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of ergodic fluctuations and number of realizations
on the spaces of uncertainty of flow properties

P. Goovaerts

Abstract. Geostatistical simulation algorithms are routinely used to generate
conditional realizations of the spatial distribution of petrophysical properties,
which are then fed into complex transfer functions, e.g. a ¯ow simulator, to yield a
distribution of responses, such as the time to recover a given proportion of the
oil. This latter distribution, often referred to as the space of uncertainty, cannot be
de®ned analytically because of the complexity (non-linearity) of transfer
functions, but it can be characterized algorithmically through the generation of
many realizations. This paper compares the space of uncertainty generated by
four of the most commonly used algorithms: sequential Gaussian simulation,
sequential indicator simulation, p-®eld simulation and simulated annealing.
Conditional to 80 sample permeability values randomly drawn from an exhaustive
40� 40 image, 100 realizations of the spatial distribution of permeability values
are generated using each algorithm and fed into a pressure solver and a ¯ow
simulator. Principal component analysis is used to display the sets of realizations
into the joint space of uncertainty of the response variables (effective
permeability, times to reach 5% and 95% water cuts and to recover 10% and 50%
of the oil). The attenuation of ergodic ¯uctuations through a rank-preserving
transform of permeability values reduces substantially the extent of the space of
uncertainty for sequential indicator simulation and p-®eld simulation, while
improving the prediction of the response variable by the mean of the output
distribution. Differences between simulation algorithms are the most pronounced
for long-term responses (95% water cut and 50% oil recovery), with sequential
Gaussian simulation yielding the most accurate prediction. In this example,
utilizing more than 20 realizations generally increases only slightly the size of the
space of uncertainty.

Key words: stochastic simulation, space of uncertainty, ¯ow simulator,
ergodic ¯uctuations.

Introduction
Reservoir management requires detailed 3D models of lithofacies, porosity, and
permeability. Geostatistical simulation is increasingly used to build such models
conditionally to a variety of information, such as seimic survey, core porosity or
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permeability, well logs, . . .. The advantage of stochastic simulation over inter-
polation (kriging) is that it allows reproduction of statistics (histogram,
semivariogram, scattergram) inferred from the data, hence the model or real-
ization looks more ``realistic'' than a smooth estimated map. Also, one can gen-
erate multiple realizations that all reasonably match the same sample statistics
and exactly identify the conditioning data. The set of alternative realizations
provides a visual and quantitative measure (actually a model) of spatial uncer-
tainty. Spatial features, such as speci®c strings of large permeability values, are
deemed certain if seen on most of the simulated maps. Conversely, a feature is
deemed uncertain if seen only on a few simulated maps.

Simulation can be accomplished using a growing variety of techniques which
differ in the underlying random function model (multiGaussian or non para-
metric), the amount and type of information that can be accounted for, and the
computer requirements (Gotway and Rutherford, 1994; Myers, 1996; Srivastava,
1996; Deutsch and Journel, 1998). There is no simulation algorithm that is best for
all cases but rather a toolbox of alternative algorithms from which to choose or to
build the algorithm best suited for the problem at hand (GoÂmez-HernaÂndez,
1997). According to Srivastava (1996), geostatistical realizations can be used for
three main purposes:

1. To assess the impact of uncertainty. Petroleum engineers who are responsible
for forecasting the future production of a reservoir seek ``pessimistic'' and
``optimistic'' models so that decisions are ¯exible enough to handle the
uncertainty prevailing at the site.

2. To reproduce spatial variation. The objective is here to generate a single map
that reproduces the pattern of spatial variability inferred from the data, and
this realization is thus seen as a better alternative to a single smooth estimated
map.

3. To perform Monte-Carlo risk analysis. Hundreds of alternate models are
generated and processed to produce a distribution of possible values for some
critical engineering parameters. For example, the processing of a set of per-
meability maps through a ¯ow simulator allows the derivation of a set of
possible values for the time to recover 10% of the oil. The distribution (his-
togram) of the response values corresponding to the set of input realizations
provides a measure of response uncertainty resulting from our imperfect
knowledge of the distribution in space of the petrophysical properties.

The ®rst type of application requires the generation of many realizations, and so
the computational time is of primary concern. In contrast, for the generation of a
single simulated map the priority should be given to a very ¯exible algorithm,
such as simulated annealing, that can accommodate very different kinds of
information. Last, Monte-Carlo analysis requires the generation of many
equiprobable realizations, hence the simulation algorithm should be chosen
according to its computational speed and, more importantly, its ability to sample
fairly the set of possible outcomes, which is referred to as the space of uncer-
tainty.

The concept of space of uncertainty, and the associated issue of equiprobability
of realizations, has triggered lively discussions in the recent geostatistical litera-
ture (Myers, 1994, 1996; Journel, 1994, 1997; Rossi, 1994; Srivastava, 1994, 1996,
1997). Some believe that the space of uncertainty must be theoretically de®ned
outside the use of a particular algorithm. Others state that the space of uncer-
tainty can only be de®ned through the algorithm and consists of all possible
realizations that could be generated by the algorithm. This view is particularly
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suited to the space of uncertainty of responses or output values which cannot be
de®ned analytically because of the complexity (non-linearity) of transfer func-
tions, such as ¯ow simulators. In the latter case, the term of algorithmically-
de®ned space of uncertainty is used (Deutsch, 1994).

