
Abstract Thermal motions of microscopic probes limit
the possibilities of experiments that are designed to resolve
single-macromolecule dynamics in aqueous conditions.
We investigate theoretical strategies for maximizing sig-
nal-to-noise ratios or resolution in typical situations, illus-
trating our discussion with examples from optical tweez-
ers and atomic force microscopy experiments. A central
result is that the viscous drag on a micromechanical probe
is more important than the compliance of the probe. Within
limits, increased stiffness of an AFM cantilever or of an
optical trap does not increase resolution, and decreased
stiffness does not provide the possibility of less invasive
measurements.
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Introduction

Intramolecular motions, central to biological function,
have been largely inaccessible to static methods, such as
electron microscopy or X-ray crystallography. Dynamics
have been observed with a multitude of conventional spec-
troscopy methods, but these average over a macroscopic
sample, making it impossible to resolve details of, for ex-
ample, the motion of motor proteins or the folding and un-
folding of proteins. Recently, micromechanical techniques
have begun to explore the territory of small scale dynam-
ics. Several experiments are now capable of studying the
dynamics of individual biological macromolecules.

Optical tweezers have been used quantitatively to exert
or measure small forces and to measure small displace-
ments of moving objects, with sufficient resolution to study

individual biological macromolecules, for example DNA
and proteins (Svoboda et al. 1993; Perkins et al. 1994; Svo-
boda and Block 1994b; Molloy et al. 1995; Yin et al. 1995;
Coppin et al. 1996; Simmons et al. 1996; Smith et al. 1996;
Kellermayer et al. 1997; Stout and Webb 1997; Tskhovre-
bova et al. 1997; Wang et al. 1997). Optical trapping of
particles uses the momentum transfer from light scattered
or diffracted by an object (Ashkin et al. 1986; Ashkin 1992;
Ashkin 1997). Three-dimensional trapping of particles can
be achieved at the focus of a laser beam if a strong enough
gradient of intensity can be established in all directions.
Typical forces are on the order of tens of piconewtons (pN)
(Svoboda and Block 1994a).

Atomic force microscopy (AFM) (Moy et al. 1994;
Thomson et al. 1996; Rief et al. 1997), although initially
developed to image surfaces (Rugar and Hansma 1990),
glass microneedles (VanBuren et al. 1994; Meyhofer and
Howard 1995; Cluzel et al. 1996; Ishijima et al. 1996),
magnetic beads (Smith et al. 1992; Strick et al. 1996) and
single molecule fluorescence microscopy (Funatsu et al.
1995; Sase et al. 1995) have also been used to study indi-
vidual molecules.

In single-molecule experiments, evading noise in vari-
ous forms becomes of foremost importance. Noise appears
in electronic components, but is also unavoidably present
as the Brownian motion of the observed object and of the
probe that is interacting with the object, which are typi-
cally immersed in room-temperature aqueous solutions.
Thermal noise sources set fundamental limits to microme-
chanical force and position measurements. Intuition is of-
ten misleading in dealing with thermal fluctuations on nm
length scales. One possible misconception is that, in at-
tempts to image soft molecules with AFM (for a review
see (Shao et al. 1996)), softer cantilevers allow less inva-
sive imaging. It has similarly been argued that a stiffer op-
tical trap decreases thermal noise (Visscher et al. 1996),
which does, however, not necessarily mean that the signal-
to-noise ratio is improved. Here we will discuss noise is-
sues with an eye on optical tweezers experiments and AFM,
but the basic results of the discussion apply to other mi-
cromechanical experiments as well.
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Common to many of these techniques is non-imaging
detection with fast photodiodes. Intense illumination can
be used to track the motion of objects with Å-accuracy 
(Bobroff 1986; Denk and Webb 1990). Using that fact, the
motion of an AFM cantilever is usually detected by a la-
ser beam reflected off the back of the cantilever onto a split
photodiode (Meyer and Amer 1988; Alexander et al. 1989).
With optical tweezers the trapping laser beam itself can be
used for position detection (Svoboda and Block 1994a;
Smith et al. 1996).

