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Abstract. Retroviral and other reverse transcriptase
(RT)-containing sequences may be subject to unique
evolutionary pressures, and models of molecular se-
quence evolution developed using other kinds of se-
quences may not be optimal. Here we develop and
present a new substitution matrix for maximum
likelihood (ML) phylogenetic analysis which has been
optimized on a dataset of 33 amino acid sequences
from the retroviral Pol proteins. When compared to
other matrices, this model (rtREV) yields higher log-
likelihood values on a range of datasets including
lentiviruses, spumaviruses, betaretroviruses, gamma-
retroviruses, and other elements containing reverse
transcriptase. We provide evidence that rtREV is a
more realistic evolutionary model for analyses of the
pol gene, although it is inapplicable to analyses in-
volving the gag gene.

Key words: General reversible transition Markov
model — HIV — Lentivirus — Maximum like-
lihood method — Retroid — pol gene

Introduction

Common ancestry for organisms and genes results in
the correlation of molecular sequence traits among
relatives. Maximum likelihood (ML) models are used
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to account for these correlations in phylogenetic
analyses, and improvements in these models are con-
tinually sought. Most such analyses are performed at
the DNA level. For protein-coding sequences, how-
ever, the DNA-based models are often too simplistic;
for example, an A—G substitution in the second po-
sition of a Tyr codon can have very different effects on
the protein than the same substitution in the third
position of a Thr codon. Although some researchers
have developed codon-based models (Goldman and
Yang 1994; Yang et al. 1998), the most common
models for protein evolution are substitution matrices
derived from large, general sets of related proteins,
such as the JTT model (Jones et al. 1992), and the
WAG model (Whelan and Goldman 2001).

It is recognized that different types of proteins
are under different selective pressures and might
not fit the most general models. While it may be
increasingly possible to adjust the parameters of the
model to maximize the log-likelihood score for the
particular data to be analyzed, a more practical
option is to use a substitution matrix that has been
developed from a more relevant and specific class
of proteins. For example, mitochondrial proteins
differ from eukaryotic nuclear-encoded proteins in
that most are membrane-bound, their codon table
is slightly different, and the recombination rate is
lower. To develop their mtREV matrix, Adachi and
Hasegawa assumed a set of noncontroversial rela-
tionships for a set of mammalian mitochondrial
amino acid sequences and adjusted the 189 substi-
tution rate parameters in the model until the like-
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Table 1. Taxa used in alignment and phylogeny for optimization of model (see van Regenmortel et al. 2000)

Genus Species Abbreviation Accession Protein ID
Lentivirus Feline immunodeficiency virus FIV GNLIJFP
Caprine arthritis encephalitis virus CAEV NC_001463 NP_04939
Visna/maedi virus VISNA M60610 AAA17529
Human immunodeficiency virus 1 HIV1u455 M62320 AAA75019
HIVleli K03454 AAA44325
HIVImvp5180 L20571 AAA44860
Human immunodeficiency virus 2 HIV2ben NC_001722 NP_056838
Simian immunodeficiency virus SIVmnd M27470 AAB49569
SIVsyk L06042 AAAT4707
SIVagmtan U58991 AACS57052
SIVsun AF131870 AAD39753
SIV1hoest AF075269 AADI12147
SIVagm155 M29975 AAA91906
SIVagm3 M30931 AAA91914
SIVcpzant U42720 AAB47724
SIVcpzeam3 AF115393 AAF18575
Alpharetrovirus Avian leukosis virus ALV M37980 AAA91269
Rous sarcoma virus RSV AF052428 AAC08988
Betaretrovirus Mason-Pfizer monkey virus MPMV M12349 AAA47711
Mouse mammory tumour virus MMTV M15122 AAA46542
Squirrel monkey retrovirus SMRV M23385 AAA66453
Deltaretrovirus Bovine leukemia virus BLV K02120 AAA42785
Primate T-lymphotropic virus 1 HTLVI1 D13784 BAA02931
Primate T-lymphotropic virus 2 HTLV2 M10060 AAB59885
Primate T-lymphotropic virus 3 STLV3 Y07616 CAA68894
Gammaretrovirus  Feline leukemia virus FeLVfaids T10532
Gibbon ape leukemia virus GALVsf NC_001885 NP_056790
Murine leukemia virus MLVdg75 NV_002603 NP_068545
MLVmolon NNMVIM
Spumavirus Simian foamy virus type 1 SFV1 P23074
Simian foamy virus type 3 SFV3 M74895 AAA47796
Human spumaretrovirus HSV U21247 AAB48112
Feline syncitial virus FeSFV U85043 AACS58531

