral

is 4ﬂ8_% (this can be readily verified using Mathematica). This proves (5.51). Dif-
ferentiating (5.53) with respect to and estimating the resulting integral gives (5.52).
O
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6. TheRegion @ > m

We turn now to the planar equation (4.12). Consider the two solutigfg, L®)),
b =1, 2, with

lim (19<1> LD) =(0,0), lim @, L?) = (r,0) (6.1)

and define in analogy to the transmission coefficients, the quar(ﬁﬁié?s Lgé)) by
@D, LYy = lim @®(x), L?(x)). (6.2)
X—>0Q

The nextlemma expresses the coefficieptn the integral representation (1.2) in terms
of these “transmission coefficients.”

Lemma 6.1. The coefficients,;, (2.15), are forw > m given by

1
Hni=1tp== 6.3
n=i2=z (6.3)
— 1 _
12 =11 = Ee*lﬂo tanhz, (6.4)
where
A
Bo = arctan—, (6.5)
mrq
(1) (2) D (2)
Ls — L Voo — Vo0 +7
z= 004 2 4= 400 . (6.6)
Proof. According to (4.10), (4.5), and (4.1), the functiofis L) correspond to the 2-
spinor
-2 +9 +0
Yoo b [¢7 Oiﬁ e cos"2 —ie 2sz2 6.7)
0 ez —e? COS’C“? ie=? Slnx;ﬁ

In the limitu — —oo, the functions — 0 (cf. (4.9) and observe that lim,, f(r) =
w = lim,~, g(r) according to (4.7) and (4.3),(4.4)), andcoincides asymptotically
with Qou, up to an (irrelevant) additive constant. Thus comparing (6.7) with (2.7) and

using (6.1) gives
1 2 —ie
f() ( iﬁo>’ f() ( 'ﬁo)
—e 2 —ie 2

Hence the fundamental solutioig and X1, which are characterized by (2.8), are the
linear combinations

1 ip
X = EeTO(X(l) +iX@),  Xp=Ze P (—xD 4ix@),

We next consider (6.7) in the limit — +-o00. According to (4.9), (4.7), (4.3)—(4.4),
and (2.13),

1 w—m
lim h(x) = =lo = —20.
xX—>00 () 2 ga)—|—m




Decay Rates and Probability Estimates for Massive Dirac Particles 229

Also, 8 goes to zero in this limit. Hence using (2.12) and (6.2), one sees that

L(l)—i— 19(1) - L(Z)—i—tﬂ(z)
texpl ————— | +iexp| ————
1 ik 2 2

forg =S¢ LD @ L2 9@
+exp B — +iexp S E—

Substituting this last formula into (2.14) yields

ify L0 19(1) L@ ﬁ(Z)
tp(e) =eT 2 |ie” ~2" sin oz+T +e 2 sin oz+T .

A short calculation shows that
1112 = |12]2. (6.8)

Togetherwith (2.15), thisimmediately yields (6.3). Furthermore, itis obvious from (2.15)
thatz1o = 1p7. Thus it remains to compute,. According to (2.15) and (6.8), we have

1 2 tla 1 2 1
112 = =

2t Jo 202 4n )y n
e~ o /2” ip1Sin(e + 1) + p2Sin(ar + @2)
v Jo ipasin(e + ¢1) — p2sin(a + ¢2)

)

where we sep; = ng/z andg;, = ﬂéﬁ}/z. It is convenient to shift the integration
variable byo — o — ¢, and to divide the numerator and denominatopbyThis gives

e iP /2” ip sin(a + @) + sina
0

112 = - -
12 4 ipsin(a + ¢) — sina

with p = p1/p2andp = ¢1—¢2. We express the trigonometric functions as exponentials
and sefu = pe™'?,

2=

e P /2” (=i — (u—1i) |
- o
4 Jo  (EAieE — (u+i)

Settingz = ¢%®, thea-integral can be regarded as an integral along the unit circle in
the complex plane; more precisely,

eiﬂOyg (T—i)z— (u—i)dz
4ri Sy @4z — (n+i) 2

1o = (6.9)
This contour integral can be computed with residues as follows. According to (6.1),

My oo 19(1) 19(1) —m. A comparison argument using the differential equation for
¥, (4.12), shows that® — 9@ takes values in the interval-27, 0) for all x. Hence
— < ¢ < 0, or equivalently,

Imup > 0.
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As a consequence, the integrand in (6.9) has only one pole in the unit cirgle; at
We conclude that

1 —zﬂo —zﬂo\/ /l \/l/“

o= e =

2 wwi 20 Ui+ e

and this coincides with (6.4).0

The following two lemmas control the behavior @, L) for largex.

