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Introduction

For many years, the deformation of polymer molecules
in flow fields has been monitored by measurements not
only of stress, but also of birefringence (Peterlin 1961,
1963; Fuller and Leal 1980; Bossart and Ottinger 1995;
Doyle et al. 1998b; Mackey et al. 1999). Since neither
stress nor birefringence provides a truly molecular
picture of polymer deformation under flow, molecular
modeling has been used to supplement experimental
data in order to round out our molecular understanding.
In the past, molecular modeling has been limited to
simple 2-bead dumbbell models, or approximate treat-
ments of more realistic multi-bead bead-spring or bead-
rod models. But in recent years computer power has
developed to the point that accurate calculations using
multi-bead models have become possible through
Brownian dynamics simulations (Liu 1989; Hinch
1994; Fetsko and Cummings 1995; Grassia and Hinch
1996; Doyle et al. 1997; Andrews et al. 1998; Hernandez
Cifre and Garcia de la Torre 1999; Wiest 1999a, b; Li
et al. 2000a).

In this study, we will develop an algorithm to allow
calculation of flow birefringence from Brownian
dynamics simulations of bead-spring model, and we
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will compare calculations of both stress and birefrin-
gence from the bead-spring model with experimental
measurements for dilute polymer solutions (Sridhar
et al. 2000). The algorithm will be based on our earlier
method that included polymer elasticity, frictional
drag, and Brownian motion (Li et al. 2000), but here
we will also consider excluded volume forces, which
are needed to account for solvent quality effects that
have been recently observed in extensional flow
experiments with dilute “Boger fluids” (Solomon and
Muller 1996; Sridhar et al. 2000). Excluded volume
effects have already been incorporated into the bead-
spring model in steady-state flows by Andrews et al.
(1998) and Hernandez Cifre and Garcia de la Torre
(1999); we will use similar methods, but apply them to
transient extensional flows.

Materials and methods

Modeling

For each link, or “Kuhn” segment of a polymer chain, the
polarizability tensor can be expressed as (Fuller 1995):
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where o) and «, are the polarizabilities along and perpendicular to the
segment, respectively; u; is a unit vector pointing in the direction of
the segment, u; = (u;1u;>u;3). The firstand second part of the Eq. (1)
are the isotropic and anisotropic polarizabilities, respectively.

Since each spring has N, Kuhn steps (see Fig. 1 for spring
coordinates (x, y, z)), and the whole molecular chain has Ny springs
(see Fig. 2 for the global coordinates (1, 2, 3)), the polarizability
tensor for the whole molecular chain is

Ny Nis

Ny Nis
%= 2ZZI+ o — o ZZ(ujuj) (2)
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Here i represents in the i-th spring, and j represents the j-th link in
the i-th spring.

The relationship between the polarizability and the index of
refraction can be expressed by the Lorentz-Lorenz formula, and it
can be linearized as (Larson, 1988)
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Fig. 1 Bead-rod model for a sub-chain of a polymer molecule, to be
represented by a single spring in a bead-spring chain. The spring and
individual rod are here shown in the “spring” frame, when the spring
end-to-end vector is parallel to the x axis

i+1

3

Fig. 2 The bead-spring chain and “spring” coordinates of spring 7 in
the laboratory frame

where n is the refractive index of the solution. Hence, dropping the
isotropic piece, the anisotropic refractive index tensor is
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The relationship between the refractive index tensor
and the end-to-end distance of a spring

In the bead-spring model, we assume that each spring represents a
freely jointed sub-chain containing Ny Kuhn steps, and that each
of these Nj, links in the sub-chain are thermally equilibrated
subject to the constraint that the two ends of the sub-chain are held
fixed at the positions of the two beads attached to the correspond-
ing spring. The assumption that the links of the sub-chain are
orientationally equilibrated subject to the constraints on the ends is
the same assumption required to obtain the famous inverse
Langevin spring law, and is expected to be valid as long as the
flow is slow compared to the relaxation time of an individual
spring. The inverse Langevin law relates analytically the spring
force f ¥ to the end-to-end vector R of the spring in the spring
frame. Then, for the blrefrmgence tensor, we need an analytic

uju;
Nes (;i,‘“) and R;.

