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Abstract. Our objective is to study a nonlinear filtering problem for the observa-
tion process perturbed by a Fractional Brownian Motion (FBM) with Hurst index
1
2 < H < 1. A reproducing kernel Hilbert space for the FBM is considered and a
“fractional” Zakai equation for the unnormalized optimal filter is derived.
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1. Introduction

The goal of nonlinear filtering theory is to estimate a signal process (Xt )(0 ≤ t ≤ T )

observed in the presence of an additive noise. Consider a complete probability space
(�,F, P) and a family (Ft )t≥0 of right-continuous increasing P-complete sub-σ -fields
of F . Let X = (Xt , t ∈ [0, T ]) be a measurable, Ft -adapted stochastic process with
values in a complete separable metric space S. The simplest model for the observation
process (Yt ) is given by

Yt =
∫ t

0
h(Xs) ds + Bt , 0 ≤ t ≤ T, (1)

where (Bt ) is a standard Brownian Motion (BM), and h ∈ C(S) satisfies
∫ T

0
h2(Xs)(ω) ds < ∞ (P-a.s.). (2)

The classical model (1)–(2) can be written in the following form:

Yt (ω) = Ft (X (ω)) + Bt (ω), t ∈ [0, T ], (3)
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where {Ft (X (ω)), t ∈ [0, T ]} is (P-a.s.) an element of the Reproducing Kernel Hilbert
Space (RKHS) of the BM on [0, T ].

The objective of this paper is to investigate a nonlinear filtering problem in the case
when an additive observation noise exhibits a certain long-range dependence structure.
Namely, let (B H

t , t ∈ [0, T ]) be a Fractional Brownian Motion (FBM) with (fixed) Hurst
index 1

2 < H < 1 and let H(B H ) stand for the RKHS of (B H
t , t ∈ [0, T ]). We study the

following analogue of the model (3):

Yt (ω) = Ft (X (ω)) + B H
t (ω), t ∈ [0, T ], (4)

where {F(X (ω)} ∈ H(B H ) for almost all ω.
In Section 2 we present important properties of the RKHS H(B H ) and give a more

explicit form to the observation model (4). Here we use the results on H(B H ) obtained
by Barton and Poor [1]. In Section 3 we derive a Bayes’ formula for the optimal filter for
the observation model with FBM noise and state a corresponding “fractional” Zakai-type
equation for the unnormalized conditional expectation.

Let us give a few comments on other types of filtering models considered in the
literature. Interesting results on linear filtering with FBM were obtained by Kleptsyna
et al. in [5]–[7] and Le Breton in [8]. As far as nonlinear theory is concerned, Coutin
and Decreusefond in [2] considered a nonlinear filtering model where both the signal
and the observation are solutions of a stochastic differential equation driven by a mul-
tidimensional FBM. A nonlinear filtering model with FBM in the signal process (and a
Brownian component driving the observation process) was also investigated by Kleptsyna
et al. in [4].

2. RKHS H(B H ) and the Observation Process Model

Let us fix a complete probability space (�,F, P) on which all random processes are
defined. For a given H ∈ ( 1

2 , 1), let B H = (B H
t , t ∈ [0, T ]) be an FBM with Hurst

index H . Namely, B H has the following properties:

(i) B H is a Gaussian process with continuous sample paths and stationary incre-
ments.

(ii) B H
0 = 0, EBH

t = 0 for all t ≥ 0 and the covariance kernel is given by

RH (t1, t2) := EBH
t1 B H

t2 = c2

2
{|t1|2H + |t2|2H − |t1 − t2|2H }, (5)

where

c2 := Var(B H
1 ) = −
(2 − 2H) cos(π H)

π H(2H − 1)
.

It is well known that B H is self-similar with self-similarity index H , B H is not a semi-
martingale and (since H ∈ ( 1

2 , 1)) has a long-range dependence structure, i.e.

