In situ force-balance tensiometry

G. S. Lapham, D. R. Dowling, W. W. Schultz

Abstract Although a fundamental physical parameter, surface
tension is difficult to measure. Common tensiometry inaccur-
acy comes from failure to control air-liquid—solid contact
conditions, or account for liquid meniscus geometry and
buoyancy corrections. This paper describes an in situ ten-
siometry technique, based on withdrawal of a thin-walled
tube from the liquid interface, that enforces a known
air-liquid—solid contact condition. This technique can be
pursued at any level of experimental hygiene. Experimental
results for filtered tap water, an alcohol-water solution, and
a surfactant—water solution show that results repeatable to
three significant digits are obtained with modest effort for

a variety of geometrical parameters.

1

Introduction

Surface tension is the macroscopic manifestation of a host
of molecular phenomena at the interface between two fluids.
Surfactants (or surface active agents) may change a liquid’s
wetting characteristics, and alter surface tension and mass
transfer at liquid interfaces. This paper discusses a simple in
situ force-balance surface tension measurement technique
for both clean and dirty gas—liquid surfaces under ordinary
laboratory conditions. The technique is intended for hy-
drodynamicists who need accurate surface tension measure-
ments with minimal resources.

The usual interpretation of surface tension as the force per
unit length exerted across any line lying in the plane of the
liquid surface has lead to the development of a variety of
force-balance tensiometers. The distinction between surface
tension nd surface free-energy per unit area (Ip and Toguri
1994) is unessential here. These devices typically rely on
placing a solid object (a vertical hollow circular cylinder in this
case) into the liquid of interest, determining the length of the
macroscopic solid-liquid contact line (hereafter referred to as
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the wetted perimeter), and measuring the added force on the
object resulting from its contact with the liquid. The interfacial
surface tension is then recovered by dividing the measured
force by the wetted perimeter. Implicit in these techniques are
the assumptions that: i) surface tension does not depend on
liquid-surface curvature, ii) the liquid does not apply any force
to the submerged portion of the solid beyond hydrostatic
pressure, and iii) the angle that the interface makes with the
vertical at the contact line is known (usually assumed to

be zero for the receding contact angle in the experimental
determination of surface tension).

Tensiometry is frequently associated with extraordinary
experimental hygiene. Yet the surface tension of ordinary
tap-water/air interfaces subject to air-borne particulate con-
tamination is still of interest in many hydrodynamic studies
involving large wave tanks or towing basins where high-purity
water cannot be used and even daily water changes are not
practical. Here, vertical-pull film balances are superior to
horizontal or Langmuir film balances (Harkins and Anderson
1937) and surface properties must be monitored in situ
because any type of sampling will disturb any intentional or
unintentional surfactants. Unlike some tensiometry methods,
the technique described here is robust in ordinary laboratory
environments and yields consistent results across a variety of
wetted-object geometries even when high-purity liquids and
clean-room conditions are unavailable.

Accurate surface tension measurements with force balances
have proved difficult because the results depend on the contact
condition between the object and the liquid interface, the shape
of the meniscus, the object’s buoyancy, and other possible
molecular attraction or repulsion forces between the object and
the liquid. These problems have been ignored through sim-
plifying assumptions, treated by ad hoc corrections, mitigated
by constraining the measurement technique, or partially
corrected by additional measurements. These remedial actions
typically prevent in situ measurements or complicate the
overall technique reducing its utility and flexibility. More
elaborate surface tension measurement techniques have been
pursued, but these are application specific and require more
resources and process time than is typically available for basic
tensiometry.

The purpose of this paper is to present a new tensiometry
technique that has advantages over those currently in use.
Experiments show the technique is capable of consistent
surface tension measurements of commonly available liquids
and solutions under ordinary laboratory conditions. The
new method is an absolute technique accurate to three
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significant figures across a variety of geometric parameters.
Significantly, it does not require knowledge of the liquid’s
wetting characteristics, empirical or ad hoc corrections,
calibration with a test liquid, nor an expensive, specialized
apparatus. It requires only the force measurement common to
all force-balance methods and may be used in situ in any size
basin. This technique has been developed for general purpose
use, but with appropriate refinements, it may be exploited at
the clean-room precision level as well.

This paper is organized into three additional sections and
a summary. A short background summary highlighting current
technical inconsistencies is provided in the next section. The
third section presents results for a representative traditional
technique, the Wilhelmy plate method, that illustrate some of
these problems. In the fourth section, the new technique is
presented and its consistency is demonstrated by experimental
results for several different air-liquid interfaces.

2

Background

There are two main techniques for force-balance tensiometry:
the Wilhelmy plate, and du Noiiy ring methods (Adamson
1990; Gaines 1966; Davies and Rideal 1963). These are
discussed in the next two subsections. The final subsection
covers other force-balance techniques. Additional information
is available in Rusanov and Prokhorov (1996).