Lemma6.2. There isc > 0 such that for allw € (m, m + §) andx € (0, oo],
[P(x) =20 <c, IL(x) = LO)| <c. (6.10)

Proof. According to (5.1), there isp > 0 such that
. 1
1+ K sin(x + ) > > forall x > xo. (6.11)

On the interval0, xo], we can control} by integrating the?-equation in (4.12),

)

19 (x0) — 9(0)| = ‘/ " sinGe + 9)dx| %2 exo. (6.12)
0

In the regionxy > xp, we again integrate the equation,

X , . B X h/
z?(x) — 19()(0) = /;0 h Sln(x + ﬂ)dx = —./ m;(coif + ﬂ))dl’

We integrate by parts and, using (6.11) and Lemma 5.1, we find
X
[9(x) = (o) < 2K ()] + W (xo)) +4/ (1+n?)dr e (6.13)
X0

The second statement in (6.10) follows similarly by integratingthexjuation in (4.12).
i

Lemma6.3. There isc > 0 such that for allw € (m, m + §) andx € (0, oo],

C C
[D0(x) = U0 (0)] < , |Lo(x) — Lu(0)] < (6.14)
w—m w —
Proof. Differentiating through the ODEs in (4.12) with respecttgives
O = h' cos(x + 9)d, + h,, sin(x + )
= L'V, + h),sin(x + 9), (6.15)
L, = —h'sin(x + 9)9, + h,, cosx + ). (6.16)

The differential equation (6.15) can be solved using the method of variation of constants.
The solution is

0y (x) — 9 (0) = - / e EOp! () sin(r 4 9)dr. (6.17)
0
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Lemma 6.2 yields that

190 (x) = 9(0)] < fo W, (o)ldr,

andthe estimate (5.3) in Lemma 5.1 gives the first part of (6.14). To derive the second part,
we integrate (6.16) and apply again the integration-by-parts technique of Lemma 6.2,

|Lo(x) — Lo (0)]

- /x Wb d — cogr + ) dt—l—/xh’ cost + 9)dt
“|1Jo 14+ Ak'sin(z +9) o ©

X X
s2|h’ﬁw|<x>+2|h’ﬂw|(0)+2/ (|h”19w|+h2ww|+|h’z9;|)+/ ).
0 0
(6.18)

Using the estimates of Lemma 5.1 and Lemma 6.2, the only problematic term is the
integral of|k’9, |. But from (6.15) and (4.12) we have

Ih'9. | = |h2sin(x 4+ )9, + h'h. sin(x + 9)|

’ 1 Cc
< hz,l} h/h/ < ,
< W20l + W) < s

where in the last step we used (5.1) and the first part of (6.14).
We remark that by combining (6.16) and (4.12), we can writeltheequation as
L, = =00, + h;, cosx + ).

Although this looks very similar to (6.15), it seems difficult to deduce the second part
of (6.14) by integration (note that the total variationjofieed not be bounded uniformly
in w). This is the reason why we instead used an integration-by-parts argument.

We are now in the position to prove that in the integral representation (1.3), the

contributions forw > m decay int at least at the rate” 8—¢. Consider the two funda-
mental solutiongy @, L(®)), (6.1). For negative, the functioni’(x) is smooth inw.
Furthermore}’ (x) is computed to be

dr du 24 4) du
W) = W) —Z—s 2+a2dx (6.19)
Using thatA decays exponentially as— —oo, and that for large negative u’(x) is
bounded away from zero, we see thidi) decays rapidly as — —oo, locally uniformly

in w. Thus standard Gronwall estimates applied to the differential equations (4.12) yield
that (9 (0), L (0)) depends smoothly an. Hence Lemma 6.2 and Lemma 6.3 give

us information on the transmission coefficients, namely

POLILY <c  and (8,00 [0,LE)] < — (6.20)

w—
Next we consider the propagator (1.3) foin a compact seK and ¥g with compact
support. Again, standard Gronwall estimates starting from the event horizon yield that
the fundamental solutiongX“ (x) depend smoothly o, uniformly forx € K. Hence



232 F. Finster, N. Kamran, J. Smoller, S.-T. Yau

the only non-smooth terms are the coeﬁicieﬁﬁ. According to Lemma 3.2, these co-
efficients have the same regularity as the transmission coefficients, (6.20). Furthermore,
Theorem 2.1 allows us to restrict attention to a neighborhoad ef m, and thus we

may assume that the square bracket in (1.3) has compact support. We conclude that this
square bracket satisfies the assumption of Lemma 3.1 (withw — m), and thus its

. . 5
Fourier transform decays like s 7°.

