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Abstract Application of piezoelectric materials requires an
improvement in their performance characteristics which
can be obtained by designing new topologies of micro-
structures (or unit cells) for these materials. The topology
of the unit cell (and the properties of its constituents)
determines the effective properties of the piezocomposite.
By changing the unit cell topology, better performance
characteristics can be obtained in the piezocomposite.
Based on this idea, we have proposed in this work an
optimal design method of piezocomposite microstructures
using topology optimization techniques and homogeniza-
tion theory. The topology optimization method consists of
®nding the distribution of material phase and void phase
in a periodic unit cell, that optimizes the performance
characteristics, subject to constraints such as property
symmetry and stiffness. The optimization procedure is
implemented using sequential linear programming. In
order to calculate the effective properties of a unit cell with
complex topology, a general homogenization method ap-
plied to piezoelectricity was implemented using the ®nite
element method. This method has no limitations regarding
volume fraction or shape of the composite constituents.
Although only two-dimensional plane strain topologies of
microstructures have been considered to show the imple-
mentation of the method, this can be extended to three-
dimensional topologies. Microstructures obtained show a
large improvement in performance characteristics com-

pared to pure piezoelectric material or simple designs of
piezocomposite unit cells.

1
Introduction
Piezoelectric materials have the property of converting
electrical energy (electric ®eld and applied electrical
charge) into mechanical energy (strain and stress) and vice
versa. They are widely used in electromechanical sensors
and actuators such as robotics sensors, ultrasonic trans-
ducers for medical imaging and non destructive evaluation
(NDE), underwater acoustics (some hydrophones and
naval sonars), and other applications. The main goal in the
transducer design in all these applications is to increase
the response of the transducer which can be achieved, for
example, by increasing the electromechanical energy
conversion. The energy conversion depends on many
factors, one of the most important being the properties of
the piezoelectric material. In this work, we consider ul-
trasonic imaging and naval sonar applications. In these
applications, it is well known that materials such as ``1±3
piezocomposite'' (piezoceramic rods embedded in a soft
polymer matrix) allow greater sensitivity, in both low and
high frequency applications, than pure piezoceramic (see
Smith and Auld 1991, and Smith 1993). This improvement
occurs because the composite material provides effective
properties (elastic, piezoelectric, and dielectric) that pro-
duce a better performance than pure piezoelectric mate-
rials. These effective (homogenized) properties can be
determined by considering the topology of the composite
microstructure (or unit cell, the smallest structure that is
periodic in the composite) and the properties of its con-
stituents.

In this sense, many previous papers have reported the
study of performance maximization by changing the vol-
ume fraction of ceramic rods, its properties, its shape (see
Hossack and Hayward 1991, and Hayward and Bennett
1996), and the mechanical properties of the polymer ma-
trix in the composite unit cell. Smith (1991), and Avella-
neda and Swart (1994) showed that the use of negative
Poisson's ratio polymer matrix greatly increases the per-
formance of the composite. Avellaneda and Swart (1994)
also determined that the presence of porosity in the
polymer matrix enhances the piezocomposite response. In
all these studies, the polymer phase (matrix) is considered
to be an isotropic material. Departing from the isotropic
assumption and considering a transverse isotropic poly-
mer, Gibiansky and Torquato (1995) extended the Avel-
laneda and Swart (1994) analysis by optimizing the
properties of the matrix polymer that enhance the per-
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formance characteristics of the piezocomposite. The so-
lution obtained consists of a polymer matrix with given
properties that are highly anisotropic, weakened by an
optimal arrangement of pores. Although the piezoelectric
effect was taken into account, the design of the polymer
matrix unit cell was separate from the piezoelectric in-
clusion. Therefore, in relation to the dimensions of the
piezoelectric inclusion, the matrix is uniform in the pie-
zocomposite unit cell. The design of the matrix micro-
structure topology with speci®ed properties is complex
and is obtained using the method described in Sigmund
(1995).

In this work, we change the topology of the piezoelectric
material in the unit cell in order to determine the optimal
design of the piezocomposite microstructure with high
performance characteristic. The distribution of the two
phases (material phase and void phase) is determined in
the composite unit cell by using the topology optimization
procedure. A general homogenization method for piezo-
electricity was implemented using the ®nite element
method, in order to calculate the effective properties of the
piezocomposite. This homogenization has no limitations
regarding volume fraction or shape of the composite
constituents. Performance characteristics are measured
differently depending on the application of the piezoelec-
tric material ± low frequency applications such as hydro-
phones or high frequency applications such as transducers
for ultrasonic imaging.

Fonseca and Kikuchi (1995), and Sigmund (1995) ini-
tially developed the topology design of microstructures for
elastic materials using the homogenization method and
topology optimization techniques. With this method,
microstructures with speci®ed properties can be obtained.
The method is general and the only limitations for the
speci®cation of the achievable properties lie in the ther-
modynamic considerations (which determine that the
elastic tensor must be positive de®nite) and the bounds
de®ned by Hashin and Shtrikman (1963). It is possible to
design material microstructures with unusual behavior
determined by extremal properties, as in negative Pois-
son's ratio material (see Fonseca and Kikuchi 1996). The
method was extended to the design of thermoelastic mic-
rostructures in Sigmund and Torquato (1996).

In the case of piezoelectric material, a new set of
properties, in the space of achievable properties, that
maximizes the performance characteristics must be found.
This can be achieved by designing the unit cell of the
piezocomposite material using a similar procedure as in
the case of elastic structures. The space of achievable
properties for the piezocomposite material is also dictated
by thermodynamic considerations that require positive
de®niteness of the tensor involving the elastic, piezoelec-
tric, and dielectric properties, as discussed in Smith
(1992). Other bounds however, are not available for pi-
ezoelectric materials in the literature.

Although the method introduced in this work is general
and can be applied in the design of 3D microstructures, the
examples presented herein are limited to 2D plane strain
microstructure due to its lower computational cost. Plane
stress condition can also be considered but it is less real-
istic (due to manufacturing considerations) than plane

strain for representing the piezoelectric material operation
in a ultrasonic transducer or hydrophone.

