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Abstract: The Cauchy problem is considered for the massive Dirac equation in the
non-extreme Kerr–Newman geometry, for smooth initial data with compact support
outside the event horizon and bounded angular momentum. We prove that the Dirac
wave function decays inL∞

loc at least at the ratet−5/6. For generic initial data, this rate of
decay is sharp. We derive a formula for the probabilityp that the Dirac particle escapes to
infinity. For various conditions on the initial data, we show thatp = 0, 1 or 0< p < 1.
The proofs are based on a refined analysis of the Dirac propagator constructed in [4].
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1. Introduction

The Cauchy problem for the massive Dirac equation in the non-extreme Kerr–Newman
black hole geometry outside the event horizon was recently studied [4], and it was proved
that for initial data inL∞

loc with L2 decay at infinity, the probability for the Dirac particle
to be located in any compact region of space tends to zero ast → ∞. This result shows
that the Dirac particle must eventually either disappear into the event horizon or escape
to infinity. The questions of the likelihood of each of these possibilities and the rates
of decay of the Dirac wave function in a compact region of space were left open. In
the present paper, we shall study these questions by means of a detailed analysis of the
integral representation of the Dirac propagator constructed in [4]. This analysis will also
give us some insight into the physical mechanism which leads to the decay.

Recall that in Boyer–Lindquist coordinates(t, r, ϑ, ϕ) with r > 0, 0 ≤ ϑ ≤ π ,
0 ≤ ϕ < 2π , the Kerr–Newman metric is given by [2]

ds2 = gjkdxjxk

= �

U
(dt − a sin2 ϑdϕ)2 − U

(
dr2

�
+ dϑ2

)

− sin2 ϑ

U
(adt − (r2 + a2)dϕ)2 (1.1)

with

U(r, ϑ) = r2 + a2 cos2 ϑ, �(r) = r2 − 2Mr + a2 + Q2,

and the electromagnetic potential is

Ajdxj = −Qr

U
(dt − a sin2 ϑdϕ),

whereM,aM andQ denote the mass, the angular momentum and the charge of the black
hole, respectively. Herea and/orQ are allowed to be zero, so that our results apply also to
the Kerr, Reissner–Nordström, and Schwarzschild solutions. We shall restrict attention
to thenon-extreme caseM2 > a2 + Q2, in which case the function� has two distinct
zeros,

r0 = M −
√

M2 − a2 − Q2 and r1 = M +
√

M2 − a2 − Q2,

corresponding to the Cauchy horizon and the event horizon, respectively. We will here
consider only the regionr > r1 outside of the event horizon, and thus� > 0.

Our starting point is the representation of the Dirac propagator for a Dirac particle
of massm and chargee established in [4, Thm. 3.6]

�(t, x) = 1

π

∑
k,n∈Z

∫ ∞

−∞
dωe−iωt

2∑
a,b=1

tkωn
ab �kωn

a (x)〈�kωn
b |�0〉. (1.2)

Here�0 is the initial data,ω is the energy, and〈.|.〉 is a positive scalar product (see [4] for
details). The quantum numberk arises from the usual separation∼ exp(−i(k + 1

2)) of
the angular dependence around the axis of symmetry, whereasn labels the eigenvalues
of generalized total angular momentum in Chandrasekhar’s separation of the Dirac
equation into ODEs [3]. The�kωn

a are solutions of the Dirac equation andtkωn
ab are
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complex coefficients; they can all be expressed in terms of the fundamental solutions
to these ODEs. We postpone the detailed formulas for�kωn

a andtkωn
ab to later sections,

and here merely describe those qualitative properties of the wave functions�kωn
a which

are needed for understanding our results. Near the event horizon, the�kωn
a go over

asymptotically to spherical waves. In the region|ω| > m, the solutions fora = 1 are
the incoming waves, i.e. asymptotically near the event horizon they are waves moving
towards the black hole. Conversely, the solutions fora = 2 are theoutgoing waves,
which near the event horizon move outwards, away from the black hole. Asymptotically
near infinity, the�kωn

a , |ω| > m, go over to spherical waves. In the region|ω| < m,
however, the fundamental solutions fora = 1, 2 near the event horizon are both linear
combinations of incoming and outgoing waves, taken in such a way that�kωn

1 and�kωn
2

at infinity have exponential decay and growth, respectively.
For technical simplicity, we make the assumption that�0 is smoothandcompactly

supportedoutside the event horizon. We point out that, while the assumption of compact
support is physically reasonable at infinity, it is indeed restrictive with respect to the be-
havior near the event horizon. Furthermore, we shall assume that theangular momentum
is boundedin the strict sense that there exist constantsk0 andn0 such that

�(t, x) = 1

π

∑
|k|≤k0

∑
|n|≤n0

∫ ∞

−∞
dωe−iωt


 2∑

a,b=1

tkωn
ab �kωn

a (x)〈�kωn
b |�0〉


 . (1.3)

We expect that the rate of decay is the same if an infinite number of angular modes are
present. Namely, away from the event horizon, modes with large angular momentum
feel strong centrifugal forces and should therefore be quickly driven out to infinity,
whereas the behavior near the event horizon is independent of the angular momentum.
However, it seems a very delicate problem to rigorously establish decay rates without
the assumption (1.3), because this would make it necessary to control the dependence
of our estimates onk andn. Finally, we assume that the charge of the black hole is so
small that the gravitational attraction is the dominant force at a large distance from the
black hole. More precisely, we shall assume throughout this paper that

mM > |eQ|. (1.4)

We now state our main results and discuss them afterwards.

Theorem 1.1 (Decay Rates). Consider the Cauchy problem

(iγ jDj − m)�(t, x) = 0, �(0, x) = �0(x)

for the Dirac equation in the non-extreme Kerr–Newman black hole geometry with small
charge (1.4). Assume that the Cauchy data�0 is smooth with compact support outside
the event horizon and has bounded angular momentum (1.3).

(i) If for anyk andn,

lim sup
ω↘m

|〈�kωn
2 |�0〉| = 0 or lim sup

ω↗−m

|〈�kωn
2 |�0〉| = 0, (1.5)

then for larget ,

|�(t, x)| = ct−
5
6 + O(t−

5
6−ε), (1.6)

with c = c(x) = 0 and anyε < 1
30.



204 F. Finster, N. Kamran, J. Smoller, S.-T. Yau

(ii) If for all k, n anda = 1, 2,

〈�kωn
a |�0〉 = 0

for all ω in a neighborhood of±m, then|�(t, x)| has rapid decay int (i.e. for any
fixedx, �(t, x) decays int faster than polynomially).

Theorem 1.2 (Probability Estimates). Consider the Cauchy problem as in Theorem
1.1, with initial data�0 normalized by〈�0|�0〉 = 1. Let p be the probability for the
Dirac particle to escape to infinity, defined for anyR > r1 by

p = lim
t→∞

∫
{R<r<∞}

(�γ j�)(t, x)νj dµ, (1.7)

whereν denotes the future directed normal to the hypersurfacet = const anddµ denotes
the induced invariant measure on that hypersurface. Thenp is given by

p = 1

π

∑
|k|≤k0

∑
|n|≤n0

∫
IR\[−m,m]

dω

(
1

2
− 2|tkωn

12 |2
) ∣∣∣〈�kωn

2 |�0〉
∣∣∣2 . (1.8)

Accordingly,1 − p gives the probability that the Dirac particles disappears into the
event horizon. Furthermore,

(i) Suppose that the outgoing energy distribution for|ω| > m is non-zero, i.e.

〈�kωn
2 |�0〉 = 0

for someω with |ω| > m. Thenp > 0.
(ii) If the energy distribution of the Cauchy data has a non-zero contribution in the

interval [−m, m], thenp < 1.
(iii) If the energy distribution of the Cauchy data is supported in[−m, m], thenp = 0.
(iv) If (1.5) holds, then0 < p < 1.

The decay rate oft− 5
6 obtained in Theorem 1.1 quantifies the effect of the black hole’s

gravitational attraction on the long-time behavior of massive Dirac particles. Before
discussing this effect in detail, it is instructive to recall the derivation of the decay rates
in Minkowski space. We denote the plane-wave solutions of the Dirac equation by�ksε ,
wherek is momentum,ε = ±1 is the sign of energy, ands = ± refers to the two spin
orientations. The plane-wave solutions are normalized according to

(�ksε |�k′s′ε′) = δ(k − k′)δss′δεε′ ,

where(.|.) is the usual spatial scalar product

(�|,)(t) =
∫

�(t, x)γ 0,(t, x)dx.

The Dirac propagator is obtained by decomposing the initial data into the plane-wave
solutions,

�(t, x) =
∑
s,ε

∫
dk�ksε(t, x)(�ksε(t = 0)|�0),
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and a straightforward calculation using the explicit form of the plane-wave solutions
yields that

�(t, x) = 2π

∫
d4k

(2π)4 (k/ + m)δ(k2 − m2)-(ω)e−ikxγ 0�̂0(k), (1.9)

where�̂0(k) is the Fourier transform of�0(x) (and as usualx = (t, x), k = (ω, k),
k/ = kjγ j , and- is the step function-(x) = sgn(x)). Let us assume for simplicity that
the initial data is a Schwartz function. We write (1.9) as a Fourier integral inω,

�(t, x) =
∫ ∞

−∞
�̃(ω, x)e−iωt dω, (1.10)

where

�̃(ω, x) =
∫

dk

(2π)3 (k/ + m)δ(ω2 − |k|2 − m2)-(ω)eikxγ 0�̂0(k).

We consider theω-dependence of̃� for fixedx. Theδ-distribution gives a contribution
to the momentum integral only fork on the sphere|k|2 = ω2 − m2. Thus�̃(ω, x)

vanishes for|ω| < m and has rapid decay at infinity. Furthermore,�̃ is clearly smooth
in the region|ω| > m. For |ω| nearm, �̃ has the expansion

�̃(ω, x) =
∫ ∞

0

k2dk

4π2 (ωγ 0 + m)δ(ω2 − k2 − m2)-(ω)γ 0�̂0(0)(1+ O(k))

= -(ω)

8π2 (ω + mγ 0)�̂0(0)
√

ω2 − m2 + O(ω2 − m2).

A typical plot of |�̃(ω, x)| is shown in Fig. 1(a). If�̂0 vanishes in a neighborhood of
k = 0, then�̃(., x) is a Schwartz function, and thus its Fourier transform (1.10) has
rapid decay. This is the analogue of Case (ii) of Theorem 1.1. However, if�̃0(0) = 0,
the decay rate is determined by the square root behavior of�̃ for |ω| nearm. A change
of variables gives that for any test functionη which is supported in a neighborhood of
the origin,∫ ∞

m

√
ω − mη(ω − m)e−iωt dω = e−imt t−

3
2

∫ ∞

0

√
uη
(u

t

)
e−iudu.

An integration-by-parts argument shows that the last integral is bounded uniformly int ,
and is non-zero for larget if η(0) = 0. From this we conclude that in Minkowski space,

|�(t, x)| decays polynomially at the ratet− 3
2 .

We now proceed with a more detailed discussion of our results, beginning with the
rates of decay obtained in Theorem 1.1. Naively speaking, a massive Dirac particle
behaves near the event horizon similar to a massless particle, i.e. like a solution of the
wave equation. In Minkowski space, solutions of the wave equation decay rapidly in time
according to the Huygens principle. On the other hand, at large distance from the black
hole the solutions should behave like those of the massive Dirac equation in Minkowski

space, which decay at the ratet− 3
2 . It is thus tempting to expect that the solutions of

the massive Dirac equation in the Kerr–Newman black hole geometry should decay at
a rate which “interpolates” between the behavior of a massive particle in Minkowski
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m
Ω

���� �a�

� ���������������Ω � m

m
Ω

���� �b�

� sin 1������������������������������������m� Ω

Fig. 1. Typical plot for�̃ in Minkowski space (a) and in the Kerr–Newman black hole geometry (b)

space and that of a massless particle, and should thus decay at a rate no slower than

t− 3
2 . However, Theorem 1.1 shows that this naive picture is incorrect, since the rate of

decay we have established for a massive Dirac particle in the Kerr–Newman black hole
geometry is actually slower than that of a massive particle in Minkowski space. Thus
the gravitational field of the black hole affects the behavior of massive Dirac particles
in a more subtle way. One can understand this fact by comparing the plots in Fig. 1,
which give typical examples for the energy distribution of the Dirac wave function in
Minkowski space and in the Kerr–Newman geometry. One sees that in the Kerr–Newman
geometry, there is a contribution to the energy distribution for|ω| < m, which oscillates
infinitely fast asω approachesm. When taking the Fourier transform, these oscillations

lead to the decay ratet− 5
6 given Theorem 1.1 (see the rigorous saddle point argument in

Lemma 3.3).
The oscillations in the energy distribution in Fig. 1(b) are a consequence of the field

behavior near spatial infinity. On a qualitative level, they can already be understood
in Newtonian gravity and the semi-classical approximation. Namely, in the Newtonian
limit of General Relativity, the momentumk of a relativistic particle is related to its
energyω by

|k|2 =
(

ω + mM

r

)2

− m2.

