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Abstract. We give ray class field descriptions of the function fields of the Hermitian,
Suzuki and Ree curves.

1. Introduction

In this paper we prove that the three families of irreducible Deligne–Lusztig
curves all arise from almost the same choice of parameters via Serre’s method
([11], [10], [5]) for using class field theory to construct curves over finite fields
with many rational points. This serves the dual purpose of (1) highlighting
the utility of Serre’s method by giving examples of optimal families of curves
which arise naturally from it, and (2) emphasizing the underlying similarity
of the ramification filtration of the Deligne–Lusztig curves when realized as
covers of the projective line. Thus the possible consequences of this work
are also two-fold: it points the way to generalizations via class field theory
to produce other optimal families of curves (see [7]), and it suggests that we
investigate further the ramification structure of the Deligne–Lusztig varieties
when considered as covers.

The main theorem of this paper is as follows.

Theorem 1. The function fields of the Hermitian, Suzuki, and Ree curves are
isomorphic to the largest ray class fields of conductorD = k(∞) in which
all places of degree one different from(∞) of Fq(x) split completely, where

k =
{

pdf/2e + 2 if q = pf is a square orp = 2
pdf/2e + 3 if q = pf is not a square andp = 3.

(The Hermitian curves are defined whenq is a square; the Suzuki (resp. Ree)
curves are defined whenq is not a square and the characteristic is 2 (resp. 3).)
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From this theorem, we derive interesting results on the interdependence of
the decomposition groups at different primes in the extension. This interde-
pendence is expressed by the formula for the order of the Galois groups:

Corollary 1. If q = pf and eitherq is a square orp = 2 or 3, then

|(Fq [T ])/T k)∗/F
∗
q/〈1 − αT |α ∈ F

∗
q〉|

=




1 if k < pdf/2e + 2√
q if k = pdf/2e + 2, q is a square
q if k = pdf/2e + 2, q is not a square, andp = 2
q2 if k = pdf/2e + 3, q is not a square, andp = 3.

2. Hermitian curves

Let K be a finite field whose order is a square:|K| = q2 . Consider the
function fieldF = K(x, y) with the defining equation

yq + y = xq+1 . (1)

These fields are the “Hermitian” function fields which were discovered by
Leopoldt in the course of his study of the automorphism group of Fermat
function fields, and which are characterized in Stichtenoth’s thesis [13]. They
have a large automorphism group and arise as the Deligne–Lusztig variety
associated to the groups of type2A2 (see [1], for example). They are the
unique maximal function fields of their genus [9], and later we will need that
no function field of higher genus can be maximal [4].

We considerF as an extension of the rational function fieldK(x). The
following facts are well known and can be found in [14].

Fact 1. The field degree is [F : K(x)] = q.
Fact 2. The placex → ∞ is the only place ofK(x) which is ramified inF .

Its ramification degree isq, i.e., it istotally ramifiedin F .
Fact 3. The genus ofF is g = q(q −1)/2 and the number of rational places

is q3 + 1, soF is (Hasse-Weil) maximal.
Fact 4. Every finite rational placex → a with a ∈ K splits completely in

F ; itsq extensions are given by(x, y) → (a, b) with bq +b = aq+1.
Fact 5. F |K(x) is abelian; its Galois groupG is given by the substitutions

y → y + b with bq + b = 0.

We add the following statement. Let(∞) denote the prime divisor of
K(x) corresponding to the placex → ∞.

Fact 6. The conductor of the abelian extensionF |K(x) is f = (q +2) · (∞).
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Proof. According to Fact 2, the conductor is a multiple of(∞), i.e., f =
k·(∞) for some positive integerk. We recall the ramification theory of abelian
fields where it is shown how the conductor multiplicityk is computed from
the orders of the ramification groups. Letp∞ denote the unique extension
of x → ∞ to F , and letv = vp∞ denote its valuation onF . Let us choose
a uniformizing elementt for p∞, i.e.,v(t) = 1. Then thei-th ramification
groupGi (i > 0) consists of all automorphismsσ ∈ G for which

v(tσ−1 − 1) ≥ i ,

Let gi = |Gi |. Let r denote the largest integer such thatgr 6= 1. Then it is
known that

k = 1 + 1

g
(g1 + g2 + · · · + gr) (2)

whereg = |G| = q. So we have to compute thegi .
From Fact 2 we see thatv(x) = −q, and so from the defining equation (1)

we havev(y) = −(q + 1). Hence we can taket = xy−1 . Fact 5 shows that
tσ−1 = y1−σ = y(y + b)−1 = 1 + (−b)(y + b)−1 and thus ifσ 6= 1, i.e.,
b 6= 0:

v(tσ−1 − 1) = v((−b)(y + b)−1) = −v(y + b) = q + 1 .

