archive

Final Repor UM-HSRI-80-	rt -75	Project No. 1150
	ACCIDENT DATA SIMULATION PEDESTRIAN AND SIDE IMPACT-3D	
Prepared	by:	
	D. H. Robbins J. M. Becker R. O. Bennett B. M. Bowman Highway Safety Research Institute The University of Michigan Ann Arbor, Michigan 48109	
Prepared	for:	
	Motor Vehicle Manufacturers Associatio 320 New Center Building Detroit, Michigan 48202	n, Inc.
Date:	December 19, 1980	

THE UNIVERSITY OF MICHIGAN HIGHWAY SAFETY RESEARCH INSTITUTE ••

Final Report UM-HSRI-80-75 Project No. 1150

ACCIDENT DATA SIMULATION PEDESTRIAN AND SIDE IMPACT-3D

Prepared by:

D. H. Robbins
J. M. Becker
R. O. Bennett
B. M. Bowman
Highway Safety Research Institute
The University of Michigan
Ann Arbor, Michigan 48109

Prepared for:

Motor Vehicle Manufacturers Association, Inc. 320 New Center Building Detroit, Michigan 48202

Date:

December 19, 1980

Technical Report Documentation Page

1. Report No.	2. Government Access	ion Ne.	3. Recipient's Cetelag N	•.
UM-HSRI-80-75			-	
4. Title and Subside			Report Data	
A TILLE CT TILLE		[December 19,	1980
Accident Data Simula	tion	ŀ	I. Performing Organizatio	on Code
Pedestrian and Side Impact-3D				
			. Performing Organizatio	on Report No.
7. Author's) Robbins, D.H., B	ecker, J.M.,			r I
Bennett, R.O., and B	owman, B.M.		UM-HSRI-80-7	5
9. Performing Organization Name and Addres	18 		10. Work Unit No.	
Highway Safety Resea	rch institute	H	301/2/	
Ine University of Mi	cnigan Agiog		1150	
Ann Arbor, Michigan	40109	h	3. Type of Report and P	eriad Covered
12. Sponsoring Agoncy Name and Address			Final –	
Motor Vehicle Manufactur	ers Associati	on, Inc.	July 1979 -	June 1980
320 New Center Building				
Detroit, Michigan 48202			14. Speesoring Agency C	ode
15. Supplementary Notes				
16. Abstract	atudu baa ba	on to provido	nnactical bac	coline data
I The objective of this	o occupant in	en lo provide sido impacto	and to descri	ibe a nedoc
trian in frontal impacts		t project at	HSDI consore	d by NHTSA
included addition of mutu	al deformatio	ic project at	baturos to the	a Calenan
Three Dimensional occupan	t dynamics me	dol The bas	olino data cot	te wara pro
Inree Dimensional occupant dynamics model. The Daseline data sets were pre-				
pared to work with this new software and to represent advanced production				
venicie design geometry.				
This report describes	the baseling	vehicle deom	otry in Part 2	The oc-
cupant and podestrian al	ong with thei	n contact int	erry in rai c 2 oractions with	the vehicle
are described in Parts 3	and 4 The H	acolino data	sots and a sam	nling of the
resulting computer progra	m output are	aiven in Dart	$5 \Delta \text{summary}$	of infor-
mation about the HSPI ver	m output are	'alenan occuna	nt dynamics ny	corram is
mation about the HSRI version of the Calspan occupant dynamics program is				
given in Part 0.				
17. Kay Wards		18. Distribution States		
Automotive Safety Design				
Crash Dynamics				
Occupant Dynamics, Pedest	rian Protec-	Unlimit	ed	
tion				
Restraint System	1			
19. Security Clessif, (of this report)	20. Security Clas	uit, (of this page)	Zi- No. of Peges	22. Price
Unclassified	Unclassified 82			

.