For each Kuhn segment, the unit Vector u; can be expressed
as ~

relationship between 3"
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where (1, 2, 3) represents the coordinates in the laboratory frame,
and (x, y, z) represents the coordinate in a frame oriented with the
spring, with f§ the polar and y the azimuthal angle of the Kuhn
segment with respect to the “spring frame” (see Fig. 1). Again, i
represents the i-th spring and j represents the j-th rod. The rotation
tensor for spring i is (Bird et al. 1987)

C Sc Ss
O=|-S Cc Cs (6)
~ 0 —s ¢

Here C =cosf, S =sinf, ¢ =cos ¢, and s = sin ¢. Here 6 is the
polar angle of the spring vector with respect to the 1 axis (the
uniaxial stretching axis) of the laboratory frame, and the projection
of the spring onto the (2, 3) plane defines the azimuthal angle ¢
(See Fig. 2).

Since the two ends of the sub-chain are held fixed, the
orientation-dependent potential energy W, of each segment is
(Larson 1999)

Wy = —f*becosp (7

where f ¥ is spring force. With C; as the normalization constant, the
distribution of each segment orientation (f) is given by the
Boltzmann equation

() = Crewp (- 1) )

Then the relationship of end-to-end vector length R, and spring
force f* is

Ry _ f bk

= teost) =2 (1 )
where L is the fully extended length of a spring, and L(w) is
the Langevin function, L(w) = coth(w) — L.

The contribution to the refractive index tensor of this multi-rod
chain is
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The f’s are defined by Eq. (10), where all off-diagonal terms are
zero in the spring frame, by symmetry. Also, we can see that
Sextfyytfz=1. Hence

I—fu _ L
fW: z="2 = E(}U) (1)
_ [
© =7
where L(w) =% and o is given by the inverse Langevin function,

—7-1(R
Since the Langevin and the inverse Langevin functions are used

(),

in Eq. (11), there is no analytic relationship between Z e

and R;. We can, however, use an approximation for the inverse
Langevin function, such as the Warner spring law, or the more
accurate Cohen (1991) Padé approximation, or we can perform a
Monte Carlo simulation to obtain the relationship.

For the Cohen approximation, we have

R 3-
L2 =kh)=4k l+016 12
(Ls ) lf/ll. ( ) (12)
2
where )2 (}Zz)' is the ratio of the square of the end-to-end

dlstance of the multi-rod sub-chain representing the i-th spring
(R%); to the ,square of the length of a fully extended multi-rod
sub-chain (L%).

The Cohen approximation does not give the correct value of f,
and f,, for small stretch R,/L. Therefore, we performed Monte
Carlo simulation for both 10-rod and 50-rod freely jointed chains,

(uju;),/Nis and Ry in

spring coordinates (X, y, z); see Fig. 2. As can be seen in Fig. 3, the
following third-order polynomials give the correct asymptotic
results in the limits of both large and small birefringence and
provide an excellent fit to the simulation curves for both 10-rod and
50-rod chains:

and obtained the relationship between Zjﬁ]

) _1 2 2 2 22 2 213
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Since each multi-rod chain is a spring in the bead-spring model, its
end-to-end vector is not necessarily aligned along the extension
direction (here the 1 direction); see Fig. 2. Thus, to calculate the
contribution to the overall refractive index tensor from each spring,
we must rotate the tensor as shown by Eq. (10), where the rotation
tensor Q is defined by Eq. (6) (Bird et al. 1987). Then the refractive