There is currently no theory that allows us to determine if the set of all possible
outcomes is fairly sampled. According to Journel (1997), for a given simulation
algorithm, equiprobability is ensured as soon as each of the realizations is fully
triggered by one random seed drawn from a uniform distribution. The problem is
that each algorithm will sample a different subset of solutions. As speculated by
Srivastava (1994), speci®c outcomes generated by one algorithm could not be
generated by another, hence the choice of a simulation algorithm might be a key
step in reservoir characterization.

Users are now aware that simulation algorithms that capitalize on the conge-
nial properties of the multiGaussian RF model tend to generate realizations that
show no signi®cant correlation of extreme values (Journel and Alabert, 1988;
GoÂmez-HernaÂndez and Wen, 1994). Algorithms such as sequential Gaussian
simulation are thus inappropriate for applications where it is critical to reproduce
the connectivity of low or high values, e.g. strings of high permeability values may
form ¯ow paths. Journel and Deutsch (1993) have also shown that the property of
maximum entropy of the multiGaussian RF model may lead to over-optimistic
(narrow) assessment of uncertainty about response values, such as effective
permeability or time to reach a 90% water cut. Deutsch and Journel (1992)
compared the spaces of uncertainty generated by three simulation algorithms:
sequential indicator simulation (sis), sequential Gaussian simulation (sGs), and
simulated annealing (SA). In their study, all algorithms used the same informa-
tion, that is the normal score semivariogram model, and the realizations were
unconditional. Regardless of the response variable (time to recover 50% of the oil,
times to achieve 5% and 95% water cut), the three algorithms generated com-
parable spaces, although the response distribution was slighly wider for simulated
annealing. A rank-preserving transform of sis and sGs realizations reduced er-
godic ¯uctuations in the histogram of permeability values, leading to narrower
distributions of response values.

The characterization of the space of uncertainty is rendered dif®cult by the fact
that only a limited number of realizations is usually generated. A frequent and
still open question relates to the number of realizations needed to characterize
this space. Rossi (1994) investigated the impact of the number of realizations on
the average reproduction of univariate and bivariate statistics, such as the mean,
variance and semivariogram of simulated values. He found that statistics repro-
duction improves with increasing number of realizations, and that Gaussian
simulation algorithms allow one to reach ``asymptotes'' faster than indicator-
based ones. This number also depends on the ratio of the semivariogram range to
the size of the simulated domain: fewer realizations are needed for small range
values. These results, however, simply re¯ect ergodic ¯uctuations of simulated
realizations (Deutsch and Journel, 1998, p. 129) and bring little insight into the
size of the space of uncertainty of response values, which is one main concern for
reservoir management.

In summary, contrasting with the increasing use of stochastic simulation in
risk analysis, it appears that little attention has been paid to the de®nition of the
space of uncertainty, and related issues such as the equiprobability of realizations,
the equivalence of spaces of uncertainty generated by different algorithms, and
the number of realizations required to sample this space. To quote Myers (1996),
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``Underlying this diversity of algorithms was an implicit but never stated as-
sumption that there was some form of equivalence and hence the difference was
only computational. . . Neither of these implicit assumptions has really been tested
or even considered, most users do not use multiple algorithms and make
comparisons nor do they generate multiple ®nite sets of realizations to compare
between the sets.''

This paper brings new insight into the comparison of spaces of uncertainty by
considering the increasingly used p-®eld simulation algorithm in addition to the
well-known sequential indicator and Gaussian simulation, and simulated an-
nealing. Instead of looking at the space of uncertainty of each ¯ow characteristic
taken separately, I propose to use principal component analysis to display the set
of realizations into the space de®ned by all characteristics together, which
amounts at looking at the multivariate space of uncertainty. Last, the impact of
the number of realizations and magnitude of ergodic ¯uctuations on the extent of
the space of uncertainty is investigated. The comparative study is based on a
petroleum example, yet the same methodology can be applied to a variety of
problems, such as the modeling of groundwater ¯ow or solute transport.

Stochastic simulation
This section brie¯y reviews the main features of the simulation algorithms used
in the comparative study. A thorough presentation of these algorithms is
available in textbooks such as Goovaerts (1997, p. 376±424) or Deutsch and
Journel (1998, p. 119±197). Many other techniques have been developed for the
simulation of spatial phenomena, e.g. see Ripley (1981) or Christakos (1992,
p. 294±336), but the focus is here on major algorithms that are used in geo-
statistics, mainly because of their ¯exibility and ease of generating conditional
realizations.