Spectral data analysis

Experiments that directly monitor microscopic dynamics
usually produce time-domain data, x (t), such as a series 
of voltage measurements corresponding to the varying 
light intensity detected with a photodiode. The time series 
is obviously relevant for examining single events. Instru-
mental and thermal noise, on the other hand, is best char-
acterized in the frequency domain by its power spectrum 
or power spectral density (PSD), here denoted by Sx ( f ). 
Sx ( f ) is defined as the Fourier transform of the autocor-
relation function of the time series. It is more conveniently 
estimated from the squared magnitude of the Fourier trans-

form of data sets: Sx ( f ) = n ·  x̃ ( f )  2, where x̃ ( f ) is the
Fourier transform of x (t), and n normalizes Sx ( f ) so that
its frequency integral equals the variance of the data. The
finite length of the data set and the sampling time affect
this estimate of Sx ( f ) ; such elementary aspects of power
spectrum calculation can be found elsewhere (Press et al.
1992; Gittes and Schmidt 1997).

Brownian motion of a harmonically bound particle

For systems such as optically trapped particles in solution,
or a microscopic AFM tip, the simplest theory of Brown-
ian motion relies on the Langevin equation, which models
fluctuations as a response, via the hydrodynamic drag co-
efficient of the object, to a microscopic random thermal
force. This formalism is justified by the fluctuation-dissi-
pation theorem (Reif 1965; Landau et al. 1980), which gen-
erally relates linear “dissipation” coefficients to the prop-
erties of thermal fluctuations. In an optical trap, the mo-
tion of a micron-scale trapped particle takes place at small
Reynolds number, so that viscous drag is completely dom-
inant over inertial forces (Happel and Brenner 1983). The
Langevin equation for such as Brownian harmonic oscil-
lator is

γ ẋ + κ x = F (t) , (1)

with hydrodynamic drag coefficient γ, particle position 
x and velocity ẋ. The spring stiffness of the harmonic 
potential is κ, and the random force is F (t), with an 
average value of 0, and a constant power spectral density
SF ( f ) = n ·  F̃ ( f )  2 = constant (white noise). This ap-

proximation is valid at frequencies sufficiently lower than
those of the rapid variations in solvent forces (1014 Hz).
The Nyquist theorem is a special case of the fluctuation-
dissipation theorem, originally describing thermal voltage
fluctuations in electrical circuits, but which directly trans-
lates to this mechanical system (Reif 1965; Landau et al.
1980) (sec. 15.5, 15.8, 15.17). The Nyquist formula ex-
presses the thermal white-noise force magnitude in terms
of γ,

SF ( f ) = 4 γ kB T , (2)

where kB is Boltzmann’s constant and T is absolute tem-
perature. If the drag coefficient becomes complex-valued
(see below), γ in the Nyquist formula is replaced by its real
part. By Fourier transforming both sides of Eq. (1), taking
their average square magnitude, and using Eq. (2), one
finds that the power spectrum of the position signal is

(3)

where we define the characteristic frequency fc = κ/2π γ.
For frequencies f K fc , the power spectrum is approxi-
mately constant, Sx ( f ) ≈ S0 = 4 γ kB T/κ2, which reflects
the confinement of the particle. At higher frequencies, 
f k fc , Sx ( f ) falls off like 1/ f 2, characteristic of free dif-
fusion – over short times the particle does not “feel” the
confinement.

The motion of an AFM tip immersed in fluid can also
be described by some overall drag coefficient, γ. The 
Nyquist formula (Eq. (2)) will hold, and thermal forces will
depend only upon the drag coefficient. However, the tip
may be underdamped, even in a liquid. In the presence of
an inertial resonance, the spectrum of noise fluctuations is
no longer a simple Lorentzian, and a peak appears in the
PSD. A typical resonant frequency for an AFM cantilevers
is ~ 10 kHz with the tip submerged in fluid, with a Q-value
of less than 10 (Roters and Johannsmann 1996). A more
subtle point is that, due to a possibly large region of con-
tact between the cantilever and the fluid, inertial shear mo-
tion in the fluid could cause γ to be both complex (i.e. 
exhibiting a phase lag) and weakly frequency-dependent
over some frequencies of interest, even at low Reynolds
number (Landau and Lifshitz 1959). However, such an ef-
fect has not been detected to our knowledge, and might be
insignificant. We will here assume γ to be real.

