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1. Introduction

All given rings in this paper are commutative, associative with identity, and
Noetherian. Recently, L. Ein, R. Lazarsfeld, and K. Smith [ELS] discovered
a remarkable and surprising fact about the behavior of symbolic powers of
ideals in affine regular rings of equal characteristic 0: if h is the largest height
of an associated prime of I , then I (hn) ⊆ I n for all n ≥ 0. Here, if W is the
complement of the union of the associated primes of I , I (t) denotes the con-
traction of I t RW to R, where RW is the localization of R at the multiplicative
system W . Their proof depends on the theory of multiplier ideals, including
an asymptotic version, and, in particular, requires resolution of singularities
as well as vanishing theorems. We want to acknowledge that without their
generosity and quickness in sharing their research this manuscript would
not exist.

Our objective here is to give stronger results that can be proved by
methods that are, in some ways, more elementary. Our results are valid
in both equal characteristic 0 and in positive prime characteristic p, but
depend on reduction to characteristic p. We use tight closure methods and,
in consequence, we need neither resolution of singularities nor vanishing
theorems that may fail in positive characteristic. For the most basic form
of the result, all that we need from tight closure theory is the definition of
tight closure and the fact that in a regular ring, every ideal is tightly closed.
We note that the main argument here is closely related to a proof given in
[Hu, 5.14–16, p. 45] that regular local rings in characteristic p are UFDs,

� The authors were supported in part by grants from the National Science Foundation.
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which proceeds by showing that Frobenius powers of height one primes are
symbolic powers.

Our main results in all characteristics are summarized in the following
theorem. Note that I∗ denotes the tight closure of the ideal I . The charac-
teristic zero notion of tight closure used in this paper is the equational tight
closure of [HH6] (see, in particular Definition (3.4.3) and the remarks in
(3.4.4) of [HH6]). This is the smallest of the characteristic zero notions of
tight closure, and therefore gives the strongest result. See §3.1 for a discus-
sion of the Jacobian ideal J(R/K ) utilized in part (c).

Theorem 1.1. Let R be a Noetherian ring containing a field. Let I be any
ideal of R, and let h be the largest height1 of any associated prime of I .

(a) If R is regular, I (hn+kn) ⊆ (I (k+1))n for all positive n and nonnegative k.
In particular, I (hn) ⊆ I n for all positive integers n.

(b) If I has finite projective dimension then I (hn) ⊆ (I n)∗ for all positive
integers n.

(c) If R is finitely generated, geometrically reduced (in characteristic 0, this
simply means that R is reduced) and equidimensional over a field K,
and locally I is either 0 or contains a nonzerodivisor (this is automatic if
R is a domain), then, with J = J(R/K ), for every nonnegative integer
k and positive integer n, we have that Jn I (hn+kn) ⊆ ((I (k+1))n)∗ and
Jn+1 I (hn+kn) ⊆ (I (k+1))n. In particular, we have that Jn I (hn) ⊆ (I n)∗
and Jn+1 I (hn) ⊆ I n for all positive integers n.

These results, when specialized to the case where R is regular, recover
the cited result from [ELS].

The theorem above is a composite of Theorems 2.6, 3.7, and 4.4 below.
We note that by results2 of [Swsn] one expects, in many cases, to have

results that assert that, given a fixed ideal I in a Noetherian ring, for some
choice of positive integer h ′ (independent of n but depending on I ) one
has I (h′n) ⊆ I n for all positive integers n. What is not expected is the very
simple choice of h ′ that one can make in a regular ring, and the extent to
which it is independent of information about I . E.g., when d = dim R is
finite, then with a = d one has that I (an) ⊆ I n for all ideals I (if R is local
one has this for all unmixed I with a = max {d − 1, 1} — one does not
have to worry about letting h = d, since for the maximal ideal one has that
ordinary and symbolic powers coincide).

We conclude this introduction by sketching the proof of Theorem 1.1(a)
for regular domains in characteristic p > 0 when k = 0 in the special case
where I is a radical ideal. The proof is very simple and brief in this case, and

1 The results stated here are all valid if one defines h instead to be the largest analytic
spread of IRP for any associated prime P of I , which, in general, may be smaller: see
Discussion 2.3.

2 E.g., it is shown in [Swsn] that if I ⊆ J are ideals of a Noetherian ring, and we let
I : J∞ = ⋃

t I : J t , then if the I-adic filtration is equivalent to the In : J∞ filtration, there
exists an integer h′ such that for all n, Ih′n : J∞ ⊆ In .
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we hope that this argument will help the reader through the complexities
of the rest of this paper. Suppose that I �= (0) is a radical ideal, and let
h be the largest height of any minimal prime. If u ∈ I (hn), then for every
q = pe we can write q = an + r where a ≥ 0 and 0 ≤ r ≤ n − 1 are
integers. Then ua ∈ I (han) and I hnua ⊆ I hrua ⊆ I (han+hr) = I (hq). We now
come to a key point: we can show that (∗) I (hq) ⊆ I [q]. To see this, note that
because the Frobenius endomorphism is flat for regular rings, I [q] has no
associated primes other than the minimal primes of I (cf. Lemma (2.2d)),
and it suffices to check (∗) after localizing at each minimal prime P of I .
But after localization, I has at most h generators, and so each monomial
of degree hq in these generators is a multiple of the q th power of at least
one of the generators. This completes the proof of (∗). Taking n th powers
gives that I hn2

uan ⊆ (I [q])n = (I n)[q], and since q ≥ an, we have that
I hn2

uq ⊆ (I n)[q] for fixed h and n and all q. Let d be any nonzero element
of I hn2

. The condition that duq ∈ (I n)[q] for all q says precisely that u is
in the tight closure of I n in R. But in a regular ring, every ideal is tightly
closed (cf. [HH2, Th. (4.4)]), and so u ∈ I n, as required. ��

2. The regular case in characteristic p

Discussion 2.1. We recall some terminology and notation. R◦ denotes the
complement of the union of the minimal primes of R, and so, if R is reduced,
R◦ is simply the multiplicative system of all nonzerodivisors in R. We shall
write Fe (or Fe

R if we need to specify the base ring) for the Peskine-Szpiro
or Frobenius functor from R-modules to R-modules. This is a special case
of the base change functor from R-modules to S-modules that is simply
given by S ⊗R : in the case of Fe, the ring S is R, but the map R → R
that is used for the algebra structure is the e th iteration Fe of the Frobenius
endomorphism: Fe(r) = r pe

. We shall use the notation (e)R for R viewed
as an R-algebra via the homomorphism Fe

R : R → R.
In particular, if M is given as the cokernel of the map represented by

a matrix
(
rij

)
, then Fe(M) is the cokernel of the map represented by the

matrix
(
r pe

ij

)
. Unless otherwise indicated, q denotes pe where e ∈ N. For

q = pe, Fe(R/I ) ∼= R/I [q], where I [q] denotes the ideal generated by the
q th powers of all elements of I (equivalently, of generators of I ). Note that
Fe preserves both freeness and finite generation of modules, and is exact
precisely when R is regular (cf. [Her], [Kunz]).