lihood was maximized (Adachi and Hasegawa
1996). This approach has since been repeated for
other datasets such as chloroplast-encoded proteins
(Adachi et al. 2000).

Retroviral elements are also suitable candidates
for development of a more specific model of amino
acid evolution as they are under selective pressures
different from those represented in standard models.
Distinctive features of RNA virus replication include
high mutation rates, short generation times, large
numbers of progeny, and frequent bottleneck events
influencing local population sizes (Domingo and
Holland 1997). Potentially rapid rates of sequence
change combined with environmental change due to
colonization of new host populations or potential
transposition events within a genome provide the
opportunity for increased natural selection effects.
These and other distinctive aspects of retroviral life-
styles may contribute to difficulties in resolving ret-
roviral phylogenies (e.g. Doolittle et al. 1990; Mindell
et al. 1995; Herniou et al. 1998; McClure 1999; Hahn
et al. 2000). We believe a model for amino acid
change optimized on a retrovirus phylogeny will im-
prove the reconstruction of phylogenetic trees and the

estimation of phylogenetic parameters such as the
dating of branch points between viral lineages.

Here we present and assess a general model which
has been optimized for application to the retroviral
pol gene, which encodes a polyprotein containing the
protease, reverse transcriptase (RT), and integrase
proteins. RT has also been identified as a stable ge-
nomic or parasitic component of most kinds of euk-
aryote and cubacteria genomes. It is found in many
of the genetic elements that inhabit and readily
transport themselves within and among genomes,
such as retroposons, retroplasmids, retrons, telo-
merase, retrointrons, and other retrotransposons
(reviewed in McClure 1999). RT sequences tend to be
conserved over time despite low fidelity in reverse
transcription because of strong functional constraints
on essential structural motifs found in all RTs. Thus,
this model could help in evolutionary analyses across
a diverse range of RTs.

Methods

An alignment and phylogeny of inferred amino acid sequences
from retroviral pol genes (the ‘training set’) was used to optimize
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the model. Thirty-three sequences from alpharetrovirus, betaret-
rovirus, deltaretrovirus, gammaretrovirus, spumavirus, and lenti-
virus genera were downloaded from databases (Table 1).
Alignment of the pol gene (which encodes protease, reverse tran-
scriptase, and integrase proteins) was performed with the aid of
ClustalX (Jeanmougin et al. 1998) and included 1335 aligned amino
acid positions. The phylogeny used for optimization (Fig. 1) is
based on published analyses (Xiong and Eickbush 1990; Tristem et
al. 1996; Broussard et al. 1997; Nakamura et al. 1997; Herniou et
al. 1998; Beer et al. 1999; Martin et al. 1999; Yin et al. 1999; Hahn
et al. 2000). The alignment and phylogenies are available at http://
www.umich.edu/~goldgrp/rtREV.

The procedure for optimizing the parameters follows that of
Adachi and Hasegawa (1996). Briefly, the probability of substitu-
tion from amino acid i to amino acid j in an instant of evolutionary
time is given as

[ { OmiR;/s (i #)
P MR /s (i=)
where the relative substitution rate parameters R; = Ry, the diag-

onals R; = 0,0 = 0.01, 7; is the frequency of amino acid j estimated
from the data, and

()

20 20

s = Z Z TE,‘T{,‘RU (2)
i=1 j=1

To find the rate of substitution Py () for any particular amount of
evolutionary time 7, one can then exponentiate the matrix M as

P(7) = eM (3)