Thus the particle has positive momentum even ifω < m, provided that the Newtonian
potential is large enough,mM

r
> m−ω. This means in the semi-classical approximation

that the wave function�(r) has an oscillatory behavior near the black hole,

�(r) ∼ exp

(
±i

∫ r

kds

)
for r < R ≡ mM

m − ω
,

and will fall off exponentially forr > R. As a consequence, the fundamental solutions
�kωn

a for |ω| < m involve phase factors∼ exp(±i
∫ R

kds). In the limit ω ↗ m,
R → ∞, leading to infinitely fast oscillations in our integral representation. This simple

argument even gives the correct quantitative behavior of the phases∼ (m − ω)− 1
2 .

The fact that the decay rate in the presence of a black hole is slower than in Minkowski
space has the following direct physical interpretation. One can view the gravitational
attraction of the black hole and the tendency of quantum mechanical wave functions to
spread out in space as competing with each other over time. The component of the wave

function forω nearm andω < m, which is responsible for the decay ratet− 5
6 , has not
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enough energy to propagate out to infinity. But since it is an outgoing wave near the
event horizon (note that in (1.5) the fundamental solutions�kωn

a enter only fora = 2),
it is driven outwards and resists the gravitational attraction for a long time before it
will eventually be drawn into the black hole. As a result, the Dirac particle stays in any
compact region of space longer than it would in Minkowski space, and thus the rate of
decay of the wave function is slower. According to this interpretation, our decay rates
are a consequence of the far-field behavior of the black hole. Similar to the “power law
tails” in the massless case (see [8]), our effect can be understood as a “backscattering”
of the outgoing wave from the long-range potential, but clearly the rest mass drastically
changes the behavior of the wave near infinity. We expect that result for the decay rates
should be valid even in a more general setting, independent of the details of the local
geometry near the event horizon. Furthermore, the decay rates should be independent of

the spin. This view is supported by [6,7], who obtained the ratet− 5
6 for massive scalar

fields in a spherically symmetric geometry using asymptotic expansions of the Green’s
functions.

Theorem 1.2 gives a precise formula for the probability that the Dirac particle either
disappears into the black hole or escapes to infinity. In cases(i)–(iv) we give sufficient
conditions for these probabilities to occur. These results are consistent with the general
behavior of quantum mechanical particles in the presence of a potential barrier and can
be thought of as a tunnelling effect. In case(iii), the particle does not have enough energy
to escape to infinity. Thinking again in terms of a tunnelling effect, the Dirac particle
cannot tunnel to infinity because the potential barrier (which has finite heightm) has
infinite width. Finally, one might ask whetherp = 1 can occur; i.e., that the particles
escape to infinity with probability one. This is indeed the case for very special initial data,
whose energy distribution is supported outside the interval[−m, m] (see Corollary 9.3
below).

We conclude by remarking that a number of significant results are known for the long-
term behavior ofmasslessfields in black hole geometries.These results do not capture our
effect, which is intimately related to the presence of a mass gap in the energy spectrum.
Price [8] discussed the rates of decay of massless fields in the Schwarzschild background
for special choices of initial data. His decay rates depend on the angular momentum and
are faster than the ones we have derived. A rigorous proof of the boundedness of the
solutions of the wave equation in the Schwarzschild geometry has been given by Kay
and Wald [5]. Beyer pursues an approach usingC0-semigroup theory, which also applies
to the Kerr metric and the massive case [1]. An important contribution to the long-time
behavior of gravitational perturbations of the Kerr metric has been given by Whiting [9].

2. The Long-Time Dynamics Under a Spectral Condition

We begin the analysis with the case when the energy distribution of the Cauchy data is
zero in a neighborhood ofω = ±m. The following theorem is an equivalent formulation
of Theorem 1.1(ii).

Theorem 2.1. Consider the Cauchy problem

(iγ jDj − m)�(t, x) = 0, �(0, x) = �0(x)

for smooth initial data with compact support outside the event horizon. Assume that
angular momentum is bounded and that the energy is supported away fromω = ±m,
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i.e.

�0 = 1

π

∑
|k|≤k0

∑
|n|≤n0

(∫ −m−ε

−∞
+
∫ m−ε

−m+ε

+
∫ ∞

m+ε

)
dω

2∑
a,b=1

tkωn
ab �kωn

a 〈�kωn
b |�0〉 (2.1)

for suitableε > 0. Then for allx, �(t, x) has rapid decay int .

Before giving the proof, we recall a few basic formulas from [4]. The separation
ansatz for the fundamental solutions�kωn

a is

�kωn
a (t, r, ϑ, ϕ) = e−iωt e−i(k+ 1

2 )ϕ




Xkωn− (r)Y kωn− (ϑ)

Xkωn+ (r)Y kωn+ (ϑ)

Xkωn+ (r)Y kωn− (ϑ)

Xkωn− (r)Y kωn+ (ϑ)


 , (2.2)

whereX = (X+, X−) and Y = (Y+, Y−) are the radial and angular components,
respectively. The radial partX(u) is a solution of the radial Dirac equation [4, Eq. (3.7)]

[
d

du
+ i3(u)

(
1 0
0 −1

)]
X =

√
�

r2 + a2

(
0 imr − λ

−imr − λ 0

)
X, (2.3)

where

3(u) = ω + (k + 1
2)a + eQr

r2 + a2 , � = r2 − 2Mr + a2 + Q2,

λ is the angular eigenvalue (which depends smoothly onω), andu ∈ (−∞,∞) is related
to the radius by

du

dr
= r2 + a2

�
. (2.4)

To analyzeX in the asymptotic regionu → −∞, one employs forX the ansatz

X(u) =
(

e−i30uf+(u)

ei30uf−(u)

)
(2.5)

and obtains forf the equation

d

du
f =

[
i(30 − 3(u))

(
1 0
0 −1

)

+
√

�

r2 + a2

(
0 e−2i3u(imr − λ)

e2i3u(−imr − λ) 0

)]
f. (2.6)

Standard Gronwall estimates yield that the fundamental solutions of (2.3) have the
asymptotic form [4, Lemma 3.1]

Xa(u) =
(

e−i30uf+
0a

ei30uf−
0a

)
+ R0(u), (2.7)
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where|R0(u)| ≤ c exp(du) for suitable constantsc, d > 0 and

f01 =
(

1
0

)
, f02 =

(
0
1

)
. (2.8)

In the asymptotic regionu → ∞, one transforms the spinor basis with a matrixB(u)

such that the matrix potential in (2.3) becomes equal to the diagonal matrix−i3(u)σ 3

(σ j are the Pauli matrices). One must distinguish between the two cases|ω| < m

and |ω| > m. In the first case,3(u) is imaginary for largeu, and thus there are two
fundamental solutionsX1 andX2 with exponential decay and growth, respectively, and
we normalize them such that

lim
u→−∞ |X(u)| = 1. (2.9)

In the case|ω| > m, 3(u) is real for allu. The ansatz

X = B

(
e−i,f+(u)

ei,f−(u)

)
with ,′(u) = 3(u) (2.10)

gives the differential equation

d

du
f = M(u)f with |M(u)| ≤ c

u2 , (2.11)

which can again be controlled by Gronwall estimates. Thus one obtains the asymptotic
formula [4, Lemma 3.5]

Xa(u) =
(

cosh8 sinh8

sinh8 cosh8

)(
e−i,(u)f+∞a

ei,(u)f−∞a

)
+ R∞(u), (2.12)

where|R∞| ≤ c/u for suitablec > 0 and

8 = 1

4
log

(
ω + m

ω − m

)
, , = -(ω)

(√
ω2 − m2u + ωeQ + Mm2

√
ω2 − m2

logu

)
. (2.13)

The complex factorsf±∞a in (2.12) are the so-calledtransmission coefficients. Further-
more, we introduced the functionsta(α), 0 ≤ α ≤ 2π , in terms of the transmission
coefficients by [4, Eq. (3.47)]

t1(α) = f+
∞2e

−iα − f−
∞2e

iα, t2(α) = −f+
∞1e

−iα + f−
∞1e

iα. (2.14)

Finally, the coefficients(tab)a,b=1,2 are given by

tab =



δa1δb1 if |ω| ≤ m

1

2π

∫ 2π

0

tatb

|t1|2 + |t2|2 dα if |ω| > m.
(2.15)

Proof of Theorem 2.1.Since (2.1) contains only finite sums, we can fixk, n and consider
one summand. The coefficients in the differential equation (2.6) are smooth inω, and
their ω-derivatives are integrable on the half-linesu ∈ (−∞, u0] for u0 sufficiently
small. Apart from the singularities atω = ±m, the same is true for the differential
equation (2.11) foru on the half line[u1,∞) andu1 sufficiently large. Since further-
more the ansatz (2.5) is smooth inω ∈ R \ ((−m − ε,−m + ε) ∪ (m − ε, m + ε))
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and (2.10) is smooth inω ∈ (−∞,−m−ε]∪[m+ε,∞), and also the coefficients of the
differential equation (2.3) depend smoothly onω in the bounded intervalu ∈ [u0, u1],
we conclude that the fundamental solutions�

k0ωn0
a (x) and the transmission coefficients

f
k0ωn0
a depend smoothly onω ∈ R \ ((−m− ε,−m+ ε)∪ (m− ε, m+ ε)). Hence the

integrand in (2.1) is a smooth function inω (which vanishes for|ω| −m < ε). Since�0
has compact support and the fundamental solutions forω → ∞ go over to plane waves,
it is clear that theω-derivatives of the integrand in (2.1) are all integrable. It follows that
the Fourier integral (1.2) has rapid decay.��

According to this theorem and using linearity, it remains to analyze the energy distri-
bution in a neighborhood ofω = ±m. Since all constructions and estimates are similar
for positive and negativeω, we can in what follows restrict attention to a neighborhood
of ω = +m.

3. Decay Rates of Fourier Transforms – Basic Considerations

In this section, we derive estimates of some elementary Fourier integrals. Our decay rate

t− 5
6 ultimately comes from Lemma 3.3. We always denote byε a parameter in the range

0 < ε < 1
30.

Lemma 3.1. Let g ∈ L∞(R) ∩ C1((0,∞)) with compact support and assume that for
a suitable constantC,

|g′(α)| ≤ C

α
for all α > 0. (3.1)

Then there is a constantc = c(g) such that for allt > 0,∣∣∣∣
∫ ∞

0
eiαtg(α)dα

∣∣∣∣ ≤ ct−
5
6−ε.

Proof. Assume that suppg ⊂ [−L, L]. For givenδ > 0, we split up the integral as∫ ∞

0
eiαtg(α)dα =

∫ δ

0
eiαtg(α)dα +

∫ ∞

δ

eiαtg(α)dα.

The first term can be estimated by∣∣∣∣
∫ δ

0
eiαtg(α)dα

∣∣∣∣ ≤ c1δ

with c1 = sup|g|. In the second term, we integrate by parts,∫ ∞

δ

eiαtg(α)dα = 1

it

∫ ∞

δ

(
d

dα
eiαt

)
g(α)dα

= − 1

it
eiδt g(δ) − 1

it

∫ ∞

δ

eiαtg′(α)dα,

and estimate using (3.1),∣∣∣∣
∫ ∞

δ

eiαtg(α)dα

∣∣∣∣ ≤ c1

t
+ C

t
(logL − logδ).
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We chooseδ = t− 5
6−ε to conclude that∣∣∣∣

∫ ∞

0
eiαtg(α)dα

∣∣∣∣ ≤ c1t
− 5

6−ε + c1

t
+ C

t
(logL − log t−

5
6−ε),

and this has the required decay properties int . ��
In the next lemma we insert into the Fourier integral a phase factor which oscillates

infinitely fast asα ↘ 0.

Lemma 3.2. Letg be as in Lemma 3.1. Then there is a constantc = c(g) such that for
all t > 0, ∣∣∣∣

∫ ∞

0
exp

(
iαt − i√

α

)
g(α)dα

∣∣∣∣ ≤ ct−
5
6−ε. (3.2)

Proof. We set

φ(α) = αt − 1√
α

.

Then

φ′(α) = t + 1

2
α− 3

2 , φ′′(α) = −3

4
α− 5

2 . (3.3)

We integrate the Fourier integrals by parts,∫ ∞

0
eiφ(α)g(α)dα = −i

∫ ∞

0

(
d

dα
eiφ(α)

)
g

φ′ dα = i

∫ ∞

0
eiφ(α)

(
g′

φ′ −
gφ′′

φ
′2

)
dα,

and obtain the bound∣∣∣∣
∫ ∞

0
eiφ(α)g(α)dα

∣∣∣∣ ≤
∫ ∞

0

∣∣∣∣g′

φ′ −
gφ′′

φ
′2

∣∣∣∣ dα

=
∫ ∞

0
|φ′|− 5

6−ε
{
|g′||φ′|− 1

6+ε + |g||φ′′||φ′|− 7
6+ε
}

dα.