2.1

Wilhelmy plate method

There are several variations of the Wilhelmy plate method. All
are based on balancing the static forces of surface tension,
gravity, and buoyancy acting on a thin plate suspended
vertically in the air-liquid interface. Figure 1 shows a cross-
sectional free body diagram of the active part of the balance
while Fig. 2 shows photographs of broadside and end views of
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Fig. 1. Free body diagram of the Wilhelmy balance. The total pull on
the plate of thickness ¢ and length L (into the page) is balanced by its
own weight, the force from surface tension at the contact line, and the
negative buoyancy resulting from raising the plate above the mean free
surface a distance h. The angle from the vertical 0 of the meniscus

in contact with the plate is a true contact angle when capillary rise up
the plate occurs (h' # 0). For the case of no capillary rise, i’ is zero

e

Fig. 2. Photographs of a Wilhelmy plate before detachment: a end
view. b broadside view. The photographs reveal the complexity of the
meniscus shape at the plate ends. This complexity and the failure
of models to account for it, is a source of error in Wilhelmy plate
techniques

a Wilhelmy plate in contact with water. For a known wetted
plate perimeter, the experimentalist measures the pull on the
balance, and, in some cases, the vertical position of the bottom
plate edge relative to the undisturbed free surface. The surface
tension ¢ is then determined from (Allan 1958; Jordan and
Lane 1964)

W=W,u1— Wapp=| 0 cos 0 dP+ ApgtLh. (1)

Here, W,y is the weight registered by a hook balance, W, is
the dry weight of the apparatus (plate and the harness), P is the
wetted perimeter of the plate, g is surface tension, 0 is the angle
the liquid meniscus makes with the vertical at its point of
contact with the plate, 4p is the density difference between the
liquid and the air, g is the gravitational acceleration, ¢ and L
are the plate thickness and length (for a rectangular plate
P=2(L+1)), and h is the height of the bottom of the plate
above the undisturbed mean surface. The angle with the
vertical 0 is a generalization of the macroscopic or apparent
contact angle that remains well-defined at a solid surface
discontinuity. The contact angle is the angle defined by
Young’s equation (Adamson 1990). When a meniscus contacts
an object at a corner and no capillary rise up the vertical sides
of the object occurs (h'=0), 0 is well defined but the contact
angle is not. For the frequently encountered case where some
capillary rise occurs (k' # 0), 0 is both the contact angle and
the angle with the vertical. All the parameters in (1), except g,
0, and h, are easy to determine accurately. The final term in (1)
is called the buoyancy correction. While not large, typically
1 to 10% of Wy, the buoyancy correction is typically not
negligible (Gaonkar and Neuman 1984). Note that surface
curvature effects indirectly enter (1) through the contact
angle 0.

Four variations of the Wilhelmy plate measurement are
commonly used: the zero-buoyancy method, the detachment
method, the immersion method (Gaines 1966), and the
maximum-pull method (La Mer and Robbins 1958; Loglio et al.
1976; Gaonkar and Neuman 1984). In principle, the four
variations are similar except for procedural adjustments that
simplify the final two terms in (1) so only the first two are
considered here. The immersion method gave inconsistent
results and the maximum-pull method failed since the menis-
cus always ruptured before the pull reached a maximum for the
thin plates we considered.



In the zero-buoyancy method, the plate is quasi-statically
lowered while keeping the lower plate edge parallel to the plane
of the undisturbed liquid surface until the slide first contacts
the liquid surface (Padday 1957; Zotova and Trapeznikov 1960;
Padday and Russell 1960; Slowinski and Masterton 1961; Pallas
and Pethica 1983; Gaonkar and Neuman 1987). The surface
tension induced force is then measured under the assumption
that h is zero. However, the advancing contact line leads to
variability in the contact angle 6. This method is susceptible to
significant error if the measured pull at first contact is used.
Instead, the plate should be further lowered into the fluid and
then withdrawn to the first-touch height to promote better
plate wetting (Kawanishi et al. 1970; Lane and Jordan 1970).

In the detachment method (Furlong and Hartland 1979),
the plate is quasi-statically pulled from the liquid until the
meniscus depicted in Fig. 2 ruptures. Withdrawal of the plate
ensures wetting through a receding contact line that drives
0 toward zero. The hope is that 0 approaches zero on the entire
plate perimeter as the contact line comes toward the corner
near rupture. A thin plate ensures that the buoyancy term is
small and that there cannot be much under-cutting of the
meniscus before rupture occurs. The detachment method
is subject to uncertainty arising from non-repeatability of
dynamic meniscus rupture (Padday and Russell 1960; Padday
1969, Loglio et al. 1976).

The most common implementation of either Wilhelmy plate
method assumes that the free surface is vertical at the point of
attachment (or close enough to justify cos 0=1) and that the
buoyancy term can be neglected for a sufficiently thin plate.
Hence, Eq. (1) reduces to

W= Wtotal - Wapp =gP. (2)

The two neglected effects leading to Eq. (2) partially cancel,
and this has lead to a lack of consistency between sources
about the terms in Eq. (1) that are prudently modified or
neglected.