Hence, everyσ 6= 1 is contained inGq+1 but not inGq+2 and therefore

G = G1 = · · · = Gq+1 6= Gq+2 = 1 .

We see:r = q + 1 andgi = |G| = q for 1 ≤ i ≤ r. Now (2) shows
k = 1 + r = q + 2. ut

The main theorem for Hermitian fields is the following:

Theorem 2. F can be characterized as the largest abelian extension ofK(x)

which has conductor(q + 2) · (∞), and in which all finite placesx → a

(a ∈ K) split completely.

Proof. Let F ′ be the largest extension ofK(x) with the properties as an-
nounced. ThenF ⊂ F ′. Let [F ′ : F ] = m, so that [F ′ : K(x)] = mq. We
claimm = 1.

Let us count the numberN ′ of K-rational places ofF ′. In K(x) there
areq2 finite K-rational placesx → a with a ∈ K. Every one of them splits
completely inF ′ which gives a total ofmq · q2 K-rational places ofF ′.

In particular, we see thatK is algebraically closed inF ′ (since otherwise
there would not existK-rational places ofF ′). In other words:F ′ is aregular
field extension ofK.
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Now consider the infinite placex → ∞. It is the only place ofK(x) which
is ramified inF ′, because the conductor ofF ′|K(x) is a multiple of(∞). We
claim thatx → ∞ is totally ramifiedin F ′. To see this, let us denote byp′

∞
an arbitrary extension ofx → ∞ to F ′. Let T denote its inertia field. Then
T |K(x) is unramified with respect to the place induced byp′

∞. Now, since
F ′|K(x) and henceT |K(x) is anabelianextension, it follows thatT |K(x)

is unramified with respect toeveryplace extendingx → ∞. In other words,
x → ∞ is unramified inT . But every other place ofK(x) is unramified inT
too (because it is unramified inF ′). HenceT is an unramified field extension
of K(x). Now, there do not exist unramified proper extensions ofK(x) which
are regular overK. ThusT = K(x) which shows thatx → ∞ is indeed
totally ramified inF ′.

This implies in particular thatp′
∞ is the only place ofF ′ abovex → ∞,

and that it is of degree 1, i.e., it is aK-rational place ofF ′. Hence, besides
themq ·q2 K-rational places which we have found already, there is precisely
one more abovex → ∞. Hence

N ′ = 1 + mq · q2.

Using the Hasse–Weil estimate:

N ′ − q2 − 1 ≤ 2g′q (3)

we obtain the estimate:

q(mq − 1) ≤ 2g′. (4)

An estimate in the other direction is obtained as follows. The Riemann–
Hurwitz genus formula forF ′|K(x) gives

2g′ = −2(mq − 1) + d ′ (5)

whered ′ is the degree of the discriminantd′ of F ′|K(x). Since the conductor
of F ′|K(x) is a multiple of the place(∞), the same holds for the discriminant,
i.e.,d′ = d ′ · (∞). Now we use the conductor-discriminant formula which
shows thatd′ admits a decomposition of the form

d′ =
∑
χ

f(χ)

whereχ ranges over the characters of the Galois group ofF ′|K(x) andf(χ)

is the corresponding conductor via class field theory. If we writef(χ) =
f (χ) · (∞) we obtain

d ′ =
∑
χ

f (χ).
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SinceF ′|K(x) is supposed to have the conductor(q +2) · (∞), we conclude
thatf (χ) ≤ q + 2 for all χ 6= 1; for the trivial characterχ = 1 we have of
coursef (1) = 0. It follows d ′ ≤ (mq − 1)(q + 2) and therefore in view of
the Riemann–Hurwitz formula (5):

2g′ ≤ −2(mq − 1) + (mq − 1)(q + 2) = q(mq − 1) .

Comparing with (4) we conclude

2g′ = q(mq − 1) . (6)

At the same time we see that equality holds not only in (4) but also in (3):

N ′ − (q2 + 1) = 2g′q .

This means that the number of rational places ofF ′|K meets the maximal
bound as permitted by the Hasse–Weil estimate. In other words:F ′ is a
maximalfunction field.

Now, Ihara [4] has proved that every maximal function field over the field
with q2 elements has genusg′ ≤ q(q −1)/2 = g. Comparison with (6) gives
m = 1. ut
Corollary 2. Letk = q + 2, K as above. Then

|(K[T ]/T k)∗/K∗/〈1 − αT |α ∈ K∗〉| = q.