This paper is organized as follows: In section 2, the
constitutive equations of the piezoelectric medium are
presented in their most common forms. In section 3, the
quantities that describe the performance characteristics of
the transducer for low and high frequency applications are
given. In section 4, the theoretical formulation and nu-
merical implementation of the homogenization method
applied to piezoelectricity are presented. In section 5, the
optimization problem and its parameters are de®ned. In
section 6, some microstructure topologies resulting from
the optimization and a discussion of the results are pres-
ented. In section 7, some conclusions are given. The
symmetry conditions for homogenization are brie¯y
presented in appendix A and the sensitivity analysis of the
material properties necessary for the optimization prob-
lem are derived in appendix B.

2
Constitutive equations of piezoelectric materials
In this section, a brief description of the constitutive
equations of piezoelectric materials is given, and the
properties of piezoelectric medium are de®ned. These
properties will be used for expressing the performance
characteristics in the next section.

This paper considers piezoelectric materials that re-
spond linearly to changes in the electric ®eld, electric
displacement, or mechanical stress and strain. Variations
in temperature and magnetic ®eld are considered unim-
portant. This is compatible with the piezoelectric ceramics,
polymers, and composites in current use (see Smith 1992).
With these assumptions, the behavior of the piezoelectric
medium is described by the following piezoelectric con-
stitutive equations which relate the stress �Tij�, strain �Skl�,
electric ®eld �Ek�, and electric displacement �Di� (see IEEE
1984):

Tij � cE
ijklSkl ÿ ekijEk

Di � eiklSkl � �S
ikEk

(
�1�

where cE
ijkl is a fourth order stiffness tensor under short

circuit boundary conditions, �S
ik is a second order free-

body electric tensor, and ekij is a third order piezoelectric
strain tensor.

Due to the symmetry of the tensors Tij; Sij; c
E
ijkl; and �S

ij;
Eq. (1) can be written in a compact notation (see IEEE
1984):

TP � cE
PQSQ ÿ ePkEk

Di � eiQSQ � �S
ikEk

(
or

T � cESÿ eE

D � etS� �SE

(
�2�

where cE � cE
PQ; �

S � �S
ik; e � eiQ; S � Sij � SP when

i � j; p � 1; 2; 3; and 2Sij � SP when i 6� j; p � 4; 5; 6: The
superscript ``t'' denotes a transposed matrix. Similar re-
lations hold for the other terms in (2) (see IEEE 1984).

The constitutive equations can also be represented by
an alternate form:

S � sET� dE

D � dtT� �TE

(
�3�
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where sE is the compliance tensor under short circuit
conditions, �T is the clamped body dielectric tensor, and d
is the piezoelectric stress tensor. The relations among the
coef®cients are (see IEEE 1984):

sE � �cE�ÿ1
�T � �S � dt�sE�ÿ1

d d � �sE�e �4�
In the case of a piezocomposite made, for example, of

PZT ceramic rods embedded in a polymer, if the wave-
length of the applied ®eld is much larger than the spacing
between rods, the composite material can be modelled as a
homogeneous medium. In this case, its behavior can be
characterized by the previous Eqs. (2) and (3) considering
the composite effective properties (or homogenized pro-
perties) in these equations (see Smith and Auld 1991, and
Smith 1993). These effective properties can be obtained
using the homogenization method presented in section 4.
Therefore, the constitutive equations of the composite
material considering homogenized properties become:

hTi � cE
HhSi ÿ eHhEi

hDi � et
HhSi � �S

HhEi

(
�5�

hSi � sE
HhTi ÿ dHhEi

hDi � dt
HhTi � �T

HhEi

(
�6�

where h:i denotes volume averaged quantities and the
subscript ``H'' refers to the homogenized properties. The
relations among the properties become:

sE
H � �cE

H�ÿ1 �T
H � �S

H � dt
H�sE

H�
ÿ1

dH dH � �sE
H�eH

�7�
In the following sections, the subscript ``H'' will be omit-

ted for the homogenized properties for the sake of brevity.

3
Piezocomposite materials performance characteristics
In this section, a brief summary of the expressions that
describe the performance characteristics of piezo-
composites is given. Two kinds of applications are con-
sidered: low frequency (hydrostatic operation mode, such
as some hydrophones) and high frequency (medical
ultrasonic imaging or therapy).

3.1
Low frequency applications
Considering a transversely isotropic composite under hy-
drostatic pressure hTi � Tdij �dij is the Kronecker delta),
the composite's responses are given by three quantities
(see Avellaneda and Swart 1994):

� Hydrostatic Coupling Coef®cient �dh�
dh � hD3i=T � d33 � 2d13 �8�

� Figure of Merit �dhgh�
dhgh � d2

h � d2
h=�

T
33 �9�

� Hydrostatic Electromechanical Coupling Factor �kh�

kh �
����������

d2
h

�T
33sE

h

s
�10�

where sE
h � 2sE

11 � 2sE
12 � 4sE

13 � sE
33 is the dilatational

compliance, and the coef®cients sE
kl are those de®ned in

Eq. (6). The coef®cient kh measures the overall acoustic/
electric power conversion.

In terms of the properties described in Eq. (5), these
quantities can be written as given by Avellaneda and Swart
(1994), and Gibiansky and Torquato (1995):

dh � vCÿ1e dhgh � vCÿ1e� �2
�33 � etCÿ1e

k2
h �

vCÿ1e� �2
��33 � etCÿ1e�vCÿ1vt

�11�

where:

C � K c13

c13 c33

� �
e � e11

e33

� �
v � 1 1� � �12�

and K � �c11 � c12�=2 is the transverse bulk modulus. All
the properties considered in the de®nitions are homoge-
nized properties.

However, in this work only 2D plane strain micro-
structures in the 1±3 (or xz) plane were considered.
Therefore, quantities dh; dhgh, and kh were rede®ned in
Eqs. (11) considering a new matrix C:

C � c11 c13

c13 c33

� �
�13�

resulting in the expressions for the performance charac-
teristics of the 2D plane strain case. This new matrix C was
obtained by considering the de®nition of quantity hD3i in
Eq. (6) for the 2D hydrostatic case.