According to (3.3), we can estimate the factor|φ′|− 5
6−ε from above byt− 5

6−ε, whereas

for the factors|φ′| in the curly brackets we use the bound|φ′| ≥ 1
2α− 3

2 . Furthermore,
we substitute in the formula forφ′′ in (3.3) and obtain∣∣∣∣

∫ ∞

0
eiφ(α)g(α)dα

∣∣∣∣ ≤ t−
5
6−ε

∫ ∞

0

(
c1|g′|α 1

4− 3
2ε + c2|g|α− 3

4− 3
2ε
)

dα

with two constantsc1 andc2. Using thatg is in L∞ andg′ satisfies the bound (3.1), one
sees that the pole in the last integrand is integrable.��

The following lemma deals with the Fourier integral when we replace the minus
sign in the integrand of (3.2) by a plus sign. Reversing this sign completely changes the
long-time asymptotics. We estimate the Fourier integral using a rigorous version of the
“saddle point method”.
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Lemma 3.3. Let g be as in Lemma 3.1. Then there are constantsc = c(g) and c1 =
2− 4

3 3− 1
2
√

π such that for all sufficiently larget ,∣∣∣∣
∫ ∞

0
exp

(
iαt + i√

α

)
g(α)dα − c1e

iφ0g(α0)t
− 5

6

∣∣∣∣ ≤ ct−
5
6−ε, (3.4)

whereα0 andφ0 are given by

α0 = (2t)−
2
3 , φ0 =

(
9

4
t

) 1
3

. (3.5)

Proof. We introduce the functionφ by

φ(α) = αt + 1√
α

.

Then

φ′(α) = t − 1

2
α− 3

2 , φ′′(α) = 3

4
α− 5

2 . (3.6)

One sees thatφ(α) has a minimum atα0 with φ(α0) = φ0 and

φ′′(α0) = 2−
1
3 3t

5
3 . (3.7)

We set

δ = t−
5
6+ε.

For larget , δ < α0. We split the integration range into two regionsD1 andD2 with

D1 = (0, α0 − δ) ∪ (α0 + δ,∞), D2 = [α0 − δ, α0 + δ].
Let us first estimate the integral overD1. An integration-by-parts argument similar to
that in the proof of Lemma 3.2 gives∣∣∣∣

∫
D1

eiφgdα

∣∣∣∣ ≤
∣∣∣∣ g(α0 + δ)

φ′(α0 + δ)

∣∣∣∣+
∣∣∣∣ g(α0 − δ)

φ′(α0 − δ)

∣∣∣∣+
∫

D1

∣∣∣∣g′

φ′ −
gφ′′

φ
′2

∣∣∣∣ dα.

Putting in the formulas forφ′ andφ′′ given in (3.6), and using thatg ∈ L∞ together
with (3.1), one sees that for suitablec,∣∣∣∣

∫
D1

eiφgdα

∣∣∣∣ ≤ ct−
5
6−ε.

Next we show that the leading contribution to the integral overD2 is given by the saddle
point approximation. To this end, we introduce the quadratic polynomial

φS(α) = φ0 + 1

2
φ′′(α0)(α − α0)

2.
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Then the mean value theorem gives for sufficiently larget ,

∣∣∣∣
∫

D2

(
eiφg − eiφS g(α0)

)
dα

∣∣∣∣ ≤ sup
D2

(|g′| + |(φ − φS)′g|) δ2

≤
(

2C

α0
+ 1

2
sup
D2

|φ′′′|δ2‖g‖∞
)

δ2 ≤
(
c2t

−1+2ε + c3t
−1+4ε

)
≤ ct−

5
6−ε,

where in the last step we used that 5ε < 1
6. Finally, we compute the contribution of the

saddle point approximation,

∫
D2

eiφS g(α0)dα = eiφ0g(α0)

∫ δ

−δ

e
i
2φ′′(α0)α2

dα.

Introducing the new variables = 1
2φ′′(α0)α

2 gives

∫
D2

eiφS g(α0)dα = eiφ0g(α0)

√
2

φ′′(α0)

∫ L

0

eis

√
s
ds

with

L = 1

2
φ′′(α0)δ

2 = 2−
4
3 3t2ε. (3.8)

Using (3.7), we conclude that

∫
D2

eiφS g(α0)dα = eiφ0g(α0)t
− 5

6 (c1 + R(t))

with

c1 = 2
1
3 3−

1
2

∫ ∞

0

eis

√
s
ds = 2

4
3 3−

1
2
√

π = 0

R(t) = −2
1
3 3−

1
2

∫ ∞

L

eis

√
s
ds.

The error termR(t) can be integrated by parts,

∣∣∣∣
∫ ∞

L

eis

√
s
ds

∣∣∣∣ ≤ 1√
L

+ 1

2

∫ ∞

L

s−
3
2 ds = 5

4

1√
L

,

and this shows according to (3.8) thatR(t) decays int at the desired rate,|R(t)| ≤ ct−ε.
��
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4. The Planar Equation

Let us transform the radial Dirac equation (2.3) into an equation for a real 2-spinor as
follows. We first unitarily transform the spinorX according to

X → X̃ = UX with U = exp

(
i
β

2
σ 3
)

, β = arctan
λ

mr
. (4.1)

ThenX̃ satisfies the equation

d

du
X̃ = i

(−a b

−b a

)
X̃ (4.2)

with

a(u) = 3(u) + λm

m2r2 + λ2

�

2(r2 + a2)
, (4.3)

b(u) =
√

�

r2 + a2

√
m2r2 + λ2. (4.4)

Notice that the transformationU is regular for allu ∈ R, and that the second summand
in (4.3) has nice decay properties foru → ±∞. Next we employ the ansatz

X̃ =
(

-(a)ψ+ − iψ−
−ψ+ − i-(a)ψ−

)
, ψ = 1

2

(
-(a)X̃+ − X̃−

iX̃+ + i-(a)X̃−
)

(4.5)

with a complex 2-spinorψ . Thenψ satisfies the equation

d

du
ψ =

(
0 −g

f 0

)
ψ, (4.6)

with

f = |a| + b, g = |a| − b. (4.7)

The coefficients in (4.6) are all real, and so we can study the real and imaginary parts
of ψ separately. Thus we assume in what follows thatψ is real and then call (4.6) the
planar equation.

We bring the planar equation into a form more appropriate for our estimates. For
givenu0 we introduce the new variable

x(u) = 2
∫ u

u0

√|fg|(τ )dτ (4.8)

and set

h = 1

2
log

∣∣∣∣ gf
∣∣∣∣ . (4.9)

In the caseg > 0, (4.6) becomes

ψ ′ ≡ d

dx
ψ = 1

2

(
0 −eh

e−h 0

)
ψ.
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Employing the ansatz

ψ = e−
L
2

(
e

h
2 cosx+ϑ

2

e− h
2 sin x+ϑ

2

)
(4.10)

with real functionsL(x) andφ(x) gives the equation

−L′a1 + h′b + (1+ ϑ ′)a2 = a2 (4.11)

with

a1 =
(

cosx+ϑ
2

sin x+ϑ
2

)
, a2 =

(
− sin x+ϑ

2

cosx+ϑ
2

)
, b =

(
cosx+ϑ

2

− sin x+ϑ
2

)
.

Elementary trigonometry shows that

b = cos(x + ϑ)a1 − sin(x + ϑ)a2.

Hence the planar equation takes the form

ϑ ′ = h′ sin(x + ϑ), L′ = h′ cos(x + ϑ). (4.12)

In the caseg < 0, the ansatz

ψ = e−
L
2

(
e

h
2 coshx+ϑ

2

e− h
2 sinh x+ϑ

2

)
(4.13)

gives similarly the equations

ϑ ′ = h′ sinh(x + ϑ), L′ = h′ cosh(x + ϑ). (4.14)

We can now give the strategy for the proof of Theorem 1.1(i). First, in the next section,
we will obtain estimates which will enable us to control the functionh′ which appears
in the planar equations (4.12) and (4.14). Then we will carefully analyze the solutions
(ϑ, L) of these planar equations, and this will allow us to study the time-dependence of
the propagator (1.3). For the analysis of the planar equations, it is necessary to consider
both casesω > m andω < m separately; this will be done in Sects. 6 and 7, respectively.

5. Uniform Bounds for the Potentials

In this section, we shall derive estimates for the functionh(x) (as introduced in (4.9)
with x according to (4.8)) as well as for its partial derivatives with respect tox andω.
The usefulness of our estimates lies in the fact that they are uniform inω for ω in a small
neighborhood ofm, ω ∈ (m−δ, m+δ). The main technical difficulty is thatx is defined
via an integral transformation (4.8), and thush(x) depends onω in a nonlocal way. On
the other hand, our estimates also show the advantage of working with the variablex.
Namely, by introducingx, theω-dependence ofh becomes small in the critical regions
near infinity and near the poles ofh, in the sense that(ω − m)∂ωh(x) has bounded
total variation inx, uniformly in ω. This will be essential for getting control of theω-
dependence of the solutions to the planar equation (see Lemmas 6.3 and 7.5). Since the
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technical details of the proofs of Lemmas 5.1, 5.2, and 5.3 will not be needed later on,
the reader may consider skipping these proofs in a first reading.

In what follows, we often denote derivatives by a lower index, e.g.hω ≡ ∂ωh.
Furthermore, we denote constants which are independent ofω by c; the value ofc may
change throughout our calculations. For clarity, we sometimes add a subscript toc to
mean a fixed constant. According to their definition (4.7) and (4.3),(4.4), the functions
f andg have for largeu the expansion

f = (ω + m) − mM − eQ

u
+ O

(
1

u2

)
,

g = (ω − m) + mM + eQ

u
+ O

(
1

u2

)
.

Our notationO(u−n) implies that the error terms depend smoothly onω, and that their
u-derivatives have the natural scaling behavior, i.e.

∂ωO(u−n) = O(u−n) and ∂uO(u−n) = O(u−n−1).

Our assumption (1.4) ensures that for largeu, g is monotone decreasing, whereasf is
increasing.

We begin with the caseω > m. In this parameter range, we fixu0 independent ofω.
By choosingu0 sufficiently large, we can arrange that the following estimates hold.

Lemma 5.1. There are constantsc, δ > 0 such that for allω ∈ (m, m + δ) andx > 0,

0 < −h′(x) ≤ c

1+ x
, (5.1)

|h′′(x)| ≤ c

(1+ x)2 , (5.2)∫ ∞

0
|h′

ω(x)|dx ≤ c

ω − m
. (5.3)

Proof. We setε = ω2 − m2 and introduce the function

ρ = 2
√

fg.

Thenh andρ have the asymptotic expansions

h(u) = 1

2
log

(
ε

(ω + m)2 + α

u
+ O

(
1

u2

))
, (5.4)

ρ(u) = 2

√
ε + β

u
+ O

(
1

u2

)
(5.5)

with positive constantsα andβ, which depend smoothly onω and are bounded away
from zero asε → 0. Our first step is to bound the functionx(u), (4.8), as well as
its inverseu(x). According to (5.5), there are (possibly after increasingu0), constants
a1, a2 > 0 such that

2

√
ε + a1

u
≤ ρ(u) ≤ 2

√
ε + a2

u
(5.6)
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for all ω ∈ (m, m + δ) andu > u0. We introduce the functionsx andx by

x = 2
√

u(a1 + εu) − b1, x = 4
√

u(a2 + εu) − b2,

where the constantsb1 andb2 are chosen such thatx(u0) = 0 = x(u0),

b1 = 2
√

u0(a1 + εu0), b2 = 4
√

u0(a2 + εu0). (5.7)

Then

x′(u) = a1 + 2εu√
u(a1 + εu)

≤ 2

√
a1 + εu

u
≤ ρ(u),

x′(u) = 2(a2 + 2εu)√
u(a2 + εu)

≥ 2

√
a2 + εu

u
≥ ρ(u),

and integration yields thatx andx are bounds forx,

x(u) ≤ x(u) ≤ x(u) for all u ≥ u0. (5.8)

The functionsx and x are strictly monotone and thus invertible. Their inverses are
computed as follows,

x−1(x) = 1

2ε

(√
a2

1 + ε(x + b1)2 − a1

)

= 1

2ε

ε(x + b1)
2√

a2
1 + ε(x + b1)2 + a1

≤ 1

2

(x + b1)
2

√
ε(x + b1) + a1

,

x−1(x) = 1

4ε

(√
4a2

2 + ε(x + b2)2 − 2a2

)

= 1

4ε

ε(x + b2)
2√

4a2
2 + ε(x + b2)2 + 2a2

≥ 1

4

(x + b2)
2

√
ε(x + b2) + 4a2

,

where in the last step we applied the inequality
√

a + b ≤ √
a + √

b (a, b > 0). The
inequalities (5.8) yield for the inverses thatx−1(x) ≥ u(x) ≥ x−1(x). Thus the functions
u andu defined by

u(x) = 1

4

(x + b2)
2

√
ε(x + b2) + 4a2

, u(x) = 1

2

(x + b1)
2

√
ε(x + b1) + a1

(5.9)

are bounds foru(x),

u(x) ≤ u(x) ≤ u(x) for all x ≥ 0. (5.10)

Let us derive (5.1). Sincef andg are monotone increasing and decreasing, respec-
tively, h(u) is decreasing and thush′(x) < 0. Furthermore,

|h′(x)| = 1

ρ
|h′(u)| = 1

2ρ

∣∣∣∣g′(u)

g
− f ′(u)

f

∣∣∣∣
= 2

ρ3 |g′(u)f − f ′(u)g| ≤ c1

u2ρ3 . (5.11)
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We employ (5.6), (5.10), and (5.9) to obtain

|h′(x)| ≤ c1

8
u− 1

2 (a1 + εu)−
3
2 ≤ c1

8
u− 1

2 (a1 + εu)−
3
2

= 2c1

(√
ε(x + b2) + 4a2

(x + b2)2

) 1
2
( √

ε(x + b2) + 4a2

ε(x + b2)2 + 4a1
√

ε(x + b2) + 16a1a2

) 3
2

≤ 2c1

x + b2

[
(
√

ε(x + b2) + 4a2)
2

(ε(x + b2)2 + 16a1a2)
3
2

]
.