7. TheRegion w < m

For w < m, the coefficients,; in the integral representation (1.3) have the simple
explicit form (2.15), and thus our task is to analyze éhdependence otf’l“”" (x). We
again work in the variable@?, L) and set

d(x) =x + V?(x).

Recall thatllf’l“"” is the fundamental solution with exponential decay at infinity. The
following lemma shows that this implies that ljm , ¢ (x) = —oo.

Lemma 7.1. There is a constanf independent ob such that for allx > 0,
¢(x) < C —logx. (7.1)
Proof. Using the bounds (5.22) and thdtis positive, we have

¢ =1 e (7.2)
with ¢ independent of. Suppose that (7.1) were false for some- xg andC = logc.
Then (7.2) implies that

, 1
¢ (x) > > (7.3)

Hence atx, ¢ is monotone increasing, whereas the right side of (7.1) is monotone
decreasing.Asaconsequence (7.1) is violated on an open interyate). Furthermore,

by continuity (7.1) is violated on a closed set. We conclude that (7.1) is violated for all
x € [xo0, 00). This means that (7.3) holds for all> xg, and integration yields that

lim_¢(x) = oc. (7.4)

To finish the proof, we shall show that (7.4) implies that the corresponding two-gfjnor
(4.13), grows exponentially at infinity, giving the desired contradiction (note that since
\lJ’““” decays at infinityX, X, andy also vanish at infinity, see (2.2), (4.1) and (7.17)).
Accordlng to (7.4)y behaves for large asymptotically as

h
v = ( 2h> 1+ O(e%)).
e 2
Furthermore, using (4.12),

(6 — L) = 1+ I'(sinhg — coshp) = 1 — e 2 14 0@ ).

Hence for larger, ¢ — L ~ x, and soy grows asymptotically likey ~ ¢*. O
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The inequality (7.1) shows in particular that
1
P(x) < ~3 forall x > x1 (7.5)

with x; = exp(C + %). We next show thap leaves the regiofy < —%} for positivex.

Lemma 7.2. There isxg > v > O with v independent ab such that
1
¢ (x0) = 5 (7.6)
Proof. We introduce forx > 0 the function
1 o
P(x) = Iog—f k' (t)e "dr.
4 Jx

Since by (5.22) the integrand is positiveis monotone decreasing. According to (5.22)
and (5.25),

lim 9 (x) = —oo, lim 9 (x) = oo,
X—>00 x—0
and so there is a unigqug with
¥ (x0) = L
Z(xo) = —=3-
Now, choosing O< y < z, we have
Z
/ W (DT dt > e (h(z) — h(y).
¥
Using (5.25), we see that for smal|
o
/ KW (t)e "dr > 4,
y

implying thatxg is bounded away from zero, uniformly in
We shall now prove that (x) is a lower bound fo#, i.e.

P(x) > P (x) for all x > xo. (7.7)
Thus in the regionr > x1, we apply (7.5) to get the estimate
1

1
9 =h'sinhg < ——he ® = —Zpe D),
4 4
We separate variables,
7Y/ 1 1 —x
(") (x) < _Zh (x)e ",

and integrating (using that' > = 0), we find

1 o0
e > —/ K (t)e "dr.
4 Jx
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Thus® is indeed a lower bound in the regiare> xj.
It remains to show that > ¢ on the intervalxg, x1]. Let us assume the contrary.
Then® and® meet somewhere on this interval. Let

y = sup {x[#(x) =2 (x)}.

[x0,x1]

Ihem?(y) =9(y) < —%, and thus
9/ 1 s —(x+1) 1,/ —(x+2) 9/
(V)<_—1he —_—1 e =0 ().

This contradicts the fact that(x) > ¢ (x) forallx > y. 0O

The nextlemma controls the behaviowrohear the origin and “matches” the solution
across the singularity at= 0.

Lemma 7.3. Suppose that for givery < 0 and«z > 0,
1
-3 <¢(x) <0 forall x € (k1, k2). (7.8)

Then there i%; with k1 < 0, K1 < k1 and a parametei > 0 such that

2" 4 r(x) < p(x) < —2e"® forip <x <0 (7.9)
2" < $(x) < —2e"® +r(x) for0<x <z |
with
X
F(x) = / MO, (7.10)
0

Note that the functiom(x), (7.10) is finite according to (5.25).

