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Heat transfer mechanisms during short-pulse laser heating

of two-layer composite thin films

M. A. Al-Nimr, M. Alkam, V. Arpaci

Abstract Using a simple perturbation technique, an ana-
lytical investigation is presented for the heat transfer
mechanisms during ultrafast laser heating of two-layer
composite thin slabs from a microscopic point of view.
The composite slab consists of two thin metal films which
are in perfect thermal contact. The microscopic parabolic
two-step model is adopted to describe the behavior of the
composite slab. In the microscopic two-step model, the
heating process is modeled by the deposition of radiation
energy on electrons, the transport of energy by electrons,
and the heating of the material lattice through electron-
phonon interactions. The proposed perturbation tech-
nique is used when the normalized temperature difference
between the solid lattice and the electron gas is relatively a
small perturbed quantity.

List of symbols

C  heat capacity, J/m* K

Cr  heat capacity ratio, C,/C;

G electron-phonon coupling factor, W/m® K

Gij  Green’s function

h; thickness of the first layer, m

h, total thickness of the two layers, m

k thermal conductivity, W/m K

kr  thermal conductivity ratio, k,/k;

P.; dimensionless heat source in the electron gas of the
first layer, Qe1h2/kei T

P, dimensionless heat source in the electron gas of the
second layer, Qe173Ce; /ke1 TiCea

P;  dimensionless heat source in the solid lattice of the
first layer, Quh2Cei/kei TiCi
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P, dimensionless heat source in the solid lattice of the
second layer, Quh3Ce; /ke1 TiCra

Q.  volumetric heat source in the electron gas, W/m’

Q@ volumetric heat source in the solid lattice, W/m?

r dimensionless thickness of the first layer, h; /h,

metal surface reflectivity

time, s

time at which the laser pulse is released, s

laser pulse duration, s

temperature, K

initial temperature of both lattice and electron gas, K

spatial coordinate, m

dimensionless spatial coordinate, z/h,

NN oSS ™

Greek symbols

o radiation absorption coefficient, 1/m

0 Dirac’s delta function

A difference function

€ dimensionless small parameter

0 dimensionless temperature, (T — T;)/T;

T dimensionless time, tke;/(h3Ce1)

7o dimensionless time at which the laser pulse is
released, foke1/(H3Ce1)

1,  dimensionless laser pulse duration, tyke;/(h3Ce1)

Subscripts

1 first layer

2 second layer
e electron

i initial

1 lattice

1

Introduction

Research of high-rate heating on thin film structures has

rapidly grown in recent years because of the advancement
of short-pulse laser technologies and their applications to
modern microfabrication technologies [1, 2]. To date, the
laser pulse can be shortened to the range of femtoseconds
(1071 s) [3, 4] making controls of the penetration depth

and the processing time of the material more effective and
accurate.

Associated with shortening the response time, the
nonequilibrium thermodynamic transition and the mi-
croscopic effects in the energy exchange are two important
issues to be faced. The microscopic mechanisms of energy
deposition become important when the heating process is
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very fast. Non equilibrium electron and lattice tempera-
tures in metals are proposed by Kaganov et al. [5] and
confirmed experimentally by Eesley [6].

In the literature, there are basically four models that
describe the mechanism of energy transport during short-
pulse laser heating. The first model is the parabolic one-
step model, which is based on the classical Fourier con-
duction law. This model assumes that solid lattice and
electron gas are in local thermal equilibrium and that heat
flux merges instantaneously when temperature gradients
exist. The second model is the hyperbolic one-step model
[7, 8] which is first postulated for gases by Maxwell [9]. In
this model, it is assumed that both lattice and electron gas
are in local thermal equilibrium but the heat flux and the
temperature gradient are non-local in time. This implies
that heat flux lags the temperature gradient by the thermal
relaxation time. The third and fourth models are the
parabolic two-step and the hyperbolic two-step models
[10-16]. In these two models, it is assumed that solid
lattice has different temperature than electron gas and the
difference between these two temperatures depends on the
coupling factor between both domains. However, in the
parabolic two-step model, it is assumed that both heat flux
and temperature gradients are local in time. This implies
that heat flux in the electron gas (or in the solid lattice in
applications involving semiconductors) merges instanta-
neously as soon as temperature gradients in the electron
gas (or in the solid lattice) exist. On the other hand, the
hyperbolic two step model, which is proposed by Qiu and
Tien [11], assumes that heat flux and temperature gradient
are non-local in time. In other words, the heat flux in the
electron gas (or in the solid lattice) lags the temperature
gradient by a thermal relaxation time.

