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Abstract. Using a maximum-likelihood formalism, sightinto the properties of current proteins as well as into
we have developed a method with which to reconstructhe process of evolution. If the sequence of an ancestral
the sequences of ancestral proteins. Our approach allowsotein can be re-created, the protein can be synthesized
the calculation of not only the most probable ancestrabnd expressed, and its characteristics can be determined
sequence but also of the probability of any amino acid aexperimentally (Malcolm et al. 1990; Stackhouse et al.
any given node in the evolutionary tree. Because wel990; Shih et al. 1993).
consider evolution on the amino acid level, we are better Barring the presence of historically preserved DNA
able to include effects of evolutionary pressure and takéHiguchi et al. 1984; Paabo 1989; Cooper et al. 1992;
advantage of structural information about the proteinDeSalle et al. 1992), these ancestral amino acid se-
through the use of mutation matrices that depend omuences must be reconstructed based on the known se-
secondary structure and surface accessibility. The conguences of the current descendents. Generally, this re-
putational complexity of this method scales linearly with creation has been done using some variation on the
the number of homologous proteins used to reconstruanethods of maximum parsimony (MP) (Fitch 1971,
the ancestral sequence. Moore et al. 1973; Holmquist 1979; Czelusniak et al.
1990) or maximum likelihood (ML) (Felsenstein 1981;
Key words: Bayesian statistics — Evolutionary re- Saitou 1990; Yang 1994). Both of these approaches in-
construction — Homologous sequences — Protein evovolve a step-wise construction of an evolutionary sce-
lution — Maximum likelihood nario that is considered optimal in either minimizing to-
tal mutational steps (MP) or in maximizing the
likelihood of the mutations occurring (ML). The MP
method, as well as the closely related inferential method
Introduction (Libertini and Donato 1994), generally not only discards
everything except the maximally parsimonious schemes,

. . . but also cannot distinguish between scenarios of equal
The proteins that exist at our current stage of evolution 9 q

represent a minuscule subset of the proteins that havparsimony. In contrast, approaches based on the ML
P P r%ethodology can not only generate the most likely an-

(ranxc;ztgrdn_s&r;ce Ilﬁgﬁgaxéﬁlﬁaumégiﬂ%?azﬁ thei\lncizgrisnt_%estral sequence but can also consider all other possibil-
y P y aveg ities and compute their respective probabilities. These

suboptimal reconstructed sequences are important in that
they can provide information about other possibilities,
Abbreviations:ML: maximum likelihood; MP: maximum parsimony; suggesting alternatives that can be tested using biochem-