Eight rate classes were used, and their parameters assigned ac-
cording to a gamma rate distribution (Yang 1994). The model
contains 189 adjustable parameters: the relative substitution rate
parameters (R; above, with one value held constant). In addition,
the optimization procedure requires 20 amino acid stationary fre-
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Fig. 1. Phylogeny of retroviruses used
for rtREV model optimization (training).
Distinctions between retroviral genera
are indicated by the shaded regions. See
Table 1 for sequence abbreviations.

quencies, 48 tree branch lengths, and 1 rate parameter. The amino
acid stationary frequencies were estimated from the data and then
fixed. Using the JTT model for initial parameter estimates, the
branch lengths and rate parameter were estimated with PAML
(Yang 1994). These were then held fixed during the optimization of
the 189 substitution rate parameters, which were constrained at a
lower bound of 1. The optimization was performed by adjusting the
parameters of the model in order to maximize the likelihood of the
training dataset (see Felsenstein 1981). The ML estimate of the
gamma shape parameter for the training set was 1.41.

The parameters were adjusted using a combination of programs
for likelihood calculation written by the authors as well as by using
PAML. The optimization package CFSQP v2.5 (Lawrence et al.
1997) was used for the optimization scheme, with derivatives esti-
mated using finite differences. Gaps were treated as missing data in
the sequence in which they occur. Following optimization, the
branch lengths and rate parameter were re-estimated, but the val-
ues did not change significantly.

Testing the Optimized Matrix, rtREV

To examine performance of the rtREV matrix on various subsets of
the training phylogeny, four alignments and phylogenies were
constructed. In general, these training subsets are clades from the
training dataset augmented by the addition of more taxa. All da-
tasets and phylogenies are available at http://www.umich.edu/
~goldgrp/rtREV. The augmented training subsets are:

LENTI—Lentiviral subset of training set—We tested the model on
the subset of lentiviruses from the training tree (see Table 1,
Figs. 1 and 2).

BETA—Betaretrovirus pol—A betaretrovirus phylogeny for pol was
constructed from an alignment of eight sequences from the PIR
alignment database, ALN entry M04292 (http://pir.george-
town.edu/pirwww/search/textpiraln.html) (Barker et al. 2000).
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Fig. 2. Diagrammatic phylogenetic hypothesis of the relationship
between the analyzed Pol datasets. The rtREV training set is in-
dicated by solid lines. Test sets are underlined: lentivirus (LENTTI),
betaretrovirus (BETA), spumavirus (SPUMA), gammaretrovirus
(GAMMA), and non-LTR retroposon (NONLTR). The endoge-
nous RT (ENDO) test set is indicated with dashed lines.

The alignment includes 928 positions. An exhaustive search using
maximum parsimony in PAUP"4.0b4a (Swofford 2000) recov-
ered a single most parsimonious tree 1081 stepsin length (Fig. 3a).

SPUMA—Spumavirus pol—A spumavirus test phylogeny was
constructed by aligning five spumavirus pol/ polyproteins from
GenBank with ClustalX. The alignment has 1232 positions, and
a single most parsimonious phylogeny 1121 steps in length was
recovered from an exhaustive search in PAUP"4.0b4a (Fig. 3b).

GAMMA—Gammaretrovirus pol—A gammaretrovirus test phy-
logeny was constructed by aligning 12 gammaretrovirus pol
polyproteins from GenBank with the aid of ClustalX. The
alignment has 1210 positions, and a single most parsimonious
phylogeny 1160 steps in length was recovered from a branch
and bound search in PAUP"4.0b4a (Fig. 3c).

In addition, four test alignments and phylogenies were con-
structed (Fig. 2) to examine performance of the rtREV matrix for
sequences and taxa more distantly related to those in the training
phylogeny. These “‘test sets” involve phylogenetic relationships
which are non-overlapping with regard to the training set. The
performance of rtREV was compared with other models on these
four test sets:

ENDO—Endogenous RT—Diverse, endogenous retroid elements
including telomerase reverse transcriptase, elements from eubac-
teria, non-LTR elements, and non-retroviral retrotransposons.
Thealignment and phylogeny is a subset from Xiong and Eickbush
(1990) and Nakamura et al. (1997) and includes 47 taxa.

NONLTR—Non-LTR RT—An alignment and phylogeny of RT
domains from 72 non-LTR retrotransposable elements (Malik
et al. 1999). The alignment includes 590 positions.

