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Abstract. Using a maximum-likelihood formalism,
we have developed a method with which to reconstruct
the sequences of ancestral proteins. Our approach allows
the calculation of not only the most probable ancestral
sequence but also of the probability of any amino acid at
any given node in the evolutionary tree. Because we
consider evolution on the amino acid level, we are better
able to include effects of evolutionary pressure and take
advantage of structural information about the protein
through the use of mutation matrices that depend on
secondary structure and surface accessibility. The com-
putational complexity of this method scales linearly with
the number of homologous proteins used to reconstruct
the ancestral sequence.
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Introduction

The proteins that exist at our current stage of evolution
represent a minuscule subset of the proteins that have
existed since life began. Examination of the ancestors to
modern-day proteins would undoubtably give great in-

sight into the properties of current proteins as well as into
the process of evolution. If the sequence of an ancestral
protein can be re-created, the protein can be synthesized
and expressed, and its characteristics can be determined
experimentally (Malcolm et al. 1990; Stackhouse et al.
1990; Shih et al. 1993).

Barring the presence of historically preserved DNA
(Higuchi et al. 1984; Paabo 1989; Cooper et al. 1992;
DeSalle et al. 1992), these ancestral amino acid se-
quences must be reconstructed based on the known se-
quences of the current descendents. Generally, this re-
creation has been done using some variation on the
methods of maximum parsimony (MP) (Fitch 1971;
Moore et al. 1973; Holmquist 1979; Czelusniak et al.
1990) or maximum likelihood (ML) (Felsenstein 1981;
Saitou 1990; Yang 1994). Both of these approaches in-
volve a step-wise construction of an evolutionary sce-
nario that is considered optimal in either minimizing to-
tal mutational steps (MP) or in maximizing the
likelihood of the mutations occurring (ML). The MP
method, as well as the closely related inferential method
(Libertini and Donato 1994), generally not only discards
everything except the maximally parsimonious schemes,
but also cannot distinguish between scenarios of equal
parsimony. In contrast, approaches based on the ML
methodology can not only generate the most likely an-
cestral sequence but can also consider all other possibil-
ities and compute their respective probabilities. These
suboptimal reconstructed sequences are important in that
they can provide information about other possibilities,
suggesting alternatives that can be tested using biochem-
ical means.

Much of the reconstruction work up to this point has
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been based on nucleic acid substitutions, and amino acid
mutations are subsequently reconstructed from the nu-
cleic acids. Benner and co-workers have shown that for
short evolutionary intervals mutations can be understood
using nucleic acid substitution rates. For longer intervals,
however, it is the requirements that biology places on
protein function and structure that constrain the evolu-
tionary path (Benner et al. 1994b). By considering the
evolutionary pathway on the amino acid level it is pos-
sible to take advantage of these constraints in order to
more correctly model the longer-scale molecular evolu-
tion process. This approach also allows us to directly
include information about the local structure at every site
in the reconstruction by using a priori probabilities and
mutation matrices specific for each type of local structure.

In previous work, we have constructed the structure-
dependent mutation matrices mentioned above. They are
based on phylogenetic models of protein evolution and
represent the probability of mutation from one residue to
another in a given period of evolutionary time (Koshi
and Goldstein 1995). This explicit modeling of the evo-
lutionary history gives us the tools needed to do a prob-
abilistic reconstruction of ancestral sequences at the
amino acid level. Because we are using an ML approach
based on Bayesian statistics, we can determine the prob-
ability of any given amino acid existing at any stage of
evolution as well as the probability of any particular
evolutionary path. We can re-create the most likely an-
cestral sequence and also evaluate the relative probabil-
ity of any other sequence existing at that point in evolu-
tionary time. As we have developed specific mutation
matrices for various combinations of secondary structure
and surface accessibility, we can use structural informa-
tion about the proteins to assist in this reconstruction.