Lemma 2.2. (Peskine-Szpiro). Let R be a Noetherian ring of characteris-
tic p, and M be a finitely generated R-module of finite projective dimension
over R. Then:

(a) For all i ≥ 1, TorR
i (M, (e)R) = 0.

(b) If R is local and one applies Fe to a minimal free resolution of M, one
obtains a minimal free resolution of Fe(M). In particular, pdR M =
pdR Fe(M).
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(c) For all e ≥ 1, the set of associated primes of M is the same as the set
of associated primes of Fe(M).

(d) In particular, if R is regular, so that Fe is flat, then the conclusions of
(b) and (c) are valid for every finitely generated R-module.

Proof. We refer to [PS] for part (a). Part (b) is well-known and is immediate
from (a). Part (c) is likewise well-known, but we mention that it reduces to
the local case by localization at a given prime, and so it reduces to checking
that the maximal ideal of R is associated to M if and only if it is associated
to Fe(M). But when M is a module of finite projective dimension, m is
associated to M if and only if pdR M = depth R.

We refer the reader to [PS], [Her], and [Kunz] for related results. ��
Discussion 2.3: integral dependence of ideals, analytic spread, and mini-
mal reductions. Recall that an element r of a ring R is integrally dependent
on an ideal I if there is an integer t ≥ 1 and an equation of the form
rt + i1rt−1 + · · · + ikrk + · · · + it−1r + it = 0, where ik ∈ I k, 1 ≤ k ≤ t.
The elements of the ring R integrally dependent on I form an ideal J ⊇ I ,
the integral closure of I in R. We refer the reader to [L1], §5 of [HH2],
and [NR1–2] for more detailed information about integral dependence and
analytic spread.

(a) In a Noetherian local ring (R, m, K ) with maximal ideal m and
residue field K , the analytic spread a(I ) of an ideal I ⊆ m is the Krull
dimension of the ring

K⊗RgrI R ∼= K ⊕ I/mI ⊕ I 2/mI 2 ⊕ · · · ⊕ I k/mIk ⊕ · · · ,

The analytic spread is a lower bound on the least number of generators of
an ideal I0 ⊆ I such that I is integrally dependent on I0. If K is infinite,
there always is an ideal I0 with a(I ) generators such that I is integral
over I0, and such an ideal I0 is called a minimal reduction of I . When
K is infinite, one may find generators for a minimal reduction I0 of I by
simply taking a linear homogeneous system of parameters for K⊗RgrI R,
say f1, . . . , fa ∈ I/mI ∼= [K⊗RgrI R]1, and lifting the f j to elements of I .

Note that the analytic spread of I is bounded both by the number of
generators of I and by the Krull dimension of R.

(b) If I is an ideal of R and t is an indeterminate over R, then the
associated primes of IR[t] are those of the form Q = PR[t] where P is
an associated prime of I . For this Q the analytic spread of IR[t]Q is the
same as the analytic spread of IRP . Thus, the maximum analytic spread
after localization at an associated prime is the same for IR[t] in R[t] as it
is for I in R. Moreover, the symbolic powers of IR[t] are the expansions of
the symbolic powers of I .

(c) If S is flat over R then the maximum analytic spread of IS after
localizing at an associated prime in S is at most what it was for I in R.
To see this, first note that by replacing R → S by R[t] → S[t] and I by
IR[t], we may assume without loss of generality that the residue fields of
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the local rings of associated primes of I in R are infinite. We return to
the original notation. By Proposition 15 in Sect. IV B.4. of [Se], Q is an
associated prime of IS if and only if it is an associated prime of (0) in S/PS
for some associated prime P of I . But S/PS is flat and, hence, torsion-free
over the domain R/P, which implies that Q lies over P. Thus, we have
a map RP → SQ . If the analytic spread of IRP is h, it is integral over an
ideal with h generators. But then ISQ is integral over the expansion of the
same ideal, and the result follows.

(d) We recall also that in a Noetherian ring R, I is integrally dependent
on I0 if and only if there exists an integer k such for all positive integers n,
I k+n = I k I n

0 . In particular, it then follows that I k+n ⊆ I n
0 for all positive

integers n.

Part (b) of the next result plays a critical role in the proofs of our theorems.
It is closely related to the Briançon-Skoda theorem, and related results were
used to prove a tight closure form of the Briançon-Skoda theorem in §5 of
[HH2]. In fact, our first proofs of some of the results here made use of the
Briançon-Skoda theorem in a sharpened form3 given in [HH5], Theorem
(7.1), that uses plus closure instead of tight closure, together with the fact
that plus closure commutes with localization.

Lemma 2.4. Let R be a ring.

(a) If I = (u1, . . . , uh) then for all integers t ≥ 1 and k ≥ 0, I ht+kt−h+1 ⊆
(ut

1, . . . , ut
h)

k+1. In particular, I ht+kt ⊆ (ut
1, . . . , ut

h)
k+1. Hence, if

R has prime characteristic p > 0 and q = pe is a power of p, then
Ihq+kq ⊆ (I [q])k+1 = (I k+1)[q].

(b) (Key Lemma) Let R be Noetherian of positive prime characteristic p.
Suppose that I is an ideal of R, that W is the complement of the union of
the associated primes of I , and that W indicates the result of expanding
an ideal of R to RW and then contracting it to R. Suppose that for every
associated prime P of I , IRP has analytic spread at most h in RP. Then
there is a fixed positive integer s (depending on I) with the following
property:
For all choices of integers n ≥ 0, q = pe, and k ≥ 0, we have that if
u ∈ I (hn+kn) then

I s+(h+k)(n−1)u�q/n� ∈ (
(I (k+1))[q])W

,

where �q/n� denotes the integer part of q/n. If R is regular or if I has
finite projective dimension and k = 0, the superscript W can be omitted.