index tensor becomes

2 T T T
dn (242 n T T
ni = ?(06% (01 —02)Nies | To1 - To T3 (14)
= 0 I5n T T3z



422

O fxx-fyy
0.9 + O fxx
o fyy o

R.LS2

Fig. 3 The relationship of normalized components of the refractive
index tensor to the overall stretch ratio squared R%/L?. The squares,
circles and diamonds are Monte Carlo simulation results respectively
for fiy, £y, and f ., vs stretch ratio squared sz/LZS, The thick solid
and dashed lines are best fits of third-order polynomials (Eq. 13) for
the simulation results for the 50-rod chain. The thin lines are
calculations from Cohen approximation, Egs. (11) and (12)

where

T = <C2f$a + Szfiaf>l-
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Because the spring orientation in a uniaxial flow is symmetric about
0 =0 and isotropic in the angle ¢, we have <sz> = <c2> = %, and
(SC)=(sc)=0. Then the birefringence, which 1s the difference of
two eigenvalues of the refractive index tensor, is

An,- = An[’n — AI’!,W
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Thus, the contribution of the whole polymer (all springs) to the
birefringence is

_4n (nﬁ + 2)2
A=

(G Yo)

i=1

(o1 — 02) VN
(17)

where v = W is the number of molecules per unit volume, ¢y, is
the polymer mass fraction, and p is the solution density.

Brownian dynamics simulations of bead-spring model

In our Brownian dynamics simulations, hydrodynamic interactions
are considered only through our choice of bead drag coefficients
and we use the accurate Cohen (1991) Padé approximation to
approximate the inverse Langevin function used in the force law for
the freely jointed chain. Hence, we solve (Li et al. 2000)

dr. kT 372K
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Here k = V v is the transpose of the velocity gradient tensor, 4; is
the extension Tatio
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and R; is the extension of spring i in the laboratory frame (see
Fig. 2):

R =

r —r
~i+1 ~i

(20)
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bk being the Kuhn step length of the freely jointed chain, and Ng
the number of Kuhn steps per spring. Thus Ly = Nk b is the fully
extended length of a spring. For polystyrene, bg is given by

bx :C—”l =1.803 x 103 um
n

21

where C,, is the molecular characteristic ratio, which is C,, =9.6
for polystyrene; n is the number of back-bone bonds in one
polymer molecule, n = 15‘4—2 for polystyrene, and M is the polymer
molecular weight.

According to polymer theory (Bird et al. 1987), the stress tensor
can be expressed as

g=g +n.(x+7);

N=1
gl = VZ<FSP R,> —v(N — DkgT1I

i=1

(22)

where [ is the unit tensor, v = % is the number of polymer

molecules per unit volume of solution, p is the density of the
solution, p =1.04 g/cm?® for polystyrene, 1, =30 Pas is the solvent
viscosity for an approximate ‘‘theta” solvent studied by Orr
and Sridhar (1999), and #,=87.5 Pas for a “good” solvent for
polystyrene studied by Sridhar et al. (2000); ¢” is the polymer con-

tribution to the stress tensor, and nx(;c—kNKT) is the solvent
contribution. R

Solvent quality

“Theta’ solvent. As described in detail in our previous paper (Li
et al. 2000), we use molecular theories, namely the Zimm theory
for a polymer in a theta solvent, and also the molecular
characteristics of polystyrene, to determine a priori parameters
for our simulations. The results of those simulations were
compared to extensional flow data for high molecular-weight
polystyrene in a dilute solution in a solvent consisting of 25 wt%
low molecular weight (M =50,000) polystyrene (PS) in dioctyl
phthalate (DOP) at 21 °C.

Since DOP is a theta solvent for polystyrene at this temperature,
we assumed earlier (Li et al. 2000) and in what follows that the
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PS/DOP binary solvent is also a theta solvent, and use the
corresponding Zimm theory for a theta solvent to obtain the
following expressions for the bead drag coefficient (*

¢ KoM, 1
kgT ~— NyksT 2.369
6 x 522 N,
Xizﬂ%z = 367.5—
Cool? (N + 1) um

(23)

Here K, =8 x 107 deciliters g~'(g/mole)!/? is a “universal” num-
ber for theta solvents, N4 is Avogadro’s number, and N, is number
of springs; Ny=19 in our simulations.
Hence the longest Zimm relaxation time is
3
Z KoMirls

L
el = 3 369N ks T s

(24)
where we have use the experimental values M =2 x 10° Daltons
and 5,=30 Pas.