Hydrodynamic drag

The viscous drag coefficient γ of an object can in some 
cases be calculated by solving hydrodynamic equations of
motion. One such solution is the Stokes drag on a small
sphere, far from any surface (Reif 1965): γ= 6 π ηa, where
η is the dynamic viscosity of the solvent and a is the ra-
dius of the sphere. Other unbounded-fluid drag coeffi-
cients, which we denote as γ∞ , are available for objects of
various shapes (Happel and Brenner 1983). When an ob-
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ject is located close to a surface (at height h) as in a typi-
cal AFM application, the drag coefficient γ (h) that must
be used in Eq. (2) is different from γ∞ . One also must use
γ (h), not γ∞ , when flow is induced above a surface and the
object is held stationary at height h. For a sphere at a dis-
tance larger than its radius from a surface, the first-order
correction to the Stokes equation is the Lorentz formula
(Happel and Brenner 1983):

(4)

which describes motion parallel to the wall with the sphere
center at a height h. For motion normal to the wall, the 
factor 9/16 is replaced by 9/8. As the gap h-a vanishes, 
the drag coefficient becomes infinite (Goldman et al.
1966):

γ (h) ≅ γ∞ × a/(h-a) (perpendicular motion)

γ (h) ≅ γ∞ × log [a/(h-a)] (parallel motion) (5)

with γ∞ = 6 π ηa. Equations (5) assume a very low Rey-
nolds number. They are frequency-independent, up to
rather high frequencies (about 1 MHz, for a micron-diam-
eter bead), where inertial shear effects become significant
(Landau and Lifshitz 1959).

Thermal noise in typical experiments

Micromechanical experiments measure forces and dis-
placements produced by a molecule or surface of interest
(the “target” object). This is typically done by monitoring
the position xp (t) of an elastically suspended probe as it
interacts with the target object (Fig. 1). This probe could
be an optically trapped particle (Fig. 1A), in which case
the displacement ∆x (t) = xp (t) – x0 (t) of the probe from the
trap center x0 (t) is typically measured. The probe could
also be an AFM tip scanned horizontally across a surface,
or moved vertically to interact with a fixed macromolecule
(Fig. 1B). In the latter case the probe displacement ∆x from
its resting position is inferred from the distortion of the
elastic cantilever. We will generally call ∆x (t) the “probe
strain”. The suspension force is inferred from the stiffness
Kp of the elastic element as

F (t) = Kp ∆x (t) . (6)

Position detection can be used to construct a feedback loop,
to move the zero-force position of the probe relative to the
sample (in AFMs, it is often the sample that actually
moves).

We discuss two prototypical feedback experiments – al-
though other experiments (e.g. without feedback) may be
intermediate cases. Different types of detectors are neces-
sary for these two types of experiments. Using piezoelec-
tric actuators (in AFM) or acousto-optic or electro-optic
modulators (with optical tweezers) to move the anchor
point of the probe assembly, ideal feedback can be approx-
imated quite well.

γ π η= +



6 1 9

16
a a

h

Position-clamp experiments

Position clamp experiments measure a time-varying force
Fsig (t), exerted on a probe held stationary by using feed-
bacl on the anchor position x0 (t) (Fig. 2A). In an AFM,
this might be used to study unfolding of proteins (Rief et
al. 1997) and, in an optical trap, to measure the force pro-
duction of a molecular motors under a stationary load (Mol-
loy et al. 1995; Simmons et al. 1996; Wang et al. 1997).
As a changing force begins to displace the probe, feedback
changes the probe strain ∆x (t) = xp – x0 (t) to keep the probe
position xp constant. The time-dependent force is found
from ∆x (t):

Ftot (t) = Kp ∆x (t) . (7)

With perfect feedback control, the fundamental limitation
in measuring the force due to the target objects comes from
white-noise thermal force that also acts on the probe. The
power spectrum of thermal force is given by Eq. (2), where
γ is the frictional drag coefficient of the probe in the fluid.