CONTENTS

		Page
1.0	Introduction	1
2.0	The Vehicles	2
	2.1 Baseline Interior for Side Impact	2
	2.2 Baseline Exterior for Pedestrian Impact	5
3.0	The Occupant and Pedestrian Models	8
	3.1 Occupant for Side Impact Simulation	8
	3.2 Pedestrian for Impact Simulation	8
4.0	Contact Interactions with the Vehicle	16
	4.1 Vehicle Interior Force-Deformation Characteristics	16
	4.1.1 Intrusion of Vehicle Components During Side Impact	21
	4.2 Vehicle Exterior Force-Deformation Characteristics	21
5.0	The Computer Exercises	24
	5.1 Vehicle Decelerations and Motions	24
	5.2 Side Impact Input Data	26
	5.3 Pedestrian Impact Input Data	46
	5.4 Representative Side Impact Output	64
	5.5 Representative Pedestrian Impact Output	68
6.0	The HSRI Version of the Calspan CVS	77
	6.1 Modifications to Original Calspan CVS Program	77
	6.2 Status of Software	81
7.0	References	82

LIST OF FIGURES

1.	Vehicle Interior for Side Impact (Front View)	3
2.	Vehicle Interior for Side Impact (Side View)	4
3.	Vehicle Exterior for Pedestrian Impact (Side View)	6
4.	Vehicle Exterior for Pedestrian Impact (Front View)	7
5.	Occupant for Side Impact Simulation (Side View)	9
6.	Occupant for Side Impact Simulation (Rear View)	10
7.	Side View of Pedestrian (Initial Position)	12
8.	Back View of Pedestrian (Initial Position)	13
9.	Schematic of Euler Knee Joint	15
10.	Panel Force-Deflection Curve	19
11.	Side Window Force-Deflection Curve	20
12.	Intrusion of Hip Panel Contact Surface	22
13.	Side Impact Vehicle Acceleration Curve	25
14.	Body Segment Accelerations. Side Impact	65
15.	Body Segment Motions. Side Impact	66
16.	Pedestrian Kinematics	70-72
17.	Right Upper Shin Accelerations. Pedestrian Impact.	74
18.	Right Lower Shin Accelerations. Pedestrian Impact.	74
19.	Right Upper Leg Accelerations. Pedestrian Impact.	75
20.	Lower Torso Accelerations. Pedestrian Impact.	75
21.	Upper Torso Accelerations. Pedestrian Impact.	76
22.	Head Accelerations. Pedestrian Impact.	76
23.	Bivariate Force-Deflection Deflection Rate Input.	78
24.	Corner Forces in British Leyland and MVMA 2-D Software	80

Page

LIST OF TABLES

		Page
1.	Occupant/Vehicle Interior Contacts	17
2.	Pedestrian/Vehicle Exterior Contacts	18
3.	Contents of Output of Input Table. Side Impact	27
4.	Output of Baseline Input Data Set. Side Impact.	28
5.	Listing of Baseline Side Impact Input Data File	40
6.	Contents of Output of Input Table. Pedestrian Impact.	46
7.	Output of Baseline Input Data Set. Pedestrian Impact.	47
8.	Listing of Baseline Pedestrian Impact Input Data File	57
9.	Changes to Baseline Pedestrian for Euler Joint Knee	63
10.	Side Impact Occupant/Vehicle Contact History	67
11.	Pedestrian/Vehicle Contact History	73
12.	CVS Code Changes	81

1.0 INTRODUCTION

The objective of this study has been to provide practical baseline data sets to describe a vehicle occupant in side impacts and to describe a pedestrian in frontal impacts. During the past ten years a variety of projects have been conducted to study the interaction of pedestrians with motor vehicles. Somewhat more recently the emphasis has been on studying the interaction of a vehicle occupant with side door structures. Experimental studies have utilized both dummy and cadaver test subjects and a variety of vehicle types both experimental and production. Analytical studies have been conducted using both two- and three-dimensional dynamic occupant/pedestrian models.

A current project at HSRI, sponsored by NHTSA, includes addition of mutual deformation and other features to the Calspan Three Dimensional CVS model. The baseline data sets were prepared to work with this new software and to represent advanced production vehicle design geometry.

This report describes the baseline vehicle geometry in Part 2. The occupant and pedestrian along with their contact interactions with the vehicle are described in Parts 3 and 4. The baseline data sets and a sampling of the resulting computer program output are given in Part 5. A summary of information about the HSRI version of the Calspan CVS program is given in Part 6.

2.0 THE VEHICLES

In order to define the geometry of vehicle components with which an occupant might possibly interact during a side impact event or the front exterior components of a vehicle in the case of a pedestrian, it was necessary to obtain measurements from existing vehicles. Three vehicles were selected which are representative of the most modern domestic small car production.