The square bracket is bounded uniformly inε andx, proving (5.1). The second derivative
of h is computed to be

h′′(x) = 1

ρ

d

du

(
2

ρ3 (g′(u)f − f ′(u)g)

)

= − 6

ρ5

(
ρ′(u)(g′(u)f − f ′(u)g)

)+ 2

ρ4

d

du
(g′(u)f − f ′(u)g).

Thus

|h′′(x)| ≤ c2

u4ρ6 + c2

u3ρ4 , (5.12)

and (5.6) shows that

|h′′(x)| ≤ 8c2u
−1(a1 + εu)−3 + c2u

−1(a1 + εu)−2 ≤ c3u
−1(a1 + εu)−2.

We substitute in (5.9),

|h′′(x)| ≤ 16c3

(x1 + b1)2

[
(
√

ε(x + b2) + 4a2)
3

(ε(x + b2)2 + 16a1a2)2

]
.

The square bracket is again bounded uniformly inε andx, and this gives (5.2). We finally
estimateh′

ω(x). Since the relation betweenω andε is one-to-one and smooth, we can
just as well consider theε-derivativeh′

ε(x). Sinceh(x) is not given in closed form, we
need to computehε(x) via the formula

εhε(x) = εhε(s) + εh′(s)sε(x), (5.13)

wheres = s(u) is a suitable variable. Clearly,hε(x) is independent of hows is chosen.
However, if we take fors too simple a function (e.g.s = u), then it turns out that
hε(s) will develop singularities in the limitε → 0, which are compensated in (5.13)
by corresponding singular contributions to the second summand, making the analysis
very delicate. To bypass these difficulties, it is convenient to choose fors(u) a function
with a similar qualitative behavior asx(u); this will make it possible to estimate the two
summands in (5.13) separately. We sets = [u-inverse+ b1], so thatu = u(s(u) − b1);
i.e.

h(s) = h(u = u(s − b1))

with u according to (5.9) ands ∈ [b1,∞). Then the expansion (5.4) becomes

h(s) = 1

2
log

(
ελ1 + 2λ2

√
ε

s
+ λ3

s2 +√
εO(s−2) + O(s−3)

)
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with positive constantsλi which depend smoothly on
√

ε and are uniformly bounded
away from zero. Differentiating with respect toε gives

εhε(s) = 1

2

λ1εs2 + λ2
√

εs +√
εO(s0)

λ1εs2 + 2λ2
√

εs + λ3 +√
εO(s0) + O(s−1)

.

We want to show that this function has bounded total variation. To this end, we differ-
entiate with respect tos and obtain

εh′
ε(s) =

c1ε
3
2 s2 + c2εs + c3

√
ε + ε

3
2 O(s) + εO(s0) +√

εO(s−1)

2(λ1εs2 + 2λ2
√

εs + λ3 +√
εO(s0) + O(s−1))2

.

Hence by choosingδ small enough andu0 (and thusb2) large enough, we can arrange
that

ε|h′
ε| ≤ c

ε
3
2 s2 + εs +√

ε

(λ1εs2 + λ3)2

for all ε and alls ≥ b1. TheL1 norm of the rhs is bounded uniformly inω. Namely,
settingt = √

λ1εs shows that forn = 0, 1, 2,∫ ∞

b2

(
√

εs)n

(λ1εs2 + λ3)2

√
εds ≤ λ

− n+1
2

1

∫ ∞

0

tn

(t2 + λ3)2 dt,

and the last integral is finite, independent ofε. It remains to estimate the total variation
of the second summand in (5.13). More precisely, in order to finish the proof of (5.3),
we shall show that ∫ ∞

0

∣∣∣∣ d

dx
(h′(s)εsε(x))

∣∣∣∣ dx < c. (5.14)

We first derive sufficient conditions for (5.14). The relations

0 = ∂εs(x(s)) = sε(x) + s′(x)xε(s) h′(x) = h′(s)s′(x)

yield that

h′(s)sε(x) = −h′(x)xε(s).

Differentiating with respect tox, one sees that it suffices to bound theL1 norms of the
expressions

h′(x)
εx′

ε(s)

x′(s)
and h′′(x)εxε(s)

uniformly inε. Substituting in the bounds (5.1) and (5.2), we conclude that the following
inequalities imply that (5.14) holds,

1

c
≤ x′(s) ≤ c, (5.15)∫ ∞

0

ε|x′
ε(s)|

1+ x
dx ≤ c, (5.16)∫ ∞

0

ε|xε(s)|
(1+ x)2 dx ≤ c. (5.17)
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We begin the proof of (5.15)–(5.17) by computingx′(s),

x′(s) = d

ds

∫ u(s−b1)

u0

ρ(v)dv = ρ(u(s − b1))u
′(s − b1). (5.18)

A short calculation using (5.9) and (5.5) gives

u′(s − b1) = s(
√

εs + 2a1)

2(
√

εs + a1)2
> 0,

ρ2(u(s − b1)) = 1

s2 (4εs2 + 8β
√

εs + 8βa1) +√
εO(s−2) + O(s−3),

and thus

x′(s)2 = (
√

εs)4 + a3(
√

εs)3 + · · · + a0 + ε
3
2 O(s2) + εO(s) +√

εO(s0) + O(s−1)

(
√

εs)4 + b3(
√

εs)3 + · · · + b0
(5.19)

with coefficientsaj , bj ≥ 0 anda0, b0 > 0. Possibly after increasingu0 and decreasing
δ, we can neglect the error terms. The fraction in (5.19) is clearly uniformly bounded
from above and below. This proves (5.15). Integrating (5.15), we obtain that the ratio
(1 + x)/s is uniformly bounded from above and below, and thus in (5.16) and (5.17)
we may replace the factors(1+ x) by s. Using (5.15) we may furthermore replace the
integral overx ∈ (0,∞) by the integral overs ∈ (b1,∞). Next we differentiate (5.19)
with respect toε. A short computation shows that

εx′
ε(s)x

′(s) = a7(
√

εs)7 + · · · + a1(
√

εs)

(
√

εs)8 + b7(
√

εs)7 + · · · + b0

(
1+ O(s−1)

)
,

where the coefficientsbj are non-negative andb0 > 0 (but theaj might be zero or
negative). Using the bounds (5.15), one sees thatεx′

ε(s) can be estimated by

ε|x′
ε(s)| ≤ c

√
εs((

√
εs)6 + 1)

(
√

εs)8 + 1
. (5.20)

A scaling argument shows that∫ ∞

b1

ε|x′
ε(s)|
s

ds ≤ c

∫ ∞

b1

(
√

εs)6 + 1

(
√

εs)8 + 1

√
εds ≤ c

∫ ∞

0

t6 + 1

t8 + 1
< ∞, (5.21)

proving (5.16). To derive (5.17), we use that

ε|xε(s)| ≤
∫ s

b1

ε|x′
ε(t)|dt + ε|xε(b1)|

and obtain∫ ∞

b1

ε|xε(s)|
s2 ds ≤

∫ ∞

b1

1

s2

(∫ s

b1

ε|x′
ε(t)|dt + ε|xε(b1)|

)
ds

= −
∫ ∞

b1

d

ds

(
1

s

)(∫ s

b1

ε|x′
ε(t)|dt + ε|xε(b1)|

)
ds.
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Fig. 2. Typical plots forh′(x) andh′ω(x) in the caseω > m

According to (5.20), the inner integral diverges at most logarithmically ass → ∞.
Therefore, integrating by parts gives no boundary terms at infinity,

∫ ∞

b1

ε|xε(s)|
s2 ds ≤

∫ ∞

b1

ε|x′
ε(s)|
s

ds + ε|xε(b1)|
b1

.

The integral on the right was estimated in (5.21). The last summand is computed to be

ε
|xε(b1)|

b1
= ε

|x′(b1)|
b1

∂b1

∂ε
,

and this is bounded uniformly inε in view of (5.18) and the fact thatb1 is smooth in
√

ε

and bounded away from zero, (5.7). This completes the proof of Lemma 5.1.��
The above estimates are illustrated in Fig. 2, whereh′ andh′

ω are plotted in a typical
example. The dashed curve describes the asymptotics nearx = 0; it is the graph ofh′(x),
where forx(u) one uses the approximate formulax ≈ 4

√
β(

√
u −√

u0), obtained by
settingε in (5.5) equal to zero, dropping the error term and integrating, (4.8).

In the caseω < m, we fix umin independent ofω ∈ (m − δ, m). By choosingumin

large andδ sufficiently small, we can arrange that the functiong has exactly one zero
on the half line(umin,∞). We setu0 equal to this zero,

g(u0) = 0.

Clearly,u0 depends onω. The variablex(u), (4.8), is positive foru > u0 and negative
on the interval(umin, u0). We setxmin = x(umin). The following lemma is the analogue
of Lemma 5.1 forω < m. The method of proof is also similar, but the pole ofh atx = 0
makes the situation a bit more complicated.

Lemma 5.2. There are constantsc, δ > 0such that for allω ∈ (m−δ, m) andx > xmin,

0 ≤ -(x)h′(x) ≤ c

x − xmin + 1
+ c

|x| , (5.22)

|h′′(x)| ≤ c

(x − xmin + 1)2 + c

|x|2 , (5.23)∫ ∞

xmin

|h′
ω(x)|dx ≤ c

m − ω
. (5.24)
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Furthermore, for everyx1 > 0 the constantsc, δ > 0 can be chosen such that for all
ω ∈ (m − δ, m) andx ∈ [−x1, x1],∣∣∣∣h(x) − 1

3
log |ε2x|

∣∣∣∣ ≤ c. (5.25)

Proof. We now setε = m2 − ω2 andρ = 2
√|fg|. Then

ρ2(u) = 4

∣∣∣∣ε − β

u
+ O(u−2)

∣∣∣∣
with β > 0. Sinceρ(u0) = 0,

u0 = β

ε
(1+ O(ε)), (5.26)

and furthermore, the functionsh andρ have the expansions

h(u) = 1

2
log

(
ε

(ω + m)2

|u − u0|
u

(
1+ O(u−1)

))
, (5.27)

ρ(u) = 2

√
ε
|u − u0|

u

(
1+ O(u−1)

)
. (5.28)

Since global bounds forx(u) andu(x) would be more difficult to obtain than those in
Lemma 5.1, we here construct the bounds piecewise. We set�u = u0/2. By decreasing
δ, we can arrange thatu0/4 > umin, and furthermore we can also make the error terms
in (5.27) and (5.28) as small as we like. Thus we may assume that

3

2

√
ε

u0

√|u − u0| ≤ ρ(u) ≤ 3

√
ε

u0

√|u − u0| for |u − u0| ≤ �u. (5.29)

Integrating fromu0 to u gives√
ε

u0
|u − u0| 3

2 ≤ |x(u)| ≤ 2

√
ε

u0
|u − u0| 3

2 for |u − u0| ≤ �u. (5.30)

Taking the inverses, we obtain for|u − u0| the bounds

v(x) ≤ |u(x) − u0| ≤ v(x) for |x| ≤ �x, (5.31)

where we set

v(x) =
(

x2u0

4ε

) 1
3

, v(x) =
(

x2u0

ε

) 1
3

, (5.32)

�x =
√

ε

u0
(�u)

3
2 = 2−

3
2
√

εu0 = 2−
3
2 βε−

1
2 (1+ O(ε)). (5.33)

If x > �x, the second inequality in (5.30) shows thatu− u0 ≥ 2− 5
3 u0, and thus in this

region there are constantsa1, a2 > 0 such that

a1
√

ε ≤ ρ(u) ≤ a2
√

ε. (5.34)
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Hence forx > �x,

1

a2
√

ε
≤ du

dx
≤ 1

a1
√

ε
.