The use of smooth or roughened plates to enhance plate
wetting is controversial (Kawanishi et al. 1969). Some invest-
igations generally support roughening plates (Princen 1970;
Furlong and Hartland 1979; Gaonkar and Neuman 1987), while
others generally oppose it (Jordan and Lane 1964; Lane and
Jordan 1970, 1971; Pallas and Pethica 1983). Some investigators
motivated by practicality (Pike and Bonnet 1970), like our-
selves, merely use the finish obtained on commercially
available glassware.

Additional controversy surrounds the necessity of an
empirical correction. In some studies (Jordan and Lane 1964;
Pike and Bonnet 1970; Lane and Jordan 1971; Furlong and
Hartland 1979), as well as the present, a “film deficit” is
observed near the plate ends (Fig. 2a). The consequence of this
variation in meniscus shape is a perimeter-location dependent
value of 0 which causes measured surface tension values to
have an unexpected dependence on plate thickness (see Sect.
3). This 0 variation is commonly ignored or dismissed (Taylor
and Mingins 1975; Orr et al. 1977; Furlong and Hartland 1979;
Pallas and Pethica 1983; Sauer and Carney 1990; Palas and
Harrison 1990; Mennella and Morrow 1995), or treated with
an empirical end or peripheral correction (Padday 1957, 1969;
Padday and Russell 1960; Kawanishi et al. 1970; Pike and

Bonnet 1970; Gaonkar and Neuman 1984, 1987). Apparently,
this end-correction controversy will not soon be settled either
by experiments (Pallas and Pethica 1989, 1991; Gaonkar and
Neuman 1991; Pallas and Pethica 1991) or three-dimensional
theory (Orr et al. 1975, Orr et al. 1977). The technique

described in Sect. 4 does not require any empirical corrections.

2.2

du Noiiy ring method

The du Noiiy ring method may be the most common force-
balance method. Here, a platinum, wire ring lying in a plane
parallel to the liquid surface is submerged in the liquid and
then slowly withdrawn while the net fluid force on the ring is
measured. In general, the ring with attached liquid meniscus is
raised above the mean undisturbed surface until the pull on the
ring reaches a maximum. Further raising of the ring causes
areduction of pull. The maximum force, W,,,, obtained during
ring withdrawal can be directly related to the surface tension if
the ring is perfectly wetted by the fluid (Harkins and Jordan
1930; Freud and Freud 1930; Cini et al. 1972; Huh and Mason
1975). However, a non-zero contact angle has been found to
be important for ring tensiometry (Princen and Mason 1965;
Cram and Haynes 1971; Gifford 1978). Hence, one needs

a priori knowledge of the contact angle to properly implement
the du Noily ring method, so the Wilhelmy plate is often
recommend for work where liquid wetting characteristics are
not known (Padday and Russell 1960; Gaines 1966; Gaonkar
and Neuman 1984; Adamson 1990).

Flaming the du Noiiy ring (or platinum Wilhelmy plates)
is a controversial cleaning procedure. Many investigations
support flaming (La Mer and Robbins 1958; Lane and Jordan
1970; Cini et al. 1972; Huh and Mason 1977; Furlong et al.
1983), while others (Gaines 1960; Kawanishi et al. 1970;
Gaonkar and Neuman 1984) claim that the procedure affects
the wetting and thereby affects the surface tension measure-
ment.

Another problem common to the ring (and the plate) is the
interpretation of the actual force measurement. Equating the
force on a du Noiiy ring just before meniscus rupture to any of
the points on the force versus height curve produced from
theory (such a curve for a different geometry is shown in Fig. 7)
to determine the surface tension is not recommended (Padday
and Russell 1960; Padday 1969; Huh and Mason 1975). Perhaps
the largest single source of misunderstanding in tensiometry is
confusing W,,,, with the experimentally determined point of
meniscus detachment. The experimental point of meniscus
detachment may occur anywhere along the force versus height
curve as determined by film stability and the detailed proced-
ures of the particular force balance method. A typical torsion
balance either controls i or W, or both, and usually uses the
force immediately prior to detachment in the measurement.
Some methods are designed to cause meniscus detachment as
close as possible to W,,,,, however, the actual proximity is
always in doubt once rupture occurs. Certain geometries, like
the thin Wilhelmy plates used in this study, cause miniscus
rupture before W,,,, is reached.

The new technique described here avoids these controver-
sies, by allowing the experimenter to document W going
through a maximum, by avoiding end effects as in the
Wilhelmy plate, and by using a section of glass tube with
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a sharp corner that sets the contact line location. This mitigates
the effect of contact angle variation (Cram and Haynes 1971).

23

Modern force-balance techniques

To eliminate the inside meniscus of the du Noiiy ring, modern
force-balance techniques have emphasized dipping and raising
solid axisymmetric objects. These methods suffer from a high
wetted area to wetted perimeter ratio that significantly in-
creases the buoyancy correction. Some also require multiple
simultaneous measurements.