3 To be precise, if I is integral over an ideal with at most h generators in a Noetherian
domain of characteristic p > 0, then the integral closure of Ih is contained in I+. Here, if
R+ denotes the integral closure of R is an algebraic closure of its fraction field (which is
unique up to non-unique isomorphism), then I+ = IR+ ∩ R. It is known that I ⊆ I+ ⊆ I∗,
while equality for ideals generated by part of a system of parameters in an excellent local
domain is established in [Sm1]. Because the formation of R+ commutes with localization
at a multiplicative system, plus closure commutes with localization. We refer the reader to
[HH4–5] and [Sm1] for further discussion of R+.
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Proof. Consider any monomial ub1
1 · · · ubh

h in the u j in which the sum of the
exponents, b1 + · · · +bh , is at least ht +kt −h +1. Write each bj = ajt +c j
where aj is a positive integer and 0 ≤ c j ≤ t − 1. Then it suffices to prove
that the sum of the aj at least k + 1, for then the original monomial is
a multiple of (ut

1)
a1 · · · (ut

h)
ah ∈ (ut

1, . . . , ut
h)

k+1. But, otherwise, we have
that the sum of the ak is at most k, which means that the sum of the bj is at
most kt + h(t − 1) < ht + kt − h + 1, a contradiction. (A slightly weaker
version is proved in a parenthetical comment near the bottom of p. 45 of
[HH2].) The remaining statements in (a) are immediate.

For part (b), first note that the issues are unaffected by adjoining an
indeterminate t to the ring R and replacing I by IR[t]. A choice of s
that works for IR[t] and R[t] will work for I and the original ring R: the
associated primes of IR[t] are simply those of the form PR[t], where P is
an associated prime of I , and if W ′ is the complement of the union of the
associated primes of IR[t] we have that R[t]W ′ is faithfully flat over RW .
Moreover, for every P, the analytic spread of IR[t]PR[t] is the same as the
analytic spread of IRP .

Thus, we may assume without loss of generality that the residue field of
each of the rings RP is infinite when P is an associated prime of I , and it
follows that for each associated prime Pi of I we can choose an ideal Ji ⊆ I
with at most h generators such that IPi is integral over (Ji)Pi . By 2.3(d) there
is a positive integer si such that I si+N

Pi
⊆ (Ji)

N
Pi

for all positive integers N.
Let s be the maximum of the si . Write q = an + r with 0 ≤ r ≤ n − 1. To
prove that I s+(h+k)(n−1)ua ∈ (

(I (k+1))[q])W
it suffices to prove that whenever

P = Pi is an associated prime of I , we have that

I s+(h+k)(n−1)ua RP ⊆ (
(I (k+1))[q])RP.

Let J = Ji . Since RP contains W−1, after localization at P the symbolic
and ordinary powers of I are the same. But then (recall that q = an + r
with 0 ≤ r ≤ n − 1), we have that

I s+(h+k)(n−1)

P ua ⊆ I s+(h+k)r+(h+k)an
P ⊆ I s+(h+k)(an+r)

P ⊆ J (h+k)q
P

(the last inclusion holds by the choice of s). But J (h+k)q
P ⊆ (Jk+1

P )[q] by
part (a), and this is clearly contained in (I (k+1)

P )[q]), as required.
The omission of W when R is regular is justified by the fact that I (k+1) has

the property that no element of W is a zerodivisor on R/I (k+1), and, since the
Frobenius endomorphism is flat, the elements of W are also nonzerodivisors
on R/(I (k+1))[q] for all q by Lemma 2.2(d). If instead k = 0 and I has finite
projective dimension we may apply Lemma 2.2(c) instead. ��

We shall say that an ideal I of a Noetherian ring R is locally generically
free if for every prime ideal P of R, IRP is either (0) or contains a nonze-
rodivisor. When R is local with total quotient ring T , this is equivalent to
requiring that IT be free (of rank 0 or 1, necessarily). Notice that ideals of
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finite projective dimension are automatically locally generically free. This is
well-known, but we indicate a brief argument. The point is that in the local
case one has a free resolution, and so whenever one has a localization such
that the ideal is projective (≡ free), the rank is the same as the alternating
sum of the ranks of the free modules in the finite free resolution. Once one
tensors with the total quotient ring (of the local ring) one has a semilocal
ring with all maximal ideals of depth 0. By the Auslander-Buchsbaum theo-
rem, all modules of finite projective dimension are now locally free. By the
remarks above the rank is constantly 0 or 1, so that the ideal has become
either (0) or free of rank one.

Lemma 2.5. Let R be a Noetherian ring.

(a) If R is Noetherian and I is an ideal containing a nonzerodivisor, then I
is generated by the nonzerodivisors in I .

(b) If R is Noetherian local and I �= 0 has finite projective dimension, then
it contains a nonzerodivisor. I.e., if R is any Noetherian ring and I has
finite projective dimension, then I is locally generically free.

(c) If R is Noetherian with Spec R connected and I �= 0 is locally generi-
cally free, then it contains a nonzerodivisor.

Proof. For part (a), let I0 ⊆ I be the ideal generated by all nonzerodivisors
in I . Then I is contained in the union of I0 and the associated primes of (0)
in the ring. Since I is not contained in any associated prime of (0), we must
have that I ⊆ I0, and so I = I0. Part (b) was established in the discussion
preceding the statement of the lemma. Finally, to prove (c), let S be the set
of primes P such that IRP contains a nonzerodivisor and let T be the set of
primes P such that IRP is zero. Then Spec R is the disjoint union of these
two sets. Both have the property that if P ⊆ Q and Q is in the set, then P is
in the set. It follows that if P ⊆ Q and P is in one of these sets, then Q is in
the same set. Thus, both sets are Zariski closed. Since Spec R is connected,
one of these sets is empty, and since I �= (0), we have that T is empty. Then
I is not contained in any associated prime P of (0) (or its localization IRP
would consist entirely of zerodivisors). Hence, there is an element of I not
in any associated prime of (0). ��

We are now ready to prove one of our main results.

Theorem 2.6. Let I be ideal of a Noetherian ring of positive prime char-
acteristic p. Let h be the largest height of any associated prime of I (or let
h be the largest analytic spread of IRP for P an associated prime of I ).
Then, if R is regular, I (hn) ⊆ I n for every positive integer n, while if I has
finite projective dimension, I (hn) ⊆ (I n)∗ for every positive integer n.

If R is regular one has more generally that for every nonnegative inte-
ger k, I (hn+kn) ⊆ (I (k+1))n for every positive integer n.

