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Abstract. The focus of this work is on a two-dimensional stochastic vorticity
equation for an incompressible homogeneous viscous fluid. We consider a signed
measure-valued stochastic partial differential equation for a vorticity process based
on the Skorohod–Ito evolution of a system of N randomly moving point vortices. A
nonlinear filtering problem associated with the evolution of the vorticity is consid-
ered and a corresponding Fujisaki–Kallianpur–Kunita stochastic differential equa-
tion for the optimal filter is derived.
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1. Introduction

Experimental results often suggest that the nature of certain hydrodynamical phenomena
calls for their stochastic formulation. High sensitivity to initial conditions and to pertur-
bations, interplay of large numbers of degrees of freedom, and presence of conditions,
under which existing microscopic perturbations get amplified to macroscopic scales, give
rise to unsteady and chaotic flows. Thus, in many cases a natural approach to modeling
of chaotic behavior in fluids is given via stochastic partial differential equations (SPDEs)
of motions.

The focus of the current paper is on the stochastic modeling of the motion of
a homogeneous viscous incompressible flow in R

2 and the solution of an associated
nonlinear filtering problem.
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Section 2 presents a signed measure-valued stochastic Navier–Stokes equation in
its vorticity formulation, obtained from a system of interacting point vortices driven by
Skorohod–Ito SDEs. This stochastic vorticity model, introduced in [1], is rather general,
contains both continuous (Brownian) and jump (Poisson) components and allows for a
discontinuous (in time) displacement of point vortices. When the Poisson component is
disregarded, the model reduces to a continuous stochastic vorticity model suggested by
Kotelenez in [7].

Section 3 is devoted to our work on a filtering problem associated with the stochastic
vorticity model. We present a nonlinear filtering theory for a stochastic vorticity process
in the case when the vorticity is generated by a system of randomly moving point vortices
(whose precise positions are unknown and are observed subject to an independent random
noise).

However, before proceeding to stochastic modeling of the vorticity we briefly state
the classical equations of hydrodynamics. Newton’s second law of motion, applied to
a fluid particle in an incompressible homogeneous viscous flow in R

2, gives rise to a
well-known Navier–Stokes model:

∂u

∂t
+ (u · ∇)u + 1

ρ
∇ p = ν�u, (1)

∇ · u = 0, (2)

where velocity u = u(t, x) and pressure p = p(t, x) are unknown variables of interest,
ρ is a constant density and ν is a kinematic viscosity. Let the domain occupied by the
fluid be D = R

2. Consider the following boundary condition:

u(t, x) → 0 as |x | → ∞. (3)

Then the Navier–Stokes model (1)–(3) with the domain D has an equivalent vorticity
formulation given by

∂ω

∂t
+ (u · ∇)ω = ν�ω, (4)

where one can deduce the velocity field u from the vorticity ω = ω(t, x) via a Biot–Savart
law:

u(t, x) =
∫

K (x − y)ω(t, y) dy (5)

with the kernel K given by

K (x − y) := ∇⊥
x g(|x − y|) ≡

(
∂x2

−∂x1

)(
− 1

2π
log|x − y|

)
, (6)

g(|x |) := − 1

2π
log|x |. (7)

Note that in R
3 vorticity equals curl(u) (half of the angular velocity) and describes how

the fluid is rotating. In the case of just two spatial dimensions with u = (u1, u2, 0) and
ui = ui (x1, x2), vorticity is scalar and is given by

ω(t, x) = ∂x1 u2(t, x) − ∂x2 u1(t, x). (8)
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2. Stochastic Vorticity Model

One popular approach to stochastic modeling of viscous flows is to consider a stochastic
Navier–Stokes equation, obtained by adding a random force (usually in the form of
white noise) to the classical Navier–Stokes equation, which should account for various
neglected effects and external disturbances. Interesting results in that direction can be
found in [2], [8], [3] and [4]. However, in our opinion it is highly desirable to obtain
a stochastic Navier–Stokes model where the stochastic component enters the model
intrinsically, reflecting the chaotic behavior that is often observed in fluids even when
no apparent external random forces are present.