PAM: point-accepted mutations ical means. _ _ _
Correspondence taR.A. Goldstein Much of the reconstruction work up to this point has
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been based on nucleic acid substitutions, and amino acid
mutations are subsequently reconstructed from the nu-
cleic acids. Benner and co-workers have shown that for
short evolutionary intervals mutations can be understood
using nucleic acid substitution rates. For longer intervals,
however, it is the requirements that biology places on
protein function and structure that constrain the evolu-
tionary path (Benner et al. 1994b). By considering the q
evolutionary pathway on the amino acid level it is pos-
sible to take advantage of these constraints in order t
more correctly model the longer-scale molecular evolu-
tion process. This approach also allows us to directlyry ;1. Representation of an evolutionary tree corresponding to a
include information about the local structure at every siteparticular set of aligned homologous proteins. The ndles, G, H,
in the reconstruction by using a priori probabilities andandl represent amino acids in present-day proteins. The composition of
mutation matrices specific for each type of local structure nodesA, B, C,andD, which represent proteins i‘n the evolutionary past,
In previous work, we have constructed the S;,[ruc,[ure_are unknownd,. represents the evolutionary distance between n¥des
dependent mutation matrices mentioned above. They are
based on phylogenetic models of protein evolution and
represent the probability of mutation from one residue to P{A} |A, M, IP(A)
another in a given period of evolutionary time (Koshi PARAY .M. D=5 v @
and Goldstein 1995). This explicit modeling of the evo-
lutionary history gives us the tools needed to do a prObWhere P{A}'A.M,T) is the conditional probability of observing the
abilistic reconstruction of ancestral sequences at th@articular set of present-day amino acids for a given mutation matrix,
amino acid level. Because we are using an ML approaclevolutionary tree, and root amino achj, and P(A) is the a priori
based on Bayesian statistics, we can determine the prolﬁrf(’bTa‘bin";y ;L?agic‘)’r??nﬁ;;‘m;?{o a}?ﬁrvgZ‘?L?Uf'ﬁg‘rizzfigdfonr;’;ti*z‘ee
ablllty.Of any given amino acid e>$|'st|ng at any Sta}ge Of:hieprgbabilities so the sum @(:‘{A}:,M,D (E)v)(;r all possible values
evolution as well as the probability of any particular ¢ o equals 1.
evolutionary path. We can re-create the most likely an- p(a) can be approximated by considering the relative probability
cestral sequence and also evaluate the relative probabi# various amino acids in current proteins, including any dependence
ity of any other sequence existing at that point in evolu-on the Iocatio_n of th(_e residues in _the prqtein. The calculation of
tionary time. As we have developed specific mutation”@/# A.M.T)is more involved. Consider a simple example where the
. . L evolutionary tree has the structure shown in Fig. 1. While we are
matrices for various combinations of Secondary StruCtur(%alculating a value of this probability for an amino aéidat root node
and surface accessibility, we can use structural informaa, we still do not know the identity of the residues at no@e<C, and
tion about the proteins to assist in this reconstruction. D.We must, therefore, sum over all 21 possibilities (i.e., all 20 amino
In this paper, we explore this methodological frame-acids, plus gaps) at each of these nodisa} ‘A, M.T) is then given
work for evolutionary reconstruction, first demonstrating by_ the probability of the mutations necessary to produce the amino
. acids at nodek throughl, summed over all possible pathways from the
how the accuracy of this approach depends upon thg) i mino acid to these leaves.
number of homolog proteins available and their evolu-
tionary dlst_ance. Finally we apply this approach t_o theP(AE, A Ac, Ay A LAg M. T) =
reconstruction of the ancestral sequence of the ribonu-

clease superfamily.

!,
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Methodology

whereT,, 4, represents the probability of amino adig mutating to
Our approach to the construction of ancestral sequences follows ouamino acidAg, which can be computed with knowledge of the mutation
original derivation of optimized mutation matrices (Koshi and Gold- matrix M and the evolutionary distance between the various branching
stein 1995). We start with a set of homologous proteins connected byoints in the phylogenetic tree.
a known evolutionary tred, and the amino acids found at a given These relationships can easily be generalized to more complex
location in the previously aligned sequences of the homologous proevolutionary tree structures, allowing us to calculR{@A}'A,M,T)
teins, {A}’, where the prime indicates that our knowledge is restrictedand thusP(A,{ A} .M, T), for any specific tree structure, leaf compo-
to proteins at our current stage of evolutionary history. In addition, wesition, and mutation matrix. This method is easily generalizable to
assume we have a reasonable approximation to the mutation mvatrix re-create the amino acids at other locations in the phylogenetic tree
providing the probability of mutation from one residue to anothr.  besides the root. For instance, in the example in Fig. 1, the identity of
can be a function of the secondary structure or surface accessibility aesiduesA,; andA, can provide information about the probability of a
that location in the protein, or it can include any other available infor- given residue having existed at ancestral n&dby influencing the
mation. We are interested in computifR§A[{A}’',M,T), the condi-  probability distribution of residues at node
tional probability of a given amino acid, at the root location, given The calculation starts with aligned sequences and a reconstructed
{A}', M, andT. This probability can be easily computed using Bayes’ evolutionary tree. This can be produced with software already available
Theorem: and can take advantage of any other information about the proteins or
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organisms concerned. In this paper, we use the alignments and phylo- 60 * T -
genetic trees produced by ClustalV (Higgins et al. 1992). We also use
the optimized mutation matrices described previously (Koshi and Gold- 50
stein 1995). Assuming a constant mutation rate and no double mutas 40
tions at any location in the sequences between consecutive nodese 4
Ta, . ap the probability of mutation from residu&, to Ag in evolu- = 30 4
tionary timed,g, is given by: 8 T
g2 32
Qe
Ta.—a, = M(AxAg)dag|Ax # Ag 3 S 10
0
0 30 60 90 120
and
Evolutionary Distance (PAM)
Tagan = 1= dag(l — M(ALAL) (4) Fig. 2. Ten 500-residue random ancestral sequences were generated