In this paper, we explore this methodological frame-
work for evolutionary reconstruction, first demonstrating
how the accuracy of this approach depends upon the
number of homolog proteins available and their evolu-
tionary distance. Finally we apply this approach to the
reconstruction of the ancestral sequence of the ribonu-
clease superfamily.

Methodology

Our approach to the construction of ancestral sequences follows our
original derivation of optimized mutation matrices (Koshi and Gold-
stein 1995). We start with a set of homologous proteins connected by
a known evolutionary treeT, and the amino acids found at a given
location in the previously aligned sequences of the homologous pro-
teins, {Ai} 8, where the prime indicates that our knowledge is restricted
to proteins at our current stage of evolutionary history. In addition, we
assume we have a reasonable approximation to the mutation matrixM
providing the probability of mutation from one residue to another.M
can be a function of the secondary structure or surface accessibility at
that location in the protein, or it can include any other available infor-
mation. We are interested in computingP(Ar|{Ai} 8,M,T), the condi-
tional probability of a given amino acidAr at the root location, given
{Ai} 8, M, andT. This probability can be easily computed using Bayes’
Theorem:

P(Ar | {Ai} 8,M, T) =
P({Ai} 8 |Ar, M, T)P(Ar)

P({Ai} 8 |M, T)
(1)

whereP({Ai} 8Ar,M,T) is the conditional probability of observing the
particular set of present-day amino acids for a given mutation matrix,
evolutionary tree, and root amino acidAr, and P(Ar) is the a priori
probability of a given root amino acidAr, obviously independent of the
treeT and mutation matrixM. P({Ai} 8M,T) simply serves to normalize
the probabilities so the sum ofP(Ar{Ai} 8,M,T) over all possible values
of Ar equals 1.

P(Ar) can be approximated by considering the relative probability
of various amino acids in current proteins, including any dependence
on the location of the residues in the protein. The calculation of
P({Ai} 8Ar,M,T) is more involved. Consider a simple example where the
evolutionary tree has the structure shown in Fig. 1. While we are
calculating a value of this probability for an amino acidAA at root node
A, we still do not know the identity of the residues at nodesB, C,and
D.We must, therefore, sum over all 21 possibilities (i.e., all 20 amino
acids, plus gaps) at each of these nodes.P({Ai} 8AA,M,T) is then given
by the probability of the mutations necessary to produce the amino
acids at nodesE throughI, summed over all possible pathways from the
root amino acid to these leaves.

P(AE, AF, AG, AH, AI |AA, M, T) =

(
AB,AC,AD

TAA→AB
TAB→AD

TAD→AE
TAD→AF

TAB→AG
TAA→AC

TAC→AH
TAC→AI

(2)

whereTAA→AB
represents the probability of amino acidAA mutating to

amino acidAB,which can be computed with knowledge of the mutation
matrixM and the evolutionary distance between the various branching
points in the phylogenetic tree.

These relationships can easily be generalized to more complex
evolutionary tree structures, allowing us to calculateP({Ai} 8AA,M,T)
and thusP(AA{Ai} 8,M,T), for any specific tree structure, leaf compo-
sition, and mutation matrix. This method is easily generalizable to
re-create the amino acids at other locations in the phylogenetic tree
besides the root. For instance, in the example in Fig. 1, the identity of
residuesAH andAI can provide information about the probability of a
given residue having existed at ancestral nodeB by influencing the
probability distribution of residues at nodeA.