Padday et al. (1975) reports surface tension of air-liquid
interfaces measured with a vertical circular cylindrical rod. The
force on the rod was found to increase as the rod is pulled from
the liquid until it reaches a stable maximum, just like the ring.
Surface tension was deduced from calculated meniscus shapes
and the measured maximum pull without contact angle
measurements or empirical corrections since the contact line
occurs at the edge formed at the intersection the cylinder’s flat
end and curved surface. Similar axisymmetric calculations for
meniscii hanging from vertical surface piercing wires have
been completed (White and Tallmadge 1965; Huh and Scriven
1969; Hildebrand and Tallmadge 1970; Hartland and Hartley
1976). Withdrawn circular cones have also been analyzed for
the case of zero contact angle (Padday 1978). The technique
described in Sect. 4 follows the approach of Padday et al. but
does not require a large buoyancy correction.

Other efforts, including some very recent, use a sphere as the
working solid (Yarnold 1946; Scheuludko and Nikolov 1975;
Huh and Mason 1976; Fiebner and Sonntag 1979; Gunde et al.
1995; Zhang et al. 1996). Spherical geometry alleviates the
alignment problems that could render the axisymmetric
assumption invalid for rings, vertical rods, or cones. Like the
other axisymmetric geometries, the pull on the sphere has
a local stable maximum as it is continually raised. However,
experimental difficulties are encountered when a small (0-10°)
contact angle is involved; a deficiency intrinsic to the spherical
geometry (Bayramli and Mason 1982).

Elaborate non-force-balance techniques have been de-
veloped for measuring the surface tension of air-liquid
interfaces. These include static droplet shape methods (Pallas
and Harrison 1990), methods based on droplet oscillations
(Tian et al. 1995), and differential bubble pressure methods
(Holcomb and Zollweg 1992). There are also a host of other
surface tension measuring techniques, some of considerable
antiquity. These include, but by no means are limited to, the
drop weight method, the capillary rise method, and various
dynamic techniques. For a variety of reasons associated with
contact angle uncertainty and necessary withdrawal of liquid
samples, these methods are ill-suited for general-purpose
in-situ tensiometry in arbitrary sized vessels with and without
surfactants.

3

Wilhelmy plate experiments

This section presents experimental results for the detachment
and zero-buoyancy (with receding meniscus created by plate
withdrawal) versions of the Wilhelmy plate method. These two
methods produce the most repeatable results because both
employ a receding contact angle (La Mer and Robbins 1958;

Gaines 1960; Kawanishi et al. 1970; Pallas and Pethica 1983).

The basis for the measurements is Eq. (1) with 0 assumed close
to zero, and ¢ assumed constant along the wetted perimeter of
the slide. In practice, W, is removed by zeroing the electronic
balance. Neglecting the variation in 0 at the plate ends is the
main defect of this approach.

As a first attempt to obtain an accurate value of 0, we
exploited the two-dimensional meniscus-shape solution for
fluid attached to a 90° corner (Princen 1969). This provides
a simple relationship between h and 0 far from the ends,

h:<26(1—sin 9)>m. 3)
Apg

In theory, one could measure W, and h and then solve Egs.
(1) and (3) simultaneously for ¢ and 0. Although this approach
seems superior to the assumption =0, it fails because the
liquid meniscus rises somewhat above the bottom of the plate
(i.e. ' is not zero), thus the quantity 4 is no longer the same in
Egs. (1) and (3). In addition, the contact line is necessarily
bowed at the plate ends causing a variation in h’ along the
perimeter. Our attempts to use the measured h to correct for
0 produced surface tension results that were unrealistically
high. This problem with a two-dimensional model of the
Wilhelmy plate has been previously noted (Furlong and
Hartland 1979).

For the plate aspect ratios and roughness in the present
experiments, the meniscus detaches from the plate before
a stable maximum pull is reached because of end effects.
Frames from a high-speed video of meniscus-plate detachment
are shown on Fig. 3. The images display approximately 60% of

Fig. 3. Frames extracted from a high-speed video during detachment
of a Wilhelmy plate. The sequence of frames goes left to right, top
to bottom, with each frame separated by a time of 17.75 ms. The
sequence shows clearly that the meniscus detaches from the plate ends
first



the broadside view of the plate with approximately 18 ms
between images. Meniscus rupture starts at the plate end and
travels inward toward the center of the plate. If a two-
dimensional model of the plate’s meniscus was valid, detach-
ment would occur all at once at the entire plate perimeter.
Figure 3 shows detachment to be governed by conditions at the
plate ends. Therefore, meniscus properties must be different at
the plate ends even before detachment (Pike and Bonnet 1970),
so both detachment and zero-buoyancy methods must be
influenced by conditions at the plate ends.