3.2
High frequency applications
In ultrasonic applications, thin plates of the piezocompo-
site are excited near their thickness-mode resonance. In
this case, the quantity that describes the performance of
the ultrasonic transducer is (see Smith and Auld 1991):

� Electromechanical Coupling Factor �kt�

kt �
�����������

e2
33

cD
33�

S
33

s
�14�

where the properties are de®ned in Eq. (5) and
cD

33 � cE
33 � �e33�2=�S

33:
In addition to kt, two other quantities are of interest for

ultrasonic transducers in ultrasonic imaging: acoustic
impedance �Z �

������
cD

33

p
q� and longitudinal velocity

�vt �
�����������
cD

33=q
p

, where q is the composite density). In order
to increase the performance of the transducer, we must try
to maximize kt and minimize the acoustic impedance Z. A
low acoustic impedance guarantees good coupling between
the transducer and the external medium (usually water or
a water-like medium). In addition, in order to model the
composite as a homogeneous medium, the wavelength �k�
must be much larger than the dimension of the piezo-
composite microstructure. Therefore, considering the re-
lation vt � kf ; where f is the speci®ed operation frequency
of the transducer, the longitudinal velocity vt must be kept
high, otherwise it causes a reduction of k (see Smith and
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Auld 1991). The de®nitions of kt; Z; and vt do not change
for the 2D plane strain case.

4
Homogenization in piezoelectricity
In this section, a brief introduction to the theory of the
homogenization method applied to piezoelectricity is
presented. Homogenization allows the calculation of the
effective properties of a complex periodic material (see
Sanches and Sances 1992). Periodic materials are com-
posed of a periodic repetition of unit cells. The homoge-
nization theory applied to piezoelectricity was developed
by Telega (1990), and Galka et al. (1992). The numerical
implementation of the theory is discussed and homoge-
nization is compared with differential effective medium
theory (DEM).

4.1
Theoretical formulation
Considering the standard homogenization procedure, the
unit cell is de®ned as Y � �0;Y1� � �0;Y2� � �0;Y3� and let
the material functions cE

ijkl; eijk; and �S
ij be Y-periodic

functions:

CEe�x� � CE�x; y�; ee�x� � e�x; y�; �Se�x� � �S�x; y�
CEe�x; y� � CE�x; y � Y�; ee�x; y� � e�x; y � Y�;
�Se�x; y� � �S�x; y � Y� �15�
and y � x=e where e > 0 is a parameter with small value
which represents the microscale in which the properties
are changing (composite microstructure scale).

Expanding u and / asymptotically, we get (see Telega
1990):

ue � u0�x� � eu1�x; y� �16�
/e � /0�x� � e/1�x; y�
where only the ®rst order variation terms were considered
and u1 and /1 are Y-periodic.

Equations (16) and properties (15) must be substituted
into the energy functional for the piezoelectric medium
given by the expression (see Tiersten 1967):

G�v;u� � 1

2

Z
X

e : CE : edXÿ 1

2

Z
X

$u�S$udX

�
Z

X
e : e$udXÿ

Z
X

vbdXÿ
Z

C
vtdX

�
Z

C
uddX �17�

where e is the mechanical strain, $u the electrical gradi-
ent, b the body forces, t the surface traction and d the
surface electrical charges. CE; �S, and e were de®ned in
Eq. (5).

After the substitution and application of the theory of
asymptotic analysis (see Sanches and Sanches 1992), we
can extract the macroscopic and microscopic equations.
Due to the linearity of the problem we can assume that (see
Galka et al. 1992):

u1 � v�x; y�e�u0�x�� �U�x; y�$/0�x�
/1 � w�x; y�e�u0�x�� � R�x; y�$/0�x�

�18�

where v�x; y� is the characteristic displacement of the unit
cell, R(x, y) is the characteristic electric potential of the
unit cell, and w(x, y) and U(x, y) are the characteristic
``coupled'' functions of the unit cell. All of these functions
are Y-periodic; v(x, y) and U(x, y) belong to Hper�Y;R3�;
and w�x; y� and R(x, y) belong to Hper�Y�; where:
Hper�Y� � fv 2 H1�Y� j v takes equal values on
opposite sides of Y}, Hper�Y;R3� � fv � �vi� j vi 2 Hper�Y�;
i � 1; 2; 3g which corresponds to the periodicity condition
in the unit cell.

Substituting (18) into the microscopic equation and
seeking its solution, we obtain two sets of equations (see
Telega 1990, and Galka et al. 1992):Z

Y

cijkl�x; y� dimdjn � ov�mn�
i

oyj

 !
� eikl�x; y� ow�mn�

oyi

" #
ekl�v�dY � 0; 8v 2 Hper�Y;R3� �19�Z

Y

ekij�x; y� dimdjn � ov�mn�
i

oyj

 !
ÿ �ik�x; y� ow�mn�

oyi

" #
ow

oyk
dY � 0; 8 w 2 Hper�Y� �20�

Z
Y

cklij�x; y� oU�m�k

oyl
� ekij�x; y� dmk � oR�m�

oyk

� �" #
eij�v�dY � 0; 8v 2 Hper�Y;R3� �21�Z

Y

ekij�x; y� oU�m�i

oyj
ÿ �ik�x; y� dmi � oR�m�

oyi

� �" #
ow

oyk
dY � 0; 8w 2 Hper�Y� �22�

Having solved these local problems, we can determine
the homogenized properties. They are given by (see Telega
1990, and Galka et al. 1992):

ch
rspq�x� �

1

j Y j
Z

Y

cijkl�x; y� dipdjq � ov�pq�
i

oyj

 !"(

� dkrdls � ov�rs�
k

oyl

 !