The calculation starts with aligned sequences and a reconstructed
evolutionary tree. This can be produced with software already available
and can take advantage of any other information about the proteins or

Fig. 1. Representation of an evolutionary tree corresponding to a
particular set of aligned homologous proteins. The nodesE, F, G, H,
andI represent amino acids in present-day proteins. The composition of
nodesA, B, C,andD,which represent proteins in the evolutionary past,
are unknown.dXY represents the evolutionary distance between nodesX
andY.
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organisms concerned. In this paper, we use the alignments and phylo-
genetic trees produced by ClustalV (Higgins et al. 1992). We also use
the optimized mutation matrices described previously (Koshi and Gold-
stein 1995). Assuming a constant mutation rate and no double muta-
tions at any location in the sequences between consecutive nodes,
TAA→AB

, the probability of mutation from residueAA to AB in evolu-
tionary timedAB, is given by:

TAA→AB
= M(AA,AB)dAB|AA Þ AB (3)

and

TAA→AA
= 1 − dAB(1 − M(AA,AA)) (4)

whereM(AA,AB) is the corresponding element in the desired mutation
matrixM and

M(AA,AA) = 1 − (
AxÞAA

M(AA,AX) (5)

The assumption of no double mutations between consecutive nodes
does not imply a total lack of multiple mutations during the evolution-
ary process. In fact, as mentioned,all possible evolutionary trajectories
are explicitly considered. This assumption of lack of multiple mutations
is not an essential part of this method; because the evolutionary dis-
tances are computed externally, it would be straightforward to use a
more complicated model for the mutation rates. This would involve
raising the mutation matrix to a power proportional to the time between
nodes and using the resulting matrix in place of theM(AA,AB) values
seen in the above equations (Dayhoff and Eck 1968). However, as all
of the evolutionary paths considered here were relatively short, this was
not done.

This whole approach is based on treating each location in the set of
aligned sequences independently. In particular, we treat gaps the same
as any amino acid, where the probability of a gap ‘‘mutating’’ to any
other amino acid corresponds to the probability of an insertion of that
amino acid into the sequence. It would be possible to construct a more
realistic model of insertions and deletions incorporating the cooperative
nature of these events.

The number of paths considered rises exponentially with the num-
ber of homologs that are being used to reconstruct the path. In practice,
however, the calculation is much simpler. As noted by Felsenstein, a
binary tree can be evaluated in linear time by traversing it from leaves
to root (Felsenstein 1973, 1981). More specifically, every node in a
binary tree has two filial nodes below and directly connected to the
paternal node. For instance, in Fig. 1, nodesD and G are filial to
paternal nodeB. For every paternal nodek with filial nodesm andn,

P({Ai} k
9 |Ak, M, T)

= (
Am,An

TAk→Am
P({Ai}m

9 | Am,M,T) TAk→An
P({Ai}n

88 | An, M, T) (6)

where {Ai} 9k is the set of amino acids in homologous proteins at our
current stage of evolutionary history that are direct descendents of node
k.The calculation ofP({Ai } 9k Ak,M,T) for every possibleAk involves at
most 213 calculations, assuming that the values ofP({Ai } 9mAm,M,T)
for the filial nodes have already been calculated. As the number of
nodes is one fewer than the number of homologs, the calculational
complexity varies only linearly with the number of sequences being
considered.

Results

We initially investigated two issues: how the accuracy of
the reconstruction depends on the evolutionary distances
involved and how many homologs are necessary for an
accurate reconstruction. In order to explore these ques-
tions, we prepared artificial data sets by modeling the
mutation process. We started with 10 model ancestral
proteins 500 residues long whose secondary structure
and surface accessibility represented the overall distribu-
tion seen in real proteins (15.2% inside helix, 13.4%
outside helix, 14.4% inside sheet, 7.5% outside sheet,
7.6% inside turn, 18.7% outside turn, 13.3% inside coil,
9.9% outside coil). The residues at each position were
selected based on the relative propensity for each of the
amino acids to be in such a location. We then modeled
evolution and speciation, allowing the evolutionary tree
to branch periodically and symmetrically. This resulted
in 2n present-day homologs, with a fixed interval be-
tween nodes equal to the total evolutionary time divided
by n, wheren is the number of branching times. The
relative propensities for amino acids to be in any location
in the protein sequence as well as the local-structure-
dependent mutation matrices used to simulate the site
mutations were drawn from our earlier work (Koshi and
Goldstein 1995). Given the amino acids that resulted in
this procedure at the leaves of the evolutionary tree, we
used equation 1 to ascertain the originally created ances-
tral protein.