Proof of Lemma 7.3.et us first assume thai < 0. We sefc; = «1. We choose) with

0 < n < min(—«1, k2). For negativex, ¢ satisfies according to (4.12), the equation
¢’ = 141’ sing. Using the bounds (7.8) as well as the fact fias negative, we obtain
that

W(p+¢2) <¢' <1+h'¢p (7.11)

forallx € (x1, 0). We choose inthe interval(x1, —n) and consider the inequality (7.11)
ontheintervalx, —n). The inequality on the lhs can be solved by separation of variables
and the rhs by variation of constants. This gives the explicit bounds

-
eh(x)_h(_")¢(—n) + eh(x)/ e "Ddr < o(x) < 1o ad for—«x <x < —n
. —«
(7.12)
with
o = Hh—h=m_ M (7.13)

1+¢(—n)’
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If x is positive, then according to (4.14),satisfies the equatiopf = 1 + 4’ sinh¢.
Using (7.8) and thak’ is now positive, we get the bounds

—1-h'¢p <—¢' <—h@p—¢>  on(0,x). (7.14)

We choose in the interval(n, ) and integrate these bounds frgro x. This gives the
bounds

b < ¢(x) < ORIy 4 eh(x)/ e "Dz forn <x <« (7.15)
1+8 n
with
_ Jhw—hty P00
= e .
P 1-¢m
We now show that
lim ¢(—n) = 0= lim . 7.16
n\oaﬁ( n) n\0¢(n) (7.16)

Consider (—n). From (7.12) and (7.8) we have for fixedh the interval-x < x < —n,
1
~5 290 < 7— <0, (7.17)

and thus there is somg) < 0 for whicha > «g if 7 is sufficiently small. According
to (5.25), the factag ™)~ (= in (7.13) tends ta-oo asny \, 0. We conclude from (7.13)
that

im 2 _
™0 1+ ¢ (—1n)
implying the lhs of (7.16). A similar argument using the rhs of (7.15) gives the rhs
of (7.16).
Since the planar equation (4.6) has smooth coefficients, it is obvioug/{aatis

smooth and non-zero. Using the ansatz’ (4.10) and (4.13) as well as (7.16), we see that
the following limits exist,

1 1
L(=m—h(=n) L(m)—h(n)
lime™ 2 — = —o=Ilime " 2 .
lim ¢ (6_,1(_,7)¢<2n)> Vo= lime (e—h<n>¢(2’7))

We consider the two cases liqo(L(n) — i(n)) = 0 and## 0 separately. In the first
case, the second components must have a non-zero limit (beg@&dse: 0), and thus

’

lim,~o0e " &M (£n) = —oo. In the second case, the limits ljgo e &M (L)
must exist and be equal. We conclude that
lim e "¢ (—n) = =1 = lim e " () (7.18)
n—0 n—0

for somea € [0, oo]. In the casa; = 0, this matching of the two ansatz’ shows that
¢ < 0 for negativex, and thus we can makg slightly negative and repeat the above
construction. Again using (7.17), one deduces thatust in fact be finite. We finally
take the limity — 0in (7.12) and (7.15) to obtain (7.9)O

Our next goal is to bound (xmin) uniformly in w. To this end, we combine the a-priori
estimates for large (Lemmas 7.1 and Lemma 7.2) with the estimates in a neighborhood
of x = 0 (Lemma 7.3). For negativeoutside of this neighborhood we can use similar
methods as in Lemma 6.3.
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Lemma7.4. There isc > 0 such that for allw € (m — 8, m),
|l9(xmin)| <c.

Proof. First let us verify that the assumptions of Lemma 7.3 are satisfied for a particular
choice ofk1 andk,. To this end, observe that(x) has no zero fox > 0, because
otherwise

¢’ (x) =14+ h'(x)sinhg =1,

violating the fact thap’(x) < 0 at the largest zero (recall that Lemma 7.1 implies that
¢ is negative for large). Thus

o(x) <0 forallx > 0. (7.19)
As a consequence, sigh< ¢, and thus using (5.22),
¢ (x)<1+h(x)¢p forallx > 0.