Two-dimensional modeling of the liquid meniscus fails
because it neglects the second radius of curvature in the classic
Young—Laplace equation (Defay and Prigogine 1966; Adamson
1990). Moreover, reducing plate thickness causes the second
unaccounted for radius of curvature to become smaller,
tending to decrease the pressure drop across the fluid interface.
For hydrostatic equilibrium, this decrease in pressure can only
be accommodated by a decrease in meniscus height h" which is
consistent with the current and previous plate-end film-deficit
observations. Therefore, as the plate is raised, the compound
meniscus curvature at the plate ends forces the meniscus to slip
off the plate end prematurely, and the entire meniscus ruptures
short of two-dimensional prediction of maximum pull. Hence,
decreasing plate thickness should promote premature rupture
and lead to low surface tension measurements. This contention
is supported in Loglio et al. (1976).

A investigation into the effect of plate thickness was
conducted to quantify its importance in plate tensiometry. The
emphasis here was to use thin plates to minimize the buoyancy
correction. Measurements were taken with carbon- and
particulate-filtered tap water (hereafter referred to as laborat-
ory water), a commercial mixture of isopropyl alcohol (70%)
and water (30%), and a solution of Triton X-100 ® (a soluble
surfactant) and laboratory water in either a wave-tank
(7684 cm?), or a circular Pyrex vessel (410 cm?) of sufficient
size to render any finite container effect negligible (Furlong
and Hartland 1979). The procedures employed were appropri-
ate for a standard laboratory environment. Microscope cover
slips [Corning No. 1 Cover Glass, 24 x 50 mm (approximately
0.14 mm thick); Corning No. 11 Cover Glass, 24 x 50 mm
(approximately 0.17 mm thick); Fisherbrand No. 2 Microscope
Cover Glass, 24 x 50 mm (approximately 0.21 mm thick)] were
used as Wilhelmy plates and were only handled using new
surgical gloves during mounting immediately prior to use. The
working edge of the slip was never touched. No effort was made
to change the roughness of the cover slip. The mounted plate
was suspended by a hook beneath an electronic balance (AND
model FX-400 with 410 g capacity and 1 mg resolution). The
cover slide was lowered to the liquid surface and its alignment
was adjusted by observing its reflection (Pike and Bonnet 1970;
Gaonkar and Neuman 1984). Once aligned, a receding contact
angle was obtained by lowering the plate slightly beyond the
point of contact with the interface and then bringing it back to
its neutrally buoyant position. The measured pull was recorded
at this point for the zero-buoyancy calculations. The plate was
then quasi-statically raised in increments determined by 1 mg
increases on the electronic balance. The balance reading at
meniscus detachment was recorded. The weight of the plate
and adhering liquid after meniscus detachment was used as

W,,p in the detachment technique calculations to get a more

accurate measurement (Princen 1970; Lane and Jordan 1970;
Lane and Jordan 1971). The surface temperature of the water
and the vertical distance traversed by the plate above the free
surface were recorded.

Experimental results for laboratory water, assuming
cos 0 =1, are shown on Fig. 4 where the vertical axis displays
the measured surface tension divided by a tabulated surface
tension value (accurate to +0.5%) for pure water at the
measured surface temperature (Gittens 1969), and the horizon-
tal axis is the thickness to length ratio of the Wilhelmy plate.
Although each measurement is repeatable, this figure shows
that Wilhelmy plate measurements are plate-geometry depen-
dent. This geometric dependence was also found with the other
impure liquids. The observed trend follows the plate-end
meniscus-rupture mechanics described above, and has been
reported in previous investigations (Kawanishi et al. 1970;
Gaonkar and Neuman 1984; Gaonkar and Neuman 1987). The
geometry-induced variation in the values on Fig. 4 over the
range of t/L is approximately +1.5% for the detachment
technique and nearly +4% for the zero-buoyancy technique.
We conjecture that the lower results and greater variability
using the zero-buoyancy technique result from the cos 0=1
assumption being more accurate for the detachment measure-
ment.

4

Annular slide method

To circumvent the problem arising from the plate ends,
axisymmetric slides fashioned from short sections of quartz
tubing were used in place of the traditional rectangular
Wilhelmy plates (see Fig. 5). Slowinski and Masterton (1961)
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Fig. 4. Surface tension measurements versus thickness for same
length Wilhelmy plates. Measured surface tension scaled by

a reference surface tension at the measured surface temperature from
Gittens (1969) is represented by 6. Some of this data was acquired
using the detachment method and reduced with both the simple model
and the buoyancy-corrected model. The simple model (&, @) uses (2)
and the buoyancy-corrected model ([J, x) uses (1). The zero-
buoyancy method with a receding-meniscus technique (%, 4) is also
presented using (2). Different symbols for the same method indicate
data taken on different days. All cases assume cos 0 =1 along the entire
perimeter. The error bars indicate calculated uncertainties
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Fig. 5. The annular slide before detachment. The height of the slide
above the undisturbed free surface is greater in b than in a. The
under-cutting of the outer meniscus is captured well on the right-
hand-side of b. While a photograph depicting the under-cutting of the
inner meniscus is impossible to obtain, both meniscii are predicted to
be under-cutting at the time of measurement (when the maximum pull
is reached) for the geometry shown. The slide is never detached from
the surface during measurement

presents a brief account of surface tension measurements using
a thin platinum sheet wrapped into a tubular geometry.
However, meniscus shape computations were not pursued and
curvature effects were ignored. Commercial versions of this
rudimentary circular Wilhelmy plate are available. Indepen-
dently, a recent monograph (Rusanov and Prikhorov 1996)
refers to a technique involving a hollow cylinder but meniscus
calculations are not pursued. An approximation is presented
for the case where both the inside and outside angles with the
vertical are assumed equal to zero. We found that using the
simple-model approximations commonly adopted by Wil-
helmy plate users of contact angles equal to zero and neglecting
the buoyancy correction cause +20% errors for typical
annular slide geometries. In this section, numerical meniscus
shape results are reduced to a convenient form via the use of
dimensionless variables.