Because the thermal noise power extends to very high
frequencies, low-pass filtering the strain signal ∆x (t) will
increase the signal-to-noise ratio (the cut-off frequency fs
must of course lie above frequencies of interest in the sig-
nal). The remaining uncertainty ∆F (t) = (Ftot (t) – Fsig (t))rms
is the integrated noise power below fs ,

(8)

The force uncertainty is minimized by either: (i) reducing
the drag γ on the probe, or (ii) slowing down the force 
signal to be measured and making fs as low as possible 
– by scanning slowly with an AFM, for example. In the
case of a bead of diameter 1 µm, optically trapped (in 
water far from a surface) the drag coefficient is about
γ= 8 ×10–9 kg/s. Assuming a reasonable bandwidth of 
1 kHz, this implies a force uncertainty of ∆Frms ~ 0.4 pN.
For an AFM tip, the level of noise may be much larger due

∆ ∆F F k Tfrms B s= =2 4γ .
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Fig. 1 A, B Two examples of single molecule micromechanical ex-
periments. A Optical tweezers: a laser focus traps a micron sized
bead, with a motor protein attached to it. The motor protein moves
along a track protein. The force on the motor and its displacement
from the trap center can be measured with a photo diode. B AFM: a
flexible cantilever carries a microscopically sharp tip, here shown
interacting with a macromolecule fixed to a substrate. Tip deflection
is monitored with a laser and a photodiode



to the larger drag of the tip, especially close to a surface.
This situation implies a trade-off between temporal and
force resolution and this may be a serious problem, for ex-
ample, in measurements of the dynamics of protein unfold-
ing (Rief et al. 1997). Static forces can in principle be mea-
sured to arbitrary precision, with very small fs and very
long measurement times, but, in practice, drift in the ap-
paratus becomes limiting. Equation (8) shows that the stiff-
ness of the elastic probe suspension if not relevant in prin-
ciple. In practice, electronic noise in the strain detector can
limit how small a strain can be detected, in which case a
softer probe allows measurement of a smaller force change
and of a smaller absolute force. On the other hand, elec-
tronic noise and laser noise can be controlled, so that de-
tector noise is usually not the limiting factor.

Force-clamp experiments

If the probe strain ∆x is held constant by feedback as the
probe moves, the constant suspension force Fset = Kp ∆x is
balanced by a constant force of interaction with the target
(Fig. 2B). The probe position xp (t) is then monitored. With
an AFM one might be tracing a surface or the shape of a
biological macromolecule as defined by its constant-force
contours. In an optical trap, one might be following the
motion of a molecular motor under a constant load. We mo-
mentarily ignore direct dynamical effects of viscous drag
and cantilever mass (and return to this below); thus in the
absence of thermal forces the probe would always exert ex-
actly the chosen force on the sample. In reality, the sus-
pension force actually balances the constant sum of the
force of interaction with the target and a fluctuating ther-
mal force on the probe. The probe position xp (t) is then
only an estimate for the true constant-load position of the
target.

Two experimental goals need to be distinguished. Fig-
ure 3 illustrates the situation with a hypothetical interac-
tion-force profile between probe and sample (for example,
repulsive force increases when an AFM tip approaches a
surface; alternatively the elastic linkage between a probe
and a molecular motor develops tension with increasing
distance). Thermal noise imposes distinct limitations in
two experimental situations: (i) It limits the accuracy with
which a high-force spatial response can be determined, and
(ii) it sets a minimum force at which a spatial response can
be obtained at all.