Integrating this inequality from a given positive< xg to xg and using (7.6), we obtain
the lower bound
_ 1 h(x)—h(x0) h(x) o —h(t)
d(x) > ¢(x) = —Ee —e / e dt forO<x <xp (7.20)
X

(this is indeed quite similar to the second part of (7.15), but now we have solved for
¢ at the lower limit of the integration range). According to (5.25), ity ¢(x) = 0.
We conclude that the assumptions (7.8) are satisfied;fer 0 andk, > 0 sufficiently
small. We can further decreaggand increase,, provided that the bounds in (7.9) all
take values in the strip-3, 0).

The parametex in (7.9) can be bounded a-priori. Namely, wersufficiently large,
we would get a contradiction to (7.20), whereas a very small valug wbuld be
inconsistent with (7.5). Thus we can find parametess Dmin < Amax Such that

Amin < A < Amax

As a consequence, in (7.9) the lower bound foe= inax and the upper bound for
A = Amin @re a-priori bounds fop. We chooser, such that these bounds take values in
the strip(—%, 0) on the intervalxz, 0). Then we have a-priori bounds fer(x2), and
thus also font (x2) = ¢ (x2) — x2,

Pmin < 9(x2) < Umax- (7.22)

The bounds (7.21) are uniform . This is not surprising since the differential
equation forg involves onlyh’, which according to Lemma 5.2 is bounded uniformly
in w. To see this rigorously, one must be careful becaugeandimayx dodepend orw.
Namely, according to (5.25}, involves the additive constar%tlog €2, which diverges
asw /' m. This implies, according to (7.18), that

2 2
£3Vmin, &3 Umax

can be chosen uniformly in Using these scalings in (7.9), one sees that the estimates
for ¥ andx» are indeed uniform.
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It remains to controb on the intervalxmin, x2]. According to (5.22), there iR > 0
independent od such that

. 1
14+ K (x)sinx +9) > > for x € [Xmin + R, xo — R]

(note that this last interval is non-empty in view of Lemma 5.3). On the bounded intervals
[xmin, Xmin + R) @and(x2 — R, x2] we can control® directly by integrating the equations

in a method similar to (6.12). In the intermediate region, we integrate by parts and obtain
similar to (6.13),

| (Xmin + R) — ¥ (x2 — R)|
x2—R

< 2(|W (xmin + R)| + |K'(x2 = R)]) + 4/ (A" + h®)dr,
XmintR

and the terms on the right are all uniformly bounded according to Lemma &.2.
The next lemma controls the-dependence of.
Lemma7.5. There isc > 0 such that for allw € (m — §, m),

|90 (min)| < ——.
m—w

Proof. In the proof of Lemma 7.4, we have verified that the hypothesis of Lemma 7.3

are satisfied, and thus0) = O for all w. Henced, (xmin) is Obtained by integrating the

differential equation (6.15) frommi, to zero. This gives in analogy to (6.17),

0
oo (Xin) = e~ L0 / e LR (1) sing (v)dx.
Xmin

By definition of W&, lim,_, _o, L(u) = 1 (see [4, eqn (3.31)] and (4.10)). Standard
Gronwall estimates on the intervgt oo, umin) show thatl (xmin) is bounded uniformly

in w. Furthermore, it was shown in Lemma 5.2 that — w)h, has bounded total
variation. Thus to finish the proof, it suffices to show that thereirsdependent o
such that

e LOsing(r)| <c¢  forall T € [xmin, 0). (7.22)

The integration-by-parts technique of Lemma 6.3 yields tha uniformly bounded

in the region[xmin, x2] with x2 as in the proof of Lemma 7.4 (for more details see the
last paragraph of Lemma 7.4, where this method is used to estifa@n the interval
(x2, 0), the a-priori bounds fop, (7.9), show that

Sing (1)] < [$(7)] < ce @G (7.23)
(with ¢ independent ob). Furthermore,
(h— L) = h'(1-cosp) < [I|¢? < cx™ 3,
where in the last step we used (7.23), ( 5.25), and (5.22). Singds integrable,
(h— L)}, <c.
We exponentiate and use thatxy) is bounded to obtain
e LM h(M)=h(x2) < (7.24)
The inequality (7.22) follows by combining (7.23) and (7.24n
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8. Proof of the Decay Rates

We are now ready to finish the proof of Theorem 1.1. In view of Theorem 2.1 and the
consideration in the last paragraph of Sect. 6, it remains to show that the contribution to
the propagator (1.2) fab € (m — 8, m) has the decay (1.6). Since the coefficients

are trivial forw < m, (2.15), the contribution to the propagator (1.3) simplifies to

1 m . 2
v, == >N /ﬂsdwe_”‘” D W () (W o) | - (8.1)

k| <ko In|<no ™ a,b=1

SinceWy has compact support, it suffices to analyzedhdependence otf’l““" (u) for
u in a compact set.