Integration shows that, possibly after decreasinga1 and increasinga2,

u(x) ≤ u(x) ≤ u(x) for x > �x (5.35)

with

u(x) = x

a2
√

ε
, u(x) = x

a1
√

ε
. (5.36)

If on the other handx < −�x, we see from (5.30) thatu − u0 ≤ −2− 5
3 u0, and thusρ

can be estimated by

b1

2
u− 1

2 ≤ ρ(u) ≤ b2

2
u− 1

2 (5.37)

with b1, b2 > 0. We integrate fromumin to u,

b1
√

u − b1
√

umin ≤ x(u) − xmin ≤ b2
√

u − b2
√

umin,

and solve foru. This gives

u(x) ≤ u(x) ≤ u(x) for xmin ≤ x < −�x (5.38)

with

u(x) =
(

x − xmin

b2
+√

umin

)2

, u(x) =
(

x − xmin

b1
+√

umin

)2

. (5.39)

For anyx1 > 0, we can, by choosingδ small enough, arrange that�x, (5.33), is
greater thanx1. Thusu(x) is on the interval[−x1, x1] bounded by (5.31). Substituting
these bounds into (5.27) and using (5.26) gives (5.25).

To show that-(x)h′(x) ≥ 0, note that

h′(x) = h′(u)
du

dx
,

wheredu
dx

= ρ−1 is positive, and the sign ofh′(u) is obtained from (5.27).
For the derivation of the inequalities (5.22)–(5.24), we consider the three regions

x < −�x, |x| ≤ �x, andx > �x separately. We begin with the case|x| ≤ �x. For
h′(x) andh′′(x), we have again the bounds (5.11) and (5.12), respectively. Using that
u ≥ u0/2 as well as (5.29), (5.31), and (5.32), we obtain

|h′(x)| ≤ c

u2ρ3 ≤ c
√

u0ε
3
2

|u − u0|− 3
2 ≤ c

u0εx
,

|h′′(x)| ≤ c

u4ρ6 + c

u3ρ4 ≤ c

u2
0ε

2x2
+ c

u
5
3
0 ε

4
3 x

4
3

,
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and in view of (5.26) and (5.33), this implies (5.22) and (5.23). To computehε(x), we
again use (5.13), but now with

s(u) =
√

ε

u0
|u − u0| 3

2 -(u − u0) for |u − u0| ≤ �u,

where as before- is the step function-(τ) = sgn(τ ). The first summand in (5.13) is
computed as follows,

u(s) = u0 + u
1
3
0 ε−

1
3 s

2
3 -(s) for |s| ≤ �x, (5.40)

(5.26)= 1

ε
(β + (βεs2)

1
3 -(s))(1+ O(ε)), (5.41)

h(s)
(5.27)= 1

2
log

(
β

1
3 ε

4
3 s

2
3

β + (βεs2)
1
3 -(s)

(
1+ εO(s0) + ε

4
3 O(s

2
3 )
))

− log(ω + m)

εhε(s) =
(

2

3
− 1

6

(βεs2)
1
3 -(s)

β + (βεs2)
1
3 -(s)

)(
1+ εO(s0) + ε

4
3 O(s

2
3 )
)

.

Differentiating with respect tos gives the bound

ε|h′
ε(s)| ≤ cε

1
3 s−

1
3 + cε

2
3 s

1
3 ,

and thus ∫ �x

−�x

ε|h′
ε(s)|ds ≤ cε

1
3 (�x)

2
3 + cε

2
3 (�x)

4
3 .

Using (5.33), we conclude that the total variation ofεhε(s) is bounded uniformly inε. In
order to estimate the total variation of the second summand in (5.13), we first compute
x′(s),

x′(s)2 = (ρ(s)u′(s))2 = 16

9

u0

u(s)

(
1+ εO(s0) + ε

4
3 O(s

2
3 )
)

.

This is uniformly bounded from above and below, proving (5.15). Differentiating with
respect toε using (5.41) gives the estimate

ε|x′
ε(s)| ≤ cε

1
3 s

2
3 . (5.42)

Sincex(s = 0) = 0 for all ε (from (5.40)), integration yields that

ε|xε(±�x)| ≤
∣∣∣∣
∫ ±�x

0
ε|x′

ε(s)|ds

∣∣∣∣ ≤ cε
1
3 (�x)

5
3

(5.33)≤ cε−
1
2 (5.43)

∫ �x

−�x

ε|x′
ε(s)|
s

ds ≤ cε
1
3 (�x)

2
3 ≤ c. (5.44)

Furthermore, ∫ �x

−�x

ε|xε(s)|
s2 ds ≤

∫ �x

−�x

1

s2

(∫ s

0
ε|x′

ε(t)|dt

)
ds. (5.45)
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Using (5.42), the inner integral is for smalls bounded by a constant timest
5
3 . Thus when

integrating by parts, we get no boundary terms ats = 0 and obtain

∫ �x

−�x

ε|xε(s)

s2 ds ≤ 1

�x

∫ �x

−�x

ε|x′
ε(t)|dt +

∫ �x

−�x

ε|x′
ε(t)|
s

ds ≤ c, (5.46)

where in the last step we used (5.42) and (5.44). Combining (5.44) and (5.46) with the
estimates (5.22) and (5.23), we conclude that the total variation of the second summand
in (5.13) is bounded uniformly inε. This shows that (5.24) holds if the integration domain
is restricted tox ∈ (−�x, �x).

In the casex > �x, (5.34), (5.35), and (5.36) yield, again using (5.11) and (5.12),

|h′(x)| ≤ c

u2ρ3 ≤ c

x2
√

ε
≤ c

x

1√
ε�x

(5.33)≤ c

x
,

|h′′(x)| ≤ c

u4ρ6 + c

u3ρ4 ≤ c

x4ε
+ c

x3
√

ε
≤ c

x2 ,

proving (5.22) and (5.23). To compute the total variation ofhε(x), we apply (5.13) with

s(u) =
√

ε

3
√

2
u for u > u0 + �u.

Using that

s(u0 + �u) = s

(
3u0

2

)
(5.33)= �x,

we see that

u(s) = 3
√

2√
ε

s for s > �x.

Moreover, from (5.27) and (5.28),

h(s) = 1

2
log

(
ε

(ω + m)2

3
√

2s − βε− 1
2

3
√

2s

(
1+ εO(s0) +√

εO(s−1)
))

,

εhε(s) = 1

2

(
1+ βε− 1

2

6
√

2s − 2βε− 1
2

)(
1+ εO(s0) +√

εO(s−1)
)

,

ε|h′
ε(s)| ≤

c√
εs2

,∫ ∞

�x

ε|h′
ε(s)|ds ≤ c√

ε�x
≤ c,

x′(s)2 = (ρ(s)u′(s))2 = 72

(
1− β

3
√

2s
√

ε

)(
1+ εO(s0) +√

εO(s−1)
)

.
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Sinces > �x, we conclude from (5.33) that (5.15) holds. Differentiating the last relation
with respect toε and integrating gives

ε|x′
ε(s)| ≤

c

s
√

ε
,∫ ∞

�x

ε|x′
ε(s)|
s

ds ≤ c√
ε�x

≤ c, (5.47)∫ ∞

�x

ε|xε(s)|
s2 ds ≤

∫ ∞

�x

1

s2

(∫ s

�x

ε|x′
ε(t)|dt + εxε(�x)

)
ds

≤ ε|xε(�x)|
�x

+
∫ ∞

�x

ε|xε(s)|
s

ds ≤ c,

where in the last step we used (5.43) and (5.47). This proves (5.24) ifx > �x.
Finally, if x < −�x, the bounds (5.38) and (5.39) give

|h′(x)| (5.11)≤ c

u2ρ3 ≤ 8c

b3
1

u− 1
2 = c

b2
√

u

≤ c

x − xmin + b2
√

umin
≤ c

x − xmin + 1
,

|h′′(x)| (5.12)≤ c

u4ρ6 + c

u3ρ4 ≤ c

u
≤ c

(x − xmin + 1)2 .

This concludes the proof of (5.22) and (5.23). In order to prove (5.24), we apply (5.13)
with

s(u) = 1

2

√
βu − 2�x for umin ≤ u ≤ u0 − �u.

Similar as in the casex > �x,

u(s) = 4

β
(s + 2�x)2 for smin ≡ 1

2

√
βumin − 2�x ≤ s ≤ −�x, (5.48)

h(s) = 1

2
log

(
1

(ω + m)2

(
β2(1+ O(ε)

4(s + 2�x)2 − ε

)(
1+ O((s + 2�x)−2)

))
,

εhε(s) = −ε

2

4(s + 2�x)2 + β2O(ε)

β2(1+ O(ε)) − 4ε(s + 2�x)2 + εO(s0) + εO((s + 2�x)−2)

1+ O((s + 2�x)−2)

= −ε

2

4(s + 2�x)2 + εO(s0)

β2 − 4ε(s + 2�x)2 + εO(s0) + εO((s + 2�x)−2),

ε|h′
ε(s)| ≤ cε(s + 2�x).

Integration yields that∫ −�x

smin

ε|h′
ε(s)|ds

(5.48)≤ cε

(
�x2 − 1

4
βumin

)
(5.33),(5.26)≤ ; cε(u0 − �u − umin) ≤ c.

Moreover,

x′(s)2 = (ρ(s)u′(s))2

= 64

(
1− 4

β2 ε(s + 2�x)2
)(

1+ εO(s0) + O((s + 2�x)−2)
)

.
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Fig. 3. Typical plots forh′(x) andh′ω(x) in the caseω < m

Using that(s + 2�x)2 ≤ (�x)2, we conclude thatx′(s) is uniformly bounded from
above and below. We differentiate with respect toε and integrate to finally obtain similar
to (5.15)–(5.17),

ε|x′
ε| ≤ cε(s + 2�x)2, (5.49)∫ −�x

smin

ε|x′
ε(s)|

s + 2�x
ds ≤ cε(u0 − �u − umin) ≤ c, (5.50)

∫ −�x

smin

ε|xε(s)|
(s + 2�x)2 ds ≤

∫ −�x

smin

1

(s + 2�x)2

(∫ s

−�x

ε|x′
ε(t)|dt + ε|xε(−�x)|

)
ds

≤ ε|xε(−�x)|
�x

+ 1

smin + 2�x

∫ −�x

smin

ε|x′
ε(t)|dt +

∫ −�x

smin

ε|x′
ε(s)|

s + 2�x
ds ≤ c,

where in the last line we integrated by parts and used (5.43) and (5.49),(5.50). This
yields (5.24) and completes the proof of Lemma 5.2.��
The above estimates are illustrated in Fig. 3. The dashed curve is the graph of(3x)−1;
it is thex-derivative of the asymptotic function13 log(ε2x) which appears in (5.25).

The next lemma controls the behavior ofxmin.

Lemma 5.3. There are constantsc, δ > 0 such that for allω ∈ (m − δ, m),∣∣∣xmin + 4β(m2 − ω2)−
1
2

∣∣∣ ≤ c, (5.51)∣∣∣∂ω

(
xmin + 4β(m2 − ω2)−

1
2

)∣∣∣ ≤ c

m − ω
. (5.52)

Proof. According to the definition ofx and (5.28),

xmin = −2
∫ u0

umin

ρ(u)du = −2
∫ u0

umin

√
ε
|u − u0|

u

(
1+ O(u−1)

)
du, (5.53)

and a calculation using (5.26) shows that the leading contribution in
√

ε to this integral

is 4βε− 1
2 (this can be readily verified using Mathematica). This proves (5.51). Dif-

ferentiating (5.53) with respect toω and estimating the resulting integral gives (5.52).
��
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6. The Region ω > m

We turn now to the planar equation (4.12). Consider the two solutions(ϑ(b), L(b)),
b = 1, 2, with

lim
x→−∞(ϑ(1), L(1)) = (0, 0), lim

x→−∞(ϑ(2), L(2)) = (π, 0) (6.1)

and define in analogy to the transmission coefficients, the quantities(ϑ
(b)∞ , L

(b)∞ ) by

(ϑ(b)∞ , L(b)∞ ) = lim
x→∞(ϑ(b)(x), L(b)(x)). (6.2)

The next lemma expresses the coefficientstab in the integral representation (1.2) in terms
of these “transmission coefficients.”

Lemma 6.1. The coefficientstab, (2.15), are forω > m given by

t11 = t22 = 1

2
, (6.3)

t12 = t21 = 1

2
e−iβ0 tanhz, (6.4)

where

β0 = arctan
λ

mr1
, (6.5)

z = L
(1)∞ − L

(2)∞
4

+ i
ϑ

(1)∞ − ϑ
(2)∞ + π

4
. (6.6)

Proof. According to (4.10), (4.5), and (4.1), the functions(ϑ, L) correspond to the 2-
spinor

X = e−
L
2

(
e−

iβ
2 0

0 e
iβ
2

)(
e

h
2 cosx+ϑ

2 − ie− h
2 sin x+ϑ

2

−e
h
2 cosx+ϑ

2 − ie− h
2 sin x+ϑ

2

)
. (6.7)

In the limit u → −∞, the functionh → 0 (cf. (4.9) and observe that limr↘r1 f (r) =
ω = limr↘r1 g(r) according to (4.7) and (4.3),(4.4)), andx coincides asymptotically
with 30u, up to an (irrelevant) additive constant. Thus comparing (6.7) with (2.7) and
using (6.1) gives

f
(1)
0 =

(
e−

iβ0
2

−e
iβ0
2

)
, f

(2)
0 =

(
−ie−

iβ0
2

−ie
iβ0
2

)
.