� ekij�x; y� dipdjq � ov�pq�
i

oyj

 !
ow�rs�

oyk

#
dY

)
�23�

eh
prs�x� �

1

j Y j

(Z
Y

ekij�x; y�
�

dkp

�
� oR�p�

oyk

�

�dirdjs � ov�rs�
i

oyj
� ÿ :ekij�x; y� oU�p�i

oyj

ow�rs�

oyk
�dY

)
�24�
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�h
pq�x� �

1

j Y j

(Z
Y

�ij�x; y� dip � oR�p�

oyi

� �
djq � oR�q�

oyj

� ��

ÿ ekij�x; y� dkp � oR�p�

oyk

� �
oU�q�i

oyj

#
dY

)
�25�

and ch
ijkl � ch

klij � ch
jikl; eh

ijk � eh
ikj; �

h
ij � �h

ji:

4.2
Numerical implementation
The previous equations have an analytical solution only
for simple cases (such as the one-dimensional unit cell).
For unit cells with complex topologies a solution can be
obtained using the ®nite element method (FEM). In FEM,
the base cell is discretized by N ®nite elements, and the
integrals (19), (20), (21), (22), (23), (24), and (25) are
transformed in a summation of integrals over each ®nite
element. Four-node bilinear elements were used in the
implementation. Essentially, for the 2D case, there are
three load cases to be solved in Eqs. (19) and (20) (indices
mn are 11, 33, and 13 or 31), and two load cases in Eqs.
(21) and (22) (index m is 1 and 3). For the 3D problem,
there are six load cases to be solved in Eqs. (19) and (20)
(indices mn are 11, 22, 33, 12 or 21, 23, or 32, and 13 or
31), and three load cases in Eqs. (21) and (22) (index m is
1, 2, and 3).

The displacements and electric potential of some point
of the cell must be prescribed to overcome the non-unique
solution of the problem, otherwise the problem will be ill
posed. The choice of the point or the prescribed values
does not affect the homogenized coef®cients, since we only
use derivatives of the characteristic functions in their
computation (see Fonseca and Kikuchi 1995).

The computational implementation of the homogeni-
zation algorithm can be obtained adapting a standard ®-
nite element code applied to piezoelectricity (see Naillon
et al. 1983).

4.3
Symmetry considerations
If the piezocomposite cell has some kind of symmetry in
relation to axes or planes, we can take advantage of this in
order to reduce the computational cost. In this case, op-
timization and homogenization are conducted only in one
part of the domain. If the cell is symmetric in relation to
one or two axes in the 2D plane strain case (or planes in
the 3D problem) the homogenized coef®cients will be at
least orthotropic, since the piezoelectric material is or-
thotropic and must be present in the unit cell. If there is no
symmetry at all, the homogenized coef®cients will be an-
isotropic. If the piezocomposite is orthotropic, the number
of independent homogenized coef®cients is reduced to
four elastic coef®cients for the 2D case and nine for the 3D
case, and the number of dielectric coef®cients is reduced
to two for the 2D case and three for the 3D case. The
piezoelectric homogenized coef®cients depend on the kind
of crystal class considered for the basic piezoelectric ma-
terial. For the 4 mm tetragonal class considered in this
work, there are three piezoelectric coef®cients for the 2D
case and four in the 3D case.

The symmetry conditions applied in the homogeniza-
tion calculations in the 2D plane strain case are presented
in appendix A.

4.4
Comparison with other methods
There are other methods for calculating effective proper-
ties of piezocomposite materials. The main advantage of
the homogenization method presented here, in relation to
other methods, is that it is not limited by the shape of the
inclusions and matrix that make the composite unit cell.
Other method, such as the differential effective medium
theory (DEM) presented in Avellaneda and Swart (1994)
would not be applicable in our work, since the DEM
cannot treat unit cells with complex topologies.

However, in order to verify the accuracy of the ho-
mogenization method for piezoelectricity, we compare its
results with the results of the differential effective medium
theory (DEM) for a simple unit cell topology. The DEM
evaluates the piezocomposite effective properties for all
volume fractions and is exact in the small volume fraction
limit (see Avellaneda and Swart 1994). The unit cell con-
sidered is shown in Fig. 1. In Figs. 2, 3, 4 and 5 coef®cients
dh; dhgh; and kh are plotted as a function of the ceramic

Fig. 1. Composite unit cell discretized by a 3� 3� 3 ®nite
element mesh

Fig. 2. Comparison among composite piezoelectric charge
coef®cients d13; d33; and dh obtained using DEM and
homogenization, as a function of piezoceramic volume fraction
for a PZT5A/Stycast composite
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volume fraction for piezocomposites made of PZT5A/
Stycast, and (Pb, Ca) TiO3/Stycast. The properties of these
materials are listed in Table 1. One can see that homoge-
nization agrees very well with their method.

5
Topology optimization procedure
This section describes the numerical procedure for to-
pology optimization of piezoelectric microstructures in
two dimensions and discusses its numerical implementa-
tion. The procedure presented here is based on the to-
pology optimization procedure applied to the design of
elastic microstructures using the homogenization method,
as described in Fonseca and Kikuchi (1996), and Sigmund
(1995).

5.1
Formulation of the optimization problem
The initial domain is discretized by ®nite elements where
the design variables are the amount of material �x� in each
®nite element. The objective is to maximize one of the
performance characteristics of the piezoelectric material
presented in section 3 (de®ned in terms of the homoge-
nized properties of the piezocomposite) such as the hy-
drostatic coupling coef®cient �dh�, hydrostatic ®gure of
merit �dhgh�, electromechanical coupling factor �kh�, or
thickness mode electromechanical coupling factor �kt�,
which were rede®ned for the 2D plane strain case. The
optimization procedure is iterative and consists of the
following steps (see Fig. 6): ®rst, the effective properties of
the microstructure are obtained by using the homogeni-

Fig. 3. Comparison among composite piezoelectric charge
coef®cients d13; d33; and dh obtained using DEM and
homogenization, as a function of piezoceramic volume fraction
for a (Pb,Ca)TiO3/Stycast composite