GAGHIV, GAGGAM—HIV-gag and Gammaretrovirus-gag—
Phylogenies were also constructed from a gag alignment of HIV-
1 (49 taxa, 574 characters, PIR ALN entry M04270) and a gag
alignment of gammaretrovirus from the Megaclass alignment
database (12 taxa, 543 characters, http://stateslab.bioinforma-
tics.med.umich.edu/megaclass) using parsimony searches as in
datasets BETA, SPUMA, and GAMMA (States et al. 1993).
Log-likelihood scores for each of these topologies under JTT,

WAG and rtREV models were calculated in PAML by supplying

the topology and alignment. For each test, branch lengths and the

gamma shape parameter (eight categories) were optimized, with
amino acid frequencies estimated from the data.

Comparing Models

On the training dataset, the mathematical form of the rtREV
model is equivalent to the form of JTT and WAG. The only dif-
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Fig. 3. Maximum parsimony phylogeny of (A) betaretrovirus, (B)
spumavirus, and (C) gammaretrovirus Pol proteins. Relative sup-
port for each topology is indicated at the nodes by bootstrap values
based on 1000 replicates. Branch lengths shown are the ML branch
lengths using the rtREV model. Trees are shown here with an
arbitrary root, but no rooting was assumed in the analyses.
Abbreviations are (A) mouse mammory tumor virus (MMTV),
Mason-Pfizer monkey virus (MPMYV), simian AIDS retrovirus
(SRV-1), ovine pulmonary adenocarcinoma virus (JSRV), and
squirrel monkey retrovirus (SMRV). Additional details can be
found in the text. Abbreviations and accession numbers for (B)
bovine syncitial virus (BFV, GenBank accession AAB68770), sim-
ian foamy virus (SFVepz, AAA19978), human foamy virus (HFV,
CAA69003), feline foamy virus (FFV, CAA70075), equine foamy
virus (EFV, NP_054716). (C) Murine leukemia virus (MLVrfb,
AAKS50381; MLVsI33, AADS55051; MLVervl, AAD34536; MLV-
radia, GNMVRYV; MLVdg75, NP_068545; MLVsrs196, AAC98548;
MLVmolon, GNMVIM; MLVdunni, AAC31805), Feline leukemia
virus (FeLVrick, NP_047255; FeLVfaids, T10532), Gibbon ape
leukemia virus (GALVsf, NP_056790; GALVx, AAC80264).

ference is that the 189 parameters of rtREV’s relative substitution
rate matrix (the R-matrix) are adjusted to maximize the likelihood.
Therefore, on the training set rtREV is nested with these models
with 189 degrees of freedom, and the likelihood ratio test (LRT)



can be used to compare them (e.g., Huelsenbeck and Crandall
1997).

On all other datasets the 189 parameters of rtREV’s R-matrix
are not adjusted; instead, the values obtained from model optimi-
zation on the training set are used. Because there are 0 degrees of
freedom, the LRT is not useful when comparing the models on
these datasets. In the case of the independent test sets (ENDO,
NONLTR, GAGHIV, and GAGGAM), the consistency of the
results are compared using a paired z-test for means. In this test, the
likelihood score (L) is calculated for each column in the alignment
for the two models indicated, and the difference between the site-
wise L values is calculated. The null hypothesis in this test is that
the mean difference is zero, and the p-value indicates the signifi-
cance with which we can reject this null hypothesis. It is similar to a
tree-testing method used in the PAUP” software package (Swofford
2000) and described as the PriNPncs test by later authors (Gold-
man et al. 2000), although here we apply it to model-testing rather
than tree-testing.

On the augmented training subsets (LENTI, BETA, SPUMA,
and GAMMA), statistical significance is more difficult to assess.
These datasets share some sequences with the training set, and
therefore are not truly independent, with “true” degrees of freedom
somewhere between 0 and 189. Most widely-used methods of model
testing in phylogenetics require either specification of degrees of
freedom (e.g., the LRT) or the assumption of a null generating
model (e.g., parametric bootstrapping), and therefore have ques-
tionable applicability on these subsets. We know of no statistical
test in phylogenetics which describes how to scale the degrees of
freedom appropriately, and the field would certainly benefit from
systematic examination of this issue. For this reason, no presump-
tion of significance is made in these cases, and no P-value is shown.
These augmented training subsets are simply included to examine
whether the results on the retroviral training set are consistent
across the various genera and with the addition of new sequences.