and allowed to mutate; the ancestral sequence was then re-created
) ) ) ) _ based on the sequences of these mutated homologs. Percentage incor-
whereM(A,,Ag) is the corresponding element in the desired mutation rect is plotted vs evolutionary distance from the top to the bottom of the

matrix M and tree (equal steps between each node) for various numbers of homologs.

M(ALA)) =1 - M(ALA 5
(AnA) A;AA(AX) ®)  Results

The assumption of no double mutations between consecutive nodeéVe initially investigated two issues: how the accuracy of
does not imply a total lack of multiple mutations during the evolution- the reconstruction depends on the evolutionary distances
ary process. In fact, as mentionedl, possible evolutionary trajectories involved and how many homologs are necessary for an

are explicitly considered. This assumption of lack of multiple mutations . )
is not an essential part of this method; because the evolutionary disaccurate reconstruction. In order to eXpIore these ques

tances are computed externally, it would be straightforward to use 410NS, we prepared artificial data. sets by modeling the
more complicated model for the mutation rates. This would involve mutation process. We started with 10 model ancestral
raising the mutation matrix to a power proportional to the time betweenproteins 500 residues Iong whose Secondary structure
nodes arhd ueng the ref_“'“”gDmatr:'xﬁ'” p(:a;ekoié"gmﬁs) values  and surface accessibility represented the overall distribu-
seen in the above equations (Dayhoff and Eck 1968). However, as ali, \ so0n in real proteins (15.2% inside helix, 13.4%
of the evolutionary paths considered here were relatively short, this was . . L .
not done. outside helix, 14.4% inside sheet, 7.5% outside sheet,
This whole approach is based on treating each location in the set of .6% inside turn, 18.7% outside turn, 13.3% inside coil,
aligned sequences independently. In particular, we treat gaps the san®9% outside coil). The residues at each position were
as any amino acid, where the probability of a gap “mutating” to any gelected based on the relative propensity for each of the

other amino acid corresponds to the probability of an insertion of that_,__. . . .
amino acid into the sequence. It would be possible to construct a mort‘;’lrnlno acids to be in such a location. We then modeled

realistic model of insertions and deletions incorporating the cooperativr:f':‘\/oIution and_Sp_ECiation’ alIOWing the eVOIUti_Onary tree
nature of these events. to branch periodically and symmetrically. This resulted
The number of paths considered rises exponentially with the numin 2" present-day homologs, with a fixed interval be-
ﬁer of hO”:E'Ogsltha}t f_‘fe being “Eeq to IrecoAns”UCtt :jhi pal‘:thl- In pza?“c%ween nodes equal to the total evolutionary time divided
owever, fhe caicuiation 1S mUch SIMpIer. AS noted by FESENsIe, §,,, 1, “\yheren is the number of branching times. The
binary tree can be evaluated in linear time by traversing it from leaves ] . . . : .
to root (Felsenstein 1973, 1981). More specifically, every node in arelat've prop.ensmes for amino acids to be in any location
binary tree has two filial nodes below and directly connected to thein the protein sequence as well as the local-structure-
paternal node. For instance, in Fig. 1, nod2sand G are filial to  dependent mutation matrices used to simulate the site
paternal nodeB. For every paternal nodewith filial nodesm andn, mutations were drawn from our earlier work (KOShi and
Goldstein 1995). Given the amino acids that resulted in
PUA} LA M, T) this procedure at the leaves of the evolutionary tree, we
used equation 1 to ascertain the originally created ances-
= > Ta_a PAAYRl AuMT Ty _a PAA}II AL M, T) (6)  tral protein. _ o o _
A, One strength of this probabilistic analysis is our abil-
ity to represent degrees of certainty and include various
where {A} is the set of amino acids in homologous proteins at our POSSibilities along with the computed probabilities. First,
current stage of evolutionary history that are direct descendents of nodaowever, we took the most likely ancestral amino acid as
k.The calculation oP({ A} A,M,T) for every possiblé involves at  gur prediction at that location and compared it with the
most 2F calculations, assuming that the valuesRifA }f, Ay M.T) amino acid that actually existed at that location in our
for the filial nodes have already been calculated. As the number o del. Fi 2 sh th f t
nodes is one fewer than the number of homologs, the (:alculationar_nO €l. Figure _ shows the aCC_uraCy 0_ our reconstruc-
complexity varies only linearly with the number of sequences beingtion, as a function of total evolutionary distance between
considered. root and leaves, for 4, 8, 16, and 32 present-day ho-
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Fig. 3. For the 16 current homolog cases, the average confidence.