∞∑
n=0

Cov(B H
1 , B H

n+1 − B H
n ) = ∞.
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Let H(B H ) denote the RKHS of B H = (B H
t , t ∈ [0, T ]). Then H(B H ) satisfies the

following conditions:

(i) H(B H ) is a Hilbert space of real-valued functions on [0, T ].
(ii) ∀t ∈ [0, T ], RH (·, t) ≡ Cov(B H

· , B H
t ) ∈ H(B H ).

(iii) ∀g ∈ H(B H ), 〈g(·), RH (·, t)〉H(B H ) = g(t).

Specifically, by Theorem 4.4 in [1], for 1
2 < H < 1, H(B H ) consists of functions of

the form

g(t) =
∫ t

0
g∗(s)γH (s, t) ds, t ∈ [0, T ], (6)

where g∗ ∈ L2([0, T ]),

γH (s, t) := s1/2−H


(H − 1
2 )

∫ t

s
τ H−1/2(τ − s)H−3/2 dτ, (7)

and ∀g1, g2 ∈ H(B H ),

〈g1, g2〉H(B H ) =
∫ T

0
g∗

1(s)g
∗
2(s) ds. (8)

Note that any g from H(B H ) has a derivative almost everywhere in [0, T ]. For almost
all t ∈ [0, T ], the relationship (6) between g and g∗ can be inverted:

g∗(t) = t H−1/2 d

dt

(∫ t

0
k(t, τ )

∂

∂τ
g(τ ) dτ

)
, (9)

where

k(t, τ ) := 1


( 3
2 − H)

(t − τ)1/2−Hτ 1/2−H . (10)

The observation model (4) can then be written as

Yt (ω) =
∫ t

0
h(Xs(ω))γH (s, t) ds + B H

t (ω), t ∈ [0, T ], (11)

where

γH (s, t) = s1/2−H


(H − 1
2 )

∫ t

s
τ H−1/2(τ − s)H−3/2 dτ,

and h ∈ C(S) satisfies
∫ T

0
h2(Xs)(ω) ds < ∞ (P-a.s.). (12)

Let us also assume the following condition:

(Xt ) is independent of (B H
t ). (13)
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3. Bayes’ Formula and a “Fractional” Zakai-Type Equation

Let (F̃ X
t ) be the natural family of X , and let (F̃ B H

t ) be the natural family of B H . Since X
is independent of B H , we can assume that (Xt ) is defined on (�̃X , F̃ X , (F̃ X

t ), P̃ X ), and
(B H

t ) is defined on (�̃B H
, F̃ B H

, (F̃ B H

t ), P̃ B H
), where � = �̃X ×�̃B H

, F = F̃ X ×F̃ B H
,

P = P̃ X × P̃ B H
. Define F X

t = F̃ X
t × {∅, �̃B H }, F B H

t = {∅, �̃X } × F̃ B H

t and put
FY

t = σ {Ys, 0 ≤ s ≤ t}. Let PY be the restriction of P to FY
T .

Theorem 1. Assume the conditions of the model (11)–(13). Then for any integrable
and F̃ X

T -measurable function f , we have that (PY -a.s.)

E[ f | FY
t ](ω) =

∫
�̃X f (u′) exp{αu′(t)(ω)}P̃ X (du′)∫

�̃X exp{αu′(t)(ω)}P̃ X (du′)
, (14)

where

αu′(t)(ω) =
∫ t

0
h(Xs(u

′))s H−1/2 d

(∫ s

0
k(s, τ ) dYτ (ω)

)

− 1

2

∫ t

0
[h(Xs(u

′))]2 ds, (15)

and

k(s, τ ) = 1


( 3
2 − H)

(s − τ)1/2−Hτ 1/2−H . (16)

Proof. The proof is based on the reference probability method. Let Q(·, ω) be a version
of the conditional probability relative to F X

T on the σ -field FY
t , i.e.

Q(A, ω) = E(1A | F X
T )(ω) (P-a.s.), (17)

∀A ∈ FY
t . Then, ∀ω′ = (u′, v′) ∈ �, A ∈ FY

t ,

Q(A, ω′) = δu′ × P̃ B H
(A), (18)

where δu′ is a probability measure on F̃ X
T with total mass concentrated at {u′}.