Results
The Training Set

The final optimized model (rtREV) is shown in
Table 2. On the training set, the final log-likelihood
(L) score was —46066 for rtREV and —-46418 for
WAG, an improvement of 352. (The L scores for
other models were significantly lower.) To examine
whether this improvement is significant, the likeli-
hood ratio test is used. Since in this case rtREV has
189 more parameters than the WAG model, using the
LRT WAG can be rejected in favor of rtREV with
>99.99% significance. Although some of the as-
sumptions of the LRT have been questioned in
phylogenetic model comparison (Yang et al. 1995;
Zhang 1999), other tests lead to the same conclusion.
The Akaike Information Criterion (AIC) (Akaike
1974; see also Hasegawa et al. 1990), for example,
also suggests that rtREV should be chosen.

The Training Subsets

It is clear that rtREV is a significant improvement
over WAG for the training tree. To examine whether

69

rtREV’s improvement arises from just one part of the
training phylogeny or if the improvement is uniform
over the whole phylogeny, four datasets were as-
sembled as described above and tested with several
different models. These datasets represent subclades
of the training phylogeny which have been aug-
mented with the addition of further taxa. All were
assembled using the so-called “model-free” maxi-
mum parsimony approach, to avoid biasing the re-
sults in favor of one model or another. Tests were
also performed on suboptimal trees for some datasets
(not shown), with qualitatively similar results.

The results are shown in Table 3a. On each of these
subsets, rtREV has a higher L value than either the
JTT matrix or the WAG matrix. Note that in each
case, the values of the rtREV matrix are frozen and
not allowed to adjust. While technically this means
that all the models have the same number of adjust-
able parameters on these subsets, because of their
relatedness to the training set it is difficult to estimate
the significance of the increase in L in these cases (see
Methods). Despite this difficulty, these results do have
predictive value; they indicate that the increased
likelihood of rtREV is not confined to any particular
family of retroviruses in the training set, and that the
increase is seen with the addition of new sequences.

The Test Sets

To examine whether rtREV can be applied to retro-
viruses or other retroid elements outside the training
phylogeny, four datasets were assembled as described
above and tested with several different models. The
taxa used in these sets represent phylogenetic rela-
tionships which do not overlap with the training set.
For this reason, these datasets arc called “‘test sets” to
differentiate them from the 33-taxa training set where
there are 189 degrees of freedom. The results are
given in Table 3b, with the phylogenetic relationship
between the sets shown in Fig. 2.

Test sets ENDO and NONLTR involve non-ret-
roviral sequences which are relatively distantly re-
lated to the training set, and again the likelihood
using rtREV is greater than the likelihood using other
models. This is evidence that the likelihood increase is
broadly distributed across the RT topology (Fig. 2),
and that rtREV may be applicable to testing phylo-
genetic hypotheses across a diverse range of retroids.
As with the augmented training subsets, when ex-
amining each of these datasets the values of the
rtREV matrix are frozen and not allowed to adjust.
Therefore JTT, WAG, and rtREV all have the same
number of adjustable parameters, and the p-values
shown indicate whether the sitewise mean increase in
L is significant. The mean increase on ENDO appears
to be significant, while the significance of the increase
on NONLTR is more marginal.