Sequential Gaussian and indicator simulation
Consider the simulation of the continuous attribute z at N grid nodes u0j condi-
tional to the data set fz�ua�; a � 1; . . . ; ng. Sequential simulation (Journel and
Alabert, 1988; Isaaks, 1990; GoÂmez-HernaÂndez and Srivastava, 1990) amounts to
modeling the conditional cumulative distribution function (ccdf)
F�u0j; zj�n�� � Prob

�
Z�u0j� � zj�n�	, then sampling it at each of the grid nodes

visited along a random sequence. To ensure reproduction of the z-semivariogram
model, each ccdf is made conditional not only to the original n data but also
to all values simulated at previously visited locations. Other realizations
fz�l0��u0j�; j � 1; . . . ;Ng, l0 6� l, are obtained by repeating the entire sequential
drawing process.

Two major classes of sequential simulation algorithms can be distinguished,
depending on whether the series of conditional cdfs are determined using the
multiGaussian or the indicator formalism. Sequential Gaussian simulation (sGs)
typically involves a prior transform of the z-data into y-data with a standard
normal histogram, which is referred to as a normal score transform. The simu-
lation is then performed in the normal space, and the simulated normal scores are
back-transformed in order to identify the original z-histogram bF�z�. Note that
because the histogram of simulated y-values is never exactly normal, the histo-
gram of back-transformed simulated values may slightly deviate from the target
histogram bF�z�.

Sequential indicator simulation (sis) starts with the transform of each z-datum
into a vector of indicator data de®ned for a series of K threshold values dis-
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cretizing the range of variation of z. In this paper, 5 threshold values corre-
sponding to the 1st, 3rd, 5th, 7th, and 9th deciles of the sample cdf bF�z� were used.
The resolution of the discrete ccdf was increased by performing a linear inter-
polation between tabulated bounds provided by the sample cdf (Deutsch and
Journel, 1998, p. 136). Unlike sequential Gaussian simulation, no systematic
back-transform allows reproduction of a target histogram by simulated values.
However, the realization can be post-processed using the algorithm developed
by Journel and Xu (1994) to improve reproduction of the target cdf while
still honoring the conditioning data and without signi®cant modi®cation
of the spatial correlation patterns in the original realization.

p-field simulation
The p-®eld approach (Srivastava, 1992; Froidevaux, 1993) also requires the
sampling of successive ccdfs. However, unlike the sequential approach, all ccdfs
are conditioned only to the original n data. Reproduction of the z-semivariogram
model is here approximated by imposing an autocorrelation pattern on the
probability values used for sampling these ccdfs (Journel, 1995). This approach
allows the rapid generation of a large number of realizations. In this paper, the
ccdfs were modeled using an indicator approach, which allows one to account for
class-speci®c patterns of spatial continuity through different indicator semiva-
riogram models. Like sequential indicator simulation, better reproduction of the
target histogram can be ensured by a post-processing of the realizations using
Journel and Xu's algorithm.

Simulated annealing
Unlike the previous simulation algorithms, in simulated annealing (SA) the
creation of a stochastic image is formulated as an optimization problem without
any speci®c reference to a RF model (Geman and Geman, 1984; Ripley, 1987;
Farmer, 1988; Deutsch and Journel, 1992; Deutsch and Cockerham, 1994; Goo-
vaerts, 1998a). The basic idea is to perturb an initial (seed) image gradually so
as to match target constraints, such as reproduction of the z-semivariogram
model. Simulated annealing is a very ¯exible approach that can produce real-
izations that honor many different kinds of information, but it can become very
time consuming if numerous and con¯icting constraints are considered.

In this paper, initial random images, which reproduce the z-histogram, were
perturbed by swapping z-values at any two locations chosen at random. The
target constraint was the reproduction of indicator semivariograms, and the
corresponding objective function was lowered using a default annealing schedule
(Deutsch and Cockerham, 1994). Because the perturbation mechanism does not
change the target histogram of the initial image, the ®nal realization reproduces
the target histogram without the help of any back-transform or post-processing of
simulated values.

Case study
Figure 1 (left top graph) shows the spatial distribution of 40 � 40 minipermeater
measurements taken from a 2 by 2 foot vertical slab of a Berea sandstone, and
hereafter considered as the reference image (Giordano et al., 1985). Eighty loca-
tions were drawn at random and form our sample data set which is considered as
the sole information available for the reconstruction of the whole image using
different simulation algorithms. Figure 1 (right column) shows that the exhaus-
tive and sample statistics deviate somewhat.

165



Indicator semivariograms were computed for ®ve threshold values corre-
sponding to the 1st, 3rd, 5th, 7th, and 9th deciles of the sample distribution of 80
permeability values, see Fig. 2. For all thresholds, a geometric anisotropy model
was ®tted with a smaller range in the direction of azimuth 35�, that is the di-
rection perpendicular to the banding of low values in Fig. 1. The anisotropy ratio
drops from 5 to 2 as the threshold value increases, which indicates that the
anisotropy is less pronounced for high permeability values. A similar anisotropic
model is ®tted to the normal score semivariogram displayed in Fig. 2 (right
bottom graph).

