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Abstract. It will be shown in this paper that the automorphism group of a bounded ho-
mogeneous domainD in C

n can never act freely onD. An equivalent statement is that the
isotropy groups of bounded homogeneous domains always contain at least two elements.

1. Notation

The cardinality of a setS will be denoted by|S|. The automorphism group
of a complex manifoldM will be denoted by AutM, the isotropy group of
a pointp ∈ M will be denoted by Isop M. Since the isotropy groups of a
homogeneous manifold are isomorphic, the actual choice of the pointp ∈ M

will usually not be of importance. To reflect this fact, we will suppress the
indexp if a statement holds for arbitraryp ∈ M.

2. Introduction

A complex manifoldM is homogeneous by definition iff for allz, w ∈ M

there existsat least oneautomorphismϕ of M with ϕ(z) = w.
This definition gives rise to the following natural question: does there

exist a homogeneous complex manifold (or to mention some other interest-
ing cases: compact complex manifold, domain, bounded domain)M that is
minimal in the sense that for allz, w ∈ M there existsexactly oneauto-
morphismϕ of M with ϕ(z) = w? Obviously, this is the case if and only
if Isop M = {id} for one and thus allp ∈ M. In other words: for arbitrary
z, w ∈ M there is always exactly oneϕ ∈ Aut M with ϕ(z) = w iff Aut M

acts freely onM. So the question that arises is:

Question 1. Does there exists a homogeneous complex manifold, compact
complex manifold, domain or bounded domainM such that AutM acts
freely onM?
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The goal of this paper is to prove that the answer to this question is “no”
in the case of bounded homogeneous domains. The proof given here is –
besides using deep theorems by Pijateckii–Sapiro, Gindikin, Vinberg and
Rothaus – quite simple.

We will prove the following theorem:

Theorem 1. The automorphism group of a bounded homogeneous domain
D can never act freely onD. In other words:| Iso D| > 1 for every bounded
homogeneous domainD.

It should be mentioned right at the beginning that it is only impossible for
the full automorphism group of a bounded homogeneous domainD ⊂ C

n

to act freely onD. It is possible in certain cases that a subgroup of AutD

acts transitively and freely onD. A trivial example of this will be discussed
in section 4.

The proof of the theorem uses the well known result of Pijateckii–Sapiro,
Gindikin andVinberg ([GPVS63]) that every bounded homogeneous domain
is biholomorphically equivalent to a Siegel domain of the second kind, as
well as an inductive construction of O. S. Rothaus ([Rot66]) of homogeneous
regular cones by representations of lower dimensional cones sitting in the
boundary.

We will include the definition of Siegel domains of the second kind and
the results of Rothaus in this paper for the convenience of the reader.

Definition. A setC ⊂ R
n is a cone, if x ∈ C ⇔ λx ∈ C holds for

all λ ∈ R
+. A cone is calledregular, if it is nonempty, open, convex and

does not contain an entire line. Note that it follows from convexity that
x, y ∈ C ⇒ x + y ∈ C holds for regular cones. Let from now onC denote
a regular cone inRn.
The Siegel domain of the first kind over C ⊂ R

n is the tube domain
{z ∈ C

n : Im z ∈ C}.
A C-hermitian form is a mappingH : C

k × C
k → C

n with the following
properties:

(i) H is C-linear in the first argument
(ii) H(z, w) = H(w, z)

(iii) H(z, z) ∈ C

(iv) H(z, z) = 0 ⇔ z = 0

Note that this definition coincides with the usual definition of a hermitian
form if C = R

+.
TheSiegel domain of the second kind overC with C-hermitian formH

is now defined to be{(z, w) ∈ C
n+k : Im z − H(w, w) ∈ C}.

Definition. A coneC ∈ R
n is called homogeneous, iff a subgroup of

Gl(n, R) acts transitively onC.
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The following theorem of Pijateckii–Sapiro, Gindikin and Vinberg is of
fundamental importance for the study of bounded homogeneous domains:

Theorem (Pijateckii–Sapiro, Gindikin andVinberg). LetD be a bounded
homogeneous domain. ThenD is biholomorphically equivalent to a Siegel
domain of the second kind over a regular homogeneous cone.