“Good” solvent. Since the quality of a solvent for a given polymer
affects the coil size of that polymer at equilibrium, it will also affect
the unraveling of the polymer in an extensional flow (Larson 1988;
Solomon and Muller 1996). Intrinsic viscosity experiments show
that the coil size of polystyrene in “piccolastic,”” a low molecular-
weight styrene oligomer, is larger than in a mixture of low
molecular-weight polystyrene (PS) with dioctylphthate (DOP),
where DOP is a theta solvent for polystyrene at the experimental
temperature (21 °C). In our simulations, we treat the PS/DOP
mixture as a theta solvent for high molecular-weight polystyrene,
while we consider piccolastic a “good” or at least “‘better-than-
theta” solvent, for which excluded-volume (EV) effects must be
incorporated. We include EV effects by invoking a truncated
Lennard-Jones potential between each pair of beads on the chain;
i.e., (Rzehak et al. 1999)

12 6

W“()_4kBTa H - H +31 -

<0(|r| -r0)

The cut-off radius Ry 1s chosen at the minimum of the Lennard-
Jones potential, Ry y=2"%g; ©(x) is the Heaviside function. We set
the dimensionless energy parameter ¢ to the value ¢ =1.0 and we
set o, the Lennard-Jones radius, to ¢ =4a, where « is the effective
bead radius, related to the bead drag coefficient { by { = 6mn,a.

From the experimental data (see Table 1), the relaxation time
for piccolastic ““good” solvent is about ten times larger than that in
PS/DOP “‘theta” solvent, although the solvent viscosity of the
former is only three times larger then that of the latter (87.5 Pas vs
30 Pas). Hence the expression for the drag coefficient formula for a
“theta” solvent is evidently not valid any more in the “good”
solvent case. Therefore, we use instead a ““‘Rouse” drag coeflicient,
in which { is chosen so that the drag on a fully extended chain in the
extensional flow matches the Batchelor formula for the drag on a
slender cylinder (Batchelor 1970; Li et al. 2000):

CR 27r L

where L is the fully extended length of the molecule and d is its
effective diameter, which for polystyrene we take to be 0.0009 um.
Then the bead radius @ can be calculated by a = (®/6mn,. Hence,
the relaxation time can be calculated as

o kb,
“ 16k TR sin? () 3nin(b)

27)

Table 1 Relaxation time comparison

7:Rcala TRsim T sim ‘Czcalc Tcxpd

(sec) (sec) (sec) (sec) (sec)
2 M PS in good solv. 9.86 8.13 2.48 324 84
2 M PS in theta solv. 3.64 3.44 1.05 .11 0.8
10 M PS in theta solv.  80.92  77.78 1245 1337 9.5

a7R . are calculated from Eq. (27)

™®im and % are calculated from Eq. (28) and they are the
average of 50 individual molecules
1%, are calculated from Eq. (24)

Texp are from experiments (Orr and Sridhar 1999; Sridhar et al.
2000)

3 3Nk, _ (0827 .
Wbl = 2N and Ng = Te-nis the number of Kuhn

steps in a whole molecule.
For 2 million molecular-weight polystyrene in piccolastic
good solvent, we can calculate from Eq. (26) (for 10 beads) that

= 6670

um?
coeﬂiaent for the same polymer in PS/DOP, and about three times
larger than the value we would have obtained for piccolastic had we
used the “Zimm” value of (*/kpT.
We also calculate the relaxation of an ensemble of polymer
chains using Brownian dynamics 51mulat10ns and then fit the last
9% of the end-to-end distance squared (R?) to the equation