For the front exterior of each vehicle, at least three points were measured with respect to a common inertial coordinate system to define the following surfaces approximately as planes:

- bumper
- grille
- hood
- windshield
- roof

For the vehicle interior the following surfaces were anticipated to be involved during lateral or 300° oblique impact:

- seat cushion
- seat back
- front door sill region (foot/lower leg contact)
- door panel lower region (hip and upper leg contact)
- door panel upper region (head contact)
- window panel (head contact)
- door header (head contact)
- floor (foot contact)
- B-pillar (head contact)

Other data were obtained which would make it possible to expand the simulation to cases of frontal impact.

2.1. BASELINE INTERIOR FOR SIDE IMPACT

Figures 1 and 2 illustrate the individual and average baseline panel locations which form the basis for construction of a side impact data set. These data are used in constructing the actual data sets described in Part 5 of this report.

2.2. BASELINE EXTERIOR FOR PEDESTRIAN IMPACT

Figures 3 and 4 illustrate the individual and average baseline panel locations which form the basis for a vehicle exterior intended for use in simulation of a pedestrian accident event. The baseline location has been used in constructing the actual data set described in Part 5 of this report. One surface which is not shown is the interface between the grille and hood. There was no clear definition for such a surface based on simple vehicle exterior measurements. Selection of a surface to represent this region was made to describe the stiff intersection between the grille and the hood.

~`

3.0 THE OCCUPANT AND PEDESTRIAN MODELS

A survey was conducted to identify sources for the most complete and recent data sets describing an occupant in a side impact simulation and a pedestrian. Surprisingly little information is publicly available beyond the original work done at Calspan (1).

With respect to the seated occupant, the primary data source was the sample data set provided with Calspan CVS Software, Version 18-A. This data set was used to verify model function in front impact before being modified slightly for the side impact case. The data on Part 572 developed for MVMA 2-D occupant modeling by Hubbard and McLeod (2) offered some promise but was restricted to two dimensions. Three-dimensional data, being developed at Calspan under an NHTSA contract, is not yet available.

For the pedestrian a Calspan data set modified by Karnes (3) was used as a starting point. These data were originally developed at General Motors and included a few changes from the standard seated occupant described in the preceding paragraph. Other than placing the subject in a standing position, hands were present and joint properties were changed. The reports from a major experimental and analytical study of pedestrian dynamics sponsored by NHTSA at Wayne State University were not yet available.

3.1 OCCUPANT FOR SIDE IMPACT SIMULATION

The occupant selected for the side impact simulation was essentially the same as that supplied with the sample data set included with Calspan CVS, Version 18-A. To position the occupant in the baseline seat required some minor vertical and horizontal adjustments in order to assure equilibrium. Figure 5 shows a side view of the occupant while Figure 6 shows a rear view. The numerical values for quantities such as segment mass, moments of inertia, position in space, ellipsoid axes, link angles, and joint properties are included in Part 5 which contains the complete listing of the output of the input data set.

3.2 PEDESTRIAN FOR IMPACT SIMULATION

The two pedestrian data sets which were developed on this project were derived largely from the data set reported by Karnes (3) of

Fig. 5 Occupant for Side Impact Simulation (Side View)

(ni) əlac2

(ni) sísoð

Boeing Computer Services. It describes the pedestrian as a modified Sierra 292-1050-2004 as has been used in the side impact case discussed in Section 3.1. The only difference is the addition of hands to the linkage. The masses and moments of inertia are identical, as are the joint locations, except for the hips and shoulders which are slightly different. The body ellipsoid semi-major axis lengths are similar but not identical. The joints are free of constraints. It is believed that this is due to the fact that a purpose of the simulation was to model the kinematics of a cadaver with no muscle tension to keep the body erect.

The major addition to the data set was the provision for fracturing of the lower leg and the knee. This was accomplished in two different ways, both of which included an extra joint within the shin (lower leg) mass.

The first case allowed a fracture to occur only in the shin. In order to do this the right lower leg has been partitioned into two segments by the addition of a new ball joint located 3.5 inches below the knee joint. This ball joint was initially locked with the capability of breaking free under a torque of 505.5 ft lb. This is based roughly on the work of Viano (4) and Kramer (5) who report femur and knee fracture loads of 4300 and 6000 N. If this load is applied at the center of a simply supported beam with a length of 18 inches, a torque of 505.5 ft lb is developed. This is used as a rough approximation of lower leg breaking load.