Hence the fundamental solutionsX0 andX1, which are characterized by (2.8), are the
linear combinations

X1 = 1

2
e

iβ0
2 (X(1) + iX(2)), X2 = 1

2
e−

iβ0
2 (−X(1) + iX(2)).

We next consider (6.7) in the limitu → +∞. According to (4.9), (4.7), (4.3)–(4.4),
and (2.13),

lim
x→∞h(x) = 1

2
log

ω − m

ω + m
= −28.
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Also, β goes to zero in this limit. Hence using (2.12) and (6.2), one sees that

f∞1/2 = 1

2
e±

iβ0
2



±exp

(
−L

(1)∞ + iϑ
(1)∞

2

)
+ i exp

(
−L

(2)∞ + iϑ
(2)∞

2

)

±exp

(
−L

(1)∞ − iϑ
(1)∞

2

)
+ i exp

(
−L

(2)∞ − iϑ
(2)∞

2

)

 .

Substituting this last formula into (2.14) yields

t1/2(α) = e∓
iβ0
2

[
ie−

L
(1)∞
2 sin

(
α + ϑ

(1)∞
2

)
± e−

L
(2)∞
2 sin

(
α + ϑ

(2)∞
2

)]
.

A short calculation shows that

|t1|2 = |t2|2. (6.8)

Together with (2.15), this immediately yields (6.3). Furthermore, it is obvious from (2.15)
thatt12 = t21. Thus it remains to computet12. According to (2.15) and (6.8), we have

t12 = 1

2π

∫ 2π

0

t1t2

2|t2|2 = 1

4π

∫ 2π

0

t1

t2

= e−iβ0

4π

∫ 2π

0

iρ1 sin(α + ϕ1) + ρ2 sin(α + ϕ2)

iρ1 sin(α + ϕ1) − ρ2 sin(α + ϕ2)
dα,

where we setρi = L
(i)∞/2 andϕi = ϑ

(i)∞ /2. It is convenient to shift the integration
variable byα → α − ϕ2 and to divide the numerator and denominator byρ2. This gives

t12 = e−iβ

4π

∫ 2π

0

iρ sin(α + ϕ) + sinα

iρ sin(α + ϕ) − sinα
dα

with ρ ≡ ρ1/ρ2 andϕ ≡ ϕ1−ϕ2.We express the trigonometric functions as exponentials
and setµ = ρe−iϕ ,

t12 = e−iβ0

4π

∫ 2π

0

(µ − i)e2iα − (µ − i)

(µ + i)e2iα − (µ + i)
dα.

Settingz = e2iα, theα-integral can be regarded as an integral along the unit circle in
the complex plane; more precisely,

t12 = e−iβ0

4πi

∮
|z|=1

(µ − i)z − (µ − i)

(µ + i)z − (µ + i)

dz

z
. (6.9)

This contour integral can be computed with residues as follows. According to (6.1),
limx→−∞ ϑ

(1)∞ −ϑ
(1)∞ = −π . A comparison argument using the differential equation for

ϑ , (4.12), shows thatϑ(1) − ϑ(2) takes values in the interval(−2π, 0) for all x. Hence
−π < ϕ < 0, or equivalently,

Im µ > 0.
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As a consequence, the integrand in (6.9) has only one pole in the unit circle, atz = 0.
We conclude that

t12 = 1

2
e−iβ0

µ − i

µ + i
= 1

2
e−iβ0

√
µ/i −√

i/µ√
µ/i +√

i/µ
,

and this coincides with (6.4).��
The following two lemmas control the behavior of(ϑ, L) for largex.

Lemma 6.2. There isc > 0 such that for allω ∈ (m, m + δ) andx ∈ (0,∞],
|ϑ(x) − ϑ(0)| ≤ c, |L(x) − L(0)| ≤ c. (6.10)

Proof. According to (5.1), there isx0 > 0 such that

1+ h′ sin(x + ϑ) >
1

2
for all x > x0. (6.11)

On the interval[0, x0], we can controlϑ by integrating theϑ-equation in (4.12),

|ϑ(x0) − ϑ(0)| =
∣∣∣∣
∫ x0

0
h′ sin(x + ϑ)dx

∣∣∣∣ (5.1)= cx0. (6.12)

In the regionx > x0, we again integrate the equation,

ϑ(x) − ϑ(x0) =
∫ x

x0

h′ sin(x + ϑ)dx = −
∫ x

x0

h′

1+ h′ sin(τ + ϑ)

d

dτ
(cos(τ + ϑ))dτ.

We integrate by parts and, using (6.11) and Lemma 5.1, we find

|ϑ(x) − ϑ(x0)| ≤ 2(|h′(x)| + |h′(x0)|) + 4
∫ x

x0

(
|h′′| + h

′2
)

dτ ≤ c. (6.13)

The second statement in (6.10) follows similarly by integrating theL-equation in (4.12).
��
Lemma 6.3. There isc > 0 such that for allω ∈ (m, m + δ) andx ∈ (0,∞],

|ϑω(x) − ϑω(0)| ≤ c

ω − m
, |Lω(x) − Lω(0)| ≤ c

ω − m
. (6.14)

Proof. Differentiating through the ODEs in (4.12) with respect toω gives

ϑ ′
ω = h′ cos(x + ϑ)ϑω + h′

ω sin(x + ϑ)

= L′ϑω + h′
ω sin(x + ϑ), (6.15)

L′
ω = −h′ sin(x + ϑ)ϑω + h′

ω cos(x + ϑ). (6.16)

The differential equation (6.15) can be solved using the method of variation of constants.
The solution is

ϑω(x) − ϑω(0) = eL(x)

∫ x

0
e−L(τ)h′

ω(τ) sin(τ + ϑ)dτ. (6.17)
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Lemma 6.2 yields that

|ϑω(x) − ϑω(0)| ≤
∫ x

0
|h′

ω(τ)|dτ,

and the estimate (5.3) in Lemma 5.1 gives the first part of (6.14).To derive the second part,
we integrate (6.16) and apply again the integration-by-parts technique of Lemma 6.2,

|Lω(x) − Lω(0)|
≤
∣∣∣∣
∫ x

0

h′ϑω

1+ h′ sin(τ + ϑ)

(
d

dτ
cos(τ + ϑ)

)
dτ +

∫ x

0
h′

ω cos(τ + ϑ)dτ

∣∣∣∣
≤ 2|h′ϑω|(x) + 2|h′ϑω|(0) + 2

∫ x

0

(
|h′′ϑω| + h

′2|ϑω| + |h′ϑ ′
ω|
)
+
∫ x

0
|h′

ω|.
(6.18)

Using the estimates of Lemma 5.1 and Lemma 6.2, the only problematic term is the
integral of|h′ϑ ′

ω|. But from (6.15) and (4.12) we have

|h′ϑ ′
ω| = |h′2 sin(x + ϑ)ϑω + h′h′

ω sin(x + ϑ)|
≤ |h′2ϑω| + |h′h′

ω| ≤
1

ω − m

c

(1+ x)2 ,

where in the last step we used (5.1) and the first part of (6.14).��
We remark that by combining (6.16) and (4.12), we can write theLω-equation as

L′
ω = −ϑ ′ϑω + h′

ω cos(x + ϑ).

Although this looks very similar to (6.15), it seems difficult to deduce the second part
of (6.14) by integration (note that the total variation ofϑ need not be bounded uniformly
in ω). This is the reason why we instead used an integration-by-parts argument.

We are now in the position to prove that in the integral representation (1.3), the

contributions forω > m decay int at least at the ratet− 5
6−ε. Consider the two funda-

mental solutions(ϑ(b), L(b)), (6.1). For negativex, the functionh′(x) is smooth inω.
Furthermore,h′(x) is computed to be

h′(x) = h′(r)
dr

du

du

dx

(2.4)= h′(r)
�

r2 + a2

du

dx
. (6.19)

Using that� decays exponentially asu → −∞, and that for large negativex, u′(x) is
bounded away from zero, we see thath′(x)decays rapidly asx → −∞, locally uniformly
in ω. Thus standard Gronwall estimates applied to the differential equations (4.12) yield
that(ϑ(b)(0), L(b)(0)) depends smoothly onω. Hence Lemma 6.2 and Lemma 6.3 give
us information on the transmission coefficients, namely

|ϑ(b)∞ |, |L(b)∞ | ≤ c and |∂ωϑ(b)∞ |, |∂ωL(b)∞ | ≤ c

ω − m
. (6.20)

Next we consider the propagator (1.3) forx in a compact setK and�0 with compact
support. Again, standard Gronwall estimates starting from the event horizon yield that
the fundamental solutions�kωn

a (x) depend smoothly onω, uniformly forx ∈ K. Hence
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the only non-smooth terms are the coefficientstkωn
ab . According to Lemma 3.2, these co-

efficients have the same regularity as the transmission coefficients, (6.20). Furthermore,
Theorem 2.1 allows us to restrict attention to a neighborhood ofω = m, and thus we
may assume that the square bracket in (1.3) has compact support. We conclude that this
square bracket satisfies the assumption of Lemma 3.1 (withα = ω − m), and thus its

Fourier transform decays liket− 5
6−ε.

7. The Region ω < m

For ω < m, the coefficientstab in the integral representation (1.3) have the simple
explicit form (2.15), and thus our task is to analyze theω-dependence of�kωn

1 (x). We
again work in the variables(ϑ, L) and set

φ(x) = x + ϑ(x).

Recall that�kωn
1 is the fundamental solution with exponential decay at infinity. The

following lemma shows that this implies that limx→∞ φ(x) = −∞.

Lemma 7.1. There is a constantC independent ofω such that for allx > 0,

φ(x) < C − logx. (7.1)

Proof. Using the bounds (5.22) and thath′ is positive, we have

φ′ ≥ 1− c

2x
e−φ (7.2)

with c independent ofω. Suppose that (7.1) were false for somex = x0 andC = logc.
Then (7.2) implies that

φ′(x) ≥ 1

2
. (7.3)

Hence atx, φ is monotone increasing, whereas the right side of (7.1) is monotone
decreasing.As a consequence (7.1) is violated on an open interval(x, x+ε). Furthermore,
by continuity (7.1) is violated on a closed set. We conclude that (7.1) is violated for all
x ∈ [x0,∞). This means that (7.3) holds for allx ≥ x0, and integration yields that

lim
x→∞φ(x) = ∞. (7.4)

To finish the proof, we shall show that (7.4) implies that the corresponding two-spinorψ ,
(4.13), grows exponentially at infinity, giving the desired contradiction (note that since
�kωn

1 decays at infinity,X, X̃, andψ also vanish at infinity, see (2.2), (4.1) and (7.17)).
According to (7.4),ψ behaves for largex asymptotically as

ψ = e
φ−L

2

(
e

h
2

e− h
2

)
(1+ O(e−2φ)).

Furthermore, using (4.12),

(φ − L)′ = 1+ h′(sinhφ − coshφ) = 1− h′e−φ (5.1)= 1+ O(e−φ).

Hence for largex, φ − L ∼ x, and soψ grows asymptotically likeψ ∼ ex . ��
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The inequality (7.1) shows in particular that

φ(x) < −1

2
for all x ≥ x1 (7.5)

with x1 = exp(C + 1
2). We next show thatφ leaves the region{φ < −1

2} for positivex.

Lemma 7.2. There isx0 ≥ ν > 0 with ν independent ofω such that

φ(x0) ≥ −1

2
. (7.6)

Proof. We introduce forx > 0 the function

ϑ(x) = log
1

4

∫ ∞

x

h′(τ )e−τ dτ.

Since by (5.22) the integrand is positive,ϑ is monotone decreasing. According to (5.22)
and (5.25),

lim
x→∞ϑ(x) = −∞, lim

x→0
ϑ(x) = ∞,

and so there is a uniquex0 with

ϑ(x0) = −1

2
.

Now, choosing 0< y < z, we have∫ z

y

h′(τ )e−τ dτ ≥ e−z(h(z) − h(y)).

Using (5.25), we see that for smally,∫ ∞

y

h′(τ )e−τ dτ > 4,

implying thatx0 is bounded away from zero, uniformly inω.
We shall now prove thatϑ(x) is a lower bound forϑ , i.e.

ϑ(x) > ϑ(x) for all x ≥ x0. (7.7)

Thus in the regionx ≥ x1, we apply (7.5) to get the estimate

ϑ ′ = h′ sinhφ < −1

4
h′e−φ = −1

4
h′e−(x+ϑ).

We separate variables,

(eϑ)′(x) < −1

4
h′(x)e−x,

and integrating (using thateϑ(∞) = 0), we find

eϑ(x) >
1

4

∫ ∞

x

h′(τ )e−τ dτ.
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Thusϑ is indeed a lower bound in the regionx ≥ x1.
It remains to show thatϑ > ϑ on the interval[x0, x1]. Let us assume the contrary.

Thenϑ andϑ meet somewhere on this interval. Let

y = sup
[x0,x1]

{x|ϑ(x) = ϑ(x)}.

Thenϑ(y) = ϑ(y) < −1
2, and thus

ϑ ′(y) < −1

4
h′e−(x+ϑ) = −1

4
h′e−(x+ϑ) = ϑ ′(y).