level of the predicted amino acidbest) and the average of the correct E'% 4. hUsmg 16 Eomologs, the seguenge atone o;the r;]odes directly
amino acid [@orrecf) are plotted vs evolutionary distance (units in elow the root node was computed, and compared to the correct se-

point-accepted mutations). The decline of the confidence level as thduence at that point. Percentage incorrect vs evolutionary distance from

evolutionary distance increases mirrors the similar decline in the ac-:jhat no;e to tze bOttofthf the(;ree |sdplgttedhfor two cases: ujlng.only”
curacy of the reconstruction, shown in Fig. 2. irect descendants of that node to derive the sequence and using a

homologs to derive the sequence.

mologs, assuming that the evolutionary tree and second-  ,,
ary structure at each point in the protein sequences are

60

known exactly. As could be expected, the accuracy of the o
reconstruction drops off sharply with increasing evolu- 59 by
tionary distance and increases when more homologs ar§ 40

available. e

In our further testing, we focused on trees with 16 3 30
current homologs. Using 10 proteins each 500 residues’; 20
long as a data set, we found the average probability ass>
signed to the predicted ancestral residue as well as the 10
average probability assigned to the correct ancestral res- ¢
idue. Figure 3 shows these results. 0 30 60 90 120

As discussed in the Introduction, this approach can be . .
used to reconstruct any node, not just the root node of the Evolutionary Distance (PAM)
tree. In particular, Fig. 4 shows the accuracy of the reFig. 5. Inthe 16-homolog case, percentage incorrect in the ancestral
construction of an ancestral node that is filial to the roots€duence vs evolutionary distance from the top to the bottom of the tree

. . . was plotted for three casea) using the known evolutionary tree and
of the phylogenetic tree both when information about a”using-structure dependent matricd®; using the tree generated by

of the present-day homologous proteins is used and whegiystalv from the alignments and using structure-dependent mutation
only using information about direct descendents. Asmatrices; andc) using the ClustalV tree and only a structure-

shown, useful information can be derived from a knowl- independent matrix.
edge of other parts of the tree that are related to a node
paternal to the node of interest. ClustalV-generated tree when the protein structure is not
The construction of the multiple sequence alignmentknown and a structure-independent mutation matrix is
and evolutionary tree structure must be computed prioused.
to the use of this reconstruction methodology. The data Finally, we applied these techniques to ribonuclease.
in Fig. 2 assume that this has been done perfectly so thaWith a test set of 38 proteins from the ribonuclease fam-
the true evolutionary tree and alignment are availableily, we formed an alignment and tree with ClustalV using
While there has been much progress in this area, theran unrelated sequence to root the tree. The evolutionary
are still many unresolved issues. In order to evaluate howree which was derived is shown in Fig. 6. The average
sensitive our technique is to the current limitations in thisevolutionary distance between consecutive nodes in this
technology, we realigned the model sets of homologousree corresponded to a sequence divergence of 7.8%,
proteins with ClustalV (Higgins et al. 1992), recomputedjustifying our previous assumption of no double muta-
the evolutionary tree, and used these data in our recortions between consecutive nodes. We then applied our
struction. The results are shown in Fig. 5, again for themethodology to reconstruct the ancestral sequence, using
example of 16 current homologous proteins. Also showrstructure-dependent mutation matrices based on the local
in Fig. 5 is the accuracy of the reconstruction using thestructure of bovine pancreatic ribonuclease (Brookhaven