According to the separation ansatz (2.2), we must only analyze the radial function
X (the angular parY is clearly smooth inw). To see thev-dependence of in detalil,
we substitute (4.10) into (4.5) and (4.1). This gives, exactly as in the|@ase m, the
formula (6.7). For fixed, the functionk in (6.7) depends smoothly an. Using that
h vanishes at the event horizon (because\im f(r) = w = lim,\, g(r) according
to(4.7)and (4.3),(4.4)), ournormalization conditiontld_?‘“” nearthe eventhorizon (2.9)
yields that

1= lim [Xw?=2 lim e t®
u—>—00 u—>—00

and thus lim_, _», L(u) = log 2, independent ab. Furthermore, an argument similar
to (6.19) shows that' (1) has exponential decay as— —oco. Hence standard Gronwall
estimates yield that (1) is bounded and depends smoothlyoi-urthermore, Gronwall
estimates in the finite region betweeg, andu show that the differencé(u) — ¢ (umin)

is uniformly bounded and smooth in Writing

(x + )W) = (x + ) (umin) + ((x @) — x@min)) + (@) — 7 (Umin))),

we conclude that the only possible non-smooth terms in (6.7) are the factws,a@2)
and Sirw)min/z) With ¢min = Xmin + 9 (Xmin).

We next consider the factox(sll’l‘“)"wo) in (8.1). Again from Gronwall estimates,
one sees that fav > m, the expectation value{siJ’g‘“”ltllo) depend smoothly om, and
thus our assumption (1.5) implies that

ro= lim (WA |wo) £ 0.
o\

Except for the additional phase factors, the expectation values are smooth even for
w < m. To compute the phases, we consider (6.7) in the asymptotic regime—oo,
and compare with (2.7) and (2.8). This shows thatfat (m — §, m),

(W1 |Wo) = ria1 exp(—i"%”) — raaz eXp<i ¢"2“”) (8.2)

with coefficientsy, which depend smoothly anand are non-zero (indeed lisyy,,, o, =
1). Since the factor; is non-zero, we conclude thaw’;w"ww has a non-vanishing
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contribution which oscillates like exppmin/2). Using (8.2) and (6.7) in (8.1), we can
write the propagator in the regiane (m — §, m) as the Fourier integral

m
/ e_iCUt (Sle_i(xmin+79(xmin)) + 52 + Ssei(xmin“‘ﬁ(xmin))) do
1)

m—

with coefficientss; which are smooth inv andsz # 0. According to Lemma 5.3,
Lemma 7.4, and Lemma 7.5, the three contributions to this Fourier integral satisfy the
hypotheses of Lemma 3.2, Lemma3 1, and Lemma 3.3, respectivelyo(with — w).

Hence the first two terms decay likes — , Whereas the last term gives the desired decay
rate~ ¢~ 8. This concludes the proof of Theorem 1.1.

9. Probability Estimates

We now proceed with the proof of Theorem 1.2. We want to compute the probahility
(1.7). We begin with the following lemma.

Lemma 9.1. For any Schwartz functioff € S(R x R), let A1 be defined by

uo 00 00 ) ,
Aﬁ:nm‘/ du/‘ m{/ de e 1 @=UED £ 0.
=00 J_x —o0 —o0
Then
o0
Ay = Zn/ f(w,w)dow and A_=0. (9.2)
—0Q

Proof. We integrate by parts to obtain
ee} [e’e]
/ dwf dw/e—i(w—w’)(t:tu)f(w7 w/)
oo oo
[e’s) J o) J , 1 1 1 —i(w—a)(t%u) ,
:/—oo w/_oo w(tiu)2+1<(8“’+ ) (30 + De )f(w,w)

00 00 1 )
— / da)/ dw/—e—z(w—a)’)(tiu)g(w w/)
SNl AN PRTRI I | @)

whereg is the Schwartz function
g, o) = (=8, + D(=dy + 1) f(w, o). (9.2)
Since the factot(r +u)?+1)~Lis integrable in¢, we can integrate over, apply Fubini,

and use Lebesgue’s dominated convergence theorem to take thedimib inside the
integrand,

_ —i(w—0a')(t£u) /
Ap = l|l>moo[ du/ da)[ (t:l:u)z—i—le g(w, ")