Permeability maps
One hundred realizations of permeability values were generated using each of the
four simulation algorithms. The ®rst realizations are shown in Fig. 3. At each grid
node u0j, the ccdf F�u0j; zj�n�� is numerically approximated by the cumulative
distribution of the 100 values simulated there:

bF�u0j; zj�n�� � dProb
�

Z�u0j� � zj�n�	
� 1

L

XL

l�1

i�l��u0j; z� j � 1; . . . ;N �1�

with i�l��u0j; z� � 1 if z�l��u0j� � z, and zero otherwise. For example, Fig. 4 shows
the histograms of 100 permeability values generated using sequential indicator
simulation at the left and right bottom corners of the simulation grid.
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Fig. 1. Reference permeability map with the locations of the producer (open circle) and
injector (black dot) for ¯ow simulation. The information available consists of 80 randomly
drawn values and the sample histogram
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Deutsch (1997) states that a probability distribution is accurate if the fraction
of true values falling in the symmetric p-probability interval (PI) exceeds p for
all p 2 �0; 1�. For a given probability p, the upper and lower bounds of the
symmetric p-PI are �1ÿ p�=2 and �1� p�=2 quantiles, respectively. Because the
true values z�u0j� are here known, these fractions are readily computed as:

n�p� � 1

N

XN

j�1

n�u0j; p� 8 p 2 �0; 1� �2�

with:

n�u0j; p� � 1 if bFÿ1�u0j; �1ÿ p�=2� < z�u0j� � bFÿ1�u0j; �1� p�=2�
0 otherwise
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Fig. 2. Experimental semivariograms computed in two directions (Ð : 35�, ± ± : 125�) for
indicator and normal score transforms of the 80 permeability values of Fig. 1. In each case,
a geometric anisotropy model was ®tted, with a larger range in the 125� direction
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The accuracy of a probabilistic model can be visually assessed by plotting the
fractions (2) versus the set of probabilities p. The so-called accuracy plot
(Deutsch, 1997) is depicted at Fig. 5 for each simulation algorithm. For all four
algorithms, all the points fall below the 45� line, i.e. n�p� < p for all p, which
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indicates that the probabilistic models are inaccurate. For example, the 0.5
probability intervals derived from sequential indicator realizations only contain
42% of the true values.

Although all models are inaccurate, departures from the 45� line are small for
simulated annealing (SA) and sequential Gaussian simulation (sGs), and a mea-
sure of this closeness is the goodness statistic G 2 �0; 1� de®ned as (Deutsch,
1997):

G � 1 ÿ
Z 1

0

�3a�p� ÿ 2� �n�p� ÿ p� dp �4�

where the indicator function a�p� is de®ned as:

a�p� � 1 if n�p� � p
0 otherwise

�
�5�

Twice more importance is given to deviations when n�p� < p (inaccurate case):
the weight j3a�p� ÿ 2j � 2 instead of 1 for the accurate case, that is the case where
the fraction of true values falling into the p-probability interval is larger than
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Fig. 5. Accuracy plots and some summary characteristics for the four simulation algo-
rithms
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expected. Smallest (poorest) G values are obtained for sequential indicator sim-
ulation (sis) and p-®eld simulation, i.e. the two algorithms that do not impose
reproduction of the histogram either explicitly like simulated annealing or
through a back-transform like sequential Gaussian simulation. The average
magnitude of deviations from the reference histogram is measured by the statistic
D de®ned as:

D � 1

KL

XL

l�1

XK

k�1

jqk ÿ q
�l�
k j �6�

where q
�l�
k � Fÿ1

�l� �pk� is the pk-quantile of the histogram of the lth realization, and
qk is the corresponding quantile of the reference histogram of Fig. 1. Note that
simulated annealing and sequential Gaussian simulation impose reproduction of
the sample histogram which deviates from the exhaustive (reference) histogram,
hence the statistics D is not close to zero for these two algorithms, see Fig. 5. Also,
the goodness statistics increases when the magnitude of ergodic ¯uctuations, as
measured by statistics D, decreases. To allow a fair comparison between algo-
rithms, the realizations generated by sequential indicator simulation and p-®eld
simulation were transformed using the rank-preserving algorithm developed by
Journel and Xu (1994). Again, the reproduction of the sample histogram, which is
the only one available in practice, was imposed. Such a transform reduces the
magnitude of ergodic ¯uctuations: D � 1:64 (initial value 3.01) and D � 1:79
(initial value 3.51) for sequential indicator simulation and p-®eld simulation,
respectively. Whereas the goodness statistic increases from 0.86 to 0.90 for the
post-processed sis realizations, the transform has no impact on the goodness of
the probabilistic model generated by the p-®eld simulation.