a)
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RNP_HIPAM:—" Fig. 6. Graphical representation of the

RNS_BOVIN tree generated by ClustalV used to
lrnd.dssp;}_ reconstruct the ancestral ribonuclease
RNP_RANTA sequence. (Evolutionary distances are not

RNP_MACRU shown to scale.)

Protein Database designation 1RND). The results of thisnd 3, as the accuracy of the reconstruction decreases,
reconstruction, which took under a minute of CPU timethe probability reported by the analysis about the recon-
on an SGI R4400, are shown graphically in Fig. 7 andstruction decreases similarly. For 16 present-day ho-
numerically in Fig. 8. mologs at an evolutionary distance of 120 PAM, the
average confidence of the prediction, as represented by
the probability assigned to the most-probable amino acid,
Discussion is 64%. In fact, the reconstruction under these conditions
has an accuracy rate of 63%. Certain locations in the
Ancestral reconstructions become more problematic asequence will be more constrained than others, and the
the evolutionary time increases and the number of horeconstruction will be more accurate at these points—
mologs decreases. There are fundamental uncertaintiglis increase in accuracy will be reflected by the calcu-
that cannot be resolved without direct observation oflated probabilities. The confidence level of correct pre-
ancestral protein or DNA sequences. Given these limidictions averaged 74%, while the confidence of predic-
tations, it becomes all the more important to be able tdions that were erroneous averaged only 48%. Generally,
use all of the information available, such as knowledgethe correct ancestral residue had appreciable probability
of the structure of one of the members of the homologougven in those cases of an incorrect prediction, when an-
set. And as the ability to furnish an exactly correct re-other residue had a still-higher probability. Even for the
construction decreases, it also becomes especially impoincorrect predictions, the confidence level of the correct
tant to provide alternative possibilities with their respec-answer averaged 13%.
tive probabilities. As is seen by a comparison of Figs. 2 This method is rather general, applicable for arbi-
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Fig. 8. Reconstructed ancestral ribonuclease. The first four se-position (truncated to the nearest multiple of 10). Local structure is
quences are examples chosen from the set used to create the ancestegiresented by the bottom row of lettestrgg—H and h represent
sequence (see Fig. 6 for their location in the tree), and the single linexposed and buried-helix residues, respectively, while ande rep-

of amino acids belowancestra) is the reconstructed sequence of high- resent exposed and buriggisheet residuedDots indicate positions
est probability. The numbers below the ancestral sequgmob)(rep- where no knowledge of the local structure exists.

resent 10 times the probability of finding that amino acid in that

trarily complicated phylogenetic trees, and for any nodeYet including information about the other eight se-
in the tree. In particular, Fig. 4 demonstrates our abilityquences helps to boost the accuracy of the reconstruc-
to take advantage of our knowledge of sequences that aten.

not direct descendents of the node in question. For the In this methodology, we assume that we know the
node being reconstructed, filial to the root node, only 8evolutionary treel, and Fig. 5 demonstrates that this re-
of the 16 present-day sequences are direct descendentanstruction is dependent upon an accurate phylogenetic
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tree. The phylogenetic analysis can be assisted by takinglements such as-helices and3-sheets: such locations
advantage of ancillary information that exists from otheraveraged 94% confidence. This reflects the lower muta-
sets of homologous proteins, fossil records, and morphotion rates for the locations more critical for the protein
genic comparisons. If the evolutionary tree is a matter ofstructure and function.