(R*) = Cexp(—t/t) + <R2>0

By fitting this expression to the simulation data we can obtain
another estimate of the relaxation time of the polymer chain,
Tsm. Estimates of the relaxation times obtained in this way are
tabulated in Table 1, where 8, is obtained using the “Rouse”
formula, Eq. (26), to assign the bead drag coefficient, 1%, being
obtained using the “Zimm” formula, Eq. (23). In all cases, the
values of 8, and t%gm are in good agreement with the
corresponding calculated values from Egs. (27) and (24), respec-
tively. In addition, note that in the “theta’ solvent the “Zimm”
relaxation times tZg, and t%., are in reasonable agreement with
the experimental relaxation time 7.,, while in the good solvent
the “Rouse” relaxation times t8g, and ., are in much better
agreement with 7., than are the Zimm relaxatlon times. Thus, for
the “theta” solvent PS/DOP, we will use ¢Z from Eq. (23) for the
bead drag coefficient in our s1mu1at10ns while for the “good”
solvent piccolastic, we will use ¢® from Eq. (26). In all simula-
tions, we impose an extension rate ¢ chosen to match the
experimental values. The Deborah numbers De = érg, in our
simulations therefore match the experimentally assigned De values
to the extent that g, (=1 gm for a “good” solvent, 1% for a
“theta” solvent) matches the experimental relaxation time Teyp.
Finally, we note that each experimental relaxation time was
obtained by Sridhar and coworkers as the largest relaxation time
from a fit of the Zimm spacing of relaxation times to the
experimental dynamic oscillating shear data (a fit of the Rouse
spacing gives nearly the same result). This experimental relaxation
time should be very nearly the longest relaxation time of the
solution, and hence should correspond well with the value 74, or
Teal from bead-spring model. We also obtain from the 31mulat10ns
the mean end to-end distance squared in the rest state, (R%),, by
averaglng R? in the absence of flow over a period of time, which
is more than 1000 times the relaxation time.

For the birefringence calculations, we use Egs. (17) and (13),
where n,=1.6 is the refractive index of the solution (Bradrup
and Immergut 1989) (a1—02) 1s the polarizability difference, (o—
oy =—145 X 1072° cm*for polystyrene (Bradrup and Immergut
1989). From these calculations, we obtain a value for the stress-

where ﬁ

which is about ten times larger than our drag

(28)
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2n ("lz)+2)2

optic coefficient of Cy, = T (0 — o) = —6.4 x 10~ Pa™!,

which differs somewhat from the value Ca, =5 % 107 Pa™! used by
Sridhar and coworkers. For consistency, we will use the value
—-5.0 x 107 Pa~! in our comparisons of experiments with simula-
tions (i.e., in Figs. 7 and 8).

Results and discussion
Comparison with bead-rod model

To check our algorithm for calculating the birefringence
for the bead-spring model, we first performed a simula-
tion for a 20-spring chain in uniaxial extensional flow
with no excluded volume at a Deborah number of
De =10.65, and compared the results with those of Doyle
and Shaqfeh’s (1998) for a 200-rod bead-rod chain at the
same De, as shown in Fig. 4. For this comparison, we
chose Nk =10 in the bead-spring chain, since each
spring of a 20-spring bead-spring chain corresponds to 10
rods in a 200-rod bead-rod chain. The results of the bead-
spring simulations agree almost perfectly with those of
the bead-rod simulations. This confirms the assumption
of local equilibrium within each sub-chain corresponding
to an individual spring in the bead-spring chain.