The main idea behind a stochastic vorticity equation is to view the evolution of
vorticity in the flow as an evolution of a system of randomly moving “point vortices”,
i.e. “particles” which carry concentrations of vorticity (while the rest of the flow is
irrotational), and then analyze the resulting “mezoscopic” stochastic vorticity equation
for an underlying microscopic model of randomly moving vortices. Namely, consider
a system of N point vortices, where each vortex has an associated vorticity intensity
ai ∈ R, i = 1, . . . , N (ai > 0 corresponds to the rotation in the counterclockwise
direction, ai < 0 corresponds to the rotation in the clockwise direction).

Let (�,F, (Ft )t≥0, P) be a stochastic basis with right continuous filtration. All our
stochastic processes are assumed to live on �, be Ft -adapted and (dP × dt)-measurable,
where dt is the Lebesgue measure on [0, ∞). Suppose the position of the i th vortex for
t ∈ [0, T ] satisfies the following Skorohod–Ito type stochastic integral equation:

xi (t) = ξi +
∫ t

0
uε,s(xi (s)) ds + σ

∫ t

0

∫
R2

�(xi (s), v)W (ds dv)

+ θ

∫ t+

0

∫
�

h(t, xi (s−), λ)Ñ (ds dλ), (9)

where

uε,t (x) =
N∑

j=1

aj Kε(x − xj (t)), ∀x ∈ R
2, (10)

and the following conditions hold:
(a) W (t, v) = (W 1(t, v), W 2(t, v))T , W 1 and W 2 are given independent Brownian

sheets on R
+ × R

2 with mean zero, variance t |A|, where A is a Borel set in R
2 with

finite Lebesgue measure |A|.
(b) (�, E) is a measurable space; N is a given Poisson random measure on R

+ ×�,
independent of W , with a characteristic measure � on �; Ñ (t, B) = N (t, B) − t�(B)

is the compensated Poisson random measure.
(c) For 0 < ε < 1, Kε(x − y) is a regularized Biot–Savart kernel, i.e.

Kε(x − y) =
(

∂x2

−∂x1

)
gε(|x − y|),

where gε is at least a twice continuously differentiable approximation to g(|x |) :=
(−1/2π) log|x |, with bounded derivatives up to order 2, satisfying |g′

ε(τ )| ≤ |g′(τ )| and
|g′′

ε (τ )| ≤ |g′′(τ )| for τ > 0.
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(d) σ 2/2 = ν (viscosity), θ is a fixed nonnegative constant.
(e) h(t, x, λ): R

+ × R
2 × � −→ R

2 is a measurable function, such that there is a
constant D1 > 0 such that ∀t ≥ 0, ∀x ∈ R

2,∫
�

|h(t, x, λ)|2�(dλ) ≤ D1,

∫
�

|h(t, x, λ) − h(t, y, λ)|2�(dλ) ≤ D1|x − y|2.

(f)

�(x, v) :=
(

�̂(x, v) 0
0 �̂(x, v)

)
, ∀x, v ∈ R

2,

where the correlation functions �̂: R
2 × R

2 → R
+ are defined to be bounded Borel-

measurable functions, symmetric in x, v, satisfying, for some constant D2 > 0,∫
�̂2(x, v) dv = 1,

∫
R2

(�̂(x, v) − �̂(y, v))2 dv ≤ D2|x − y|2, ∀x, y ∈ R
2.

(g) {ξi }N
i=1 are square integrable F0-measurable random variables independent of W

and N .
Consider the empirical vorticity signed measure generated by the above system of

point vortices:

ω̃N
t (dx) =

N∑
i=1

aiδxi (t)(dx), (11)

where δc(·) stands for the Dirac point measure of mass 1 concentrated at the point c ∈ R
2

and defined for any Borel set in the plane, and {xi (t)}t≥0, i = 1, . . . , N , is the unique
strong solution to the system (9)–(10).

Note that (10) represents a “regularized” Biot–Savart law, since ∀x ∈ R
2,

uε,t (x) =
∫

Kε(x − y)ω̃N
t (dy). (12)

The regularization is needed in view of the singularity of the original Biot–Savart kernel
K at zero.

For a ∈ R, letM(a) denote the space of all Borel signed measures µ̃ on R
2 such that

µ̃(R2) = a. Let Cm
b (R2, R) be the set of bounded and Lebesgue integrable functions from

R
2 into R, which have bounded, continuous and Lebesgue integrable derivatives up to

order m. L2(�; D([0, T ],M(a))) denotes the space of square-integrable M(a)-valued
cadlag stochastic processes.