The masses and moments of inertia of the lower leg were then apportioned to the new upper and lower shin segments. A few minor modifications were made to some of the body ellipsoid axis lengths to eliminate unwanted interferences between body segment ellipsoids.

The initial standing posture of the pedestrian represents a person walking perpendicular to the path of the vehicle with 131.7 pounds of body weight supported by the right foot and 37.8 by the left. Figure 7 shows the left side of the pedestrian with the left front of the vehicle behind him. In Figure 8 the view is that of the back of the pedestrian with a front-to-rear section of the vehicle projected through

the y-coordinate of the lower torso center of gravity. This section is on the left, or driver's, side of the vehicle.

The second case allows the fracture in the shin and also a fracture at the knee joint. This additional feature is accomplished by use of the Euler joing option (for which corrected code had been supplied by Calspan as a portion of CVS Version 19). Regular ball and socket joints have torques computed on the basis of two angles - flexure and torsion. The hinge joint uses only flexure. Figure 9 shows initial position of the pedestrian knee joint. This Euler joint has its torques computed on the basis of three angles - precession, nutation, and spin. Precession occurs about the Z-axis at the joint of the first segment. In this data set it is Z_{μ} attached to the upper leg side of the joint. Spin occurs about the Z-axis at the joint of the second segment which in this case is Z_a attached to the upper shin side of the joint. Nutation occurs about an axis perpendicular to these two joint Z-axes. For the case of the knee joint shown in Figure 9, nutation corresponds to flexure and there is no locking of this degree of freedom. Precession and spin, however, are "unnatural" motions at this joint. Therefore, they are initially locked with a breakaway torque of 505.5 ft. lb. This value could be improved with data on lateral fractures or dislocations at the knee. A study should be conducted to compare results, cost of operation, and ease of data preparation for the several modeling options for locking "joints" and modeling fracture.

As in the case of the side impact simulation, the numerical value for quantities such as segment mass, moments of inertia, position in space, ellipsoid axes, link angles, and joint properties are included in Part 5 which contains the complete listing of the output of the input data set.

4.0 CONTACT INTERACTIONS WITH THE VEHICLE

A variety of contacts are allowed for both the occupant with the vehicle interior and the pedestrian with the vehicle exterior. Occupant or pedestrian ellipsoids may contact either flat panels attached to the vehicle or other of the ellipsoids on the subject. Table 1 shows the potential contacts which are allowed for the side impact occupant while Table 2 refers to the pedestrian.

The force-deflection characteristic curves governing interactions between the occupant or pedestrian and the vehicle have been derived from a variety of sources. Some are based on idealized vehicle component tests. Others are hypothetical estimates chosen to fill voids in our compilation of published, realistic vehicle descriptive data. All are intended to be treated as baseline data which should be replaced when measured data are available for use in actual engineering studies.

4.1 VEHICLE INTERIOR FORCE - DEFORMATION CHARACTERISTICS

Five different force-deflection characteristic curves are used to define the properties of the contact surfaces used to define the vehicle interior for side impact. Figure 10 illustrates the curve for a structure entitled, "panel." Tabular implementation of these data define the deformation of the header, front door sill, hip panel region, and Bpillar. The door panel shoulder region contact surface is modeled as a fifth order polynomial fit to the table. The symbol "x" on Figure 10 shows the closeness of fit of this polynomial. The polynomial form is used for this contact surface to allow mutual deformation of the vehicle and occupant thorax. These data are derived from dynamic deformation tests of door interiors and represent a somewhat stiffer structure than that used in recent side impact simulations by Padgaonkar and Prasad (6). Because of a lack of experimental information on the header, front door sill, and B-pillar, the data shown in Figure 10 have also been selected as hypothetical estimates for these surfaces.

Figure 11 shows the representative force-deflection curve for side window tempered glass which has been selected for inclusion in the data.