Another characteristic of the probabilistic models is the spread of the local
distributions of 100 simulated values which is a measure of local uncertainty. The
statistic U given in Fig. 5 is the average variance of the N � 1600 distributions of
simulated values, one per grid node:

U � 1

N

XN

j�1

br2�u0j� �7�

with:

br2�u0j� �
1

Lÿ 1

XL

l�1

z�l��u0j� ÿ z�E�u0j�
h i2

where the E-type estimate z�E�u0j� is the arithmetic average of the 100 simulated
values at u0j, that is the mean of the local distribution. Statistics U should be as
small as possible while preserving accuracy and precision. The local uncertainty is
largest for simulated annealing (U � 137) and smallest for p-®eld simulation
(U � 96), which contrasts with the existence of smaller ergodic ¯uctuations for
SA realizations. The large value of U for SA realizations is probably due to the
swapping perturbation mechanism, which is much less constraining (i.e. more
possible outcomes) than the sampling of a ccdf as performed for other simulation
algorithms. An alternative to the swapping mechanism would be to select ran-
domly a location and replace the current value by a new value randomly drawn
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from the conditional cdf which can be modeled prior to the simulation (Goo-
vaerts, 1998b) or updated during the optimization process (Deutsch and Wen,
1998). In this way, we gain more control on the local distributions of simulated
values. In particular, any prior or soft information could be incorporated in the
modeling of local ccdfs to be sampled by simulated annealing, e.g. see Goovaerts
(1997, p. 306±319).

Flow properties
The effective permeability of each realization was computed in both the E-W and
N-S directions using the pressure solver ¯owsim (Deutsch and Journel, 1992). A
water¯ood simulator (Eclipse, 1991) was then applied to each realization using
the injection/production pattern in Fig. 1; the ¯ow is thus perpendicular to the
diagonal banding of permeability values. The fractional ¯ow of oil versus time
was recorded, and four values were retrieved: the times to reach 5% and 95%
water cut, and the times to recover 10% and 50% of the oil.

The space of uncertainty of ¯ow characteristics is usually represented by the
histogram of response values for each variable taken separately, i.e. 6 histograms
in this case (2 effective permeabilities + 4 times). For example, Fig. 6 shows the
histograms for the N-S effective permeability (left column) and the time to reach
5% water cut (right column). For both response variables, the spread of the
distribution is largest for realizations generated using p-®eld simulation (largest
output uncertainty). Simulated annealing yields a very narrow distribution of
effective permeability values. The two sequential algorithms generate spaces of
uncertainty of similar extent. In all cases, the 95% probability interval includes
the true value that was derived from the reference image of Fig. 1 and is depicted
by the black dot: K

x
eff � 53:1 md, and the 5% water cut is reached at 2.56 time

units. As long as the distribution is accurate, that is contains the true value, the
narrowness (precision) of the distribution is highly desirable. Best results are thus
provided by simulated annealing for effective permeability, whereas all algorithms
perform similarly for 5% water cut.

To study how ergodic ¯uctuations in the reproduction of the permeability
histogram affects the distribution of response values, the pressure solver and ¯ow
simulator were also applied to the sis and p-®eld realizations after transformation
using the rank-preserving algorithm developed by Journel and Xu (1994). The
comparison of histograms of Figs. 6 and 7 shows that the attenuation of ergodic
¯uctuations leads to narrower distributions of N-S effective permeability and time
to reach 5% water cut. Table 1 shows this reduction to occur for all response
variables: the standard deviation of output distributions has been reduced by an
average of 60% for effective permeability and by a range of 25%±50% for other
¯ow characteristics. Besides a reduction of output uncertainty, the attenuation of
ergodic ¯uctuations improves the prediction of the true response value by the
mean of the output distribution, see Table 2. The prediction error has been re-
duced by an average of 40% ! This reduction is mostly due to the similarity
between the sample and reference histograms of Fig. 1. When too few data are
available to infer reliable histograms, one should be cautious in imposing the
strict reproduction of a target histogram which might be far from the true one and
so leads to worse predictions. In this example, all simulation algorithms under-
estimate the effective permeability, leading to an overestimation of the times to
reach the two water cuts or to recover proportions of the oil.

Simulated annealing provides the most precise and accurate prediction of ef-
fective permeability in that the corresponding output distribution has the smallest
variance while its mean is the closest to the true value. Sequential Gaussian
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Fig. 6. Histograms of the N-S effective permeability (left column) and the time to reach 5%
water cut (right column) assessed from 100 realizations generated by each simulation
algorithm. The black dot in the box plot below each histogram is the true value obtained
from the reference image of Fig. 1. Five vertical lines are the 0.025 quantile, lower quartile,
median, upper quartile, and 0.975 quantile of the distribution
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simulation performs best for ¯ow simulation results, which is surprising because
the indicator semivariograms of Fig. 2 show the multiGaussian assumption
to be violated for the Berea data set: the pattern of spatial correlation is not
symmetric about the median since the anisotropy is more pronounced
for low permeability values (Journel and Alabert, 1989).