Fig. 4. Comparison among composite hydrostatic ®gure of merit
dhgh obtained using DEM and homogenization, as a function of
piezoceramic volume fraction for a (Pb,Ca)TiO3/Stycast and
PZT5A/Stycast composites

Fig. 5. Comparison among composite hydrostatic electro-
mechanical coupling factor kh obtained using DEM and homog-
enization, as a function of piezoceramic volume fraction

Table 1. Material Properties of PZT5, (Pb, Ca) TiO3 and Stycast

Piezoceramic PZT5 (Pb, Ca)TiO3

cE
11 (1010 N/m2) 12.04 15.05

cE
12 (1010 N/m2) 7.52 3.68

cE
13 (1010 N/m2) 7.51 3.09

cE
33 (1010 N/m2) 11.09 12.78

cE
44 (1010 N/m2) 2.3 1.20

cE
66 (1010 N/m2) 2.1 1.14

e13 (C/m2) )5.4 1.71

e33 (C/m2) 15.8 8.8

e15 (C/m2) 12.3 0.33

�S
11=�0 540 170

�S
33=�0 830 140

Polymer Stycast
c11 (1010 N/m2) 1.23
c12 (1010 N/m2) 0.52
�33=�0 4
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zation method so the performance characteristics can be
calculated. Then, using an optimization algorithm (such as
linear programming method), a new distribution of ma-
terial that maximizes the performance is obtained. This
procedure is repeated and the iteration proceeds until
convergence is obtained.

5.1.1
Element material properties
In this work, the material properties in a given element is
simply some fraction x times the material properties of the
basic material. This is an ``arti®cial'' material model for
intermediate densities, but since we obtain an entirely
solid material or void in each element, this is a valid ap-
proach. However, during the optimization process inter-
mediate densities are allowed and consist of arti®cial (non-
existing) materials. By using this model the design pro-
cedure is greatly simpli®ed (see Sigmund and Torquato
1996).

The basic material has stiffness tensor c0
ijkl, piezoelectric

tensor e0
ijk; and dielectric tensor �0

ij. If the basic material
considered in the analysis is the polymer (isotropic), the
piezoelectric coef®cients are zero. Therefore, the local
tensor properties in each element n can be expressed in
terms of one design variable xn times the basic material
property:

cn
ijkl � xnc0

ijkl en
ijk � xne0

ijk �n
ij � xn�

0
ij �26�

where xn represents the amount of basic material in that
element (local density) that ranges from xmin to 1. For
xn � xmin the element is a ``void'' and for xn � 1 the ele-
ment is a solid material.

Considering that the design domain was discretized in
N ®nite elements, the material type will change from ele-
ment to element during the optimization. The design
problem consists of ®nding the fraction xn amount of
material in each element such that the objective function is
maximized or minimized.

5.1.2
Constraints
The maximization of the piezoelectric response can be
reached allowing a decrease in the effective stiffness of the
composite material. One can try to give a physical expla-
nation for this considering the nature of the piezoelectric
effect. Essentially, this effect occurs due to Coulomb forces
that try to deform the material elastic matrix. These
Coulomb forces appear due to the presence of dipoles in
the material molecule (Ristic 1983). In order to maximize
the piezoelectric response (usually strain) we must expect
a decrease in the stiffness of the matrix. This was veri®ed
numerically in the optimization.

Lower stiffness is undesirable, therefore, a lower bound
constraint on effective stiffness should be speci®ed. Since
the microstructure is orthotropic, we must choose a stiff-
ness coef®cient for the constraint �cmin�. The decision of
which stiffness coef®cient should be constrained depends
on the problem, as will be discussed later in the results
section.

A lower bound xmin is also speci®ed for the design
variables xn to avoid numerical problems (singularity of
the stiffness matrix in the ®nite element formulation). In
this work xmin was chosen to be 10ÿ4. Numerically, regions
with xn � xmin have practically no structural signi®cance
and can be considered void regions. Therefore, the bounds
for the design variable are 0 < xmin � xn � 1 (see Sig-
mund and Torquato 1996).

Another constraint is related to the symmetry condi-
tions imposed. As the expected composite material is
necessarily orthotropic (since the basic piezoelectric ma-
terial is orthotropic), two kinds of symmetry can be de-
®ned in the microstructure domain for the 2D plane strain
case: one in relation to the horizontal axis and the other in
relation to both axes. The symmetry conditions are im-
plicitly expressed in the boundary conditions during the
homogenization, as stated in appendix A. In this work no
volume constraint was speci®ed.

Considering all these features, the ®nal optimization
problem can be stated as:

Maximize : F�x�;where x � �x1; x2; . . . ; xn; . . . ; xN �
subject to : cijkl � cmin; i; j; k; l are specified values

0 < xmin � xn � 1

where xn is the design variable on the n-th element and
F�x� is the performance characteristic to be maximized.

5.2
Optimization method
In this work, as we are considering several different ob-
jective functions and some constraints, we decided to use
the mathematical programming method called sequence
linear programming (SLP). This method consists of the

Fig. 6. Flowchart of the optimization procedure

403



sequential solution of approximate linear subproblems
that can be de®ned writing Taylor series expansion for the
objective and constraints functions around the current
design point xn in each iteration step. This method has
been successfully used in the design of microstructures
(see Fonseca and Kikuchi 1996 and Sigmund and Torquato
1996).

The linearization of the problem (Taylor series) re-
quires the sensitivities (gradients) of the objective function
and constraints in relation to xn. These sensitivities can be
expressed as a function of the sensitivities of the material
coef®cients derived in appendix B. Contrary to the design
of elastic microstructures, where the gradients can be
easily obtained analytically, in the piezoelectric case, we
could not obtain a simpli®ed expression. Therefore, the
solution of an additional ®nite element problem is re-
quired for the gradient calculation, making it computa-
tionally expensive.

In the SLP solution we apply the moving-limits strategy
to stabilize the process convergence (see Fonseca and
Kikuchi 1996). The rule used is that the change in the
moving-limits of the design variables is reduced when the
change in the objective function starts to decrease during
three consecutive iterations (close to convergence). The
changes in the moving-limits can be speci®ed as percent-
ages.