TABLE 1. OCCUPANT/VEHICLE INTERIOR CONTACTS

Ellipsoid Name Contact Panel on Ellipsoid Name

Lower torso	Seat back
Lower torso	Seat cushion
Lower torso	Hip panel
Lower torso	Right lower arm
Center torso	Seat back
Upper torso	Seat back
Upper torso	Door
Head	Header
Head	Window
Head	B-pillar
Right upper leg	Seat Cushion
Right upper leg	Left upper leg
Right lower leg	Left lower leg
Right foot	Floor
Right foot	Left foot
Left upper leg	Seat cushion
Left upper leg	Hip panel
Left lower leg	Door sill
Left foot	Floor
Left foot	Door sill
Left upper arm	B-pillar

TABLE 2. PEDESTRIAN/VEHICLE EXTERIOR CONTACTS

-	Ellipsoid Name	Contact Panel on Ellipsoid Name
	Lower torso	Windshield
	Lower torso	Hood
	Lower torso	Grille Top
	Upper torso	Roof
	Upper torso	Windshield
	Upper torso	Hood
	Head	Roof
	Head	Windshield
	Head	Hood
	Right upper leg	Hood
	Right upper leg	Grille
	Right upper leg	Grille Top
	Right upper leg	Left upper leg
	Right calf	Bumper
	Right shin	Bumper
	Right foot	Ground
	Left upper leg	Hood
	Left upper leg	Grille
	Left upper leg	Grille Top
	Left lower leg	Bumper
	Left foot	Ground
	Right upper arm	Hood
	Right lower arm	Hood
	Left upper arm	Hood
	Left lower arm	Hood

18

•

This is an idealization of data presented at the 11th Stapp Car Crash Conference by Siemonsen and Bruckner (7). It should be noted that tempered glass holds substantial force for a larger deformation than annealed or laminated glass due to its larger bending stiffness. It is presumed that the glass panel breaks upon reaching a deflection of 0.5 inch and behaves elastically until that deformation is reached.

The floor, seat back, and seat cushion are modeled as linear polynomials in force and deformation. The following coefficients were supplied with the original frontal impact data set by Calspan Corporation:

- 1. Seat back and seat cushion 40 lb/in.
- 2. Floor 860 lb/in.

4.1.1 Intrusion of Vehicle Components during Side Impact

Figure 12 shows the intrusion of the hip and door contact surfaces during the baseline side impact accident event. The overall motions of the vehicle take place in the coordinate system indicated in the figure. However, in the case of intrusion, the various components of the vehicle move and deform with respect to the vehicle. To represent this physically observed phenomena and to provide a realistic, but hypothetical, example for the baseline exercise, the arm rest and door are seen to begin intrusion at 5 ms and continue moving inward until 30 ms when they stop with respect to the remainder of the vehicle. Total intrusion is 5 inches. The software is capable of linear motion, as is the case used in this example, and also of panel rotation.

4.2 VEHICLE EXTERIOR FORCE-DEFORMATION CHARACTERISTICS

Three different force-deflection characteristic curves are used to define the properties of the seven contact surfaces which define the vehicle exterior and ground for pedestrian impact. All these curves are linear polynomials in deformation. The roof, windshield, hood, grille, and bumper have a coefficient of 1000 lb/in. The ground coefficient is 470 lb/in. The grille top surface was to be twice the average of the hood and grille, which is 2000 lb/in. The body ellipsoids are all as-

sumed to be rigid. Any contact with the ground will also develop a tangential force to simulate sliding friction, the coefficient for which is 1.0.

These data are incomplete and represent only hypothetical estimates for the properties of a vehicle exterior. The data included in the Boeing Computer Services report by Karnes (3) are somewhat more complete but their sources are unknown. Particular problems exist with specifying both the stiffness and the energy absorbed in the various surfaces. Data from the Wayne State University project mentioned earlier are not available and the "Pedestrian Model Parametric Study" reports by Twigg and Tocher (8) contain values which may be unreasonably soft for current and advanced generation vehicles. It is recommended that the force-deformation data contained in this baseline be regarded as preliminary and that further work should be done to improve their quality.

5.0 THE COMPUTER EXERCISES

The purpose of this part of the report is to present the numerical details of the two baseline data sets and give summary details of the resulting computer exercises. For a complete copy of the simulation output it is necessary to exercise the data set or obtain a copy of the tape containing the exercise from MVMA or HSRI.