Unlike microscope cover slips, our annular slides were
fashioned by hand. After being cut from quartz tubes of
various sizes and wall thicknesses, one end of the slide was
ground flat and smooth to the touch. Care was taken to insure
right angles between the cut surface and smooth sides of the
tube. Quartz was chosen for the annular slide material because
standard quartz tube stock is inexpensive, readily available,
inert, and easy to clean. The mechanical stability of the quartz
tube stock prohibited use of thicknesses as small as those
obtained with glass Wilhelmy plates. However, the relatively
small increase in the buoyancy correction in percentage terms
does not diminish the accuracy. Beyond force and geometry
measurements, an axisymmetric meniscus theory is all that is
required for the annular slide method.

A cross-sectional schematic for the axisymmetric model
of the annular slide is shown in Fig. 6 and the annular slide
counterpart of Eq. (1) is

W=W,gta1— Wapp= (P, cos 0,+ P; cos 0,)a + Apgrn (R —R})h
(4)
where 0y, h, 0;, and ¢ are determined numerically. For these

hydrostatic calculations, it is assumed that the maximum pull
occurs before meniscus rupture and that the inner and outer

Fig. 6. Cross-sectional schematic of the annular slide geometry using
an axisymmetric coordinate system. For the annular slides used in this
study, R; was sufficiently large such that h, = 0

meniscii can be computed separately. The maximum pull was
predicted and observed to occur with both meniscii under-
cutting (where 0, is positive and 0, is negative in Fig. 6, the
right side meniscus in Fig. 5b depicts under-cutting of the
outer meniscus). Therefore, it is necessary to monitor whether
the inner and outer meniscii would come into contact to avoid
physically unrealizable solutions or so close as to cause rupture
by molecular forces.

The hydrostatic pressure equation can be written as

p=A4pg(z—h). (5)

Using parametric representations for the meniscus coordinates
[r(s) and z(s), where s is the arclength along the meniscus], the
Young—Laplace equation for the pressure difference across the
interface as a result of surface tension becomes:

B (I_TIZ)I/Z r//
P—i0'|: , _(1_1,/2)1/2:| (6)

where the prime denotes differentiation with respect to s. The
positive right-hand side is for the outside meniscus, and the
negative is for the inside meniscus.

Combining Egs. (5) and (6) forms a second-order ODE for
r that is solved simultaneously with

7 =(1—r%)" (7)

The boundary conditions on the outside meniscus are

r=R,, z=0 ats=0 (8)
and
r=1, z=h ass— oo. )

The last additional boundary condition results from the
unknown % in Eq. (4). On the inside meniscus the boundary
conditions are

r=R;, z=0 ats=0 (10)
and
=1 atr=0, (11)

with no extra boundary condition for z on the inside because
h is determined from the outside meniscus.



The system of equations can be solved using standard
shooting techniques, starting with the outside meniscus.
Shooting parameters h and r'(0) =sin 0, are systematically
chosen to satisfy the two boundary conditions at infinity. Upon
completion, the inside meniscus is solved with one shoot-
ing parameter r'(0) =sin 0;. For the R; considered here,
r’(0)>R; "' and the inside meniscus becomes flat near r=0.
This leads to z—h or hy=0 for the solutions presented here.

To experimentally implement the annular slide method one
determines the inner and outer tube radii and measures the
maximum pull on the slide that implicitly determines values of
0y h, 0, and ¢. Figure 7 shows a typical relationship between
h and the pull on the slide. Measurements for this slide
geometry are also included on this figure. Note that the
smallest three abscissa values begin to drift from the theoret-
ical curve. Here the outer meniscus is attached to the corner
and under-cutting, however, the inner meniscus may not
have reached the corner allowing a nonzero interior h'. The
calculation is based on both menisci attached to the corners.
However, the match is excellent near W,,,,, where the
measurements are made, and past W, to the point of
meniscus rupture. The material properties of the slide do not
influence the results, so any inert solid material wetted by the
test liquid should be acceptable.