5.3
Numerical implementation
A ¯owchart of the optimization algorithm describing the
steps involved is shown in Fig. 6. The software was im-
plemented in FORTRAN language.

A random distribution of material is used as a starting
guess. A lot of computer time can be saved if the starting
guess is close to the optimal topology. However, we usually
do not know the optimal topology, so in order to over-
come this problem the result obtained with a coarse mesh
(10�10) is transferred to a re®ned mesh (20�20) and it is
used as an initial guess for the calculations in the re®ned
mesh. This provides signi®cant savings in the computa-
tional time for the re®ned mesh and helps to verify the
convergence of the solution. The result of the coarse mesh
can be considered a good initial guess for the re®ned
mesh.

The equations for the homogenization and its solution
were presented in section 4. The linear programming
subproblem in each iteration of the SLP is solved using the
package DSPLP from the SLATEC library (see Hanson and
Hiebert 1981).

The iteration proceeds until the change in the objective
function during three consecutive iterations is less than
10ÿ4 (by experience).

6
Results
Material properties of the basic materials and the con®g-
urations used for the design are described in this section.
The performance of the microstructures obtained is
compared with the performance of pure piezoelectric
material and a simple unit cell design.

6.1
Material properties used in the simulations
Table 2 describes the properties of the piezoceramic and
polymer used in the composite. Considering 2D plane
strain conditions in plane 1-3 (or xz) only the properties
cE

11; c
E
13; c

E
33; c

E
44; e13; e33; e15; �

S
11=�0; and �S

33=�0 were used for
the piezoelectric material.

6.2
Optimized piezoelectric microstructures
Piezoelectric materials used in transducer design are
usually ceramics (orthotropic materials) that are very
dif®cult to fabricate with complex shapes. Therefore, two
kinds of initial domains are considered. In the ®rst model,
there are two materials in the unit cell: polymer and pi-
ezoelectric materials. The polymer is the design domain
and the piezoelectric domain remains unchanged during
this analysis. This con®guration was chosen to avoid the
dif®culties in manufacturing piezoceramics with complex
topologies. Our goal is to obtain a unit cell that presents
complex topology only in the polymer domain. In the
second model the entire domain consists of piezoceramic
(no polymer at all).

The initial con®guration considered for the unit cell in
the ®rst model is shown in Fig. 7. The initial ``volume
fraction'' (vol%) of ceramic was set to 20%. This volume
fraction changes during the optimization procedure since
material is removed from or added to the polymer domain.

Table 2. Material Properties of PZT5 and Spurr polymer

Piezoceramic PZT5

cE
11 (1010 N/m2) 12.1

cE
12 (1010 N/m2) 7.54

cE
13 (1010 N/m2) 7.52

cE
33 (1010 N/m2) 11.1

cE
44 (1010 N/m2) 2.30

cE
66 (1010 N/m2) 2.10

e13 (C/m2) )5.4
e33 (C/m2) 15.8
e15 (C/m2) 12.3

�S
11=�0 1650

�S
33=�0 1700

Polymer Spurr
c11 (1010 N/m2) 0.53
c12 (1010 N/m2) 0.31
�33=�0 4

Fig. 7. Con®guration for the ®rst model. The piezoelectric domain
is kept unchanged
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For the ®rst model, the stiffness constraint (lower
bound) is speci®ed for coef®cient cE

11 since it is expected
that the unchanged piezoceramic domain provides enough
stiffness in 3 (or z) direction. In the second case (design
domain consists only of piezoelectric material) the stiff-
ness constraint is speci®ed for cE

11, although other coef®-
cients could have been used.

Two kinds of symmetry conditions were considered in
the optimization: one in relation only to 1 (or x) axis, and
the other in relation to 1 (or x) and 3 (or z) axes.

Table 3 presents the values of the performance char-
acteristics (see section 3) considering the unit cell fully
made of PZT5 material and a simple unit cell having 20%
``volume fraction'' of PZT5 in a polymer (effective prop-
erties obtained using homogenization). The results ob-
tained with the proposed method will be compared with
these results.

Figures 8 through 12 show microstructure topologies
obtained when considering the ®rst model con®guration in
the initial domain. The performance characteristics for
these topologies are listed in Table 4. Symmetry conditions
in 1 (or x) and 3 (or z) axes were considered.

The problem is not convex since different starting
points result in different topologies that maximize the
performance characteristics. The non-uniqueness of the
solution is intrinsic to the mathematical formulation (for
example, we could have an unlimited number of possible

de®nitions of the unit cell of the periodic media). Figures 8
and 9 illustrate the non-uniqueness. They present top-
ologies that maximize jdhj obtained by considering dif-
ferent starting points. The stiffness constraints are shown
in table 4 for each case. The topology in Fig. 9 has a lower
stiffness constraint giving a larger value for jdhj.

Figure 10 shows a microstructure that has an optimized
dhgh. Figure 11 presents a unit cell that maximizes kh, and
Fig. 12 shows one that maximizes kt. The stiffness con-
straint in each case is shown in Table 4. The topology that
maximizes dhgh is very similar to the ones that maximize
jdhj. The optimized value obtained for dhgh is lower than
the one obtained in Fig. 9 for the same stiffness constraint
showing that this may be a local maximum.

Comparing the values of Table 4 with the values in
Table 3, the following improvement can be veri®ed in re-
lation to the simple unit cell PZT5/polymer (20 vol%): 2.7
times in jdhj, 7 times in dhgh, 1.6 times in kh, and 1.2 times
in kt. In relation to the pure piezoelectric material, there

Fig. 8. Microstructure that maximizes jdhj : A 20 � 20 mesh for
one quarter of the cell was used

Table 3. Performance characteristics for two basic unit cells

Unit cell jdhj (pC/N) dhgh
(pm2/N)

kh kt

PZT5 (full) 68.2 0.222 0.145 0.361
PZT5/polymer

(20 vol%) 90.95 2.06 0.112 0.455

Table 4. Performance char-
acteristics of the unit cells
described in the ®gs.