Displacement measurements at large constant force

Displacement response xp (t) to a strong force Fset may in-
clude an (intentional) deformation of the target, such as the
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Fig. 2 A, B Two schematic prototypical micromechanical experi-
ments with feedback. In an optical trap, the probe is a trapped di-
electric particle, the anchor point (square) represents the position of
the center of the trap, which is controlled through feedback, and Kp
represents the trap stiffness. In an AFM, the probe is the scanning
tip, the anchor point is the base of the cantilever, (controlled via feed-
back) and Kp is the cantilever stiffness. The probe interacts with the
sample through a force that may change with (lateral) position and
time. A Position-clamp experiment. Absolute probe position is mon-
itored and the anchor point is moved to keep the probe stationary.
From the changing probe strain, the changing force on the probe is
known. B Force-clamp experiment. The anchor point is now moved
to keep a constant probe strain, and thus a constant force on the probe.
The anchor motion then shows the constant-force motion. However,
this probe response is low-pass filtered by the dynamic response char-
acteristics of the probe

Fig. 3 Force-clamp experiments at high force and at low force 
(edge detection). The solid curve is an instantaneous force profile
F (xp) as a function of probe position, xp . An uncertainty ∆Frms in
force measurement results from thermal forces on the probe. High
force: the apparatus is operating in a constant-force mode at values
Fset well above the force uncertainty, Fsetk ∆Frms . The force uncer-
tainty translates, via the slope Ks of F (xp), into an uncertainty in lo-
cating the position x (Fset) on the force profile corresponding to the
set force. Edge detection: locating the “edge” of a profile in the least
invasive manner, i.e. using the smallest possible force. The smallest
possible set force is Fset ≈ ∆Frms . If Fset approaches ∆Frms the posi-
tion uncertainty diverges to infinity



unfolding of a protein. In our context, however, it is irrel-
evant what mechanism produces xp (t). By a “large” force
we simply mean that Fset is large compared to the root-
mean-square thermal force on the probe: Fset k ∆Frms (see
Eq. (8)). The position uncertainty in the experiment is
caused by the force uncertainty ∆Frms (Fig. 3). If the local
stiffness of the probe-sample interaction is Ks (i.e. the lo-
cal slope of F vs. x in Fig. 3), then

(9)

As with the position clamp, the stiffness of the trap or the
cantilever does not enter directly, but now the details of
the probe-target interaction are determining the error. In
measuring displacement xp (t) caused by molecular motor
action with optical tweezers, for example, the uncertainty
∆xrms can be very small if the stiffness Ks of the bead-mo-
tor linkage is high. Thermal noise can be further reduced,
as before, by reducing the drag on the probe, or by slow-
ing the target motion if possible.

“Edge” detection

Sometimes one wants to detect the edge of a force profile
without disturbing the object. In imaging soft biomolecules
with an AFM, one would, for example, like to follow the
lowest possible force contour. In any real system, the inter-
action force between probe and sample will smoothyl ap-
proach zero at some distance (Fig. 3). Again ignoring di-
rect dynamical effects of drag and inertia, the suspension
force Fset again balances the sum of interaction force with
the target object, Fobj , and the random thermal force ∆F (t)
given by Eq. (8). The thermal noise now determines the
lowest force contour that can be followed. As an example,
consider a constant-force AFM probe near a repulsive sur-
face. If a thermal fluctuation ∆F (t) pushes the probe away
from the surface, the feedback will move the probe even
further to decrease Fobj (t) to compensate for the increased
thermal force. If Fset is so low that Fset + ∆F (t) becomes neg-
ative, the feedback cannot compensate even by moving
completely away from the surface. To locate the “edge” of
a force profile, one must therefore apply at least a force
Fset ;∆Frms = √ 4 γ kB T fs .

For noise reduction, again the primary strategies are to
reduce both the drag on the probe and the filter frequency
fs . Surprisingly, probe stiffness is again not a direct con-
sideration in avoiding large forces on the sample (assum-
ing the detector resolution not to be limiting).

Displacement measurement without feedback

AFM tips are often scanned without feedback, with the 
passive cantilever compliance allowing motion (these are
often called “constant-height” scans because of the con-
stant anchor height, not to be confused with our position-
clamp experiments). With optical tweezers, displacements
of a single active molecule against the trap compliance are
often measured without using feedback. The molecule is

∆x
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tethered by a compliant link (stiffness Ks) to the probe held
in the trap (stiffness Kp). Due to the compliant attachment,
the molecular displacement, δxm , will result in an attenu-
ated probe displacement, δxp :

(10)

Due to thermal forces, the position uncertainty of the probe
will be (analogous to Eq. 9):

(11)

The signal-to-noise ratio can then be defined as:

(12)

The signal-to-noise ratio is therefore independent of trap
stiffness, and again dependent on filter frequency and drag
coefficient. The signal-to-noise ratio also becomes larger
with increasing stiffness in the molecule-to-probe connec-
tion; this has been observed (Svoboda et al. 1993).