"POIBWIINSY JOU 219M PUNOQ JOMO[ 9y} I s1ojowreled JO SIOLIQ PIEPUR]S "UOISIOAUI OAIJBALIOP PUOOAS AQ PIJRWINSO SIOLID PIEPUL]S
smoys xujew ay) jo 9[Suewn 1oddn oy '1x9) oy) ur uSAIS poylowr dy) Suisn XLJBW UOHNISQNS B 0) PIJIIAUOD 9q UBD PUB ‘SdJel UONNIIISqNS JANEB[RI SB J[SUBLI) JoMO] YY) Ul UMOYS Ie SIdjoweIed

61900 8100 15200 <CT90'0 88700 1890°0 L8CO'0 0SIO0 ISLOO 8IOI'0O 6£90°0 €L20°0  6£90°0 L0900 90900 #II00 <TCPO'O 9L£0°0  €S¥0°0  9¥90°0 borg
— 65 9C 961 6¢ 94 6 9¢¢ 6l 41! 8701 I € 33 9¢ S6C 9 1T 6¢ L61 [BA
€C — 9Ll 143 1€ 4! L101 YL ! ¥9 9¢ LOE IC I St I€1 I 8¢ LY Ss IAL
61 194 - I 4! 6 (4 11 9 Ly 6¢ 8y €C Ll 0l SS I 91 el S dip,
Y4 81 — - 1L9 [4Y 69 I€l Orl Y4 <L oY L 8 vl LTI SS 8yl ¥9 8¢ 4L
Sl [44 €l 19 - vel 0C I LL 144 % €81 43! S6 Y44 SL €91 ¥6C 01 09 198
8 6 L €l IC — ! [ 194 [44 01 144 Ll 49 89 I 59 €€ ¥ L6 old
0¢ 148! Ly 1 IC 8 — LYT 4! 6L1 9 44! L I ! 0L I (1% L I ud
89 9¢ 09 [43 - - ¥6 - Pel 185 SLE 9l LE I 8S1 9¢1 I [ LS 344 PN
6 - L 81 0T 6 6 8¢ — €C 123 9L 0¢ 4! 60¢ 91 0C £Cl €65 8¢ s&1
81 91 €l 6 6 S S¢ €L 9 - G8¢ IS € ¥4 123 Or1 S Sl 81 Sy nag
69 Sl 81 91 8 9 ¥C YL 6 LT - 123 I I 13 01 I 33 ¥C I °H
— 65 8¢ 9¢ 14 Sl St IL ¥C 91 Ll — 89 143 L8E ¥Cl 16 (143 06 0¢ STH
4 01 U} 8 €C 9 8 €C 8 € — 1T - 0L 81 8Y 19 v6 Iy Sel £1D
01 0 01 L1 €C Il — — L1 9 — 61 4! - CLE ! ws 6L 0l I8 nn
4! 81 U} S¢ 33 €l — cs 6¢ U} 4! 139 6 213 - 0L 8L 9¢¢ 1CC [43 un
9L 89 St 139 8¢ - L9 Lyl (44 33 8Y €8 LT - 8¢ — ! 8¢l 6 6ty s£D
L — - 81 [43 4 — — €l S 0 133 4! 8Y € - — ¥8¢ 0¢ 01 dsy
4! [44 4! 53 0S 4! C — €C 6 4! ¥9 0¢ €C 8¢ (4% 49 — 33 IS usy
€l 6l It 1 I¢ 01 I Sy Ly 8 4! 123 4! €l 23 Sy 61 S¢ — 123 sy
€C 0¢ 01 0¢ LY 4! — 9 8! 01 — ¥C Ll i4! 91 88 Il 61 Sl — BlY
A A M L S d 4 W A 1 I H D q 0 0) a N | v

70

[opow AgYH paziwndo YL 7 dqeL



71

Table 3. Summary of model performance on various datasets: a: Model performance on the training tree and on augmented subsets of the
training tree; b: Model performance on test sets which do not phylogenetically overlap with the training tree

JTT (L) WAG (L) rtREV (L) AL <AL]site > p-value
a
Training tree (pol) -46763 —46418 -46066 +352 +0.263 <0.001
LENTI (pol) —-19759 —-19608 —-19439 +169 +0.155 —
BETA (pol) —7497 —~7466 —7440 +26 +0.028 —
SPUMA (pol) —8838 —8794 —-8755 +40 +0.032 —
GAMMA (pol) —9475 —9472 —9467 +5 +0.004 —
b
ENDO (pol) —-17251 -17121 —-17088 +33 +0.179 0.031
NONLTR (pol) —55865 -55506 —55364 +142 +0.246 0.083
GAGHIV (gag) -10904 —-10956 —10949 —45 —-0.078 <0.001
GAGGAM (gag) -3393 —3433 —3456 -63 —-0.116 0.070

Highest-L model for each set is bold, and this is compared with the model in italics to obtain the AL and associated values for each dataset.
p-values are obtained using either the LRT or the paired -test for means (see Methods).