The results of the meniscus calculations can be cast into
a more useful algebraic form using dimensionless variables.
Although it has become customary to use Laplace’s capillary
length for scaling meniscus problems, it is advantageous here
to have the surface tension ¢ appear in only one parameter as
this is the unknown quantity. Therefore, the following three
dimensionless parameters were used: (i) an aspect ratio that
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Fig. 7. Computations and measurements of W as a function of &

(as well as 0, and 0;) for a annular slide with 2R;=59.9 mm and
R;=55.2 mm. The axes are non-dimensionalized with the density
difference between the liquid and air, gravity, and surface tension just
as Laplace originally non-dimensionalized meniscus problems (see
Princen 1969). The annular-slide measured surface tension is used
to scale the computed curve. The peak of this curve, termed the
maximum pull, is the lone measurement required during experimental
procedures to implement the annular slide method. Disagreement at
low abscissa values is the likely result of the interior 4’ (see Fig. 1)
being nonzero, a value unaccounted for in the computational curve

depends only on the annular geometry, f=(R,—R;)/R where
R=(R,+R;)/2 is the length scale, ii) a scaled maximum

pull W=W,,, . /(4pgR?), and iii) an inverse Bond number
6=0/(4pgR*). Figure 8 shows the relationship W versus &
for constant 7. For the anticipated range of practical values,
0.05<7<0.1 (including the specific 7 for our three annular
slides: tube A; 2R,=59.89 mm, 2R;=55.16 mm, GM Associ-
ates, Inc. of Oakland, CA stock # 6000-67: tube B; 2R, =
53.85 mm, 2R;=49.46 mm, GMA stock # 6000-63: tube C;
2R,=49.87 mm, 2R;=46.72 mm, GMA stock # 6000-61), and
the & range shown, this relationship is well approximated
(relative error less than +0.2%) by the bi-cubic polynomial:

6=0.00033967 — 0.0266907 + 0.071559 W + 0.180447
+0.058571W? —0.40662F W — 0.214152° —0.11936 W* (12)
+0.1500672W +0.41917F W2,

Hence, measurements of ¥ and W can be used to determine &,
and thus the surface tension. Measurements of the inner and
outer diameter to + 10 microns, and weight to +1 mg results
in a calculated error of +0.12 dyne/cm when using Eq. (12) for
a liquid of unit specific gravity and surface tension near that of
pure water. The error drops as a function of measured surface
tension such that the percent error in measurement remains
the same.

The procedures followed in making surface tension
measurements with the annular slide vary little from those
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Fig. 8. Computations of & as a function of W for various values

of 7. The range of 7 includes the three annular slides used in the
experiments (tube A, ¥=0.08218; tube B, ¥=0.08487; tube C,
F=0.06520), but does not cover the entire possible span (0<7<2).
The -0 case will not experience a maximum pull. The =2 case
represents a solid circular rod as in Padday et al. (1975). Our
calculations recover the results of Padday et al. (1975), although this
data is not shown. The uncalculated regions near the origin represent
cases where the absolute surface tension is less than 15.0 dyne/cm.
We conjecture G goes to zero as W goes to zero, however there is

a possibility that solutions do not exist near the origin. The monotonic
trends in the curves with respect to f continue to the limit #=2. For the
displayed data in the range of #=0.05 to =0.1, the polynomial of Eq.
(12) approximates 6 to within +0.2%
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previously described for Wilhelmy plates with two exceptions:
1) meniscus detachment and/or monitoring of 4 was not
necessary, and 2) the bottom plane of the annular slide was
aligned with the liquid surface using a special harness with
thumb screw adjustments. This alignment was obtained by
ensuring uniform contact between the slide and a leveled
mirror surface. An additional indication of slide alignment
is provided by the uniformity of the dynamic wetting of the
slide when it first touches the test liquid. Ordinary hygienic
preparation of the slides was sufficient to obtain repeatable
results under the existing laboratory conditions. The slide was
washed thoroughly in detergent and hot tap water, rinsed in
hot tap water for ten minutes, and then rinsed for ten minutes
and boiled in laboratory water. Just before measurement, the
slide was removed from the last continuous rinse and placed
working-edge up on a hot plate insuring quick evaporation of
water and minimal residue.

Once the dry annular slide was aligned in its harness, the
balance was zeroed to remove W, ... The annular slide was then
lowered into contact with the liquid. As the annular slide is
quasi-statically raised, the force continuously increases until
Wnax 1S reached as shown on Fig. 7. This maximum is stable
and not subject to hysteresis as the slide is raised or lowered. At
the point of maximum pull, the outer meniscus was observed
to hang from the corner of the slide and undercut the bottom
face of the slide, in agreement with the axisymmetric analysis
and the previous efforts with wetted cylinders (Padday et al.
1975). Here, the undercut ensures that k' (see Fig. 1) is zero.
Unlike the detachment version of the Wilhelmy plate, there is
no need to account for any liquid remaining on the annular
slide since its sides are not wet at the point of maximum pull as
was previously found for solid, cylindrical rod tensiometry
(Padday et al. 1975).