5.1 VEHICLE DECELERATIONS AND MOTIONS

The dynamics of the side impact simulation are initiated by forcing an acceleration of the occupant compartment. This causes the vehicle (and its contact surfaces) to begin to move with respect to inertial coordinates. Superimposed upon this movement is the prescribed intrusion of the side door hip contact panel with respect to the vehicle coordinate system. The occupant, initially at rest with respect to both inertial and vehicle coordinate systems, is carried along by the vehicle motions through impacts with the vehicle interior contact surfaces. The lateral acceleration profile applied to the vehicle is shown graphically in Figure 13.

The pedestrian impact is initiated by prescribing motions for the vehicle contact surfaces which are given an initial velocity of 10 mph and maintain this non-stop velocity throughout the simulation. The "vehicle coordinate system" remains motionless and coincident with the inertial coordinate system throughout the simulation. In other words, simulation of vehicle motions is accomplished by moving the vehicle contact surfaces as a unit with respect to the motionless "vehicle coordinate system." It should be noted that no motion was prescribed for the contact surface representing the ground. The reason for this unconventional approach to vehicle motion was to assure that the program output of pedestrian motions would be relative to inertial rather than vehicle coordinates, an option which was not available with the Calspan CVS at the time work started on the baseline simulations.

(2'3) noitereleccA feretsL

5.2 SIDE IMPACT INPUT DATA

This part of the report contains the numerical details of the baseline side impact data set. Table 4 contains the computer-generated output of the input data set. Table 3 is a summary of the contents of this table to enable the reader to quickly find data quantities of interest. Table 5 is a copy of the baseline data file which was constructed for the exercise.
TABLE 3. CONTENTS OF OUTPUT OF INPUT TABLE (SIDE)	IABLE 3.	CONTENTS O		UF	INPUI	IABLE	(SIDE	IMPACI	ļ
--	----------	------------	--	----	-------	-------	-------	--------	---

Page in Table 4	Data Card I.D.	Input Quantities
1	А	Controls
2	B.2,B.3	Occupant mass and inertial properties.
		Joint definitions.
3	B.4,B.5	Joint torque characteristics.
4	B.6	Segment integration convergence test input.
5	С	Vehicle linear time histories.
6	С	Vehicle angular time histories.
7	D.2	Location of contact planes.
. 8	D.5	Ellipsoid semiaxes and orientation
8	D.7	Symmetry input
8	D.9.A	Material normal force specifications.
9,10	E.5.A-E.5.C.	Bivariate polynomial specifications for force generation
10	E.5.D-E.5.F,E.6	Bivariate table specifications for force generation
11	F.1	Allowed contacts
12	G.1,G.2,G.3	Initial Positions

CALSPAN 3-D CRASH VICTIN SIMULATION PROGRAM

31 MAR 1930 JUL 1., 1930 IRSIN= U IRSOUT= Û RSIHME = 0.0 NPRI ARRAY U U U U J J U C 1 Û Û

RASELINE STOL THPACT CN DPIVER

0.1000000000 E+01 HMIN =0.000509 0.100000000E+01 0.10000000cE+01 UNITL = IN. UNITH = LU. UNITT = SEC. GRAVITY VECTUR = (0.0 + 0.0 + 380-0880)

NSTEPS = 100 01 =0.001000 H0 =0.001000 HMAX =0.005000

Output of Baseline Input Data Set. Side Impact. (Page 1 of 12) TABLE 4.

CARDS A

INTS		1	1.71000	0.14900	1.33000	0.00664	0.20000	0.15400	
10r +1 SI	0F 144RT1A -SFC **2- 1	· ·	1.1.000	0.31400	1.4.000	0.04000	0.11100	0.11300	00000000
15 SEGMEN	WI MCMENT	×	1.78000	0.325uu	2.32000	0.44000	0.25900	C.12100	0.660.00
SIERRA 292-1090-2004	SCUME MASS	(LBSEC.**2/ IN.)	6.045	0.024	U. UB2	0.UUd	0.026	0.045	
CRASH VICTIM	SEGAENI	I SYM PLGT	1 LT 5	2 LT 4	3 UT 3	4 2 2	5 11 1	6 KUL 6	7 110 7

CARDS B.2

.