Comparison with the experimental data
Relaxation time comparison

As described earlier, excluded volume was incorporated
into our simulations, and we first carry out the

1000

100 A

Birefringence
=
|

® bead-spring chain, 20 springs
O bead-rod chain, 200 rods

0.1 TN T NN TN [N NN TS U0 TNUUN NN U TS N SN (NN SN TG SN S N TN S N T N S A SN |
. T T T T T

0 1 2 3 4 5 6
Strain

Fig. 4 Comparison of predictions of the bead-spring and bead-rod
models. The open circles are the simulation results of Doyle et al.
(1998) for a 200-rod bead-rod chain, and the solid circles are
simulation results for a 20-spring bead-spring model; both simulations
are for extensional flow at De=10.65

relaxation calculations for 2 million molecular-weight
polystyrene. In Fig. 5, we can find that when we include
the truncated LJ potential (Eq. 25), the relaxation
becomes faster than without the LJ potential, and the
equilibrium end-to-end length squared increases. From
our calculations of (R2g>l/20 (Li and Larson 2000), we
find that the coil size increases about 60%, which is from
0.0419 yum to 0.0689 um when excluded volume is
included. These values of the radius of gyration corre-
spond closely to the values of (Rzg)l/2 measured for
polystyrene, respectively, in a known theta solvent,
dioctyl phthalate and in a known good solvent, toluene
(Solomon and Muller 1996). The relaxation time calcu-

10 £ <
F oo —
: Oy, O simulation average
F % fitting curve
TE
<R% T
0.1 F
o <
[ <
L <o
0.01 ¢
S (a)
I <R“>=13.20exp(-1/8.132)+0.012
0.001 R Attt
1 10 100 1000
Time
10 £ <
E o ¢ simulation average
. o fitting curve
C %
1T
<R% |
0.1
0.01 +
I <R%>=9.054exp(-1/10.04)+0.0034 (b)
0.001 1 1 Illllll L 1 ||||||: 1 1 Il 1 11
1 10 100 1000

Time

Fig. 5a, b Simulation results for the relaxation of the square end-to-
end vector length R? averaged over 50 individual molecules (symbols),
and fits of an exponential decay to obtain the relaxation time 7 (/ines):
a with excluded volume, using ¢ = 4a = 0.6632 um; b without
excluded volume



425

lated with excluded volume is 8.13 s, which is about the
same as Sridhar’s result, 8.4 s, from dynamic oscillatory
experiments (Sridhar et. al. 2000). Notice in Fig. 5a that,
for a good solvent, the relaxation of (R?) has a steep tail
that is not particularly well fit by an exponential
relaxation.

Comparison of stress and birefringence predictions
to experimental measurements

We performed Brownian dynamics simulations for
solutions of polystyrene of molecular weight 2 million
studied experimentally by Sridhar et al. (2000), and
compared the predictions of both birefringence growth
and stress growth with the experimental results. From
Fig. 6 we can see that the theories for different solvent
quality predict quite different results. The Trouton ratio
begins to rise rapidly at about 2.0 Hencky strain units
for a “good” solvent (piccolastic) while the rapid rise
only begins at about 3.0 Hencky strain units for “theta”
solvent (PS/DOP) for the same 2.0 million molecular
weight polystyrene polymer. The predicted stress shows
excellent agreement with the experimental results for
both the “theta” solvent and “good” solvent conditions.

In Fig. 7 we compare the stress and birefringence
predicted for good-solvent conditions with measure-

1000 ¢

100 +

T T

Tr

good
theta

—

strain

Fig. 6 Comparison of the growth of the Trouton ratio after start-up
of uniaxial extensional flow for polystyrene of molecular weight 2
million at a concentration of 0.05% in “good” solvent and 0.0747% in
the “theta” solvent. The thick solid line and circles are for polystyrene
in a “good” solvent (piccolastic) at an extensional rate of 4.9 1/s; The
thin dashed line and triangles are for polystyrene in a “theta” solvent
(PS/DOP) at an extension rate of 5.05 1/s. The /ines are simulation
results averaged in this and subsequent figures over an ensemble of
100 molecules and the symbols are experimental results. For the
simulations in a “good” solvent, in this and subsequent figures, we
used 10 beads and parameter values ¢=1.0, 0 =4a=0.6632 um in
Eq. (25)

1000000

100000

10000

Stress (Pa)

