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Conjugate free convection over a vertical slender hollow
cylinder embedded in a porous medium

l. Pop, T.-Y. Na

Abstract A numerical study of the steady conjugate free
convection over a vertical slender, hollow circular cylinder
with the inner surface at a constant temperature and em-
bedded in a porous medium is reported. The governing
boundary layer equations for the fluid-saturated porous

medium over the cylinder along with the one-dimensional y

heat conduction equation for the cylinder are cast into
dimensionless form, by using a non-similarity transfor-
mation. The resulting non-similarity equations with their
corresponding boundary conditions are solved by using
the Keller box method. Emphasis is placed on the effects
caused by the wall conduction parameter, p, and calcula-
tions have covered a wide range of this parameter. Heat
transfer results including the temperature profiles, the
interface temperature profiles and the local Nusselt num-
ber are presented.

List of symbols

F  reduced stream function for p = 0 (non-conjugate

problem)

reduced stream function for p # 0

acceleration due to gravity

local heat transfer coefficient

thermal conductivity

m effective thermal conductivity of the saturated porous
medium

K  permeability of saturated porous medium

L length of the cylinder

Nu, local Nusselt number

P

q

r

»»gm\

conjugate conduction parameter defined in Eq. (18)
heat transfer
radial coordinate

ti, 1, inner and outer radii of the hollow cylinder

Ra modified Rayleigh number

Ra, modified local Rayleigh number

T  temperature

T, temperature at the inner surface of the hollow
cylinder

T; temperature of the hollow cylinder
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AT reference temperature

u. reference velocity

v,  velocity component in r-direction

vy  velocity component in x-direction

x  coordinate along the axis

independent variable defined as y =r —r,

Greek symbols
o effective thermal diffusivity of the saturated porous
medium

f  thermal expansion coefficient

¢ transformed variable defined in Eq. (23)
n  non-similarity variable

0  dimensionless temperature

v kinematic viscosity

Y stream function

Subscripts

w  wall condition

s solid

oo ambient condition

Superscripts

- dimensionless variables

x  transformed variables
differentiation with respect to #

1

Introduction

The heat transfer mode in porous media has great prac-
tical importance in geophysics and energy related engi-
neering problems. These include the utilization of
geothermal energy, the control of pollutant spread in
ground-water, the design of nuclear reactors, compact heat
exchangers, solar power collectors, high performance in-
sulation for buildings, food processing, casting and weld-
ing of a manufacturing process, etc. A detailed review of
the subject of convective flow in porous media, including
an exhaustive list of references, was recently performed by
Nield and Bejan[1], and Ingham and Pop [2].

In many practical problems the information on the in-
terfacial temperature is essential because the heat transfer
characteristics are mainly determined by the temperature
differences between the bulk flow and the interface. These
are usually referred to as conjugate heat transfer problems,
and they have many practical applications, particularly
those related to energy conservation in buildings. Conju-
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gate heat transfer from vertical or horizontal surfaces as
well as horizontal cylinders embedded in porous media
have recently been extensively investigated [3-11], and a
detailed literature survey was most recently provided by
Kimura et al. [12]. However, the problem of conjugate heat
transfer over a vertical cylinder in a porous medium has
not yet received any attention. Therefore, the present study
proposes a mathematical model to investigate the conju-
gate problem of free convection over the outside surface of
a vertical slender, hollow circular cylinder which is em-
bedded in a porous medium. The temperature of the inner
surface of the cylinder is kept at a constant value T;, and
the temperature of the outer surface is determined by the
conjugate solution of the energy equation of the solid and
the boundary layer equations of the fluid-saturated porous
medium. The approximation of the one-dimensional
conduction term (transversal) in the energy equation of
the cylinder is taken into account because the aspect ratio
to/L (outer radius/length) is sufficiently small in this
study. Due to close coupling for this problem, the boun-
dary layer equations outside the cylinder and the one-
dimensional heat conduction equation for the hollow
cylinder must simultaneously be solved. These equations
being non-similar are solved by a very efficient finite-dif-
ference method known as Keller-box scheme [13]. This
solution methodology has been well established in a recent
paper by Na [14] for the corresponding problem of a
viscous (non-porous) fluid. However, it is worth men-
tioning that neither the surface temperature nor the heat
flux through the wall of the hollow cylinder is known a
priori. Thus, an iterative procedure would have to be ap-
plied. The effects of the conduction parameter, p, on the
heat transfer characteristics are discussed.