Table 3 gives the coef®cients of linear correlation between the 6 ¯ow charac-
teristics computed over all simulation algorithms (400 realizations). The N-S and
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Fig. 7. Impact of the reduction of ergodic ¯uctuations (better reproduction of the histo-
gram of permeability) on the output distribution of N-S effective permeability (left column)
and time to reach 5% water cut (right column) for sequential indicator simulation and
p-®eld simulation. Distributions are much narrower than the corresponding histograms
of Fig. 5

Table 1. Std. deviation of the output distribution for the 6 response variables: N-S effective
permeability (K

x
eff ), E-W effective permeability (K

y
eff ), times to reach 5% (Wc1) and 95%

(Wc2) water cut, and the times to recover 10% (Oil1) and 50% (Oil2) of the oil

K
x

eff K
y

eff Wc1 Wc2 Oil1 Oil2

sis 1.14 1.22 0.10 0.64 0.04 0.35
sis transf. 0.43 0.50 0.07 0.48 0.03 0.27
sGs 1.17 1.18 0.10 0.51 0.04 0.29
p-®eld 2.80 3.04 0.19 1.05 0.08 0.62
p-®eld transf. 1.09 1.23 0.10 0.62 0.04 0.41
SA 0.37 0.37 0.10 0.70 0.04 0.39
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E-W effective permeabilities are highly correlated and, as expected, they are
negatively correlated with the other response variables: the larger the effective
permeability, the smaller the time to reach a given water cut or to recover a given
proportion of the oil. Because of the correlation between response variables, their
spaces of uncertainty should not be analyzed separately. Rather, one should look
at the scatter of realizations in the six-dimensional space spanned by the six ¯ow
characteristics, that is characterize the multivariate space of uncertainty.

Principal component analysis (PCA) was used to display the 400 realizations in
a subspace that can be visualized easily. The basic idea of PCA (Davis, 1986,
p. 602) is to create new orthogonal variables, the principal components, as linear
combinations of the original variables, i.e. the six response variables. The ®rst few
components generally account for most of the variance and so are the most
informative. Figure 8 (middle graph) shows the scatter of the 400 realizations in
the plane of the ®rst two principal components which explain 94% of the total
variance. For clarity two plots of 200 realizations have been drawn. The 2 prin-
cipal components were rotated (Varimax rotation) to achieve a ``simple struc-
ture'', that is each response variable correlates mainly with one of the two
principal components, which facilitates the interpretation of the components
(Kaiser, 1958; Goovaerts, 1993). The correlations between response variables and
principal components are usually displayed using a circle of correlation, see Fig. 8
(top graph). The coordinates of each variable on that circle are but their corre-
lations with each of the ®rst two components. The closer the variable to the
perimeter of the circle, the larger its correlation with the principal components.
The ®rst factor depends essentially on ¯ow simulation results, whereas the second
factor represents mainly the E-W and N-S effective permeabilities. This grouping
re¯ects the correlation structure detected in Table 3.

The two sequential algorithms generate spaces of uncertainty with substantial
overlap; the scatter of realizations is larger for sequential indicator simulation
which also leads to longer times for water cut and oil recovery (larger values of the

Table 2. Difference between the mean of the output distribution and the true value for the
6 response variables

K
x

eff K
y

eff Wc1 Wc2 Oil1 Oil2

sis )1.42 )1.55 0.12 0.85 0.06 0.53
sis transf. )0.80 )0.97 0.09 0.63 0.05 0.40
sGs )0.80 )0.87 0.06 0.15 0.02 0.02
p-®eld )1.08 )1.46 0.12 0.65 0.05 0.40
p-®eld transf. )0.43 )0.84 0.08 0.40 0.03 0.22
SA )0.26 )0.51 0.07 0.65 0.04 0.45

Table 3. Matrix of linear correlation coef®cients between the 6 response variables

K
x

eff K
y

eff Wc1 Wc2 Oil1 Oil2

K
x

eff 1.00

K
y

eff 0.95 1.00
Wc1 )0.61 )0.59 1.00
Wc2 )0.51 )0.50 0.84 1.00
Oil1 )0.60 )0.58 0.90 0.98 1.00
Oil2 )0.44 )0.45 0.64 0.94 0.90 1.00
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®rst component). The lowering of ergodic ¯uctuations narrows substantially the
space of uncertainty for sis realizations and reduces slightly its overlap with
the sGs space (Fig. 8, left bottom graph). Untransformed p-®eld realizations
yield the largest space of uncertainty, whereas the space depicted by SA realiza-
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Fig. 8. Scatter of the 400 realizations in the plane de®ned by the ®rst two rotated principal
components of the correlation matrix of six ¯ow properties. Bottom graphs show the
impact of the reduction of ergodic ¯uctuations on the space of uncertainty of p-®eld and
sequential indicator simulation. The circle of correlation (top graph) depicts the correlation
between each of the ¯ow characteristics and the two principal components
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tions is narrow along the vertical axis because of the similarity of effective per-
meability values, recall Fig. 5 (left column). The dispersion of SA realizations
along the horizontal axis re¯ects the larger variance of ¯ow simulation results,
this is similar to what is observed for other algorithms. Like sequential indicator
simulation, the transformation of p-®eld realizations scales down the space of
uncertainty which still includes most of the three other spaces.