Proof. Since I has finite projective dimension (this is automatic if the ring
is regular), we may apply Lemma 2.4. If R is a product we may consider the
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problem for the various factors separately, and so we may assume without
loss of generality that Spec R is connected. If I = (0) there is nothing to
prove. Otherwise, by Lemma 2.5(c), I contains a nonzerodivisor.

We handle all cases of the theorem at once by assuming either that R is
regular or that I has finite projective dimension and that k = 0. Choose s
as in the Key Lemma 2.4(b). For every q = pe we may write q = an + r,
where a is a nonnegative integer and 0 ≤ r ≤ n − 1. Now, u ∈ I (hn+hk)

implies, by Lemma 2.4(b), that I s+(h+k)(n−1)ua ⊆ (I (k+1))[q] (note that in
both cases the superscript W is not needed) and we may raise both sides to
the n th power to get

I sn+(h+k)(n−1)nuan ⊆ ((I (k+1))n)[q].

We may multiply by ur , and so abbreviating b = sn + (h + k)(n − 1)n we
have that I buq ⊆ ((I (k+1))n)[q] for all q. Since I contains a nonzerodivisor,
so does I b: call it d. Notice that b, and, hence, I b, does not depend on q.
We therefore have that duq ∈ ((I (k+1))n)[q] for all q. Thus, u ∈ ((I (k+1))n)∗.
Since every ideal is tightly closed in case the ring is regular, the proof is
complete in all cases. ��
Remark 2.7. The result above is also valid for ideals I in Noetherian rings
R if V(I ) is disjoint from the singular locus of R, and the singular locus is
closed. (If I1 defines the singular locus then I + I1 = R. Choose f ∈ I1 so
that it is a unit in R/I . Then it is also a unit modulo any any ideal containing
a power of I . It follows that R/I ′ ∼= R f /I ′ whenever I ′ = I n, I (hn+kn),
or (I (k+1))n, and the result is immediate from this observation and the fact
that we may apply Theorem 2.6 to the regular ring R f .) Precisely the
same observation holds in the equal characteristic 0 case, making use of
Theorem 4.4 instead.

3. Singular affine algebras in positive characteristic

The results of this section depend heavily on the fact that, in positive char-
acteristic, the elements of the Jacobian ideal can be used not only as test
elements, but also have the property that their q th powers “multiply away”
the effects of embedded components of q th bracket powers of unmixed
ideals (these do not occur in the regular case): a precise statement is given
in Lemma 3.6. Statements of this sort depend heavily in turn on the Lipman-
Sathaye Jacobian theorem.

Discussion 3.1: the Jacobian ideal. Let A be a reduced Noetherian ring
with total quotient ring T = T (A), so that T is a finite product of fields.
Let R be a finitely generated A-algebra such that R is torsion-free over A
(i.e., nonzerodivisors of A are nonzerodivisors on R) and such that T⊗A R is
equidimensional of dimension d and geometrically reduced. We then define
the Jacobian ideal J(R/A) as follows. Choose a finite presentation of R
over A, say R ∼= A[x1, . . . , xn]/( f1, . . . , fm), and let J(R/A) denote the
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ideal of R generated by the images of the n − d size minors of Jacobian
matrix

(
∂ f j/∂xi

)
. An important case is where A = K is a field.

We note the following easy facts:

(1) J(R/A) is independent of the choice of presentation. E.g., if one
changes the set of generators f j of the denominator ideal, it suffices to
compare the result from each set of generators with the union. By induc-
tion, one only needs to see what happens with one additional generator.
The calculation is then very easy. If one has two different presentations
one can put them together (think of the two sets of variables as disjoint
and independent). Thus, one need only compare Jacobians when one
uses some extra generators to give a presentation, and, by induction,
it suffices to consider the case of one extra generator. But then the de-
nominator ideal has the form f1, . . . , fm, y − g(x1, . . . , xn) where y
is a new variable and g maps to the extra generator in R. Again, the
calculation is now easy.

(2) Let A → B be any map such that B is reduced and flat over A,
and let RB = B⊗A R. Then J(RB/B) is defined, and J(RB/B) =
J(R/A)RB . Note that there is an induced map of total quotient rings
T → T ′, and it follows easily that T ′ ⊗ RB is geometrically reduced and
equidimensional of dimension d. Also note that RB is torsion-free over
B: R is a directed union of finitely generated A-submodules that are
embeddable in free A-modules, and since B is flat over A this property
is preserved by B⊗A .

(3) In particular, we may apply (2) whenever B is any localization of A, or
if A is a field and B is any extension field.

(4) If J(R/A) is defined and S is the localization of R at one element f ,
i.e., S = R f , then J(S/A) is defined and equal to J(R/A)S f . Note
that if we have a presentation of R such that g(x1, . . . , xn) maps to f ,
then we get a presentation of S by using one additional variable y and
one additional generator for the denominator ideal, yg − 1, and the
calculation is then routine.

(5) Given ring extensions A → R and R → S such that J(R/A) and
J(S/R) are defined with T (A)⊗A R of dimension d and T (R)⊗R S of
dimension d′, then J(S/A) is defined, T (A)⊗A S has dimension d +d′,
and J(S/A) ⊇ J(S/R)J(R/A). (Certainly, S is torsion-free over A.
The statements about being reduced or geometrically reduced and about
dimension can be checked after tensoring with T , and we may, in fact,
assume that A = T is a field. The verifications are now straightforward.
For example, the statement about dimension can be verified, for each
component of S, using the additivity of transcendence degree. For the
statement about products of Jacobians we can take a presentation of S
over A of the form

A[x1, . . . , xn, y1, . . . , yt]/( f1(x), . . . , fm(x), g1(x, y), . . . , gs(x, y))

where x = x1, . . . , xn and y = y1, . . . , yt . Here, we can assume that
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A[x1, . . . , xn]/( f1(x), . . . , fm(x))

is a presentation of R over A (let M be the Jacobian matrix with entries
mapped to R), and that the images of the gk in R[y1, . . . , yt] may be
used to give a presentation of S over R (let N be the corresponding
Jacobian matrix with entries mapped to S). Then the Jacobian matrix
for S over A for this presentation with entries mapped to S has the block

form

(
M U
0 N

)
. Given n − d rows and columns of M (corresponding to

the choice of a minor) and t − d′ rows and columns of N, we get (n + t)
− (d + d′) rows and columns of this block matrix, and the determinant
of the minor they determine is the product of the determinants of minors
chosen from M and N.)