2

Basic equations

The geometry considered is a vertical slender, hollow
circular cylinder with inner and outer radii r; and r,,
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Fig. 1. Physical model and coordinate system

respectively, which embedded in a fluid-saturated porous
medium as shown in Fig. 1. The inner surface of the cyl-
inder is held at a constant temperature T}, while the
temperature of the ambient fluid is T, where T > T.
The porous material is isotropic and homogeneous, and
the fluid is incompressible. Under these assumptions, the
governing boundary layer equations for the conjugate free
convection over a vertical slender, hollow circular cylinder
embedded in a porous medium based on Darcy-Bous-
sinesq approximation are:

for the fluid-porous medium
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If Eq. (4) is normalized by introducing the dimensionless
variables
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Where AT = Ty, — T, we then get
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Assuming that r,/L <1, then the axial conduction tem-

perature, i.e., T, /0x?, can be neglected, so that Eq. (6)
becomes

subject to

r=1:Ts=Ty, r=1,:Ts=T(x,1,) (8)
The solution of Eq. (7) along with (8) is

In (r/r;)

In (r,/1;)

On the other hand, we have that at the surface of the

cylinder the heat flux from the solid and fluid-porous
medium interface are equal, i.e.,

Ts =Ty + (T(x,15) — Tp) 9)

0T(r,) 0T (x,1,)
=Ty —Ks—F—= Km—=— 1
r=r k o k 3 (10)
which, on using (9), becomes
T(x,75) — T T(x,1,)
=0 kb g 11
Y roln (r,/1;) oy (1)

where y is defined as y = r — r,. The rest of the boundary
conditions for Egs. (1) to (3) are



y=0:v(x,0) =0;
Y — 00 Ve(x,00) =0, T(x,00) = To

(12)

Further, we introduce the following dimensionless vari-
ables

_ v
Ra, v, =—, v, =—+VRa
u

(13)

where Ra = u.r,/a is the modified Rayleigh number for a
porous medium. Equations (1) to (3) become

% (rve) + % (rv,) =0 (14)
vy =10 (15)
5,210 () 19
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subject to the boundary conditions
00(x,0
Ur(%,0) =0, 0(x,0) — 1 :p%;

Ux(X,00) =0, O(x,00) =0

(17)

where p is the conjugate conduction parameter given by

(18)
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Let us next introduce the Mangler transformation
dx* =dx, dy* =rdy (19)

and the stream function, , defined by
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Equations (15) and (16), with 0 = 61}/6)/*, now become
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subject to the boundary conditions

(21)
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To get Eq. (21) amenable for numerical integration, we
introduce the following transformation

B lﬁ B y* B 2x*1/3
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(23)
We then obtain
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subject to the boundary conditions

f(&.0) =0, @éf’(m) —1=pf"(5,0);

f/(éaoo) =0

where primes denote differentiation with respect to #.
The dimension less temperature on the surface of the
cylinder can be written as

(25)

0.0 =0 (26)
where
% = rf - { WF} (27)

Let us consider the effect of conduction on the rate of heat
transfer. First, the local rate of heat transfer is given by

) 0T(x,0 AT

Gy (x) = —knm % = kmr—oRal/z[—f”(f, 0)]
On the other hand, the overall local heat transfer coeffi-
cient, h,, is given by

4, (%)
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(28)

(29)
and the local Nusselt number at the outer surface of the
hollow cylinder is defined as
h.x

km

Using (28), (29) and (30), we get

Nu, = (30)