some uncertainty, this uncertainty can be naturally incor-

porated into the re-creation schemeP(f;) is the prob-

ability of evolutionary tre€T;, as computed for instance, Conclusion

using maximume-likelihood approaches, then equation 1

can be generalized to: The tracing of molecular phylogenies has become an

increasingly useful approach in addressing major issues
PA{A}, M) = 2 P(A-{A} M T)P(T)  (7)  in evolution and biochemistry. With the advances in mo-
! lecular biology, it has become possible to experimentally

test possible scenarios by re-creating ancestral proteins

Uncertainty in the alignment of the homologous proteins . ) . . : ;
can be handled in a similar way. and measuring their activity and stability. Given this new

Figure 5 also shows that the accuracy of the reconPOWer, and the results of Benner and co-workers, which

struction suffers when the local protein structure is un_suggest th_at _it is only at short time sc_ales that nucleic
known and structure-independent mutation matrices ar@c'd substitution rates dominate mutation rates (Benner

used. Even when the structure of one of the members o?t lal. 1994b)t’ It tpecomr:as |ncrtehast|nglyk|r‘rtut3r(])rtant. to de.-d
the homologous set is known, uncertainties about th elop reconstruction schemes that work at the amino act

local structure will be caused by fluctuations of this et\)/lel and that c:;m tprotwde more than just the most prob-
structure during the evolutionary process (Rost et a|@0'e sequence o test.
In this paper we have presented a method of ancestral

1994; Rost and Sander 1994). In the complete absence of

structural information, the local-structure-dependent mu_reconstructlon based upon an ML-type formalism and

tation matrices can still be used to advantage. For inWhICh is also based upon the Ionger-sca_lle, amino acid
stance, various secondary-structure prediction schemé‘g\'eI of molecula_lr_ evolut_|on_. Our method IS ‘?‘b'e o pro-
can be used to estimate the probability of any given IocaV'd_e t_he probability of findingany amino acid atany .
structure. Less than perfect accuracy would still assist oIt in the tree, and as the method is based upon amino

the reconstruction. In addition, the observed evqutionar;f’ICId substitutions, it is better able to incorporate the

pattern itself provides information about the relatiVegreater possibilities occurring at the residue level. Addi-

probability of various secondary structures. We can Segonallly, our ”?e‘h"d makes use c_)f struct_ure-dependent
this by consideringP(A.,2*{A}’.T), the conditional mutation matrices to include the information contained
probability that the root r;,oée k;as’ ar,nino agidand this in secondary structure and surface accessibility.

location has secondary structur® Biven residuesA}’ . fFlnaIly, Webnotte that ;[hterg has; lz_een |tnteres'_t Itn_ustlrr:g
in current sequences and tree structlire information about correlated mutations to assist in the

prediction of protein tertiary structure (Benner et al.
1994a; Gobel et al. 1994; Neher 1994; Shindyalov et al.
1994; Taylor and Hatrick 1994). Generally, these analy-
, " " ses have been limited to looking at correlations between
PAA} A, 2 ’-D/P(Aflsz(zk) (8) the residues found in current-day proteins. With the re-
P{A}IT) construction approach developed here, it may be possible

-~ ] ) . to look at the correlations between the time-evolution of
where 2 specifies the appropriate mutation matrix. The different residues at different locations.
value of P(A{A}',T) is then computed by summing

P(Af'zﬁ){Ai} ”T) over all possible secondary Structures'Acknowledgments. We would like to thank Kurt Hillig for compu-
Secondary structures with mutational patterns most congtional assistance. Financial support was provided by the College of
sistent with the observed evolutionary process would betiterature, Science, and the Arts, the Program in Protein Structure and
more heavily weighted in this sum. This approach can pbdesign, the Horace H. Rackham School of Graduate Studies, and NIH
used for any distribution of mutation matrices or a priori 9r2"ts GM08270 and R29 LM05770.
probabilities that depend upon unknown factors, such as
in the modeling of heterogeneous mutation rates.
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