1
—i( )(1=£u)
/ dw/ da)g(w C())||m /wmelww = du. (93)
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In the case # — u”, we introduce a new integration variable= r — u and get for
the inner integral

“o 1 ; / o 1 ; /
lim / du———5——e 1@=)=1) — |im / e gy = 0,
t—oo J_o  (t* u)2+1 1500 J;_y0 a’2+1

This proves thati_ = 0.
In the case ' + u”, we obtain similarly an integral over the real line, which can be
computed with residues,

MO l : / o0 1 . / /
lim / dy—————— e~ H@—a)(t+u) =/ el gy — gelo—@l
oo J_o  (tEu)?2+1 oo @241

We substitute this formula as well as (9.2) into (9.3) and integrate by parts “backwards”,

AL :/ dw/ do'g(w, o)me 0=
:n/ da)/ do f(w, o) ((aw+1)(aw/+1)e—‘w—w"). (9.4)

A short explicit calculation shows that the derivatives can be computed in the distribu-
tional sense to be

(3 + 1) (0 + De 171 = 285(w — o).
Substitution into (9.4) gives the desired formula for. O

We remark that the above lemma cannot be obtained by naively interchanging the orders
of integration.

Theorem 9.2. The probabilityg for the Dirac particle to disappear into the event hori-
zon, defined for any > 0 by

g = lim / Wy w)(t, x)vjdpu, (9.5)
{ri<r<ri+e}

1—0o0

is given by

2
1 o0
i=7 2 Y [ de ¥ ooty @)
o

|k|<ko |n|<no* a,b=1
with

kon | Sa1dp1r i jo| =m
Sap =

(9.7)

2t12‘;”” kon if | w| > m.

)



Decay Rates and Probability Estimates for Massive Dirac Particles 241

We remark thap + ¢ = 1, since we know from [4] that the probability for the Dirac
particle to be in any compact set tends to zero as oo.

Proof of Theorem 9.2In the variable:, we need to compute the probability for the Dirac
particle to be in the regiom < ug, whereug may be chosen as small as we like. Thus we
can work with the asymptotic formulas near the event horizon, with error terms which
decay exponentially fast agy — —oo. More precisely, a straightforward calculation
shows that the probability integral in (9.5) coincides asymptotically with the integral of
the scalar produgt|.) on the transformed spinors (see [4, Eq. (2.15)]). Thus it suffices
to consider the probability

uo 1 2
q(l) = / du/ dCOSﬁ/ d(p(qj|\ll>|(t,u,l7,(p)’ (98)
—00 -1 0

and letr — oo. Due to the additivity of the probabilities corresponding to the angular
momentum modes (which are orthogonal with respect to the scalar praggtit
suffices to consider a solution of the Dirac equation with fixed angular momentum
guantum numberk andn, i.e.

2
1 [ :
W(t, x) = ;/ dwe ™! E t:l”b\llllf“’"(x)(‘-lll],“””|\lfo).
- a,b=1

We substitute this formula for the propagator into (9.8) and carry out the angular integrals

to obtain
1 uo oo ) ) ,
qt) = —2/ du/ da)/ do/ e (@t
T° J-c0 —00 —00

XY (W)t (W [Wo) (XY | XL ().
a,b,c,d=1

Substituting forX® the asymptotic formulas (2.5), valid near the event horizon, we
obtain with an exponentially small error term

2

qgit) = = / du/ da)/ da/ e i@=t Z

a,b,c,d=1
X 10, (W [ Wo)t (W | Wo) (fCJr w emiomau fc ot ’(‘“7‘“,)”). (9.9)

Since we cannot expect the integrand to be smooth whena' is equal totm, we

must use an approximation argument. Namely, the integrand is bounded and has rapid
decay inw andw’. Thus we can approximate the integrand.inby a Schwartz function,

and applying Lemma 9.1 we obtain

:_/ dw Z 21912 F2 2 (W2 | Wo) (W5 [ Wo). (9.10)
a,b,c,d=1

ltremains to compute the factofs, £, . Inthe cas¢w| > m, we conclude from (2.8)
that

g; = 0c18a1 (for || = m). (9.11)
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On the other hand ifw| < m, using (2.15) in (9.10) we must only compu;q”+|2. To
this end, we again consider (6.7). Using thatanishes asymptotically near the event
horizon, one sees that

lim (1X*)? —|X_1?) =0,
r\r1

and thug fﬁlz = |fl“’_|2. Furthermore, our normalization of the fundamental solutions
near the event horizon (2.9) yields thﬁfjf + |ff’_|2 = 1, and thus we conclude that

1
| fE 12 = 5 (orlel <m). (9.12)
Substituting (9.11) and (9.12) into (9.10) and using (2.15) completes the proof.