Discussion 3.2: test elements. An element c ∈ R◦ is called a test element if,
whenever M is a finitely generated R-module and N ⊆ M is a submodule,
then u ∈ M is in the tight closure of N if and only if for all q = pe,
cuq ∈ N[q] (the image of Fe(N) → Fe(M)). Thus, if the ring has a test
element, it “works” in any tight closure test where some choice of c ∈ R◦
“works.” Test elements are also characterized as the elements of R◦ that
annihilate N∗/N for all submodules N of all finitely generated modules M.

A test element is called locally stable if its image in every local ring
of R is a test element (this implies that it is a locally stable test element
in every localization of R at any multiplicative system). A test element is
called completely stable if its image in the completion of each local ring
of R is a test element: a completely stable test element is easily seen to be
locally stable. We refer the reader to [HH1], [HH2, §6 and §8], and [HH3,
§6] for more information about test elements, For the moment we simply
want to note that if R is any reduced ring essentially of finite type over an
excellent local ring, then R has a test element. In fact, if c is any element of
R◦ such that Rc is regular (and such elements always exist if R is excellent
and reduced), then c has a power that is a completely stable test element.
This follows from Theorem (6.1a) of [HH3].

Discussion 3.3. When R is a reduced ring of positive prime characteristic
p and q = pe, we write R1/q for the unique reduced R-algebra obtained
by adjoining q th roots for all elements of R. Thus, there is a commutative
diagram:

R
ι−−−→ R1/q

1R

� �φ

R −−−→
Fe

R

where ι is an inclusion map and φ(s) = sq . We write R∞ for the increasing
union of the rings R1/q. The following result is a variant of the results of
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§1.5 of [HH6]: the differences from what is done in [HH6] are discussed in
the proof.

Theorem 3.4. Let R be a geometrically reduced equidimensional affine
algebra of dimension d over a field K of positive prime characteristic p.
Let t be an indeterminate over K, let L = K(t), and let RL = L⊗K R.
Let J ′ = JRL/L be the Jacobian ideal of RL over L, which is evidently
J(R/K )RL . There are always elements of J(R/K ) in R◦ (so that J(R/K )
is generated by such elements), and these are completely stable test elements
for R. Moreover, J ′ is generated by elements c such that

(∗) There is a regular subring A of R (depending on c), in fact, a polynomial
ring over L, such that RL is module-finite and generically étale over A
and such that for every q = pe, cR1/q ⊆ A1/q[R]: moreover, A1/q[R] ∼=
A1/q⊗A R is R-flat for every q.

Proof. We note that, in essence, all of this is established in the proof of
(1.5.5) of [HH6]. The fact that J(R/K ) is not contained in a minimal prime
of R follows from the fact that R is geometrically reduced. The statement
about completely stable test elements is proved in (1.5.5) of [HH6] (there
is an unnecessary additional hypothesis in [HH6] that R be a domain – we
discuss below why this can be removed).

The infinite field L is needed so as to be able to map a polynomial ring,
say in n variables, onto R in such a way that the variables, after a suitable
linear change of coordinates, are in sufficiently general position. Then,
R will be a module-finite generically étale extension of any polynomial
subring A generated by d of these variables, and it follows that every
size n − d minor c of the matrix occurs in a Jacobian ideal J(R/A) (the
notation agrees with that used in §(1.5.2) of [HH6]), and so multiplies R1/q

into A1/q[R] as a corollary of the Lipman-Sathaye Jacobian theorem [LS].
There is one point that needs a comment: the Lipman-Sathaye theorem as
given in [LS] assumes that the ring R is a domain, and because of this the
result in [HH6] is also stated with a domain hypothesis for R. However,
the Lipman-Sathaye theorem is valid in the reduced equidimensional case:
the needed result is given in [Ho]. Finally, we note that the isomorphism
A1/q[R] ∼= A1/q⊗A R is proved in [HH2], Lemma (6.4), and since A1/q is
flat over A (because A is regular: cf. [Kunz]) the result follows. ��
Lemma 3.5. Let R be a reduced Noetherian ring of positive prime char-
acteristic p, let c ∈ R, and suppose that for every power q of p there is an
R-flat submodule Nq of R1/q such that cR1/q ⊆ Nq. Let W be a multiplica-
tive system in R and let I be an ideal of R that is contracted with respect
to W. Let Iq denote the contraction of I [q]RW to R. Then for every q = pe,
cq Iq ⊆ I [q].

Proof. Since Nq is R-flat, (R/I ) ⊗R Nq is (R/I )-flat. Since the elements
of W are nonzerodivisors in R/I , it follows that they are not zerodivisors
on Nq/INq . If u ∈ Iq we can choose f ∈ W such that fu ∈ I [q] and
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then f qu ∈ I [q] as well. Taking q th roots we find that fu1/q ∈ IR1/q,
and multiplying by c gives that c fu1/q ∈ I(cR1/q) ⊆ INq . But f is not
a zerodivisor on Nq /INq (note that cu1/q ∈ Nq) and so cu1/q ∈ INq ⊆ IR1/q.
Taking q th powers yields that cqu ∈ I [q], as required. ��
Lemma 3.6. Let R be a geometrically reduced equidimensional K-algebra
finitely generated over a field K of positive prime characteristic p. Let
I be any ideal of R, and let W be a multiplicative system consisting of
nonzerodivisors modulo I . Let Iq be the contraction of I [q]RW to R. Then
for every q = pe, J(R/K )[q] Iq ⊆ I [q].

Proof. Let L be as in Theorem 3.4. After a flat base change from R to
RL the image of W still consists of nonzerodivisors on IRL , and since
JRL/L = J(R/K )RL is generated by elements c satisfying the condition on
c in the hypothesis of Lemma 3.5, if I ′

q denotes the contraction of I [q](RL)W

to RL , we have that JRL/L I ′
q ⊆ I [q]RL and so J(R/K )I ′

q ⊆ I [q]RL . Since
Iq ⊆ I ′

q, it follows that J(R/K )Iq ⊆ (I [q]RL) ∩ R = I [q], since RL is
faithfully flat over R. ��
Theorem 3.7. Let R be a geometrically reduced equidimensional K-algebra
finitely generated over a field K of positive prime characteristic p. Let I
be any ideal such that for every prime ideal Q of R, IRQ either contains
a nonzerodivisor or else is (0) (i.e., I is locally generically free). Let h be
the largest analytic spread of IRP as P runs through the associated primes
of I . Let J = J(R/K ) be the Jacobian ideal. Then for every positive integer
n we have that

(a) Jn I (hn) ⊆ (I n)∗ (tight closure).
(b) Jn+1 I (hn) ⊆ I n.