Also let 〈·, ·〉 be the standard scalar product on L2(R
2, dr), and for any finite signed

Borel measure µ̃ on R
2,

〈µ̃, f 〉 =
∫

f (x)µ̃(dx).

We will need the following result from [1]:

Theorem 1. Let (ω̃N
t )t∈[0,T ] be the empirical signed measure-valued process (11) as-

sociated with the evolution (9)–(10) of N point vortices and
∑N

i=1 ai = a. Then, in
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the space L2(�; D([0, T ],M(a))), (ω̃N
t )t∈[0,T ] is the unique solution of the following

stochastic “jump-type” vorticity equation: for all f ∈ C3
b(R

2, R), ∀t ∈ (0, T ),




d〈ω̃N
t , f 〉 = 〈ω̃N

t , uε,t · ∇ f + ν� f 〉 dt

+
∫

�

〈ω̃N
t , f (· + θh(t, ·, λ)) − f (·) − θh(t, ·, λ) · ∇ f 〉�(dλ) dt

+ σ

2∑
j=1

∫
R2

〈ω̃N
t , �̂(·, v)∂j f 〉W j (dt dv)

+
∫

�

〈ω̃N
t−, f (· + θh(t, ·, λ)) − f (·)〉Ñ (dt dλ),

uε,t (x) =
∫

Kε(x − y)ω̃N
t (dy) (“regularized Biot–Savart law”)

(13)

with the initial condition: ω̃N
t = ∑N

i=1 aiδξi (a.s.).

Remark. if ν = σ 2/2 = 0 and θ = 0, (13) reduces to




d〈ω̃N
t , f 〉 = 〈ω̃N

t , uε,t · ∇ f 〉 dt,

uε,t (x) =
∫

Kε(x − y)ω̃N
t (dy),

which is a weak form of the (deterministic) “regularized” Euler equation in its vorticity
formulation for an inviscid incompressible fluid in R

2.
If ν > 0, θ = 0, (13) reduces to a continuous stochastic vorticity model of

Kotelenez [7].

3. Filtering Problem Associated with the Evolution of a System of N
Randomly Moving Point Vortices

We consider a stochastic vorticity process generated by a system of N point vortices
whose motion is not observed directly. The positions of the vortices xi (t), t ∈ [0, T ],
follow the Skorohod–Ito evolution given by (9)–(10). For notational convenience we
denote by

X (t) := (x1
1(t), x2

1(t), x1
2(t), x2

2(t), . . . , x1
N (t), x2

N (t))T

a 2N -dimensional vector of the positions of our N vortices at time t .

Theorem 2. Suppose (X (t))t∈[0,T ] is the solution to the system (9)–(10) for which
assumptions (a)–(g) are fulfilled. Then X (t) is an R

2N -valued Markov process and its
transition probability can be defined by

P(t, b, s, A) = P(Xb,t (s) ∈ A), ∀A ∈ B(R2N ), b ∈ R
2N ,
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where 0 ≤ t < s ≤ T and Xb,t (s) satisfies

Xb,t (s) = b +
∫ s

t

◦
K (Xb,t (τ )) dτ + σ

∫ s

t

∫
R2

◦
� (Xb,t (τ ), v)

◦
W (dτ dv)

+ θ

∫ s+

t

∫
�

◦
H (τ, Xb,t (τ−), λ)Ñ (dτ dλ)

and for any c = (c1
1, c2

1, . . . , c1
N , c2

N )T ∈ R
2N , ci ≡ (c1

i , c2
i ), i = 1, . . . , N ,

◦
K (c) :=

(
N∑

k=1

ak K 1
ε (c1 − ck),

N∑
k=1

ak K 2
ε (c1 − ck), . . . ,

N∑
k=1

ak K 1
ε (cN − ck),

N∑
k=1

ak K 2
ε (cN − ck)

)T

,

◦
� (c, v) :=




�(c1, v) 0 · · · 0
0 �(c2, v) · · · 0

· · · · · · · · · · · ·
0 0 · · · �(cN , v)


 ,

which is a 2N × 2N matrix (with �(ci , v) being a 2 × 2 diagonal (sub)matrix),

◦
W := (W 1, W 2, . . . , W 1, W 2)T ,

and

◦
H (t, c, λ) := (h1(t, c1, λ), h2(t, c1, λ), . . . , h1(t, cN , λ), h2(t, cN , λ))T

are 2N-dimensional processes.