Proof of Theorem 1.2Since the initial data is normalized kyo|Wo) = 1, by taking
the inner product oftg with (1.3), evaluated at= 0, we obtain that

2
1 o0
1== d kon (gykon |y oy (g wkeny. 9.13
nZZ/OOa)Ztab(blo)(da) (9.13)

|k|<ko |n|<no* a,b=1

As remarked after the statement of Theorem $.2= 1 — ¢. Thusp is obtained by
taking the difference of (9.13) and (9.6). Using (2.15), we get (1.8).

For the proofs ofi)—(iv), it again suffices to consider a fixed angular momentum
mode. Since the energy distribution in the interjvaln, m] is absent from (1.8), it is
obvious thadiii) holds.

To prove(ii), we introduce a vectar® C? by

vy = (V7 |Wo), a=12
and remark that in the regidm| > m we can write the integrands in (9.13) and (1.8) as
(T®v”|v®) and (A®V”|v®),

respectively, where, using Lemma 6.1,

1/2 12 0o o0
o _ [ =% 12 o __
= ( 1 1/2) and AT = <O 12— 2|fi”2|2>.

An easy calculation shows th&t> A. Thus from (9.13) and (2.15),

1 [m 1
1== [ do|(¥§w)?+ —/ do(Tv°|v®) (9.14)
T J-m T R\[—m,m]
1 [m 1
> = | do|(W§19§)? + —/ do(A“v°|v®) (9.15)
T J-m T JR\[—m,m]
1 m
== | dol(WPI¥)+p, (9.16)

—m

and this is strictly larger thap because in cag@) the first summand is positive.
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To prove(i), we note that the factgtws’| Wo) 12is positive on a set of positive measure
(by continuity inw). Thus it suffices to show that

1
5 2t%2>0  forallw e R\ [—m, m].

Using the explicit formula (6.4) in Lemma 6.1, this holds iff
[tanhz] < 1 (9.17)

with z asin (6.6). Using (4.12) together with (6.1), we see that < o 92 <2
(by the uniqueness theorem for ODES). Then from (6.6),

T <ar T
2 gz < 1
It follows that|e% — 1| < |e% + 1], giving (9.17). This prove§).

Finally, if (1.5) holds, then we saw in (8.2) thab{’|Wp) is non-zero fow € (m —
8, m). Thus(iv) follows from (i) and(ii). O

Given the fact that the Fourier transform ofC& function with compact support
is analytic, one might think the(tty,’jw”wo) should be analytic i, implying that the
casegii) and(iii) cannot occur. However, it is not at all obvious that the solutions of our
ODEs should depend analytically an Should this be the case, one could still make
sense ofii) and(iii) by slightly weakening the assumptions on the initial data.

We conclude by describing the class of initial data for which the Dirac particle must
escape to infinity, with probability one.

Coroallary 9.3. The probabilityp is equal to one if and only if the initial data satisfies
for all k, w, andn the following conditions,

(W1 |Wo) = 0 if || <m
(Whon|wo) = —2¢kem (whon g if || > m.
Proof. It again suffices to consider a fixed angular momentum mode. In view of (9.16),
p = lonlyif

f do|(W§1¥2) 2 =0, (9.18)

—m

and thus the energy distribution of the initial data must be supported in the outside the
interval (—m, m). Furthermore, the inequality in (9.15) must be replaced by equality,
and thus

(S®v*®) =0 forallw € R\ [—m, m], (9.19)

where the matrixs® is defined by

1/2 2
Sw:Tw_Aw:<72]&)22).
112 2l

The eigenvalues of* are zero anc% + 2|ti"2|2 > 0. Hence (9.19) implies thaf® must
be in the kernel o8, i.e.

vy = —215505. (9.20)

Conversely, if (9.18) and (9.20) hold, it is obvious from (9.14)—(9.16) that1l. O
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One can also understand directly wpy= 1 for special choices of the initial data.
Indeed, to obtain such initial data, one can consider the physical situation where a Dirac
particle at time = —oo comes in from spatial infinity. If we take as our initial data the
corresponding¥ (¢, x) attr = 0 and reverse the direction of time, the solution to this
Cauchy problem will clearly escape to infinity with probability one.
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