One strength of this probabilistic analysis is our abil-
ity to represent degrees of certainty and include various
possibilities along with the computed probabilities. First,
however, we took the most likely ancestral amino acid as
our prediction at that location and compared it with the
amino acid that actually existed at that location in our
model. Figure 2 shows the accuracy of our reconstruc-
tion, as a function of total evolutionary distance between
root and leaves, for 4, 8, 16, and 32 present-day ho-

Fig. 2. Ten 500-residue random ancestral sequences were generated
and allowed to mutate; the ancestral sequence was then re-created
based on the sequences of these mutated homologs. Percentage incor-
rect is plotted vs evolutionary distance from the top to the bottom of the
tree (equal steps between each node) for various numbers of homologs.
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mologs, assuming that the evolutionary tree and second-
ary structure at each point in the protein sequences are
known exactly. As could be expected, the accuracy of the
reconstruction drops off sharply with increasing evolu-
tionary distance and increases when more homologs are
available.

In our further testing, we focused on trees with 16
current homologs. Using 10 proteins each 500 residues
long as a data set, we found the average probability as-
signed to the predicted ancestral residue as well as the
average probability assigned to the correct ancestral res-
idue. Figure 3 shows these results.

As discussed in the Introduction, this approach can be
used to reconstruct any node, not just the root node of the
tree. In particular, Fig. 4 shows the accuracy of the re-
construction of an ancestral node that is filial to the root
of the phylogenetic tree both when information about all
of the present-day homologous proteins is used and when
only using information about direct descendents. As
shown, useful information can be derived from a knowl-
edge of other parts of the tree that are related to a node
paternal to the node of interest.

The construction of the multiple sequence alignment
and evolutionary tree structure must be computed prior
to the use of this reconstruction methodology. The data
in Fig. 2 assume that this has been done perfectly so that
the true evolutionary tree and alignment are available.
While there has been much progress in this area, there
are still many unresolved issues. In order to evaluate how
sensitive our technique is to the current limitations in this
technology, we realigned the model sets of homologous
proteins with ClustalV (Higgins et al. 1992), recomputed
the evolutionary tree, and used these data in our recon-
struction. The results are shown in Fig. 5, again for the
example of 16 current homologous proteins. Also shown
in Fig. 5 is the accuracy of the reconstruction using the

ClustalV-generated tree when the protein structure is not
known and a structure-independent mutation matrix is
used.

Finally, we applied these techniques to ribonuclease.
With a test set of 38 proteins from the ribonuclease fam-
ily, we formed an alignment and tree with ClustalV using
an unrelated sequence to root the tree. The evolutionary
tree which was derived is shown in Fig. 6. The average
evolutionary distance between consecutive nodes in this
tree corresponded to a sequence divergence of 7.8%,
justifying our previous assumption of no double muta-
tions between consecutive nodes. We then applied our
methodology to reconstruct the ancestral sequence, using
structure-dependent mutation matrices based on the local
structure of bovine pancreatic ribonuclease (Brookhaven

Fig. 3. For the 16 current homolog cases, the average confidence
level of the predicted amino acid (〈best〉) and the average of the correct
amino acid (〈correct〉) are plotted vs evolutionary distance (units in
point-accepted mutations). The decline of the confidence level as the
evolutionary distance increases mirrors the similar decline in the ac-
curacy of the reconstruction, shown in Fig. 2.

Fig. 4. Using 16 homologs, the sequence at one of the nodes directly
below the root node was computed, and compared to the correct se-
quence at that point. Percentage incorrect vs evolutionary distance from
that node to the bottom of the tree is plotted for two cases: using only
direct descendants of that node to derive the sequence and using all
homologs to derive the sequence.