Nu, [ —F"(¢0) forp=0 .
Ral? | X2[~f"(£,0)] forp#0 (31)
3

Results and discussion

We first notice from this study that for a hollow cylinder,
where the temperature on the inner surface (r = r;) is
maintained at a constant value of T, the temperature on
the outer surface of the cylinder (r = r,) given by Eq. (26)
depends on the coupled solution of the conduction across
the cylinder and the natural convection of the fluid-satu-
rated porous medium over the cylinder. Intuitively, if the
heat conductivity of the hollow cylinder is very large, its
temperature can be expected uniform at T, and therefore a
solution of the natural convection based on a constant wall
temperature will be acceptable. An inspection of the defi-
nition of the conduction parameter p reveals that the same
conclusion is true if the effective thermal conductivity of
the saturated porous medium is very small and/or if the
thickness of the hollow cylinder is very thin.

Equation (24) subject to the boundary conditions (25)
has been solved numerically using the Keller box method
as described by Na [14]. Solutions are generated for a
range of values of the axial non-dimensional coordinate X
and three values of the conjugate convection parameter
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p = 0.0 (non-conjugate problem), 1.0 and 2.0. It should be
noted that the solution of the basic case p = 0.0, where the
cylinder’s wall temperature is assumed to be uniform at
Ty, corresponds to the problem of free convection from an
isothermal vertical cylinder embedded in a porous medi-
um first considered by Minkowycz and Cheng [15].

Fig. 2-4 show the non-dimensional temperature profiles
within the boundary layer plotted against # for some val-
ues of x when p = 0.0, 1.0 and 2.0. These figures show that
the temperature profiles increase with the increase of the
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Fig.2. Temperature profiles for p = 0.0 (non-conjugate problem)

1.0 L |

1T ] ryrr vy vyrrrvrreoevrvrze

< p=1.0

08

0.8

Trrpryey

0.4

0.2

SYE INUYE EWETY FUUTY U

TTT T TTey

1.0 T v 7 T

-
B
-
-
-
s
-
.
.
.

[ X

0.4

0.2

llllllllllllllllLLL,l_Ll

LRAAE RAY

Fig.4. Temperature profiles for p = 2.0

axial distance x. This fact is in agreement with the results
found by Pop and Merkin [10] for the corresponding
problem of a vertical flat plate embedded in a porous
medium.

The variation of the non-dimensional temperature at
the outer surface of the cylinder 0(x,0), plotted against X,
is depicted in Fig. 5 for p = 0.0 (basic case), 1.0 and 2.0,
where the basic case is represented by a straight line as
resulted from Eq. (17). values of 0(x,0) are also given in
Table 1 for future reference. It is seen from this figure and
Table 1 that 0(x, 0) decreases as p increases. For p # 0 this
temperature is lowest at the leading edge and increases

Table 1. Representative solutions for 0(x,0)

X =00 p=10 p =20
0.0000 1.0000 0.0000 0.0000
0.0039 1.0000 0.1829 0.1199
0.0366 1.0000 0.3396 0.2326
0.1434 1.0000 0.4712 0.3368
0.3951 1.0000 0.5788 0.4314
0.8995 1.0000 0.6654 0.5160
1.8156 1.0000 0.7336 0.5904
3.3754 1.0000 0.7871 0.6546
5.9119 1.0000 0.8285 0.7094
9.8984 1.0000 0.8608 0.7554
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with x until it approaches the constant value of the basic
case at very large x. Finally, we show in Fig. 6 the effect of
the parameter p on the local Nusselt number as given by
Eq. (31). Again, the basic solution (p = 0.0) is included
into this figure. It is worth mentioning that for p = 0.0 and
X = 0, we found —f”(0,0) = .44375, while Minkowycz and
Cheng [15] reported the value of 0.4440, which shows that
the present result is in excellent agreement with that from
[15]. Further, it is to be noticed from Fig. 6 that the heat
flux rate at the outer surface of the cylinder increases to
the basic case (p = 0.0). This conclusion is very important
for practical applications.
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