									CARDS 8.3	5) - SEG(J	тсн во	.o c.	•0 °•	.0 0.
										AXIS(DE	d	Ô	0	0
										PRIN.	۲Ah	0.0	0.0	0.0
										SEC(JNT)	ROLL	0.0	0.0	0.0
										ISIDEC) -	P ITCH	0.0	0.0	0.0
										PRIN. AX	MVY	0.0	0.0	0.0
0	20	00	D(50	10	50	0	00		SEG(J+1)	7	2.50	6.80	3 . 80
0.0141	0.013	0.1540	0.0190	0.0132	0.0141	0.0119	0.0141	0.011		- (• N]	۲	0.0	0.0	0.0
0.544.00	0.04340	0.74300	0.4+200	0.0+340	0.10600	0.2-900	0.16600	0.2.900		LUCAT ION	×	-1.50	-1.50	0.0
0.044.00	0.03830	0.72700	0.44000	0.03830	0.16400	0.25500	U.1640U	6.25500		SEG(JNT)	7	-2.50	-2.30	-2.20
										- (.NI	۲	0.0	0.0	0.0
0.08	0.007	0.045	018	0.007	0.014	0.012	0.014	0.412		LUCATION	×	-1.60	uc • 1 -	-0.10
											NIG INC	1 -2	2 - 2	3 - 2
۔ ب	8	6 1	LA	B	A C	۹ 0	بر ۲	A F		T	PLGT	٩	0	z
l ×LL	8 RF	9 LUI	ה ררו	L LF	2 RUJ	3 RL	4 LUI	5 11		NIOF	U SYM	н н	2 M	3 NP
	~	-	ň	-	-	1	Ĩ.	-			•	-4		

AXIS(DEG) - SEG(J+1)	A PITCH ROLL	0.0 0.0 0	0 0°0 0°C	0.0 0.0	0.0 0.0 0	n -66.50 5.72	0 56.80 C.C	0 -81.70 0.0	0 -66.50 -5.72	0 56.80 0.0	0 -81.00 0.0	0 -57.50 10.19	0 -64.30 0.0	n -57.50 -10.19	0 -64.30 0.C
SECLANTI PRIN	ROLL Y.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0.0	0.0	0.0	0.0	0.0	0.0
(IS(DEC) - 5	P ITCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0°0	0.0	0.0	0.0	0.0
PRIN. AX	MAY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
- SEG(J+1)	7	2.50	6.80	3.80	3.30	-7.31	-7.48	-1.28	-7.31	-7.48	-1.28	-5.25	-6.58	-5.25	-6.58
- (• N]	۶	0.0	0.0	0.0	э. О	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LUCAT ION	×	-1.50	-1.50	0.0	-1.10	0.0	0.0	1.54	0.0	0.0	1.54	0.0	0.0	0.0	0.0
SEG(JNT)	7	-2.50	-2.30	-2.20	-1.20	2.50	6.19	8.69	2.50	6.79	8.69	-1.60	5.45	-1.60	5.45
- (. NI	7	0.0	0.0	0.0	0.0	4.45	0.0	ე . ი	-4.45	0 . 	0.0	7.60	0.0	- 1.60	n . u
LUCATION	×	-1.60	uc.1-	Pr • n-	0.0	2.10	U •U	U •U	2.14	U.U	0.0	-0.80	0.0	U 5. U -	0.0
	NIT PIN	1 -2	2 - 2	3 - 2	4 -2	1 0	1 9	7 - 2	1 0	16	10 - 2	3 - 2	12 -1	3 - 2	14 -1
-	PLGT	٩	0	z	ž	0	æ	s	-)	>	5	×	*	7
NION	U SYA	н Т	Z Z	an e	4 HP	5 KH	6 KK	7 KA	8 LH	ر ۲	10 LA	II KS	12 RE	13 LS	14 LE

Output of Baseline Input Data Set. Side Impact. (Page 2 of 12) TABLE 4.