This contradicts the fact thatϑ(x) > ϑ(x) for all x > y. ��
The next lemma controls the behavior ofφ near the origin and “matches” the solution

across the singularity atx = 0.

Lemma 7.3. Suppose that for givenκ1 ≤ 0 andκ2 > 0,

−1

2
≤ φ(x) ≤ 0 for all x ∈ (κ1, κ2). (7.8)

Then there is̃κ1 with κ̃1 < 0, κ̃1 ≤ κ1 and a parameterλ ≥ 0 such that{−λeh(x) + r(x) < φ(x) < −λeh(x) for κ̃1 < x < 0

−λeh(x) < φ(x) < −λeh(x) + r(x) for 0 < x < κ2
(7.9)

with

r(x) = eh(x)

∫ x

0
e−h(τ)dτ. (7.10)

Note that the functionr(x), (7.10) is finite according to (5.25).

Proof of Lemma 7.3.Let us first assume thatκ1 < 0. We set̃κ1 = κ1. We chooseη with
0 < η < min(−κ1, κ2). For negativex, φ satisfies according to (4.12), the equation
φ′ = 1+h′ sinφ. Using the bounds (7.8) as well as the fact thath′ is negative, we obtain
that

h′(φ + φ2) < φ′ < 1+ h′φ (7.11)

for all x ∈ (κ1, 0).We choosex in the interval(κ1,−η) and consider the inequality (7.11)
on the interval(x,−η). The inequality on the lhs can be solved by separation of variables
and the rhs by variation of constants. This gives the explicit bounds

eh(x)−h(−η)φ(−η) + eh(x)

∫ −η

x

e−h(τ)dτ < φ(x) <
α

1− α
for −κ < x < −η

(7.12)

with

α = eh(x)−h(−η) φ(−η)

1+ φ(−η)
. (7.13)



Decay Rates and Probability Estimates for Massive Dirac Particles 235

If x is positive, then according to (4.14),φ satisfies the equationφ′ = 1 + h′ sinhφ.
Using (7.8) and thath′ is now positive, we get the bounds

−1− h′φ < −φ′ < −h′(φ − φ2) on (0, x). (7.14)

We choosex in the interval(η, κ) and integrate these bounds fromη to x. This gives the
bounds

β

1+ β
< φ(x) < eh(x)−h(η)φ(η) + eh(x)

∫ x

η

e−h(τ)dτ for η < x < κ (7.15)

with

β = eh(x)−h(η) φ(η)

1− φ(η)
.

We now show that

lim
η↘0

φ(−η) = 0 = lim
η↘0

φ(η). (7.16)

Considerφ(−η). From (7.12) and (7.8) we have for fixedx in the interval−κ < x < −η,

−1

2
≤ φ(x) <

α

1− α
< 0, (7.17)

and thus there is someα0 < 0 for whichα > α0 if η is sufficiently small. According
to (5.25), the factoreh(x)−h(−η) in (7.13) tends to+∞asη ↘ 0.We conclude from (7.13)
that

lim
η↘0

φ(−η)

1+ φ(−η)
= 0,

implying the lhs of (7.16). A similar argument using the rhs of (7.15) gives the rhs
of (7.16).

Since the planar equation (4.6) has smooth coefficients, it is obvious thatψ(u) is
smooth and non-zero. Using the ansatz’ (4.10) and (4.13) as well as (7.16), we see that
the following limits exist,

lim
η↘0

e−
L(−η)−h(−η)

2

(
1

e−h(−η) φ(−η)

2

)
= ψ |x=0 = lim

η↘0
e−

L(η)−h(η)
2

(
1

e−h(η) φ(η)

2

)
.

We consider the two cases limη↘0(L(η) − h(η)) = 0 and = 0 separately. In the first
case, the second components must have a non-zero limit (becauseψ(0) = 0), and thus
limη↘0 e−h(±η)φ(±η) = −∞. In the second case, the limits limη↘0 e−h(±η)φ(±η)

must exist and be equal. We conclude that

lim
η→0

e−h(−η)φ(−η) = −λ = lim
η→0

e−h(η)φ(η) (7.18)

for someλ ∈ [0,∞]. In the caseκ1 = 0, this matching of the two ansatz’ shows that
φ ≤ 0 for negativex, and thus we can makeκ1 slightly negative and repeat the above
construction. Again using (7.17), one deduces thatλ must in fact be finite. We finally
take the limitη → 0 in (7.12) and (7.15) to obtain (7.9).��

Our next goal is to boundϑ(xmin) uniformly inω. To this end, we combine the a-priori
estimates for largex (Lemmas 7.1 and Lemma 7.2) with the estimates in a neighborhood
of x = 0 (Lemma 7.3). For negativex outside of this neighborhood we can use similar
methods as in Lemma 6.3.
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Lemma 7.4. There isc > 0 such that for allω ∈ (m − δ, m),

|ϑ(xmin)| ≤ c.

Proof. First let us verify that the assumptions of Lemma 7.3 are satisfied for a particular
choice ofκ1 andκ2. To this end, observe thatφ(x) has no zero forx > 0, because
otherwise

φ′(x) = 1+ h′(x) sinhφ = 1,

violating the fact thatφ′(x) ≤ 0 at the largest zero (recall that Lemma 7.1 implies that
φ is negative for largex). Thus

φ(x) < 0 for all x > 0. (7.19)

As a consequence, sinhφ < φ, and thus using (5.22),

φ′(x) < 1+ h′(x)φ for all x > 0.

Integrating this inequality from a given positivex < x0 to x0 and using (7.6), we obtain
the lower bound

φ(x) > φ(x) = −1

2
eh(x)−h(x0) − eh(x)

∫ x0

x

e−h(τ)dτ for 0 < x < x0 (7.20)

(this is indeed quite similar to the second part of (7.15), but now we have solved for
φ at the lower limit of the integration range). According to (5.25), limx→0 φ(x) = 0.
We conclude that the assumptions (7.8) are satisfied forκ1 = 0 andκ2 > 0 sufficiently
small. We can further decreaseκ1 and increaseκ2, provided that the bounds in (7.9) all
take values in the strip(−1

2, 0).
The parameterλ in (7.9) can be bounded a-priori. Namely, wereλ sufficiently large,

we would get a contradiction to (7.20), whereas a very small value ofλ would be
inconsistent with (7.5). Thus we can find parameters 0< λmin < λmax such that

λmin < λ < λmax.

As a consequence, in (7.9) the lower bound forλ = λmax and the upper bound for
λ = λmin are a-priori bounds forφ. We choosex2 such that these bounds take values in
the strip(−1

2, 0) on the interval[x2, 0). Then we have a-priori bounds forφ(x2), and
thus also forϑ(x2) = φ(x2) − x2,

ϑmin < ϑ(x2) < ϑmax. (7.21)

The bounds (7.21) are uniform inω. This is not surprising since the differential
equation forϑ involves onlyh′, which according to Lemma 5.2 is bounded uniformly
in ω. To see this rigorously, one must be careful becauseλmin andλmax dodepend onω.
Namely, according to (5.25),h involves the additive constant1

3 logε2, which diverges
asω ↗ m. This implies, according to (7.18), that

ε
2
3 ϑmin, ε

2
3 ϑmax

can be chosen uniformly inε. Using these scalings in (7.9), one sees that the estimates
for ϑ andx2 are indeed uniform.
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It remains to controlϑ on the interval[xmin, x2]. According to (5.22), there isR > 0
independent ofω such that

1+ h′(x) sin(x + ϑ) >
1

2
for x ∈ [xmin + R, x2 − R]

(note that this last interval is non-empty in view of Lemma 5.3). On the bounded intervals
[xmin, xmin +R) and(x2 −R, x2] we can controlϑ directly by integrating the equations
in a method similar to (6.12). In the intermediate region, we integrate by parts and obtain
similar to (6.13),

|ϑ(xmin + R) − ϑ(x2 − R)|
≤ 2(|h′(xmin + R)| + |h′(x2 − R)|) + 4

∫ x2−R

xmin+R

(|h′′| + h
′2)dτ,

and the terms on the right are all uniformly bounded according to Lemma 5.2.��
The next lemma controls theω-dependence ofϑ .

Lemma 7.5. There isc > 0 such that for allω ∈ (m − δ, m),

|ϑω(xmin)| ≤ c

m − ω
.

Proof. In the proof of Lemma 7.4, we have verified that the hypothesis of Lemma 7.3
are satisfied, and thusϑ(0) = 0 for all ω. Henceϑω(xmin) is obtained by integrating the
differential equation (6.15) fromxmin to zero. This gives in analogy to (6.17),

ϑω(xmin) = e−L(xmin)

∫ 0

xmin

e−L(τ)h′
ω(τ) sinφ(τ)dτ.

By definition of�kωn
1 , limu→−∞ L(u) = 1 (see [4, eqn (3.31)] and (4.10)). Standard

Gronwall estimates on the interval(−∞, umin) show thatL(xmin) is bounded uniformly
in ω. Furthermore, it was shown in Lemma 5.2 that(m − ω)hω has bounded total
variation. Thus to finish the proof, it suffices to show that there isc independent ofω
such that ∣∣∣e−L(τ) sinφ(τ)

∣∣∣ ≤ c for all τ ∈ [xmin, 0). (7.22)

The integration-by-parts technique of Lemma 6.3 yields thatL is uniformly bounded
in the region[xmin, x2] with x2 as in the proof of Lemma 7.4 (for more details see the
last paragraph of Lemma 7.4, where this method is used to estimateϑ). On the interval
(x2, 0), the a-priori bounds forφ, (7.9), show that

| sinφ(τ)| ≤ |φ(τ)| ≤ ceh(τ)−h(x2) (7.23)

(with c independent ofω). Furthermore,

(h − L)′ = h′(1− cosφ) ≤ |h′|φ2 ≤ cx− 1
3 ,

where in the last step we used (7.23), ( 5.25), and (5.22). Sincex− 1
3 is integrable,

(h − L)|τx2
≤ c.

We exponentiate and use thatL(x2) is bounded to obtain

e−L(τ)eh(τ)−h(x2) ≤ c. (7.24)

The inequality (7.22) follows by combining (7.23) and (7.24).��
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8. Proof of the Decay Rates

We are now ready to finish the proof of Theorem 1.1. In view of Theorem 2.1 and the
consideration in the last paragraph of Sect. 6, it remains to show that the contribution to
the propagator (1.2) forω ∈ (m − δ, m) has the decay (1.6). Since the coefficientstab

are trivial forω < m, (2.15), the contribution to the propagator (1.3) simplifies to

�(t, x) = 1

π

∑
|k|≤k0

∑
|n|≤n0

∫ m

m−δ

dωe−iωt


 2∑

a,b=1

�kωn
1 (x)〈�kωn

1 |�0〉

 . (8.1)

Since�0 has compact support, it suffices to analyze theω-dependence of�kωn
1 (u) for

u in a compact set.
According to the separation ansatz (2.2), we must only analyze the radial function

X (the angular partY is clearly smooth inω). To see theω-dependence ofX in detail,
we substitute (4.10) into (4.5) and (4.1). This gives, exactly as in the case|ω| > m, the
formula (6.7). For fixedu, the functionh in (6.7) depends smoothly onω. Using that
h vanishes at the event horizon (because limr↘r1 f (r) = ω = limr↘r1 g(r) according
to (4.7) and (4.3),(4.4)), our normalization condition for�kωn

1 near the event horizon (2.9)
yields that

1 = lim
u→−∞ |X(u)|2 = 2 lim

u→−∞ e−L(u)

and thus limu→−∞ L(u) = log 2, independent ofω. Furthermore, an argument similar
to (6.19) shows thath′(u) has exponential decay asu → −∞. Hence standard Gronwall
estimates yield thatL(u) is bounded and depends smoothly onω. Furthermore, Gronwall
estimates in the finite region betweenumin andu show that the differenceϑ(u)−ϑ(umin)

is uniformly bounded and smooth inω. Writing

(x + ϑ)(u) = (x + ϑ)(umin) + ((x(u) − x(umin)) + (ϑ(u) − ϑ(umin))),

we conclude that the only possible non-smooth terms in (6.7) are the factors cos(φmin/2)

and sin(φmin/2) with φmin ≡ xmin + ϑ(xmin).
We next consider the factors〈�kωn

1 |�0〉 in (8.1). Again from Gronwall estimates,
one sees that forω > m, the expectation values〈�kωn

2 |�0〉 depend smoothly onω, and
thus our assumption (1.5) implies that

r2 ≡ lim
ω↘m

〈�kωn
2 |�0〉 = 0.