More generally, for every nonnegative integer k and positive integer n
we have that

(a′) Jn I (hn+kn) ⊆ (
(I (k+1))n

)∗
(tight closure).

(b′) Jn+1 I (hn+kn) ⊆ (I (k+1))n.

Proof. We have stated parts (a) and (b) separately for emphasis, but evi-
dently it suffices to prove the more general statements (a′) and (b′). Since J
consists of test elements it multiplies the tight closure of any ideal into the
ideal. Thus, (b′) follows from (a′) by multiplying by J , and it will suffice to
prove (a′).

It suffices to prove the result for each connected component of Spec R:
tight closures may be computed componentwise, and passing to the com-
ponent can be achieved by localizing at an idempotent – since formation
of the Jacobian ideal commutes with localization, the new Jacobian ideal
is just the expansion of the original to the factor ring corresponding to the
component.
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Thus, we may assume, by Lemma 2.5, that I is either (0) or else contains
a nonzerodivisor. In the case where I = (0) there is nothing to prove. If
I contains a nonzerodivisor then this is also true for all powers of I . Let
u ∈ I (hn+kn). Let s be as in Lemma 2.4(b).

We must show that Jnu ⊆ (
(I (k+1))n

)∗
. Let W be the complement of

the union of the associated primes of I . For any q = pe we may write
q = an + r with a a nonnegative integer and 0 ≤ r < n, and then by
Lemma 2.4(b) we have that

I s+(h+k)(n−1)ua ⊆ (
(I (k+1))[q])W

where the superscript W indicates expansion to RW followed by contraction
to R. Since I (k+1) is contracted with respect to RW , we may use Lemma 3.6
to conclude that

J [q]((I (k+1))[q])W ⊆ (I (k+1))[q],

and so we have that

J [q]I s+(h+k)(n−1)ua ⊆ (I (k+1))[q].

Taking n th powers and abbreviating b = sn + (h + k)(n −1)n we have that

I b(Jn)[q]uan ⊆ (
(I (k+1))n

)[q]

for all q and since q ≥ an this yields

I b(Jnu)[q] ⊆ (
(I (k+1))n

)[q]

for all q. Let d be a fixed nonzerodivisor in I b (note that b does not depend
on q). The condition that

d(Jnu)[q] ⊆ (
(I (k+1))n

)[q]

tells us precisely that Jnu ⊆ (
(I (k+1))n

)∗
, as required. ��

Example 3.8. Consider the ring R = K [x, y, z]/(xy − zn). The Jacobian
ideal J = J(R/K ), if n is a unit, is (x, y, zn−1)R. Let P = (y, z). Then
h = 1, and y ∈ P(n). Then Jn−1 multiplies y into Pn but no smaller power
does since y ∈ J and yn−2 y /∈ Pn . This suggests that the result in 3.7 (take
I = P) is close to best possible. We do not know, however, whether the
exponent n used in parts (a) and (a′) can be replaced by n − 1 in general.
Of course, if so, then the exponent n + 1 can be replaced by n in parts (b)
and (b′).
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4. The equal characteristic zero case

We now give the extensions of the various positive characteristic results to
the equal characteristic case. As mentioned in the introduction, the notion of
tight closure that we use here is that of equational tight closure from [HH6,
§§3.4.3–4]. The main results of this section are contained in Theorem 4.4
below. We need to do some groundwork before we can prove that theorem,
however. The proof of the main results depends on three steps: one is to
localize and complete, the second is to descend from the complete case to
the affine case, and the third is to use reduction to positive characteristic in
the affine case. The second step is based on the following result from [AR]:

Theorem 4.1. Let K denote either a field or an excellent discrete valuation
ring. Let T = K [[x1, . . . , xn]] be the formal power series ring in n vari-
ables over K. Then every K-algebra homomorphism of a finitely generated
K-algebra R to T factors R → S → T where the maps are K-algebra
homomorphisms and S has the form (K [x1, . . . , xn, y1, . . . , yt]m)h, where
the xi are as above, the xi and y j are algebraically independent elements,
over K, of the maximal ideal of T , m is the ideal of the polynomial ring
K [x, y] generated by (x, y) and, if K is a DVR, by the generator of the
maximal ideal of K, and h denotes Henselization. ��

This is a special case of general Néron desingularization (cf. [Po1],
[Po2], [Og], [Swan]), but the argument is simpler in this case (we note that
[Swan] has removed any possible doubt about the validity of the general
theorem – however, we only need the result of [AR]). In [HH6] this is used
to prove the following result, which is Theorem (3.5.1) there:

Theorem 4.2. Let K be a field of characteristic zero and let (S, m, L) be
a complete local ring that is a K-algebra. Assume that S is equidimensional
and unmixed.

Suppose that R0 is a subring of S that is finitely generated as a K-algebra.
We also assume given finitely many sequences of elements {z(i)

t }t in R0, each
of which is part of a system of parameters for S.

Then there is a finitely generated K-algebra R such that the homomorph-
ism R0 ↪→ S factors R0 ↪→ R → S and such that the following conditions
are satisfied:

(1) R is biequidimensional.
(2) The image of each sequence {z(i)

t }t in R is a sequence of strong param-
eters: this means that after localization and completion at any prime
that contains them, they form part of a system of parameters modulo
every minimal prime.

(3) If m is the contraction of m to R, then dim Rm − depth Rm = dim S −
depth S. In particular, Rm is Cohen-Macaulay iff S is Cohen-Macaulay.

(4) If S is a reduced (respectively, a domain) then so is R.

(N.B. In general, dim Rm is substantially bigger than dim S.) ��
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In the sequel we need a version of this result in which the equidimen-
sionality of the ring is not assumed. Moreover, we need to keep track of
some complexes of modules, bounds on analytic spreads after localization
at associated primes, the fact that one ideal is a certain symbolic power of
another, and so forth. The following result suffices:

Theorem 4.3. Let K be a field of characteristic zero and let (S, m, L)
be a complete local ring that is a K-algebra. Assume given each of the
following:

(1) Finitely many finitely generated S-modules with specific finite presenta-
tions, finitely many maps of these S-modules with specific presentations
of the maps, and finitely many specified equalities among the composi-
tions of these maps.

(2) Using the modules and maps in (1), finitely many short exact sequences.
Finitely many finite complexes with specified homology. Finitely many
instances in which one of the specified modules is identified with a sub-
module of another. Finitely many instances in which one of the modules
is specified to be the intersection of finitely many of the others, where
all are submodules of a given specified module.