Fig. 5. In the 16-homolog case, percentage incorrect in the ancestral
sequence vs evolutionary distance from the top to the bottom of the tree
was plotted for three cases:a) using the known evolutionary tree and
using-structure dependent matrices;b) using the tree generated by
ClustalV from the alignments and using structure-dependent mutation
matrices; andc) using the ClustalV tree and only a structure-
independent matrix.
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Protein Database designation 1RND). The results of this
reconstruction, which took under a minute of CPU time
on an SGI R4400, are shown graphically in Fig. 7 and
numerically in Fig. 8.

Discussion

Ancestral reconstructions become more problematic as
the evolutionary time increases and the number of ho-
mologs decreases. There are fundamental uncertainties
that cannot be resolved without direct observation of
ancestral protein or DNA sequences. Given these limi-
tations, it becomes all the more important to be able to
use all of the information available, such as knowledge
of the structure of one of the members of the homologous
set. And as the ability to furnish an exactly correct re-
construction decreases, it also becomes especially impor-
tant to provide alternative possibilities with their respec-
tive probabilities. As is seen by a comparison of Figs. 2

and 3, as the accuracy of the reconstruction decreases,
the probability reported by the analysis about the recon-
struction decreases similarly. For 16 present-day ho-
mologs at an evolutionary distance of 120 PAM, the
average confidence of the prediction, as represented by
the probability assigned to the most-probable amino acid,
is 64%. In fact, the reconstruction under these conditions
has an accuracy rate of 63%. Certain locations in the
sequence will be more constrained than others, and the
reconstruction will be more accurate at these points—
this increase in accuracy will be reflected by the calcu-
lated probabilities. The confidence level of correct pre-
dictions averaged 74%, while the confidence of predic-
tions that were erroneous averaged only 48%. Generally,
the correct ancestral residue had appreciable probability
even in those cases of an incorrect prediction, when an-
other residue had a still-higher probability. Even for the
incorrect predictions, the confidence level of the correct
answer averaged 13%.

This method is rather general, applicable for arbi-

Fig. 6. Graphical representation of the
tree generated by ClustalV used to
reconstruct the ancestral ribonuclease
sequence. (Evolutionary distances are not
shown to scale.)
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trarily complicated phylogenetic trees, and for any node
in the tree. In particular, Fig. 4 demonstrates our ability
to take advantage of our knowledge of sequences that are
not direct descendents of the node in question. For the
node being reconstructed, filial to the root node, only 8
of the 16 present-day sequences are direct descendents.

Yet including information about the other eight se-
quences helps to boost the accuracy of the reconstruc-
tion.

In this methodology, we assume that we know the
evolutionary treeT, and Fig. 5 demonstrates that this re-
construction is dependent upon an accurate phylogenetic

Fig. 7. Graphical representation of the
probability of finding each amino acid in the
ancestral protein to the ribonuclease
superfamily. The shading of any square
represents the probability of any amino acid
having existed at that location in the ancestral
protein sequence.Black represents a
probability of one. Amino acids are
abbreviated to their appropriate one letter
codes, with gaps represented as –.

Fig. 8. Reconstructed ancestral ribonuclease. The first four se-
quences are examples chosen from the set used to create the ancestral
sequence (see Fig. 6 for their location in the tree), and the single line
of amino acids below (ancestral) is the reconstructed sequence of high-
est probability. The numbers below the ancestral sequence (prob) rep-
resent 10 times the probability of finding that amino acid in that

position (truncated to the nearest multiple of 10). Local structure is
represented by the bottom row of letters (struc)—H and h represent
exposed and burieda-helix residues, respectively, whileE ande rep-
resent exposed and buriedb-sheet residues.Dots indicate positions
where no knowledge of the local structure exists.
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tree. The phylogenetic analysis can be assisted by taking
advantage of ancillary information that exists from other
sets of homologous proteins, fossil records, and morpho-
genic comparisons. If the evolutionary tree is a matter of
some uncertainty, this uncertainty can be naturally incor-
porated into the re-creation scheme. IfP(Tj) is the prob-
ability of evolutionary treeTj, as computed for instance,
using maximum-likelihood approaches, then equation 1
can be generalized to:

P(Ar | {Ai} 8,M) = (
j

P(Ar | {Ai} 8,M,Tj)P(Tj) (7)

Uncertainty in the alignment of the homologous proteins
can be handled in a similar way.