The pol gene is not the only gene used in retroviral
phylogenetics; the gag (group specific antigen) gene is
also commonly used. As a rough examination of
whether the evolutionary pressures on po/ are similar
to those on gag, test sets GAGHIV and GAGGAM
represent topologies identical to those in other test
sets, but here sequences from the gag gene are used
for testing. On these test sets JTT performs better
than rtREV, which indicates that rtREV contains po/
and RT-specific information, and care should be
taken not to use rtREV in analysis of gag sequences.

Discussion

In examining the substitution parameters of the
rtREV model more closely (Table 2), no clear pat-
terns emerge to explain the reasons for its improved
ML performance on such a wide variety of retroid
datasets. Ideally, an evolutionary model should pro-
vide parameters which are biologically meaningful
and can lead to testable hypotheses. Such “mecha-
nistic”” models are currently being developed on both
the codon level and the amino acid level (Yang et al.
1998; Dimmic et al. 2000; Soyer et al. 2002; see also
Thorne 2000) and rtREV may serve as a helpful
null hypothesis (or ‘baseline”) model in future
comparisons.

In what phylogenetic analyses is tREV most use-
ful? rtREV appears to be the preferred model on every
pol and retroid-element dataset examined, its perfor-
mance rivaled by other models only on gammaretro-
viruses. Perhaps gammaretroviruses have evolved
under unique selective pressures relative to the rest of
the retroviruses. Another interesting result which
bears further scrutiny is that WAG outperforms JTT
on every dataset except two, both of which are gag
datasets. Again, the use of models with more readily-
interpretable parameters would be helpful here.

Two assumptions made in the optimization of
rtREV are that the sequence alignment is appropri-
ate, and that the original training tree represents an
accurate depiction of the evolution of retroviruses.
How sensitive is the estimation of model parameters
to these assumptions? Small errors in the alignment
can be considered analogously to errors in measure-
ment; they should be swamped by the large regions of
the sequences which are more easily aligned. Fur-
thermore, the sections of sequence which are the most
difficult to align are often the sections undergoing the
fastest sequence changes. Since the use of a rate dis-
tribution parameter accounts for the higher proba-
bility of multiple substitutions in these regions, this
should also serve to mitigate the effect of alignment
errors on parameter estimates. Regarding possible
errors in the training tree topology, while Morrison
and Ellis (1997) found that different alignment
methods can cause variation in the reconstructed tree,
the basic tree structure is still often maintained
regardless of the exact alignment (Goldman 1998).
Because the likelihood calculation represents a
continuous (i.e., non-discrete) process, any small
changes in branching order of the tree should not
greatly affect the final model. However, the assump-
tions mentioned should be kept in mind, and sensi-
tivity of results to their violation should be further
examined.

The improved performance of rtREV relative to
JTT and WAG on the wide variety of retroid test
trees derived by different methods and researchers
also indicates that any errors in tree topology or
alignment did not compromise the final optimized
model. This supposition is supported by our obser-
vation that several different optimized models for
rtREV using slightly different tree structures and
alignments (unpublished data) yielded qualitatively
similar results.
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Conclusions

When performing ML analysis on phylogenetic trees,
it is almost always desirable to adjust the substitution
probabilities in an effort to maximize the likelihood.
When comparing many taxa, however, the compu-
tational cost of such adjustment can be prohibitive.
The next-best choice is then to use a fixed model with
parameters determined on an evolutionarily similar
dataset. For researchers interested in phylogenetic
questions on retroids including retroviruses, there is
compelling evidence that rtREV will provide im-
provement over models which have been optimized
on more general datasets, such as the JTT and WAG
models. rtREV appears useful in improving ML an-
alyses of the pol gene in retroviruses and RT proteins
in other retroid elements, especially in cases where it
is not feasible to adjust individual amino acid sub-
stitution probabilities.
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