Furthermore, this quotient is trivial ifk < q + 2.

Proof. Via class field theory, this quotient is exactly the Galois group of
F |K(x), and thus it has orderq. The second statement follows from the fact
proved above that all non-trivial charactersχ of G satisfyf (χ) = q +2. ut

3. Suzuki curves

The Suzuki curves are the Deligne–Lusztig varieties constructed from the
linear algebraic group2B2 ([1]). Let K = Fq , whereq = 22m+1. Then the
Suzuki curve is the curve associated to the function fieldF = K(x, y) with
defining equation:

yq + y = xq0(xq + x),

with q0 = 2m. We considerF as an extension of the rational function field
K(x) and again we have the following well-known facts: ([3])

Fact 1. The field degree is [F : K(x)] = q.
Fact 2. The placex → ∞ is the only place ofK(x) which is ramified inF .

Its ramification degree isq, i.e., it istotally ramifiedin F .
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Fact 3. The genus ofF is g = q0(q − 1) and the number of rational places
isq2 +1.F has the maximum possible number of rational places for
its genus. This is shown by choosing the trigonometric polynomial

h1(θ) = 1 + 2(

√
2

2
cos(θ) + 1

4
cos(2θ)),

to obtain a bound on the number of places from the explicit formulae
method. This method for obtaining bounds from different choices of
trigonometric polynomials is described in [11], [10], or [1].

Fact 4. Every finite rational placex → a with a ∈ K splits completely in
F .

Fact 5. F |K(x) is abelian; its Galois groupG is given by the substitutions
y → y + α with α ∈ K.

Fact 6. The conductor of the abelian extensionF |K(x) isf = (2q0+2)·(∞).

Proof. We apply the same argument as for the Hermitian case above, using
the fact proved in [3] that the ramification groups are as follows:

G = G1 = G2 = ... = G2q0+1,

G2q0+2 = {1}. ut
The main theorem for the function fields of the Suzuki curves is then:

Theorem 3. F can be characterized as the largest abelian extension ofK(x)

which has conductor(2q0 + 2) · (∞), and in which all finite placesx → a

(a ∈ K) split completely.

Proof. Again letF ′ be the largest extension ofK(x) with the properties as
announced. ThenF ⊂ F ′. Let [F ′ : F ] = m, so that [F ′ : K(x)] = mq.
We claimm = 1. By the same argument as in the Hermitian case,F ′ has
N ′ = q2 ·m+ 1 rational places. Now we carry through that argument except
that in this case, we use the method of explicit formulae to obtain a bound
onN ′ in terms ofg′, the genus ofF . Using the trigonometric polynomialh1

given above, we find that

N ′ ≤ α · g′ + β, (7)

where

α = 4q

4q0 + 1
, β = 4q0q + q2

4q0 + 1
+ 1.

Formula (5) for the genus, combined with the estimatef (χ) ≤ 2q0 + 2 for
all non-trivial characters of the Galois group ofF ′|K(x) lead to the following
upper bounds:

d ′ ≤ (mq − 1)(2q0 + 2),



Deligne–Lusztig curves as ray class fields 93

and therefore
g′ ≤ q0(mq − 1) .

So formula (7) becomes:

q2 · m + 1 ≤ q2 · 4q0m + 1

4q0 + 1
+ 1,

which can happen only ifm ≤ 1. ut
Corollary 3. LetK = Fq be the finite field withq = 22m+1 = 2q2

0 elements.
Letk = 2q0 + 2. Then

|(K[T ]/T k)∗/K∗/〈1 − αT |α ∈ K∗〉| = q.

Furthermore, this quotient is trivial ifk < 2q0 + 2.

4. Ree curves

The Deligne–Lusztig varieties arising from the Ree group2G2(q) when
q = 32m+1 are irreducible curves defined overFq . Let K = Fq , where
q = 32m+1. Then the Ree curve is the curve associated to the function field
F = K(x, y1, y2) with defining equations:

y
q

1 − y1 = xq0(xq − x)

and
y

q

2 − y2 = xq0(y
q

1 − y1),

with q0 = 3m. We considerF as an extension of the rational function field
K(x) and again we have the following well-known facts: ([2], [8])

Fact 1. The field degree is [F : K(x)] = q2.
Fact 2. The placex → ∞ is the only place ofK(x) which is ramified inF .

Its ramification degree isq2, i.e., it istotally ramifiedin F .
Fact 3. The genus ofF is g = 3

2q0(q − 1)(q + q0 + 1), and the number of
rational places isq3 + 1. F has the maximum possible number of
rational places for its genus. The trigonometric polynomial which is
chosen to show that the Ree curves are maximal is

h2(θ) = 1 + 2
∑

cn cos(nθ),

where

c1 =
√

3

2
, c2 = 7

12
, c3 =

√
3

6
, c4 = 1

12
, ci = 0, i > 4.