Fig. Design cE
11(109N/m2)> j dh j (pC/N) dhgh (pm2/N) kh kt

8 max. jdhj 1.4 234.0 13.1 0.13 0.52
9 max. jdhj 0.8 253.0 15.3 0.11 0.52
10 max. dhgh 0.8 249.0 15.0 0.11 0.52
11 max. kh 3.0 217.0 11.3 0.18 0.51
12 max. kt 0.8 229.0 12.6 0.10 0.52

Fig. 9. Microstructure that maximizes jdhj. Different initial guess
than previous ®gure. A 20 � 20 mesh for one quarter of the cell
was used

Fig. 10. Microstructure that optimizes dhgh: A 20 � 20 mesh
for one quarter of the cell was used
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was an improvement of 3.7 times in jdhj, 69 times in dhgh,
1.2 times in kh, and 1.4 times in kt.

Table 5 shows the values of performance characteristics
obtained considering the second model (the entire design
domain made of piezoelectric material). The optimized
unit cell topologies are presented in Figs. 13, 14 and 15.
Symmetry conditions in 1 (or x) and 3 (or z) axes were
considered. The stiffness constraint speci®ed is shown in
Table 5. Figures 13 and 14 present two different topologies
that maximize jdhj obtained when using different starting
points.

Comparing the values of Table 5 with the values in
Table 3, the following improvement can be veri®ed in re-
lation to the simple unit cell PZT5/polymer (20 vol%): 3
times in jdhj and 3.7 times in kh. In relation to the pure
piezoelectric material, there was an improvement of 3.8
times in jdhj and 3 times in kh. By specifying lower stiffness
constraints, greater improvement can be achieved.

Figure 16 shows the topology that maximizes jdhj ob-
tained by considering the ®rst model and symmetry only
in relation to 1 (or x) axis. Figure 17 presents the micro-

structure topology that optimizes jdhj obtained by con-
sidering the second model (only piezoelectric material in

Fig. 11. Microstructure that maximizes kh: A 20 � 20 mesh for
one quarter of the cell was used

Fig. 12. Microstructure that maximizes kt: A 10�10 mesh for
one quarter of the cell was used

Table 5. Performance char-
acteristics of the unit cells
described in the ®gures

Fig. Design cE
11(109 N/m2)> jdh j (pC/N) dhgh (pm2/N) kh kt

13 max. jdh j 40.0 265.0 26.8 0.40 0.44
14 max. jdh j 40.0 260.0 16.4 0.36 0.41
15 max. kh 40.0 221.0 28.9 0.42 0.47

Fig. 13. Microstructure that maximizes jdhj : The entire initial
domain made of piezoelectric material. A 20 � 20 mesh for one
quarter of the cell was used

Fig. 14. Microstructure that maximizes jdhj : The entire initial
domain made of piezoelectric material. Different initial guess
than previous ®gure. A 10 � 10 mesh for one quarter of the cell
was used

Fig. 15. Microstructure that maximizes kh: The entire initial
domain made of piezoelectric material. A 10 � 10 mesh for one
quarter of the cell was used
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the design domain) and symmetry only in relation to x
axis. A constraint in the stiffness coef®cient
cE

11 > 8:108N=m2 was speci®ed in each case. The same
improvement was obtained as in the examples with two
symmetry axes.

Figure 18 describes the change in the microstructure
topology that maximizes jdhj as the stiffness constraint in
coef®cient cE

11 is decreased. The value of jdhj increases
from a) to f ) with the decrease in the stiffness constraint,
as expected. The values of the performance characteristics
are shown in Table 6 for these topologies. The value of
dhgh also increases with the decrease in the stiffness con-
straint.

All the results for the maximization of jdhj presented
above were obtained by considering positive values of dh,
as the implementation of the SLP used in this work allows

only for positive values of the objective function. However,
we can look for an optimal value by considering negative
values. In order to verify the accuracy of the results, the
homogenized properties were calculated again by consid-
ering a twice ®ne mesh (40� 40 for one quarter of the
cell). The results showed an average difference of 2%.

7
Conclusions
A method for designing piezoelectric microstructures with
high performance characteristics using topology optimi-
zation techniques and homogenization method has been
proposed. This method was implemented considering 2D
plane strain microstructures. The optimization procedure
determines the distribution of two phases (one material
phase and one void phase) in the composite unit cell that
maximize the composite performance characteristics. Two
different models were considered for the optimization. In
the ®rst one, the design domain is made of polymer and
the piezoelectric material remains unchanged during the
analysis. In the second one, the entire domain consists of
piezoceramic (no polymer at all).

Due to the importance of the homogenization method
in the proposed optimization procedure, its application in
the calculation of the effective properties of piezocom-
posite materials is described. The homogenization results
were compared with the differential effective medium
theory results presented in Avellaneda and Swart (1994)
and very good agreement was observed.

The new microstructures obtained showed a large im-
provement in the performance characteristics in relation

Fig. 16. Microstructure that maximizes jdhj� 247:0 pC/N-sym-
metry in relation to x axis. A 10�10 mesh for the entire cell was
used

Fig. 17. Microstructure that maximizes jdhj� 228:0 pC/N-sym-
metry in relation to x axis. The entire initial domain made of
piezoelectric material. A 10�10 mesh for the entire cell was used

Fig. 18 a±f. Change in the microstructure topology with a de-
crease in the stiffness constraint from a to f . A 10�10 mesh for
one quarter of the cell was used

Table 6. Performance char-
acteristics of the unit cells
described in Fig. 18

Fig. Design cE
11(109 N/m2)> j dh j (pC/N) dhgh (pm2/N) kh kt

a) max. j dh j 4.5 163.0 6.5 0.16 0.50
b) max. j dh j 4.0 198.0 9.4 0.18 0.50
c) max. j dh j 3.5 205.0 10.1 0.18 0.51
d) max. j dh j 3.0 217.0 11.3 0.17 0.51
e) max. j dh j 2.0 228.0 12.5 0.15 0.52
f) max. j dh j 0.82 245.0 14.3 0.11 0.52
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to the pure piezoelectric material and simple designs of
piezocomposite unit cells (see Fig. 7). However, the max-
imization of these quantities implies a reduction in stiff-
ness. Therefore, there is a trade-off between the
maximization of the piezocomposite performance and
decrease in stiffness.