In the literature, intensive research has been conducted
using the above mentioned four models. To the best of the
authors’ knowledge all the research in the literature
consider the interaction of high-rate heating source with a
single thin metal film from macroscopic and microscopic
points of views or the interaction of high-rate heating
source with a two-layer composite thin slab from a
macroscopic point of view. In the present work, it is
intended to model the heat transfer characteristics of a
two-layer composite thin slab upon the application of a
high-rate heating source from a microscopic point of
view. Using a simple perturbation technique, an analytical
investigation is presented for the heat transfer mecha-
nisms during ultrafast laser heating of the two-layer
composite thin slabs. The two-layer composite slab
consists of two thin metal films which are in perfect
thermal contact. The proposed perturbation technique is
used when the normalized temperature difference
between the solid lattice and the electron gas is relatively
a small perturbed quantity.

2

Analysis

Consider the interaction of a high-rate heating laser beam
with a two-layer slab that consists of two thin films in
perfect thermal contact. Using the dimensionless param-
eters defined in the nomenclature, the governing equations
in their dimensionless form are given as:
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where F; and F, represent the fraction of absorbed inci-
dent radiation by the electron gas in the first and second
layers, respectively, and as a result, 1 — F; and 1 — F,
represent the fraction of energy absorbed by the solid
lattice in the first and second layers, respectively.

Equations (1-4) assume the following initial and
boundary conditions:
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In Egs. (1-4), it is assumed that the conduction of heat by
phonons is not neglected and that the incident laser energy
is absorbed by both electron gas and solid lattice. As-
suming that conduction of heat may be carried by pho-
nons, in addition to electrons, is a justified assumption for
metals containing large amount of impurities or for
semiconducting materials, where it is known that energy
may be diffused by both solid lattice and electron gas in
these materials [16, 17]. Depending on the nature of
heating methods and the structure of materials, it is known
that energy deposits into materials in different ways. For
example, energy can deposit simultaneously on all energy
carriers (e.g., electrons and phonons) through contact
heating at surfaces, or selectively on a particular group of
carriers by radiation heating. Radiation heating excites
free/bound electrons in metals, but excites valence elec-
trons or optical phonons in semiconductors. So it is
necessary for each one of the energy equations of the



parabolic two-step models to contain a source term to
account for that part of incident radiation absorbed by its
energy carriers which are electrons or phonons. Equation
(5) assumes that the thin composite slab is thermaly in-
sulated from its external boundaries. This is justified since
the duration of the heating process is very short and as a
result, the thermal losses from the slab are of insignificant
effects.

Equations (1-4) are four coupled partial differential
equations which are second order in space and first order
in time. Two types of coupling exist among these equa-
tions. These are the direct coupling between Egs. (1) and
(2) and between Eqs. (3) and (4), and the indirect coupling
through boundary conditions between Egs. (1) and (2)
from one side and (3) and (4) from the other side. Elim-
ination the coupling between these equations yields four
partial differential equations of higher orders contain
mixed derivatives which are indirectly coupled through
boundary conditions. The higher order and mixed deriv-
ative terms appear in the obtained equations raise the
difficulty of solving such problems. However, in many
applications, the coupling between the energy equations
(1-4) may be eliminated without raising the order of the
obtained partial differential equations and without the
appearance of mixed derivative terms. These applications
involve situations in which the incident thermal radiation
interacts with materials having very large coupling factor
between electron gas and solid lattice or situations in
which the laser pulse duration is not too short. In these
situations, the difference between the electron and lattice
temperatures is very small, but not neglected, and may be
normalized in the form of a very small perturbed quantity.
These differences may be written as:

Oe1 (Ta 5) = 011(1-7 5) + elAI(Tv é) (6)
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where A;(z, &) and A,(z, &) are functions of space and
time, ¢, = 1/H; and €, = 1/Hs are dimensionless small
parameters. As the coupling factors G; and G, increase, H;
and Hs increase and ¢; and ¢, decrease. In the limit as G;
and G, become very large, then 0.; approaches 0;; and 0,
approaches 0, and then the macroscopic heat conduction
models may be adopted. Consider, for example, the in-
teraction of laser beam with a very thin lead (Pb) film of
1 x 107® m thickness. For lead, the thermal conductivity
and coupling factor have values of 35 W/m K and