Figure 9 shows scaled laboratory-water surface-tension
measurements from our three annular slides. Figure 10 shows
measured results for two other impure liquids having surface
tensions significantly different from that of water. These
plots show the geometric independence of the annular slide
measurements as compared to the Wilhelmy plate results on
Fig. 4. In addition, the results on Fig. 9 are within 1% of the
tabulated results for pure water at the same temperature,
meeting expectations for our laboratory conditions and water
purity. The data scatter is the best estimate of the technique’s
uncertainty as implemented here. The overall variability of
results across geometries has been reduced to +0.5%, one
third that of the best version of the Wilhelmy plate. Further
reduction in annular slide measurement uncertainty is certain-
ly possible with a higher precision balance, better slide
manufacturing, precision metrology, and improved laboratory
hygiene.

Figure 11 shows the influence of small tilt angles (o) on
annular slide results. The more or less quadratic dependence
on tilt angle matches previous experimental results for the du
Notiiy ring (Harkins and Jordan 1930), and suggests that small
tilt angles, less than half a degree are not significant. Hence,
acceptable results can be obtained via leveling with an ordinary
carpenter’s level.

For completeness, zero-buoyancy with receding meniscus
measurements were performed on the laboratory water with
the annular slide assuming cos §,=cos ;=1 while monitoring
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Fig. 9. Measurements of surface tension with three annular slides (4,
B, C) scaled by a reference surface tension at the measured surface
temperature versus dimensionless slide thickness f. Like symbols
indicate data taken on the same day. The data are plotted on the same
vertical scale as Fig. 4 for comparison. Statistical scatter shows the
annular slides produce more consistent measurements than Wilhelmy
plates of varying thickness. The calculated error based on uncertainty
of quantities involved in the measurement is approximately +0.4%,
however, the error bars were omitted for clarity
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Fig. 10. Annular slide measurements of surface tension for two
impure liquids versus . The values near 50 dyne/cm were obtained
from a solution of laboratory water and Triton X-100 ® (a soluble
surfactant). The values near 25 dyne/cm were obtained from

a commercial mixture of isopropyl alcohol (70%) and water (30%).
Along with Fig. 9, these measurements show the annular slide
technique to produce results that are independent of ¥

the h=0 level (in effect, having to measure an additional
quantity). The results showed almost eight times the scatter but
with the same mean as the maximum-pull results displayed on
Fig. 9.

In summary, the annular slide conforms better to an
axisymmetric theory than the Wilhelmy plate does to a
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Fig. 11. Laboratory water surface tension measurement variation with
tilt angle (o). The vertical axis is the difference between the surface
tension measured with zero tilt minus the surface tension measured
with a known tilt. The annular slide method is relatively insensitive
to tilt angles less than half a degree and the measurement error is
essentially proportional to the tilt angle squared. Different symbols
correspond to annular slides with different values of # (A=<, B= +,
c=0)

two-dimensional theory. This renders the annular slide results
independent of slide thickness.

5

Summary and conclusions

The extensive literature on surface tensiometry still contains
many contradictions and contentious issues. While their
accuracy varies, in-situ force-balance tensiometry methods can
be classified according to the number of measurements and
assumptions required. All methods assume the gravitational
acceleration, the air-liquid density difference, and the defining
geometric lengths are known. The simplest version of the
Wilhelmy plate, vertical rods, and the annular slide require
only one force measurement. The Wilhelmy plate with buoy-
ancy correction, du Noily ring, and spheres require at least two
measurements, or one measurement and one assumption.
Usually the additional measurement or assumption concerns
the contact angle or the height at maximum pull, both
notorious for causing inaccuracies.

The known meniscus contact location of the rod and the
annular slide sets these techniques apart and removes the error
from assuming the contact line moves smoothly along an
object (like a ring or sphere) with the contact angle remaining
constant. Although moving contact lines (Dussan and Davis
1974; Dussan 1976, 1979) are beyond the scope of this paper,
a stationary contact line is preferable for general purpose
tensiometry.

The methods requiring only one measurement also differ.
The Wilhelmy plate method without buoyancy correction
and the assumption cos =1 produces results that depend on
plate thickness. The vertical rod geometry is simpler than
the annular slide geometry in that the rod has no interior
meniscus. However, the contribution to the pull from the
buoyancy force compared to the contribution from the surface

tension force is much higher for rods than for tubes. Padday et
al. (1975) showed large scatter as the rod radius was increased
and that very sensitive measurements of pull and rod radii
were required for smaller rods. While proper alignment of
rings, plates, rods and annular slides is a nontrivial part of
these methods, tilt corrections are small and slide alignment is
manageable with modest means.

Our dissatisfaction with the existing tensiometry methods
has fostered the development of a self-consistent in situ
force-balance technique free of empirical corrections and
calibrations. The annular-slide technique produces reliable 165
results across geometric variations, and yields a root-mean-
square uncertainty approaching +0.1 dyne/cm with only
a modest amount of equipment (annular slide, harness,
milligram balance, and uncalibrated vertical traverse). While
the annular slide is similar to other force-balance techniques,
it gleans their best attributes for robust tensiometry with
unknown and impure liquids in an ordinary laboratory
environment. It can also be readily extended to precision
measurements of pure liquids, and continuous surface tension
measurements with appropriate refinements.
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