Another important characteristic of the space of uncertainty is whether it
contains the true response values, which de®nes its accuracy. Reference values for
the 6 response variables were obtained by applying the pressure solver and ¯ow
simulator to the reference image of Fig. 1. These values were combined to derive
the true values for the ®rst two principal components, see vertical and horizontal
dashed lines in Fig. 8. For each component taken separately, the four spaces of
uncertainty Sk are accurate in that they contain the true response values Ri, that is:

Prob Ri 2Skf g > 0 i � 1; 2 k � 1; 4 �8�
However, when considering the two components jointly, the con®ned space
generated by simulated annealing, S3, does not contain the pair of true values
which corresponds to the intersection of the two dashed lines:

Prob �R1;R2� 2S3f g � 0 �9�
Had the response variables been uncorrelated, the multivariate spaces of uncer-
tainty would have been circular, hence the accuracy for each variable taken
separately will entail the accuracy for the joint set of response variables, that is the
joint probability of containing the pair of true values would be the product of
marginal probabilities:

Prob �R1;R2� 2S3f g � Prob R1 2S3f g � Prob R2 2S3f g > 0 �10�
In presence of correlation between response variables, it is thus informative to
look at the joint space of uncertainty in addition to considering each variable
separately.

Impact of the number of realizations
The generation of multiple realizations and their post-processing through transfer
functions are computationally expensive, and it is worth investigating the impact
of the number of realizations on the space of uncertainty of response values. For
each simulation algorithm and response variable, the processing of the 100 re-
alizations through a ¯ow simulator or pressure solver yielded a set of 100 output
values; recall Fig. 5. This set was randomly sampled to create 100 subsets of two
values. Such a random sampling of the initial set of 100 values was repeated for
increasing subset sizes: 3, 4, . . . 100 values. Note that a value can be included only
once in a subset (sampling without replacement). Thus, this resampling results in
100 subsets for each of the 99 possible sizes. For each subset, the following
statistics were computed: mean, variance, minimum and maximum response
values. These statistics were used to study the impact of the number of realiza-
tions (i.e. size of subset) on the following quantities:

� the standard deviation of the set of response values; the standard deviations of
the 100 subsets were averaged for each size.
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� the absolute deviation between the mean of the output distribution and the
true value; prediction errors were computed for each subset and averaged.

� the upper and lower bounds of the space of uncertainty; these were identi®ed
with the average minimum and maximum response values over the 100 subsets.

Figure 9 (left column) shows that the standard deviation of the output dis-
tribution drastically increases when the ®rst realizations are generated but, be-
yond 10 realizations, the rate of increase reduces because of the redundancy
between conditional realizations. For 100 realizations, one retrieves the standard
deviations listed in Table 1. Sequential indicator simulation consistently yields
narrow output distributions, whereas simulated annealing produces the nar-
rowest distribution for effective permeability but the largest one for the times to
reach 5% and 95% water cuts.
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Fig. 9. Impact of the number of generated realizations on the standard deviation of the
response distribution (left column) and on the absolute difference between the mean of this
distribution and the true value derived from the reference image of Fig. 1 (right column).
Best if both statistics are small. The algorithms are: Ð (transf. sis), - � - (sGs), - - (transf.
p-®eld), � � � (SA)

177



Figure 9 (right column) indicates that the generation of 5 to 10 realizations
allows one to improve the prediction of effective permeabilities, in particular for
p-®eld simulation. For ¯ow simulation results, differences between algorithms are
more pronounced for long-term responses, that is 95% water cut. In other words,
the intrinsic properties of permeability maps have an increasing impact as the
¯ow simulation proceeds. For both water cut percentages, best results are
obtained using sequential Gaussian simulation.

Figure 10 shows, for each simulation algorithm and response variable, the
evolution of the upper and lower bounds of the space of uncertainty for in-
creasing number of generated realizations. As expected, the extent of the space
increases with the number of realizations, but at different rates depending on

50

52

54

56
E

ff.
P

er
m

ea
bi

lit
y

0 20 40 60 80 100
Number of realizations

N-S eff. permeability

48

50

52

54

56

E
ff.

P
er

m
ea

bi
lit

y

0 20 40 60 80 100
Number of realizations

E-W permeability

transf. sis

sGs

transf. p-field

SA

2.2

2.4

2.6

2.8

3.0

T
im

e

0 20 40 60 80 100
Number of realizations

5% Water cut

10

11

12

T
im

e

0 20 40 60 80 100
Number of realizations

95% Water cut

2.2

2.4

2.6

2.8

3.0

T
im

e

0 20 40 60 80 100
Number of realizations

10% Oil recovery

10

11

12

T
im

e

0 20 40 60 80 100
Number of realizations

50% Oil recovery

50

52

54

56
E

ff.
P

er
m

ea
bi

lit
y

0 20 40 60 80 100
Number of realizations

N-S eff. permeability

48

50

52

54

56

E
ff.