(3) Finitely many ideals of S with specified generators.
(4) From among the ideals in (3), a finite subset with a finite set of associated

primes of specified heights, and a finite subset such that the maximum
analytic spread after localizing at an associated prime has a given
bound.

(5) From among the ideals in (4), finitely many choices of I , I ′, such that I
and I ′ have the same associated primes. Also, finitely many choices of
I and I ′ and an integer k such that I ′ = I (k).

(6) From among the ideals and modules given in (1) and (3), finitely many
pairs M, I such that IM = 0.

(7) A finite set of finite sequences in S, each of which is specified to be part
of a system of parameters for S, and a finite set of sequences each of
which is specified to be a regular sequence on a given one of the given
modules.

(8) A finitely generated K-subalgebra R0 ⊆ S so large that it contains all
the entries needed for the presentations of the modules and maps in (1),
all of the specified generators of the ideals in (3), and the elements of
the sequences in (7), so that we may view all of the given modules,
maps, sequences, and ideals as arising from corresponding ones over
R0 either by tensoring, taking images, or expanding ideals.

Then there is a finitely generated K-algebra R such that the homomorphism
R0 ↪→ S factors R0 ↪→ R → S and such that the following conditions are
satisfied:

(a) The specified presentations of maps of modules are maps of modules
over R, and the specified exacts sequences of modules, descended to R
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by tensoring up from the their counterparts over R0, are exact. All of the
other specified relations among the given modules and ideals continue
to hold after descent, including specifications of the homology of a given
complex and specifications that a certain submodule (or ideal) be a fi-
nite intersection of finitely many given other submodules (or ideals).
Likewise, the specification that a certain ideal be the annihilator of
a certain module can be preserved.

(b) The image (under the map R0 → R) of each set of elements that is part
of a system of parameters for S has height equal to its length. The image
of each regular sequence on a specified module is a regular sequence
on the corresponding module over R.

(c) The specified ideals, descended to R by expanding their counterparts
over R0, are unmixed when the original ideals are. For a specified
ideal I , the greatest number of generators and the greatest analytic
spread after localization at an associated prime do not increase. More-
over, for the given choices of I , I ′, k such that I ′ = I (k), this remains
true after descent to R.

(d) R is regular if S is.

(N.B. In general, dim Rm is substantially bigger than dim S.)

Proof. If S is regular we apply the Artin-Rotthaus theorem (4.1) directly
to the power series ring S = L[[x1, . . . , xn]], where the coefficient field
L has been chosen to contain K . We first solve the problem over L and
then descend to K . As the latter step is routine, we shall simply treat the
case L = K .

We are free to enlarge R0 repeatedly, and so may assume that x1, . . . ,
xn ∈ R0. Since the Henselization of a local ring is a direct limit of finitely
presented étale extensions, we have that S is a filtered inductive limit of
regular rings R of finite type over L with maps R0 → R → S such that R is
smooth over L[x1, . . . , xn] and such that the xi form a permutable regular
sequence in R. In this case, we can keep track of whether a sequence of
elements is part of a system of parameters by extending it to a full system of
parameters, say, y1, . . . , yn. There will be equations expressing a power of
every y j as a linear combination of the xi and conversely. We may enlarge R0
so that all these equations hold in R0. Conditions such as having a specified
ideal kill a specified module are likewise expressible equationally and can be
guaranteed by enlarging R0. We shall leave many straightforwarded details
to the reader, noting that the proof of (3.5.1) in [HH6] is given in great detail
and is a very similar kind of argument. We focus here only on some critical
issues.

One can keep track of short exact sequences by using an exact sequence
of finite free resolutions over R. The rows will be split exact. To guarantee
that a finite free resolution stays a resolution one keeps track of all the
matrices. R0 is enlarged to contain all their entries. The condition that one
has a complex is equational, and so is the condition that the determinantal
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ranks be preserved. By the result of [BE], one only needs to guarantee that
the largest nonvanishing ideals of minors have specified depths, i.e., that
each contains a subset, of a certain specified size, of a system of parameters
for the ring, and we may apply the discussion of the preceding paragraph.

This enables one also to keep track of finite complexes with specified ho-
mology (express all the conditions by using suitable short exact sequences)
and of finite intersections as well: e.g., the intersection of N1 and N2 within
N may be characterized as the kernel of the map N → N/N1 ⊕ N/N2. The
annihilator I of a single element u of a module N may be characterized by
an injection R/I → N carrying the image of 1 to u, and the annihilator of
N may be characterized as the intersection of the annihilators of specified
generators of N.

One can preserve depths of modules and, hence, regular sequences by
expressing them in terms of the vanishing of Koszul homology.

One can keep the associated primes of an ideal having specified heights
as follows: keep track of its entire primary decomposition, preserving the
fact that components intersect to give the ideal. To preserve the relation
between an ideal I primary to P and and P, note that S/I has a filtration
by modules that are embeddable in finitely generated free (S/P)-modules,
and this can be preserved. Now, the height property can be preserved by
keeping P height unmixed in the descent: we do not need to keep P prime.
This can be achieved by writing P in the form

( f1, . . . , fd)R :R gR

where the elements fi are part of a system of parameters for S. Note that
the number of primary components may increase, but the largest height of
an associated prime does not. The same idea can be used to ensure that two
specified ideals I , I ′ that have the same associated primes continue to do
so.

When S is not necessarily regular write it as T/J0 where T is regular, and
transfer the problem to T (while keeping track of J0). Ideals of S correspond
to ideals of T that contain J0, and R-modules to T -modules that are killed
by J0. For example, to maintain a specific symbolic power relationship, one
may suppose that one of the ideals is I ⊇ J0 and that it has a certain set
S of associated primes while the other has the form (I k + J0) : g with g
a nonzerodivisor on I and that it has as its associated primes a certain subset
of S. We have seen that all this can be preserved while descending.