The manufacture of these microstructures (even simple
prototypes) is a problem that remains to be solved. Cur-
rently, most manufacturing techniques available for build-
ing complex topologies deal with ductile materials such as
metals and polymers. The fragile behavior of piezoceramic
makes it inappropriate for building complex shapes. In this
sense, the ®rst model presented seeks an approach that
makes the manufacturing of the unit cell easier.

In future work, a ®lter for the optimization that avoids
possible checkerboards and hinges de®ned by one-node
contact between elements (Fonseca and Kikuchi 1996) will
be implemented. A multiobjective function using weights
may also be considered in the simultaneous optimization
of all performance characteristics. For high frequency
applications, a multiobjective function including kt, im-
pedance (Z), and longitudinal velocity (vt) will be imple-
mented. Although symmetry conditions were used in this
work, no symmetry at all (anisotropic unit cells) may lead
to additional improvements. Finally, the method presented
in this paper will be extended to 3D microstructures (a
dramatic increase in computer time is expected).

Appendix
A
Symmetry conditions for homogenization
In this appendix, we present the symmetry conditions for
characteristic functions v;U (displacements) and w;R
(electric potentials) (see Eq. (18)) imposed on the ®nite
element model. These conditions allow to solve the ho-
mogenization equations considering one quarter of the
unit cell (the cell is supposed to be symmetric in relation x
and z axes ± see Fig. 19).

In the 2D plane strain analysis there are ®ve load cases
to be solved in the homogenization problem (see section
4.2). For each of them, we present the symmetry condi-
tions for the characteristic functions (displacements and
electric potential). These conditions can be obtained by
analyzing Eqs. (23), (24), and (25). We de®ne u (dis-
placement in x direction), w (displacement in z direction),
and / (electric potential). Therefore:

� Load Cases 1 and 2 (indices mn are 11 and 33 in
Eqs. (19) and (20)):

In x � a and x � 0) u � 0 and o/=ox � 0
In z � a and z � 0) w � 0 and / � 0

� Load Case 3 (indices mn are 13 or 31 in Eqs. (19) and
(20)):

In x � a and x � 0) w � 0 and / � 0
In z � a and z � 0) u � 0 and o/=oz � 0

� Load Case 4 (index m is 1 in Eqs. (21) and (22)):

In x � a and x � 0) w � 0 and / � 0
In z � a and z � 0) u � 0 and o/=oz � 0

� Load Case 5 (index m is 3 in Eqs. (21) and (22)):

In x � a and x � 0) u � 0 and o/=ox � 0
In z � a and z � 0) w � 0 and / � 0

B
Sensitivity Analysis

B.1
Sensitivity of the material coefficients
The sensitivity analysis of the material coef®cients gives
the gradients for the optimization procedure. The gradi-
ents allow the optimization method to make decisions
about which direction to go during the optimization. In
the topology design of elastic microstructures the gradient
are a linear function of the mutual energies (see Fonseca
and Kikuchi 1995) obtained during the homogenization
process. Therefore, calculation of them is straightforward
and fast (low computational cost) which contributes to
increase the ef®ciency of the optimization. However, for
the piezoelectric case the gradients cannot be easily ob-
tained, as it will be shown in the following expressions.
The calculation of them is not straightforward, having high
computational cost. The semi-analytical method presented
is faster than ®nite difference method.

The calculation of the material coef®cient sensitivities
starts with the derivation of Eqs. (23), (24), and (25) in
relation to design variable xn. Here, the ®nal expressions
are presented separately for each kind of property:

� Sensitivity of Elastic Properties

Deriving Eq. (23) in relation to design variable xn and
considering Eqs. (19) and (20), we get after some algebra
manipulation:

och
rspq�x�
oxn

�

1

jYj
Z

Y

ocijkl�x; y�
oxn

dipdjq � ovpq
i

oyj

� �
dkrdls � ov�rs�

k

oyl

 !"(

� oekij�x; y�
oxn

dipdjq � ov�pq�
i

oyj

 !
ow�rs�

oykFig. 19. Unit cell with symmetry in x and z axes
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� o2v�rs�
k

oyloxn
cijkl�x; y� dipdjq � ov�pq�

i

oyj

 !

� o2w�rs�

oykoxn
ekij�x; y� dipdjq � ov�pq�
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 !#
dY

)
�27�

� Sensitivity of Piezoelectric Properties

Deriving Eq. (24) in relation to design variable xn and
considering Eqs. (19), (20), (21), and (22), we get after
some algebra manipulation:

oeh
prs�x�
oxn

�

1

jYj
Z

Y

oekij�x; y�
oxn
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oyj
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oyjoxn
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oyk

� �
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#
dY

)
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� Sensitivity of Dielectric Properties

Deriving Eq. (25) in relation to design variable xn and
considering Eqs. (21) and (22), we get after some algebra
manipulation:

o�h
pq�x�
oxn
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Y
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#
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Expressions (27), (28), and (29) cannot be further

simpli®ed. Terms
o2U�m�

k

oyloxn
; o2R�m�
oykoxn

;
o2v�mn�

i

oyjoxn
, and o2w�mn�

oyioxn
can be

obtained by deriving Eqs. (19), (20), (21), and (22) in
relation to design variable xn resulting in:Z
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The system of equations above is solved by using the
®nite element method.

B.2
Sensitivity of objective functions
The sensitivity of objective functions (performance char-
acteristics) can be obtained by deriving Eqs. (11) in rela-
tion to design variables xn and expressing the result as a
function of the sensitivities of the material coef®cients
presented above. The derivation of Eqs. (11) is straight-
forward, so it will not be presented here.
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