P
er

m
ea

bi
lit

y

0 20 40 60 80 100
Number of realizations

E-W permeability

transf. sis

sGs

transf. p-field

SA

2.2

2.4

2.6

2.8

3.0

T
im

e

0 20 40 60 80 100
Number of realizations

5% Water cut

10

11

12

T
im

e

0 20 40 60 80 100
Number of realizations

95% Water cut

2.2

2.4

2.6

2.8

3.0

T
im

e

0 20 40 60 80 100
Number of realizations

10% Oil recovery

10

11

12

T
im

e

0 20 40 60 80 100
Number of realizations

50% Oil recovery

Fig. 10. Impact of the number of generated realizations on the upper and lower bounds of
the space of uncertainty for the six ¯ow properties. The horizontal dashed line denotes the
true value derived from the reference image of Fig. 1. Best if the space is narrow and
includes the true value. The algorithms are: Ð (transf. sis), - � - (sGs), - - (transf. p-®eld),
� � � (SA)
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the response variable and simulation algorithm. In this example, the increase
generally becomes small beyond 20 realizations, although the convergence
seems slower for short-term simulation results (5% water cut and 10% oil
recovery), in particular for simulated annealing. With too few realizations, the
space of uncertainty may not contain the true value depicted by the horizontal
dashed line, e.g. less than 20 sis realizations for effective permeability. Re-
gardless the response variable, p-®eld simulation yields the largest space with
bounds similar to the ones generated by simulated annealing for ¯ow simula-
tion responses. For short-term responses, the sis space of uncertainty is in-
cluded into the three other alike spaces. For long-term responses (95% water
cut and 50% oil recovery), the sGs space gets smaller and centered on the true
response value.

Conclusions
Although the conclusions that can be drawn from this study are, to some extent,
speci®c to the Berea data set, it is clear that the space of uncertainty depicted by
stochastic simulation may vary signi®cantly from one algorithm to another,
even when the same information (conditioning data, histogram, semivariogram)
is being used. Differences between simulation algorithms are more pronounced
for response variables that involve long runs of the ¯ow simulator, such as the
time to reach a 95% water cut. Prediction of reservoir performances thus do
depend on the choice of the stochastic simulation algorithm, and it seems
unlikely that the entire set of possible outcomes could be sampled by a single
class of algorithm.

Reduction of ergodic ¯uctuations in the permeability histogram increases the
precision (narrowness) of the response distribution generated by sequential
indicator simulation and p-®eld simulation. There is also a substantial gain in
accuracy because the sample histogram is here reasonably close to the reference
histogram. Algorithms such as simulated annealing that imposes reproduction
of the permeability histogram do not necessarily yield the narrowest distributions
of response values. This is particularly true for ¯ow simulation results because
these are not controlled by a mere univariate distribution of permeability values.
The swapping perturbation mechanism may be responsible for such variability in
the results, and alternative mechanisms, such as the random sampling of local
ccdfs, should be considered to achieve a better control of the local distributions of
simulated values.

The extent of the space of uncertainty increases with the number of realizations
generated. In this study, the rate of increase becomes small beyond 20 realiza-
tions; the convergence is slower for short-term simulation results (5% water cut
and 10% oil recovery), in particular for simulated annealing. An algorithm might
yield a probability distribution that is precise and accurate when many realiza-
tions are generated, but is inaccurate if derived from too few realizations. In many
applications, stochastic simulation is used to identify ``pessimistic'' and ``opti-
mistic'' scenarios, which means that the focus is on the edges of the space of
uncertainty. The usual approach is to generate many realizations which are then
processed through a transfer function, and the response values are used to rank
realizations of attribute values from the most optimistic scenario to the most
pessimistic one. It is important that extreme scenarios are encompassed in the
response distribution, which is usually ensured by the computationally expensive
generation of a large number of realizations. If only a few realizations can be
afforded, one may prefer an algorithm such as p-®eld simulation that builds
accurate and relatively precise distributions from small sets of realizations.
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Response variables are generally correlated, hence the accuracy of each re-
sponse distribution taken separately does not ensure the accuracy of the multi-
variate distribution of response values. Also, histograms of response variables
should be supplemented by scattergrams to display bivariate relations betwen
response variables, or more sophisticated multivariate statistical techniques (e.g.,
PCA) could be used to display multivariate spaces of uncertainty.

In this application, sequential Gaussian simulation yields both large goodness
statistics and small local uncertainty, hence should be preferred for the generation
of permeability maps. Sequential Gaussian simulation also provides the most
precise and accurate spaces of uncertainty for long-term simulation results. It is
still unclear why other algorithms that explicitly account for class-dependent
patterns of spatial variability through indicator semivariograms do not perform
better. Future studies should investigate the bene®t of using more than 5
thresholds in the building of indicator-based ccdf models.

Although comparative studies are essentially descriptive and tied to a partic-
ular data set, they may point out problems related to the implementation of
certain algorithms. For example, regardless the response variable, it appears that
p-®eld simulation yields the largest space of uncertainty, even when ergodic
¯uctuations in the permeability histogram have been substantially reduced
through a rank-preserving transform of simulated values. Current studies
(Goovaerts, 1999) indicate that such a variability is mainly due to the non-con-
ditioning of the probability ®eld used to sample the local ccdfs, hence the present
implementation of the algorithm should be modi®ed. Similar remark applies to
the perturbation mechanism in simulated annealing.

Another factor that in¯uences the characteristics of the space of uncertainty
and has not been addressed in this study is the sampling density. The number of
conditioning data is here fairly large (5% sampling density), which tends to
attenuate differences between algorithms. As this number decreases, one may
expect an expansion of the spaces of uncertainty and largest differences between
algorithms. Also, the sample histogram will be less reliable and imposing its
reproduction by the set of simulated values should be less bene®cial.
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