Let Sym(n, R) denote the set of alln × n symmetric matrices.

Definition. LetC ⊂ R
n be a regular homogeneous cone. Arepresentation

of degreeρ of C is a linear mappingR : R
n → Sym(ρ, R), v 7→ R(v),

such that

(i) R(v) is positive definite forv ∈ C

(ii) there exists a transitive groupQ of automorphisms ofC, such that for
eachq ∈ Q there exists aρ × ρ-matrixp with R(qv) = pR(v)pt for
all v ∈ R

n.

Then the set

{(t, u, v) ∈ R
n+ρ+1 : t ∈ R, u ∈ R

ρ, v ∈ C, t > ut [R(v)]−1u}
is called theextensionof C by the representationR.

Rothaus proved the following theorem:

Theorem (O. S. Rothaus).

(i) An extension of a homogeneous regular cone is once again a homoge-
neous and regular cone.

(ii) Every homogeneous regular cone arises by a finite number of extensions
starting from the coneR+.

3. The size of isotropy groups of regular homogeneous cones

Before we can proof our main theorem we will have to analyze the size
of isotropy groups of homogeneous regular cones. Let AutC denote the
linear automorphism group of a coneC, and let Isop C denote the isotropy
group ofp ∈ C. We will again use the notation IsoC if the choice ofp is
irrelevant. The following proposition is the equivalent of our main theorem
in the case of homogeneous cones:

Proposition 1. Let C be a regular homogeneous cone inR
n with n > 1.

Then| Iso C| > 1.
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Proof. LetC be a regular homogeneous cone inR
n with n > 1. The theorem

of O. S. Rothaus guarantees the existence of regular homogeneous conesCj

in R
nj , 1 ≤ j ≤ r, and representationsRj of dimensionskj , 1 ≤ j ≤ r − 1

with the following properties:
C1 = R

+, Cr = C andCj+1 arises fromCj by the representationRj .

First we want to study the last step in this process:C arises fromC̃ :=
Cr−1 ⊂ R

m by the representationR := Rr−1 of dimensionk := kr−1

⇒ C = {(t, u, v) : t ∈ R, u ∈ R
k, v ∈ C̃, t > utR−1(v)u}.

Obviously, we have(t, u, v) ∈ C ⇔ (t, −u, v) ∈ C; it follows that A :
(t, u, v) 7→ (t, −u, v) is in Aut C.
Letq be an arbitrary point iñC and letp := (1, 0, q).Thenp is inC,Ap = p

andA ∈ Isop C. SinceA 6= id if k > 0, it follows that| Iso C| > 1 if k > 0.

If k = 0 we haveC = {(t, v) : t ∈ R, v ∈ C̃, t > 0} = R
+ × C̃. If Ã ∈

Autq C̃ andp := (1, q) thenp ∈ C andA : (t, v) 7→ (t, Ãv) ∈ Isop C.
It follows that | Iso C| > 1, if | Iso C̃| > 1. Inductive use of this argument
yields the following:
| Iso C| > 1 if ks > 0 andks+1 = · · · = kr−1 = 0.
It remains to study the casek1 = · · · = kr−1 = 0. In this case we have
C = (

R
+)n

, and Isop C, p = (1, . . . , 1), consists of then! mappings
(x1, . . . , xn)

t 7→ P · (x1, . . . , xn)
t , P a n × n permutation matrix. Conse-

quently,| Iso C| > 1, sincen > 1.
We have thus proved that| Iso C| > 1 in every possible case.ut

Remark.The inductive construction of Rothaus is not well behaved with
respect to isotropy groups: if

C1
R1−−−→ C2

R2−−−→ . . .
Rr−2−−−→ Cr−1

Rr−1−−−→ Cr

is a sequence of representations, the size of the isotropy groups IsoCj is
in general not increasing withj . The method of Rothaus only guarantees
that a certain subgroup of AutCj – which still acts transitively onCj –
extends to a transitive group of automorphisms ofCj+1. The information
obtained about the groups IsoCj can therefore in general not be used to gain
information about IsoCj+1 (a noteworthy exception is the case dimRj = 0,
whereCj+1 = R

+ ×Cj and| Iso Cj+1| ≥ | Iso Cj |). This is the reason why
the only piece of information about the sequence of representations we used
in the casekr > 0 was the structure of the mapRr−1. A different kind of
description of homogeneous cones seems to be needed to get better estimates
on the size of the isotropy groups.
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4. Proof of the main theorem

Proposition 1 together with the theorem of Pijateckii–Sapiro, Gindikin and
Vinberg will now enable us to prove theorem 1.