Except for the additional phase factors, the expectation values are smooth even for
ω < m. To compute the phases, we consider (6.7) in the asymptotic regimeu → −∞,
and compare with (2.7) and (2.8). This shows that forω ∈ (m − δ, m),

〈�kωn
1 |�0〉 = r1α1 exp

(
−i

φmin

2

)
− r2α2 exp

(
i
φmin

2

)
(8.2)

with coefficientsαa which depend smoothly onω and are non-zero (indeed limω↗m αa =
1). Since the factorr2 is non-zero, we conclude that〈�kωn

1 |�0〉 has a non-vanishing
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contribution which oscillates like exp(iφmin/2). Using (8.2) and (6.7) in (8.1), we can
write the propagator in the regionω ∈ (m − δ, m) as the Fourier integral∫ m

m−δ

e−iωt
(
s1e

−i(xmin+ϑ(xmin)) + s2 + s3e
i(xmin+ϑ(xmin))

)
dω

with coefficientssj which are smooth inω and s3 = 0. According to Lemma 5.3,
Lemma 7.4, and Lemma 7.5, the three contributions to this Fourier integral satisfy the
hypotheses of Lemma 3.2, Lemma 3.1, and Lemma 3.3, respectively (withα = m−ω).

Hence the first two terms decay liket− 5
6−ε, whereas the last term gives the desired decay

rate∼ t− 5
6 . This concludes the proof of Theorem 1.1.

9. Probability Estimates

We now proceed with the proof of Theorem 1.2. We want to compute the probabilityp,
(1.7). We begin with the following lemma.

Lemma 9.1. For any Schwartz functionf ∈ S(R × R), let A± be defined by

A± = lim
t→∞

∫ u0

−∞
du

∫ ∞

−∞
dω

∫ ∞

−∞
dω′e−i(ω−ω′)(t±u)f (ω, ω′).

Then

A+ = 2π

∫ ∞

−∞
f (ω, ω)dω and A− = 0. (9.1)

Proof. We integrate by parts to obtain∫ ∞

−∞
dω

∫ ∞

−∞
dω′e−i(ω−ω′)(t±u)f (ω, ω′)

=
∫ ∞

−∞
dω

∫ ∞

−∞
dω′ 1

(t ± u)2 + 1

(
(∂ω + 1)(∂ω′ + 1)e−i(ω−ω′)(t±u)

)
f (ω, ω′)

=
∫ ∞

−∞
dω

∫ ∞

−∞
dω′ 1

(t ± u)2 + 1
e−i(ω−ω′)(t±u)g(ω, ω′),

whereg is the Schwartz function

g(ω, ω′) = (−∂ω + 1)(−∂ω′ + 1)f (ω, ω′). (9.2)

Since the factor((t±u)2+1)−1 is integrable inu, we can integrate overu, apply Fubini,
and use Lebesgue’s dominated convergence theorem to take the limitt → ∞ inside the
integrand,

A± = lim
t→∞

∫ u0

−∞
du

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ 1

(t ± u)2 + 1
e−i(ω−ω′)(t±u)g(ω, ω′)

=
∫ ∞

−∞
dω

∫ ∞

−∞
dω′g(ω, ω′) lim

t→∞

∫ u0

−∞
1

(t ± u)2 + 1
e−i(ω−ω′)(t±u)du. (9.3)
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In the case “t − u”, we introduce a new integration variableα = t − u and get for
the inner integral

lim
t→∞

∫ u0

−∞
du

1

(t ± u)2 + 1
e−i(ω−ω′)(t−u) = lim

t→∞

∫ ∞

t−u0

1

α2 + 1
e−i(ω−ω′)αdα = 0.

This proves thatA− = 0.
In the case “t + u”, we obtain similarly an integral over the real line, which can be

computed with residues,

lim
t→∞

∫ u0

−∞
du

1

(t ± u)2 + 1
e−i(ω−ω′)(t+u) =

∫ ∞

−∞
1

α2 + 1
e−i(ω−ω′)αdα = πe−|ω−ω′|.

We substitute this formula as well as (9.2) into (9.3) and integrate by parts “backwards”,

A+ =
∫ ∞

−∞
dω

∫ ∞

−∞
dω′g(ω, ω′)πe−|ω−ω′|

= π

∫ ∞

−∞
dω

∫ ∞

−∞
dω′f (ω, ω′)

(
(∂ω + 1)(∂ω′ + 1)e−|ω−ω′|) . (9.4)

A short explicit calculation shows that the derivatives can be computed in the distribu-
tional sense to be

(∂ω + 1)(∂ω′ + 1)e−|ω−ω′| = 2δ(ω − ω′).

Substitution into (9.4) gives the desired formula forA+. ��

We remark that the above lemma cannot be obtained by naively interchanging the orders
of integration.

Theorem 9.2. The probabilityq for the Dirac particle to disappear into the event hori-
zon, defined for anyε > 0 by

q = lim
t→∞

∫
{r1<r<r1+ε}

(�γ j�)(t, x)νj dµ, (9.5)

is given by

q = 1

π

∑
|k|≤k0

∑
|n|≤n0

∫ ∞

−∞
dω

2∑
a,b=1

skωn
ab 〈�kωn

b |�0〉〈�0|�kωn
a 〉 (9.6)

with

skωn
ab =

{
δa1δb1 if |ω| ≤ m

2tkωn
2a tkωn

2b if |ω| > m.
(9.7)
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We remark thatp + q = 1, since we know from [4] that the probability for the Dirac
particle to be in any compact set tends to zero ast → ∞.

Proof of Theorem 9.2 .In the variableu, we need to compute the probability for the Dirac
particle to be in the regionu < u0, whereu0 may be chosen as small as we like. Thus we
can work with the asymptotic formulas near the event horizon, with error terms which
decay exponentially fast asu0 → −∞. More precisely, a straightforward calculation
shows that the probability integral in (9.5) coincides asymptotically with the integral of
the scalar product〈.|.〉 on the transformed spinors (see [4, Eq. (2.15)]). Thus it suffices
to consider the probability

q(t) =
∫ u0

−∞
du

∫ 1

−1
d cosϑ

∫ 2π

0
dϕ〈�|�〉|(t,u,ϑ,ϕ), (9.8)

and lett → ∞. Due to the additivity of the probabilities corresponding to the angular
momentum modes (which are orthogonal with respect to the scalar product〈.|.〉), it
suffices to consider a solution of the Dirac equation with fixed angular momentum
quantum numbersk andn, i.e.

�(t, x) = 1

π

∫ ∞

−∞
dωe−iωt

2∑
a,b=1

tωab�kωn
a (x)〈�kωn

b |�0〉.

We substitute this formula for the propagator into (9.8) and carry out the angular integrals
to obtain

q(t) = 1

π2

∫ u0

−∞
du

∫ ∞

−∞
dω

∫ ∞

−∞
dω′e−i(ω−ω′)t

×
2∑

a,b,c,d=1

tωab〈�ω|�0〉tω′
cd 〈�ω′ |�0〉〈Xω′

d |Xω
a 〉(u).

Substituting forXω the asymptotic formulas (2.5), valid near the event horizon, we
obtain with an exponentially small error term

q(t) = 1

π2

∫ u0

−∞
du

∫ ∞

−∞
dω

∫ ∞

−∞
dω′e−i(ω−ω′)t

2∑
a,b,c,d=1

× tωab〈�ω
b |�0〉tω′

cd 〈�ω′
d |�0〉

(
f ω′

c+f w
a+e−i(ω−ω′)u + f ω′

c−f w
a−ei(ω−ω′)u

)
. (9.9)

Since we cannot expect the integrand to be smooth whenω or ω′ is equal to±m, we
must use an approximation argument. Namely, the integrand is bounded and has rapid
decay inω andω′. Thus we can approximate the integrand inL1 by a Schwartz function,
and applying Lemma 9.1 we obtain

q = 1

π

∫ ∞

−∞
dω

2∑
a,b,c,d=1

2tωabtωcdf ω
c+f ω

a+〈�ω
b |�0〉〈�ω

d |�0〉. (9.10)

It remains to compute the factorsf ω
c+f ω

a+. In the case|ω| > m, we conclude from (2.8)
that

f ω
c+f ω

a+ = δc1δa1 (for |ω| ≥ m). (9.11)
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On the other hand if|ω| ≤ m, using (2.15) in (9.10) we must only compute|f ω
1+|2. To

this end, we again consider (6.7). Using thath vanishes asymptotically near the event
horizon, one sees that

lim
r↘r1

(|X+|2 − |X−|2) = 0,

and thus|f ω
1+|2 = |f ω

1−|2. Furthermore, our normalization of the fundamental solutions
near the event horizon (2.9) yields that|f ω

1+|2 + |f ω
1−|2 = 1, and thus we conclude that

|f ω
1+|2 = 1

2
(for |ω| < m). (9.12)

Substituting (9.11) and (9.12) into (9.10) and using (2.15) completes the proof.��

Proof of Theorem 1.2.Since the initial data is normalized by〈�0|�0〉 = 1, by taking
the inner product of�0 with (1.3), evaluated att = 0, we obtain that

1 = 1

π

∑
|k|≤k0

∑
|n|≤n0

∫ ∞

−∞
dω

2∑
a,b=1

tkωn
ab 〈�kωn

b |�0〉〈�0|�kωn
a 〉. (9.13)

As remarked after the statement of Theorem 9.2,p = 1 − q. Thusp is obtained by
taking the difference of (9.13) and (9.6). Using (2.15), we get (1.8).

For the proofs of(i)–(iv), it again suffices to consider a fixed angular momentum
mode. Since the energy distribution in the interval[−m, m] is absent from (1.8), it is
obvious that(iii) holds.

To prove(ii), we introduce a vectorvω ∈ C
2 by

vω
a = 〈�ω

a |�0〉, a = 1, 2

and remark that in the region|ω| > m we can write the integrands in (9.13) and (1.8) as

〈T ωvω|vω〉 and 〈Aωvω|vω〉,
respectively, where, using Lemma 6.1,

T ω =
(

1/2 tω12
tω12 1/2

)
and Aω =

(
0 0
0 1/2− 2|tω12|2

)
.

An easy calculation shows thatT ≥ A. Thus from (9.13) and (2.15),

1 = 1

π

∫ m

−m

dω|〈�ω
1 |�ω

1 〉|2 +
1

π

∫
IR\[−m,m]

dω〈T ωvω|vω〉 (9.14)

≥ 1

π

∫ m

−m

dω|〈�ω
1 |�ω

1 〉|2 +
1

π

∫
IR\[−m,m]

dω〈Aωvω|vω〉 (9.15)

= 1

π

∫ m

−m

dω|〈�ω
1 |�ω

1 〉|2 + p, (9.16)

and this is strictly larger thanp because in case(ii) the first summand is positive.
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To prove(i), we note that the factor|〈�ω
2 |�0〉|2 is positive on a set of positive measure

(by continuity inω). Thus it suffices to show that

1

2
− 2|tω12|2 > 0 for all ω ∈ R \ [−m, m].

Using the explicit formula (6.4) in Lemma 6.1, this holds iff

| tanhz| < 1 (9.17)

with z as in (6.6). Using (4.12) together with (6.1), we see that−2π < ϑ
(1)∞ −ϑ

(2)∞ < 2π

(by the uniqueness theorem for ODEs). Then from (6.6),

−π

4
< argz <

π

4
.

It follows that|e2z − 1| < |e2z + 1|, giving (9.17). This proves(i).
Finally, if (1.5) holds, then we saw in (8.2) that〈�ω

1 |�0〉 is non-zero forω ∈ (m −
δ, m). Thus(iv) follows from (i) and(ii). ��

Given the fact that the Fourier transform of aC∞ function with compact support
is analytic, one might think that〈�kωn

b |�0〉 should be analytic inω, implying that the
cases(ii) and(iii) cannot occur. However, it is not at all obvious that the solutions of our
ODEs should depend analytically onω. Should this be the case, one could still make
sense of(ii) and(iii) by slightly weakening the assumptions on the initial data.

We conclude by describing the class of initial data for which the Dirac particle must
escape to infinity, with probability one.

Corollary 9.3. The probabilityp is equal to one if and only if the initial data satisfies
for all k, ω, andn the following conditions,{ 〈�kωn

1 |�0〉 = 0 if |ω| ≤ m

〈�kωn
1 |�0〉 = −2tkωn

12 〈�kωn
2 |�0〉 if |ω| > m.

Proof. It again suffices to consider a fixed angular momentum mode. In view of (9.16),
p = 1 only if ∫ m

−m

dω|〈�ω
1 |�ω

1 〉|2 = 0, (9.18)

and thus the energy distribution of the initial data must be supported in the outside the
interval (−m, m). Furthermore, the inequality in (9.15) must be replaced by equality,
and thus

〈Sωvω|vω〉 = 0 for all ω ∈ R \ [−m, m], (9.19)

where the matrixSω is defined by

Sω = T ω − Aω =
(

1/2 tω12
tω12 2|tω12|2

)
.

The eigenvalues ofSω are zero and12 + 2|tω12|2 > 0. Hence (9.19) implies thatvω must
be in the kernel ofSω, i.e.

vω
1 = −2tω12v

ω
2 . (9.20)

Conversely, if (9.18) and (9.20) hold, it is obvious from (9.14)–(9.16) thatp = 1. ��
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One can also understand directly whyp = 1 for special choices of the initial data.
Indeed, to obtain such initial data, one can consider the physical situation where a Dirac
particle at timet = −∞ comes in from spatial infinity. If we take as our initial data the
corresponding�(t, x) at t = 0 and reverse the direction of time, the solution to this
Cauchy problem will clearly escape to infinity with probability one.
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