1000 ¢

100

strain

6
o ___ 491
o _ 201
5 <4
4

An X10°

strain

Fig. 7a, b Comparison of bead-spring simulations with experimental
data for a polystyrene solution of molecular weight 2 million in a
“good” solvent by Sridhar et al. (2000): a comparison of stress growth
at extension rate 2.0 1/s (diamonds and dashed line) and 4.9 1/s (circles
and solid line); b comparison of polymer contribution to birefringence
growth at extension rate 2.0 1/s (diamonds and dashed line) and 4.9 1/s
(circles and solid line). All symbols are experimental results and /ines
are simulation results

ments on 2 million molecular-weight polystyrene in
piccolastic at two extension rates, 2.0 s~ and 4.0 s™".
While the stress predictions are in good agreement
with the experimental data at both extension rates
(Fig. 7a), the birefringence is predicted to rise some-
what more quickly than is observed experimentally
(Fig. 7b).

In Fig. 8 we show “hysteresis” curves of stress vs
birefringence during start-up of extensional flow and
during relaxation after cessation of flow for two
different Deborah numbers. Although the previous
study shows qualitative agreement with experimental
measurements using the dumbbell model (Doyle et al.
1998), agreement between simulations and experiment
is reasonable using a multi bead-spring model in this
study, except that the simulations predict an overly



426

350

300

250

200

150

Stress (KPa)

100

50

AR/C (Pa)

Fig. 8 Stress-optical hysteresis for two different Deborah numbers.
The solid line and the circles are for De =41.7 ¢ = 4.96, and the dashed
line and the diamonds are for De=16.8 ¢=2.0. The lines are
simulation results and symbols are experimental results

rapid rise in birefringence and an overly rapid relax-
ation of stress following cessation of extension.

The much more rapid growth of stress for polystyrene
in the “good” solvent relative to the “theta” solvent
(Fig. 6) suggests a possible explanation for disagree-
ments we observed earlier between simulations and
experimental extensional flows of higher molecular
weight polystyrene (4-20 x 10°) in PS/DOP (Li et al.
2000). In the earlier simulations, the solvent was taken
to be theta solvent, an approximation that leads to good
agreement with the experimental data for polystyrene
with M =2 x 10°. However, if the solvent quality is
slightly better than theta, one would expect the swelling
of the coil to become more evident as the polystyrene
molecular weight increases, and for the measured
growth of Trouton ratio to begin to run more and more
ahead of the predicted growth as M increases, which is
what was observed. Because strong extensional flow
expands the coil size in the flow direction exponentially

in time, extensional flow is a sensitive “amplifier” of
solvent-quality effects. It is possible, then, that exten-
sional flow at high De, when properly interpreted, may
provide a measure of solvent quality more sensitive than
any other.

Conclusion

An accurate method for performing birefringence cal-
culations using the bead-spring model is established. The
calculations have been compared with both simulation
results of Doyle and Shagfeh (1998) for the bead-rod
model and with the experimental measurements on a
polystyrene solution. The calculations for the bead-
spring model agree perfectly with those for the bead-rod
model, and also agree reasonably well with the exper-
imental measurements for polystyrene solutions. More-
over, the optical-stress hysteresis during start-up
followed by relaxation of extensional flow can also be
predicted by the simulations and agreement is obtained
with experimental measurements. The method we have
developed for computing the birefringence from a bead-
spring model is general, and should apply to arbitrary
flows just as well as it does for extensional flow.

In addition, we examined solvent-quality effects for
dilute polymer solutions, by incorporating a truncated
Lennard-Jones repulsion between beads to mimic ex-
cluded-volume effects in a good solvent. The expansion
of the equilibrium coil size produced in a good solvent
leads to stress and birefringence growth in extensional
flow that is faster than in theta/poor solvents, in good
agreement with experimental results. Because it expands
coil dimensions in the flow direction at an exponential
rate, strong extensional flow may provide a very
sensitive measurement of solvent quality effects.
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