Dynamic response of the probe interacting with a sample

Another unavoidable limitation for micromechanical ex-
periments is the dynamic response of the probe, which is
not actually a noise effect. The probe cannot respond in-
stantaneously to the motion of the sample because of its
dynamic properties (viscous drag, mass and stiffness). If
these dynamic properties depend specifically on the nature
of the sample-probe interaction, which is to be measured
and therefore a priori unknown, then a fundamental ambi-
guity remains. This is true no matter how perfect the feed-
back is. As an example, if an AFM scan is made at too high
a scan rate, the probe will not follow a compliant surface,
but will simply plow through at nearly constant height. Or,
if a protein changes conformation very rapidly, an attached
probe may not be able to immediately follow that change.

To be specific, consider a probe suspended with finite
stiffness Kp , drag γ and mass m. If these were all zero, an
“ideal” probe motion, xp0 (t), would be measured. In an ac-
tual measurement, inertia, drag and stiffness cause the ac-
tual probe motion xp (t) to more or less lag behind xp0 (t).
The equation of motion for the probe contains then elastic
forces, drag force and a mass term, where usually the stiff-
ness of the probe-object interaction, Ks , is unknown:

mẍp + γ ẋp + (Kp + Ks) xp = Ks xp0 (t) . (13)

We consider non-zero frequencies, so that no DC term 
appears. Fourier transforming Eq. (13) shows the magni-
tudes of the Fourier components at a given frequency
f , x̃p ( f ) and x̃p0 ( f ) to be related by 

(14)
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For soft samples (small Ks), this prefactor may contain 
a sample-dependent resonance near the frequency
f = ((Kp + Ks)/m)1/2, shifted from the resonance in solution
(see above); variation in Ks and other sample properties
may in fact be deduced from changes in frequency and
width of this free solution resonance (Roters and Johanns-
mann 1996). However, if the unperturbed signal x̃p0 ( f ) is
desired, it may not be separable from the prefactor con-
taining the unknown parameter Ks . For example, take a
perfect force-clamp experiment using a massless probe, for
which we can put Kp = m = 0 in Eqs. (13) and (14), and the

prefactor becomes . Due to probe response,

the true signal x̃p0 ( f ) is both attenuated and low-pass fil-
tered at a frequency fps = Ks/2 π γ that is unknown from this
experiment alone.

In experiments measuring motor protein forces, the
stiffness Ks of the motor-bead linkage was found to be 
variable, between about 0.01 and 0.1 pN/nm (Svoboda 
et al. 1993; Svoboda and Block 1994b; Kuo et al. 1995;
Meyhofer and Howard 1995; Coppin et al. 1996), which
for 0.5 µm beads implies a cutoff frequency on the order
of 1 kHz. On the other hand, AFM probes against protein
surfaces, which typically have elastic moduli of several
GPa (Gittes et al. 1993), show effective spring constants
Ks on the order of 102 pN/nm, which for a low-drag probe
could lead to very high cutoff frequencies.

Without feedback the situation can be analyzed along
the same lines. With mechanical resonances, on the other
hand, feedback can become difficult due to additional
phase shifts in the loop, and practical situations may be
very complex.

Conclusions

Single molecule dynamic experiments at room tempera-
ture are severely affected by thermal fluctuations in micro-
scopic probes and in the molecules themselves. There are
some universal but sometimes counterintuitive strategies
to increase the signal-to-noise ratio. Low pass filtering and
reducing viscous drag on the probe directly improve reso-
lution, but probe stiffness does not play a direct role. Nei-
ther does a soft probe in general help to measure or image
more gently, nor does a stiff probe help to decrease noise.
For fast motions, viscous drag forces and inertial forces on
the probe need to be taken into account, with the conse-
quence that at high frequencies a true constant force ex-
periment is not possible.
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