12.4 x 10'® W/m?® K, respectively [10, 14]. Under these
conditions, H; = 3500 and as a result, ¢ (= 1/H;) may be
considered as a very small perturbed quantity. Examples of
other metals having very large coupling factor (i.e., having
very small perturbed parameter €) are Vanadium (V),
Niobium (Nb), Titanium (Ti), etc. Now, eliminate 6.; — 0y
between Egs. (1) and (2) and 0., — 01, between Egs. (3)
and (4), and drop terms of order ¢, ¢, and higher, yields:
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Analytical solutions for Egs. (8) and (9) are expressed in
terms of Green’s function in the form [18]:
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Here Gjj(Z,1|Z', 1) are the appropriate Green’s functions
which are given as:
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F 1—F
X |:—2Pe2(f*,Z/) + ( 2)
H; 7

P12 (’C* y Z/>:| dZ/

Cj‘Pin (Z)lyjn (Z/) (14)
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where C; = 1/A;, C; = ker /A2, and Wy,s are the eigen-
functions obtained from the solution of the homogeneous
version of Egs. (8) and (9), as:

Y., = cos (\ff%Z)

(15)
Y,, = E;, cos <\ﬁz_2Z> + E,, sin (\ﬁ%Z) (16)

where E;, and E,, are found as:

and
b, b
VAT VA
Also, A} and A, are obtained in terms of Egs. (10), (11)
and (18), (19), as:
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Now, no further processing on the solution can be con-
ducted without specifying the nature of the heating source.
Consider an impulsive energy source released at time

T = 19 and assume that all of the incident energy is ab-
sorbed completely by the electron gas of the first layer. As
aresult, F; =1 and P, = P, = 0, and

Par _ = Ro(t — 19)

- (17)
where R = h% Qe1/ke1H1 T;, and 6 is the Dirac’s delta func-
tion. Such an energy source could model, for example, the
application of a strong laser pulse which releases its energy
through an absorbing medium encountered in the annealing
of semiconductors [19]. The temperature distribution can
be directly obtained by substituting Eq. (17) into the general
solution as given in Egs. (12) and (13), and therefore,
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To verify the validity of the obtained results, the difference
function A, in the first layer of a two-layer composite film
is compared with the difference function in a single layer.
The comparison is conducted in a two-layer composite
film having r = 0.98. This implies that the second layer is
of very small thickness. Figure 1 shows the comparison
between the transient behavior of the two difference
functions. The results obtained using the following
parameters:

(%) sin

H; = 1000, H, =0.01, H;= 1000, H,=0.01,
Hs = 1000, Hg=0.01, H; =1000, 7o=23
Fi=1, P,=P,=0 r=098 R=1

kek =1, kx=1 Z=05

It is clear from Fig. 1 that the difference function in the
first layer of the composite film is very close to the dif-
ference function of a single layer. This is because of the
very small thickness of the second layer. As a result, the
first layer in the composite film behaves as if the second
layer is not exist. Also, it is clear from the same figure
that both difference functions go to zero as time in-
creases. As time proceeds, the electron gas exchange its
energy with the solid lattice and the difference between
the two temperatures decreases. In the limit, both the
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Fig. 1. The difference function at the center of the single film and
at the center of the first layer in the composite film

electron gas and the solid lattice attain the same tem-
perature. The figure shows that the difference function in
the composite film is slightly lower than that in the single
layer. The electron gas in the first layer of the composite
film losses small part of its energy to the second thin
domain in addition to the major part lost to the solid
lattice of the first domain. As a result, the difference
function in the composite film is less than that in the
single film.

Also, consider another heating source term in which the
spatial distribution of the laser intensity is assumed to
decay exponentially in the first layer and the temporal
shape of the laser pulse is assumed to be Gaussian with a full
width at half maximum (FWHM) pulse duration 7,
peaking at time 7,. This source term is given as [11]:
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and A, and A, are obtained from Egs. (10), (11) and (23),
(24), with:
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Conclusion

Using a simple perturbation technique, an analytical in-
vestigation is presented for the heat transfer mechanisms
during ultrafast laser heating of a perfectly contacted two-
layer composite thin slab from a microscopic point of
view. Analytical expressions for the electron gas and solid
lattice temperature distributions in both layers are ob-
tained. The thermal behavior of the slab is described under
the effect of heating sources of two types. The first is im-
pulsive in time and uniform is space and the second is
Gaussian in time and exponentially decaying is space. The
microscopic parabolic two-step model is adopted to de-
scribe the behavior of the composite slab. The proposed
perturbation technique is used when the normalized
temperature difference between the solid lattice and the
electron gas is relatively a small perturbed quantity.
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