Figure 5 also shows that the accuracy of the recon-
struction suffers when the local protein structure is un-
known and structure-independent mutation matrices are
used. Even when the structure of one of the members of
the homologous set is known, uncertainties about the
local structure will be caused by fluctuations of this
structure during the evolutionary process (Rost et al.
1994; Rost and Sander 1994). In the complete absence of
structural information, the local-structure-dependent mu-
tation matrices can still be used to advantage. For in-
stance, various secondary-structure prediction schemes
can be used to estimate the probability of any given local
structure. Less than perfect accuracy would still assist in
the reconstruction. In addition, the observed evolutionary
pattern itself provides information about the relative
probability of various secondary structures. We can see
this by consideringP(Ar,2

f
k {Ai} 8,T), the conditional

probability that the root node has amino acidAr and this
location has secondary structure 2f

k , given residues {Ai} 8
in current sequences and tree structureT.

P(Ar, 2k
f | {Ai} 8, T) =

P({Ai} 8 |Ar, 2k
f, T)P(Ar |2k

f)P(2k
f)

P({Ai} 8 |T)
(8)

where 2fk specifies the appropriate mutation matrix. The
value of P(Ar{Ai} 8,T) is then computed by summing
P(Ar,2

f
k {Ai} 8,T) over all possible secondary structures.

Secondary structures with mutational patterns most con-
sistent with the observed evolutionary process would be
more heavily weighted in this sum. This approach can be
used for any distribution of mutation matrices or a priori
probabilities that depend upon unknown factors, such as
in the modeling of heterogeneous mutation rates.

Figure 7 graphically demonstrates the ability of our
method to provide probabilities of various possible re-
constructions, options that can be possibly experimen-
tally tested. The re-creation is in general rather confident
(confidence of the predicted residue averages 83%) even
given the rather long evolutionary time involved. The
reconstruction is especially accurate for buried structural

elements such asa-helices andb-sheets: such locations
averaged 94% confidence. This reflects the lower muta-
tion rates for the locations more critical for the protein
structure and function.

Conclusion

The tracing of molecular phylogenies has become an
increasingly useful approach in addressing major issues
in evolution and biochemistry. With the advances in mo-
lecular biology, it has become possible to experimentally
test possible scenarios by re-creating ancestral proteins
and measuring their activity and stability. Given this new
power, and the results of Benner and co-workers, which
suggest that it is only at short time scales that nucleic
acid substitution rates dominate mutation rates (Benner
et al. 1994b), it becomes increasingly important to de-
velop reconstruction schemes that work at the amino acid
level and that can provide more than just the most prob-
able sequence to test.

In this paper we have presented a method of ancestral
reconstruction based upon an ML-type formalism and
which is also based upon the longer-scale, amino acid
level of molecular evolution. Our method is able to pro-
vide the probability of findingany amino acid atany
point in the tree, and as the method is based upon amino
acid substitutions, it is better able to incorporate the
greater possibilities occurring at the residue level. Addi-
tionally, our method makes use of structure-dependent
mutation matrices to include the information contained
in secondary structure and surface accessibility.

Finally, we note that there has been interest in using
information about correlated mutations to assist in the
prediction of protein tertiary structure (Benner et al.
1994a; Gobel et al. 1994; Neher 1994; Shindyalov et al.
1994; Taylor and Hatrick 1994). Generally, these analy-
ses have been limited to looking at correlations between
the residues found in current-day proteins. With the re-
construction approach developed here, it may be possible
to look at the correlations between the time-evolution of
different residues at different locations.
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