Proof (of theorem 1).Let D be a bounded homogeneous domain inC
m.

By the theorem of Pijateckii–Sapiro, Gindikin and Vinberg we can assume
that the domainD is a Siegel domain of the second kind.
Let D = {(z, w) ∈ C

n+k : Im z − H(w, w) ∈ C} with n + k = m, C a
regular cone inRn, H : C

k × C
k → C

n aC–hermitian form.
Consider the mappings

fθ : C
n+k → C

n+k, (z, w) 7→ (z, eiθw), θ ∈ R

Then the following holds:

(z, w) ∈ D ⇔ Im z − H(w, w) ∈ C ⇔ Im z − H
(
eiθw, eiθw

) ∈ C

⇔ fθ(z, w) ∈ D

Consequently,fθ ∈ Aut D. Furthermore, ifz ∈ C
n is arbitrary with Imz ∈

C, it follows thatp := (z, 0) ∈ D andfθ(p) = p. Thusfθ ∈ Isop D.
Since{fθ : θ ∈ R} is a one dimensional torus of mappings ifk > 0, it
follows that| Iso D| = ∞ if k > 0.
Consider now the casek = 0 andn > 1. In this caseD is the Siegel domain
of the first kindD = {z ∈ C

n : Im z ∈ C}. Letp be an arbitrary point inC. It
follows from proposition 1 that there is a linear mappingid 6= A : R

n → R
n

with A ∈ Isop C. Consider now the mapA as a map fromC
n to C

n. Then

z = x + iy ∈ D ⇔ y ∈ C ⇔ Ay ∈ C ⇔ Ax + iAy = A(x + iy) ∈ D

ThusA ∈ Aut D. Furthermore,ip ∈ D andA(ip) = ip. Thusid 6= A ∈
Isoip D.
The last remaining case isk = 0 andn = 1. But in this caseD is just the
upper half plane with IsoD ∼= S1.
It follows that| Iso D| > 1 in all cases, and the theorem is proved.ut

The obvious (open) question that arises is the following:

Question 2. Does there exist a bounded homogeneous domainD in C
n with

| Iso D| = 2?

Note that there is a trivial example of a homogeneousunboundeddomain
with this property: LetC∗ := C \ {0}. ThenIso1 C

∗ = {id, z 7→ 1/z}, and
{z 7→ az : a ∈ C

∗} acts transitively onC∗.A possible example of a bounded
homogeneous domainD with this property is necessarily more complicated;
its dimension has to be at least 5 for the following reason:D would have to
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be biholomorphically equivalent to a Siegel domain of the first kind, since
it has been shown in the proof of theorem 1 that| IsoD| = ∞ otherwise.
But homogeneous Siegel domains of the first kind are biholomorphically
equivalent to bounded symmetric domains in all dimensionsn ≤ 4, and
the isotropy groups of bounded symmetric domains are always infinite (see
[Hel78] for a complete description of automorphism and isotropy groups of
bounded symmetric domains).

It remains to find an example of a bounded homogeneous domainD such
that a subgroup of the full automorphism group acts transitively and freely
onD. This is not a difficult task; we will give only the most basic example
here:

Example.There is a group of automorphisms of the polydiscPn(0; 1) that
acts transitively and freely onPn(0; 1).

The easiest way to see this is to use the realization ofPn(0; 1) as the
unbounded Siegel domain of the first kindHn := H × · · · × H , whereH

is the upper half plane inC. The set

{z = (z1, . . . , zn) 7→ (a1z1 + b1, . . . , anzn + bn) : aj > 0, bj ∈ R ∀j}
is obviously a group of automorphisms ofHn that acts transitively and freely
onHn.
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