Fact 4. Every finite rational placex → a with a ∈ K splits completely in
F .
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Fact 5. The Galois group ofF |K(x) is abelian; it is a subgroup of the full
Ree group.

Fact 6. The conductor of the abelian extensionF |K(x) isf = (3q0+3)·(∞).

Proof. From the work of Hansen and Pedersen [2], we can extract the fol-
lowing lemma, changing their notation to agree with [12] and to be consistent
with the notation in this paper.

Lemma 1. If F is the function field of the Ree curve as defined in the para-
graph above, then the filtration of its ramification group at∞ is as follows:

G0 = G1 = G2 = ... = G3q0+1,

G3q0+2 = ... = Gq+3q0+1,

Gq+3q0+2 = {1},
|G0| = q2 and|G3q0+2| = q.

Applying Lemma 1 to calculatek in formula (2) yields:

k = 1 + 1

q2
((3q0 + 1)q2 + q · q) = 3q0 + 3,

which is the desired result.ut
The main theorem for the function fields of the Ree curves is then:

Theorem 4. F can be characterized as the largest abelian extension ofK(x)

which has conductor(3q0 + 3) · (∞), and in which all finite placesx → a

(a ∈ K) split completely.

Proof. As before, we need only show thatm = 1, wherem = [F ′ : F ] and
F ′ is the largest extension ofK(x) with the properties as announced. Again
we observe thatF ′ hasN ′ = q3 · m + 1 rational places. In this case we use
the trigonometric polynomialh2 to get a bound onN ′ in terms of the genus
of F ′. As in formula (7) above, the bound can be written as

N ′ ≤ α · g′ + β,

where

α = 12q2

18qq0 + 7q + 6q0 + 1
, β = q2(18q0 + 7q + 6qq0 + q2)

18qq0 + 7q + 6q0 + 1
+ 1.

The Riemann–Hurwitz genus formula takes the form

2g′ = −2(mq2 − 1) + d ′,
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so an upper bound ong′ can be obtained by analyzing

d ′ =
∑
χ

f (χ)

as follows. SinceF is a subextension ofF ′, characters of the Galois group of
F |K(x) have the same Artin conductor when considered as characters ofG,
the Galois group ofF ′|K(x) ([12], p. 101). Thus, there are at least(q − 1)

charactersχ of G with f (χ) ≤ (3q0 + 2). By assumption, the remaining
characters satisfyf (χ) ≤ (3q0 + 3). So

d ′ ≤ (q2m − q)(3q0 + 3) + (q − 1)(3q0 + 2),

which leads to the upper bound

2g′ ≤ (3q0 + 1)(q2m − 1) − (q − 1).

Now the upper bound onN ′ becomes:

N ′ ≤
1
2[(q2m−1)(3q0+1)−(q−1)]12q2+q2(18q0+7q+6qq0+q2)

18qq0+7q+6q0+1
+1

= 1+q3(
18qq0m+(6m+1)q+6q0+1

18qq0+7q+6q0+1
),

but the number of rational places ofF ′ is 1+ q3m, which does not satisfy
this inequality unlessm ≤ 1. ut
Corollary 4. Let K be the finite field withq = 32m+1 = 3q2

0 elements. Let
k = 3q0 + 3. Then

|(K[T ]/T k)∗/K∗/〈1 − αT |α ∈ K∗〉| = q2.

Furthermore, this quotient is trivial ifk < 3q0 + 2.

This completes the ray class field descriptions of the Deligne–Lusztig
curves and thus the proof of the main theorem of the paper as stated in the
introduction. It should be noted that we used only the existence, not the
uniqueness of the Hermitian, Suzuki, and Ree curves (as discussed in [9] and
[2]). The uniformity of the descriptions indicates that it would be interesting
to study the correspondence between the Deligne–Lusztig construction of
these varieties and the ramification structure of their equations as covers
of P

1. Also, the ray class field description of these curves lends itself to
generalization in other characteristics, for which it is necessary to have an
analog of the corollary stated in the introduction which is valid whenq is not
a square and the characteristic is not equal to 2 or 3. The reader can verify
directly that computing the order of the quotients appearing in the statement
of the corollaries is a non-trivial matter which is greatly facilitated here by
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the use of the existence of the Deligne–Lusztig curves. A general solution
for the order of such quotients for anyq andk is presented in [7] using direct
methods.
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