Finally, we want to explain how to preserve the condition that the max-
imum analytic spread of I after localizing at an associated prime of I be
at most h. Again, we think of S as T/J0 where T is regular. Call the as-
sociated primes P1, . . . , Ps . Then for each Pi , ISPi is integral over IRPi

after localizing at Pi . Thus, for each Pi we can choose an element v = vi
not a zerodivisor on Pi such that IRv is integral over I0 Rv, where I0 is
generated by at most h elements of R. (In the equal characteristic 0 case, the
residue field is always infinite.) After clearing denominators by multiplying
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by a power of v, for each generator r of I we get an equation

vNrt + i1rt−1 + · · · + ikrk + · · · + it−1r + it = j,

with ik ∈ I k
0 and with j ∈ J0. We can preserve all this by placing all of

the needed elements in R0. As we descend, the Pi are replaced by unmixed
ideals, while each vi is kept a nonzerodivisor on the descended version
of Pi . By including sufficiently many coefficients in R0 we can preserve that
every ik ∈ I k

0 where I0 is generated by at most h elements. Any associated
prime of the descended version of I will be an associated prime of one of
the descended Pi , and so will fail to contain the corresponding vi . Thus,
after descent, when one localizes at an associated prime of the descended
version of I , at least one of the vi becomes invertible, and it follows that
the descended version of I becomes integrally dependent on an ideal with
at most h generators. ��
Theorem 4.4. Let R be Noetherian ring containing a field of characteris-
tic 0. Let I be any ideal of R, and let h be the largest analytic spread of IRP
for P an associated prime of I .

(a) If R is regular, I (hn) ⊆ I n for all positive integers n. More gener-
ally, I (hn+kn) ⊆ (I (k+1))n for all positive integers n and nonnegative
integers k.

(b) If I has finite projective dimension then I (hn) ⊆ (I n)∗ for all positive
integers n.

(c) If R is affine and equidimensional over a field K, and locally I is
either 0 or contains a nonzerodivisor, then with J = J(R/K ), for every
nonnegative integer k and positive integer n we have Jn I (hn+kn) ⊆
((I (k+1))n)∗ and Jn+1 I (hn+kn) ⊆ (I (k+1))n. In particular, Jn I (hn) ⊆
(I n)∗ and Jn+1 I (hn) ⊆ I n for all n.

Proof. We first prove (c), and at the same time we prove (b) for finitely
generated algebras over a field K . We use the standard descent theory
of Chapter 2 of [HH6] to replace the field K by a finitely generated Z-
subalgebra A, so that we have a counterexample in an affine algebra RA
over A with RA ⊆ R and R ∼= K⊗A RA. In particular, RA will be reduced.
In doing so we descend I to an ideal IA of RA as well as the ideals and their
prime radicals in its primary decomposition. We have an element u A that
fails to satisfy the containment we are trying to prove. In the regular case,
we can localize at a nonzero element of A to make RA smooth over A. In
either case, we can localize at a nonzero element of A to make A smooth
over Z. Since J(RA/A)J(A/Z) ⊆ J(RA/Z) and since J(A/Z) = A when
A is smooth overZ, we see that we may assume that J(RA/A) ⊆ J(RA/Z),
which means that we can work over Z instead of A. The result now follows
from the fact that, for almost all fibers, the containment holds for the map
Z → RA after passing to fibers over closed points of SpecZ. Notice that
as we pass to fibers κ → Rκ we may assume that each minimal prime PA
of IA becomes a radical ideal whose minimal primes in Rκ are all of the
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same height as the original. Thus, in the fiber, the primary decomposition
of Iκ may have more components, but each of these will be obtained from
the image of one of the original components by localization. The biggest
analytic spread after localizing at an associated prime will not change. It
follows in both parts that we have the required containment in a tight closure.
In the regular case, we have that all ideals are tightly closed.

We now consider the general case for (a) and (b). The problem in each
part reduces to the local case: note that it suffices to check whether an
element is in a tight closure locally after completion.

One may then complete: although I R̂ may have more associated primes,
Discussion 2.3(c) shows that the biggest analytic spread as one localizes
at these cannot increase. Note that once we have Î (hn) ⊆ ( Î n)∗ in R̂, it
follows that I (hn) ⊆ (

(I n)R̂
)∗

since R̂ is flat over R, and this implies that
I (hn) ⊆ (I n)∗, which is I n when R is regular.

In the regular case, next note that Î (k+1) = I (k+1) R̂, so that ( Î (k+1))n =
(I (k+1))n R̂. (The associated primes of R̂/I (k+1) R̂ are among those associated
to R̂/PR̂ for some associated prime P of I , by Proposition 15 in IV B.4. of
[Se], since any associated prime of I (k+1) must be an associated prime of I ,
and by another application of Proposition 15 in IV B.4. of [Se] these in turn
are associated primes of I R̂.) Thus, we get

I (hn+kn) ⊆ Î (hn+kn) ⊆ ( Î (k+1))n = (I (k+1))n R̂

and so
I (hn+kn) ⊆ (I (k+1))n R̂ ∩ R = (I (k+1))n,

as required, by the faithful flatness of R̂ over R.
Using Theorem 4.3 above one may then descend to a suitable affine

algebra over a coefficient field for the complete local ring, and the results
follow from what we have already proved in the affine case. ��

5. Questions

Evidently, if we fix an ideal I in a Noetherian ring R, for every integer
N there is a least integer g(N) ∈ N such that I (g(N)) ⊆ I N , and there
are clearly deep results about the behavior of g(N)/N. Our result that in
equicharacteristic regular rings (or when I has finite projective dimension),
g(N)/N is bounded by the largest height of an associated prime of I (or the
largest analytic spread of IRP for P an associated prime of I ) might be
improved in any number of ways.

One possibility is to study the case where the ring need not be regular
(and I does not have finite projective dimension). Note that our results here
for this case, involving the Jacobian ideal, do not directly give information
about the question raised just above. (We mention again that we do not
know whether the exponents used on the Jacobian ideal in Theorem 3.7
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and Theorem 4.4(c) are best possible: it may be possible to decrease the
exponent by 1.)

We do not know what the situation is in mixed characteristic regular
rings. But even in equicharacteristic regular rings there may be better bounds
that make use of additional information about I . Notice, for example, that
the height is never the best bound when I is m-primary in a regular local
ring (R, m), since then I (n) = I n for all n.

It is not clear what the best bound is in equicharacteristic regular rings
even for primes of codimension 2.

In quite a different direction, we observe that there have been several
instances in which the theory of multiplier ideals and tight closure theory
have either interacted, or have been used to prove similar results. E.g., tight
closure can be used to prove the Briançon-Skoda theorem (cf. [HH2, §5]), as
can the theory of multiplier ideals. (Cf. [L2], where these are called adjoint
ideals. This is also done implicitly in [EL] and explicitly in [Laz, §10]). The
connection between the multiplier ideal and the test ideal of tight closure
theory is explored in [Sm2]. It would be desirable to understand fully the
underlying reasons for this connection.
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