Moreover, under the law δu′ × P̃ B H
, (B H

t ) is an FBM and

Yt (ω) =
∫ t

0
γH (s, t)h(Xs(u

′)) ds + B H
t (ω) (a.s.), (19)

∀t ∈ [0, T ]. Define F̂Y
t = FY

t ∨ {all Q(·, ω′)-null sets in FY
T }. Then B H

t (ω) and Yt (ω)

are both F̂Y
t -adapted and, under Q(·, ω′), are FBMs with mean functions zero and

β(t; u′), respectively, where

β(t; u′) =
∫ t

0
γH (s, t)h(Xs(u

′)) ds, t ∈ [0, T ]. (20)
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Let

�̃X
0 :=

{
u ∈ �̃X :

∫ T

0
h2(Xs(u)) ds < ∞

}
,

then P̃ X (�̃X
0 ) = 1 and ∀u ∈ �̃X

0 , β(· ; u) ∈ H(B H ). Let us denote byH(B H |t ) the RKHS
of B H restricted to [0, t]. Then, ∀u ∈ �̃X

0 , β(· ; u) viewed as a function on [0, t] belongs
to H(B H |t ). Let �0 = �̃X

0 × �̃B H
. Fix ω′ = (u′, v′) ∈ �0. Since Q ◦ (B H )−1(·, ω′) ≡

Q(·, ω′)◦(B H )−1 and Q ◦Y −1(·, ω′) ≡ Q(·, ω′)◦Y −1 are Gaussian measures on C[0, t]
with the common covariance kernel

RH (s1, s2) = c2

2
{|s1|2H + |s2|2H − |s1 − s2|2H }

and mean functions 0 and (β(s ; u′), 0 ≤ s ≤ t) from H(B H |t ), by Theorem 5A in [9],
the two measures are mutually absolutely continuous and the Radon–Nikodym derivative
is given by

dQ ◦ Y −1

dQ ◦ (B H )−1
(Y ) = exp{〈Y, β(·; u′)〉t − 1

2‖β(·; u′)‖2
H(B H |t )}, (21)

where

〈Y, β(·; u′)〉t ≡ 〈β(·; u′) + B H |t , β(·; u′)〉t := ‖β(·; u′)‖2
H(B H |t ) + ϕ(β(·; u′)),

and ϕ is the congruence satisfying the following conditions:

(i) ϕ: H(B H |t ) → L2(B H |t ).
(ii) ϕ(RH (·, s)) = B H

s , ∀s ∈ [0, t].
(iii) E[ϕ(g)] = 0, Cov[ϕ(g1), ϕ(g2)] = 〈g1, g2〉H(B H |t ).

Consider an orthogonal increment process (Zt ) given by

Zt =
∫ t

0
k(t, τ ) dBH

τ , t ∈ [0, T ], (22)

with the kernel k(t, τ ) defined by (10). Then one can show (see [1]) that

〈B H |t , g〉t := ϕ(g) =
∫ t

0
g∗(s)s H−1/2 dZs, ∀g ∈ H(B H |t ).

For β(·; u′) ∈ H(B H |t ), the function h(X ·(u′)) plays the role of β∗(·; u′). Thus,

ϕ(β(·; u′)) =
∫ t

0
h(Xs(u

′))s H−1/2 dZs

and

‖β(·; u′)‖2
H(B H |t ) =

∫ t

0
[h(Xs(u

′))]2 ds.
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Let

αu′(t)(ω) := 〈Y (ω), β(·, u′)〉t − 1
2‖β(·, u′)‖2

H(B H |t ). (23)

Then

αu′(t) =
∫ t

0
h(Xs(u

′))s H−1/2 dZs + 1

2

∫ t

0
[h(Xs(u

′))]2 ds, (24)

where

Zt =
∫ t

0
k(t, s) dBH

s =
∫ t

0
k(t, s) dYs −

∫ t

0
k(t, s)

∂

∂s
β(s, u′) ds,

and, in view of (9),

Zt =
∫ t

0
k(t, s) dYs −

∫ t

0
s1/2−H h(Xs(u

′)) ds.