By the infinitesimal generator of a family of transition probabilities P(t, b, s, A) we
mean the operator Ls defined on functions F(b) (b ∈ R

2N ) by

(Ls F)(b) = lim
t, t ′ → s

t < s < t ′

∫
R2N F(y)P(t, b, t ′, dy) − F(b)

t ′ − t
. (14)

The domain D(L) of the generator consists of all continuous functions F(b) for which
the limit (14) exists for each s ∈ [0, T ], b ∈ R

2N .

Theorem 3. Under the conditions of Theorem 1, let Ls be the infinitesimal generator for
the Markov process X (t), then ∀F ∈ C2

b(R
2N , R) ⊂ D(L), ∀b = (b1

1, b2
1, . . . , b1

N , b2
N )T

∈ R
2N , bi ≡ (b1

i , b2
i )

T ,

(Ls F)(b) = ν�F(b) +
N∑

i, k = 1
i �= k

{
ak Kε(bi − bk) · ∇i F(b)

+ ν

(∫
R2

�̂(bi , v)�̂(bk, v) dv

)
�ik F(b)

}
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+
∫

�

[
F(b + θ

◦
H (s, b, λ)) − F(b)

− θ

N∑
i=1

h(s, bi , λ) · ∇i F(b)

]
�(dλ), (15)

where

∇i :=
(

∂

∂b1
i

,
∂

∂b2
i

)
, �ik := ∂2

∂b1
i ∂b1

k

+ ∂2

∂b2
i ∂b2

k

,

� =
N∑

i=1

�i i =
N∑

i=1

2∑
l=1

∂2

(∂bl
i )

2
.

Proof. The proof of Theorems 2 and 3 is analogous to the argument given in Theorems 1
and 2 in Part II, Chapter 2.9, pp. 288–291, of [6].

Consider a system of N “noisy” observed vortices:

yi (t) =
∫ t

0

N∑
k=1

akϕi (xk(s)) ds + Bi (t), t ∈ [0, T ], (16)

where ϕi : R
2 → R

2, ∀i, k ∈ {1, . . . , N }, ϕi (xk(ω)) is (t, ω)-measurable,

∫ T

0
E |ϕi (xk(s))|2 ds < ∞ (17)

and B(t) = (B1(t), . . . , BN (t)) is a 2N -dimensional G-Brownian motion indepen-
dent of X = (X (t)) = (x1(t), . . . , xN (t)), where Gt ⊆ FY

t and (Y (t))t∈[0,T ] =
(y1(t), . . . , yN (t))t∈[0,T ], or, equivalently,

yi (t) =
∫ t

0
〈ω̃N

s , ϕi 〉 ds + Bi (t), (18)

where ω̃N
t is the unobserved vorticity process satisfying (13). For i = 1, . . . , N , let

�i (t) := yi −
∫ t

0
E(〈ω̃N

s , ϕi 〉 | FY
s ) ds. (19)

Then �(t) = (�1(t), . . . , �N (t)) is a 2N -dimensional FY
t -Brownian motion. Taking

into account the Markov structure of the signal process X given in Theorems 2 and 3
and using a classical Fujisaki–Kallianpur–Kunita (FKK) equation obtained in [5] for the
observation model (18) we obtain the following result:

Theorem 4. Let (Yt )t∈[0,T ] = (y1(t), . . . , yN (t))t∈[0,T ] be a system of N observed noisy
vortices satisfying model (18). Then the analogue of the FKK filtering equation for the
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unobserved vorticity process ω̃N
t is given by: for all f ∈ C3

b(R
2, R),

E(〈ω̃N
t , f 〉 | FY

t )

= E(〈ω̃N
0 , f 〉 | FY

t ) +
∫ t

0
E(〈ω̃N

s , uε,s · ∇ f + ν� f 〉 | FY
s ) ds

+
∫ t

0
E

(∫
�

〈ω̃N
s , f (· + θh(s, ·, λ)) − f (·)

− θh(s, ·, λ) · ∇ f 〉�(dλ) | FY
s

)
ds

+
N∑

k=1

∫ t

0
{E(〈ω̃N

s , f 〉〈ω̃N ,ε
s , ϕk〉 | FY

s )

− E(〈ω̃N
s , f 〉 | FY

s )E(〈ω̃N
s , ϕk〉 | FY

s )} · d�k(s), (20)

where

uε,t (x) :=
∫

R2
Kε(x − v)ω̃N

t (dv).
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