Therefore, we obtain that (24) has the following form:

αu′(t)(ω) =
∫ t

0
h(Xs(u

′))s H−1/2 d

(∫ s

0
k(s, τ ) dYτ (ω)

)

− 1

2

∫ t

0
[h(Xs(u

′))]2 ds. (25)

Consider the measure λω′ on FY
t given by

dλω′(·) = exp{−αu′(t)} dQ(·, ω′). (26)

Under Q(·, ω′),

∫ t

0
h(Xs(u

′))s H− 1
2 dZs ∼ N

(
0,

∫ t

0
[h(Xs(u

′))]2 ds

)
.

Then λω′ is a probability measure on FY
t and Y is a mean-zero FBM under λω′ . Also

λω′
1

= λω′
2

on FY
t , i.e. it does not depend on ω′. Let us call it just λ. By Lemma 11.3.3

in [3] (λ-a.s.),

∃q(ω, ω′) = dQ(·, ω′)
dλ

(ω) = exp{αu′(t)(ω)},

which is (FY
t × F X

T )-measurable, and for F̃ X
T -measurable and integrable function f ,

E[ f | FY
t ](ω) =

∫
�̃X f (u′) exp{αu′(t)(ω)}P̃ X (du′)∫

�̃X exp{αu′(t)(ω)}P̃ X (du′)
(PY -a.s.).
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Remark 1. Bayes’ formula for the model (11)–(13) could be obtained directly from
the classical Bayes’ formula with the help of the following integral representation of the
FBM (Theorem 4.5 in [1]):

∃(Bt , 0 ≤ t ≤ T ), a standard BM, such that ∀t ∈ [0, T ],

B H
t (ω) =

∫ t

0
γH (s, t) dBs(ω) (P-a.s.). (27)

Namely, let

Ỹt (ω) :=
∫ t

0
h(Xs(ω)) ds + Bt (ω) (P-a.s.) (28)

for t ∈ [0, T ]. Then

Yt (ω) =
∫ t

0
γH (s, t) dỸs(ω), 0 ≤ t ≤ T .

We can invert the above relationship between Y and Ỹ (P-a.s.),

Ỹt =
∫ t

0
s H−1/2 d

(∫ s

0
k(s, τ ) dYτ

)
(29)

and note that FY
t = F Ỹ

t for all t . Thus, E[ f | FY
t ](ω) = E[ f | F Ỹ

t ] almost surely, and
using a Bayes’ formula for the classical model (28) and equation (29), one obtains the
desired result.

Theorem 2. Assume that (Xt ) is an S-valued Markov process with the generator L with
domain D. Moreover, assume that the paths of (Xt ) are progressively measurable, and
EP

∫ T
0 | f (Xs)|2 ds < ∞ for all f ∈ D0, whereD0 consists of all f : S → R such that f1

defined by f1(s, x) := f (x) belong toD. For f ∈ D0 let us put (Lt f )(x) := (L f1)(t, x).
For the observation model (11)–(13) define

σt ( f, Y )(ω) =
∫

�̃X

f (u′) exp{αu′(t)(ω)}P̃ X (du′), (30)

where

αu′(t)(ω) =
∫ t

0
h(Xs(u

′))s H−1/2 d

(∫ s

0
k(s, τ ) dYτ (ω)

)

− 1

2

∫ t

0

[
h(Xs(u

′))
]2

ds. (31)

Then for all f ∈ D0, σt ( f, Y ) satisfies the following Zakai-type equation:

dσt (f,Y )= σt (Lt f, Y ) dt + σt (h f, Y )t H−1/2d

[∫ t

0
k(t, s) dYs

]
(32)

with

k(t, s) = 1


( 3
2 − H)

(t − s)1/2−H s1/2−H .
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Proof. The equation follows immediately from the Zakai equation for the classical
observation model (28) and Remark 1.
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