4

,

INT INTOF	RGUE CHARALTERIST	165								CARIJS B.4
	FLC.	XURAL SPRING CH	ARACTER	157165		10	JRSTUNAL SPRIN	G CHARACTE	ER I STICS	
	SPRING COEF	. (14. LU./EEG	[[**	ÉNERGY	THIOL	SPRING COE	E. (IN. LB./	0EG##J]	ENERGY	JCINT
INTOL	INEAR	UNAULAT IC C	UB1 C	UISSIPATION	STUP	LINEAR	UNDRAT IC	CUBIC	DISSIPATION	STOP
	(1=1)) (7=f)	{=	COLF.	(DEG)	(1=^)	(7= f)	16=01		
L P	209.440	609.230	0.0	100	5.000	343.830	609.230	0.0	1.60C	5.000
2 M	20.944	60.923	0.0	1.100	35.000	34.383	60.923	0.0	1.900	35.001
411 F	17-174	626.00	0.0	1.000	25.000	8.011	60.923	0.0	1.000	35.000
4	102.12	124.00	0.0	1.000	25.000	8.011	69.923	0.0	1.000	35.000
5 811	0.0	UL 2-5 00	0.0	1.000	85.500	0.0	609.230	0.0	1.000	55.500
6 RK	0.0	16.754	0.0	1.000	58.300	0.0	0.0	0.0	0.0	0.0
7 RA	0.0	627.510	0.0	1.000	37.000	0.0	94.431	0.0	1.000	20.700
8 I H	0-0	052.00	0.0	1.000	85.500	0.0	609.230	0.0	1.000	55.500
. ×	0.0	1 4. 754	0-0	1.000	58.300	0.0	0.0	0.0	0.0	0.0
		627.510	0-0	000-1	37.000	0.0	94.431	0.0	1.000	20.700
	0.0	019-230	0.0	1.000	122.500	0.0	609.230	0.0	1.000	180.000
12 85		16911	0-0	1 100	65.340	0.0	0.0	0.0	0.0	0.0
		016 2 5 0 9	0.0	1 - 000	22.500	0.0	609.230	0.0	1.000	180.000
					65 300		0.0	0.0	0.0	0.0
4 -	3			1						
		וחר	NT VISC	OUS CHARACTEF	RISTICS AND LO	CK-UNLOCK	C GND 111 CN S			CARDS 8.5
) Jolat J	VISCOUS COEFFICIENT IN. L6.SEC./DEG)	COULUMB FRIGIION CUEF. (IN. Lu.)	FULL ANGULA (DEG	FRICTION R VELULITY /SEC.)	MAX TURQUE F A LUCKED JUTI (IN. LU.)	DR MIN VT UNLO	TORQUE FOR JCKED JOINT IN. LB.)	MIN. ANG FOR UNLOG (RAD)	. VELCCITY CKED JOINT /SEC.)	I MP UL SE RESTITUTION COEFFICIENT
a -	104.720	00-000	60	00-	0.0		0.0		c.0	0.0
. 3	10.472		0.0	00	0.0		0.0		0.0	0.0
and re	1.745	10.01	60	.00	0.0		0.0		0.0	0.0
4 HP	1.745	00.01	60	.00	0.0		0.0		0°U	0.0
5 RH	166.5	00.229	09	.00	0.0		0.0		0.0	0.0
6 RK	3.456	193.00	60	•00	0.0		0.0		0.0	0.0
7 KA	6.436	25.00	60		0.0		0.0		0.0	0.0
8 LH	3.997	00.622	60	.00	0.0		0.0		0.U	0.0
9 LK	3.450	00.891	60	.00	0.0		0.0		ວ. ເ	ن د د
10 LA	U • 430	25 .UU	60	.00	0.0		0.0		ن د د د	0.0
11 RS	3.220	U U.481	09		0.0					
12 RE	1.292	74.00	09 9							
LS LS	3.229	1.0.00	0.3	• C.G	5 ° 0					
14 L.E	1.292	00.51	60	•00	5°0		1. D		0. 0	2 •2

TABLE 4. Output of Baseline Input Data Set. Side Impact. (Page 3 of 12)

		SEGALAT L	i leokal i uk	C E NV E RGE NO	E TEST TI	TUPUT					
	AILGU	LAR VELJEI	1116.5	L 1 V 1	AR VELOC.	ITLES	ANGUL A	R ACCELER	ATLONS	LINEN	Ð
		(RAD/SEC.	-		IN ./ SEC	-	(R	AL/SEC.**	21	~	Z
SEGAL NI	MAG.	AHS.	FEL.	MAG.	Aus.	REL.	MAG.	VB2.	REL.	MAG.	
NO. SYM	TEST	ERKÜK	ERRUR	TEST	ERK OR	ERROR	TEST	ERROR	EPROR	1631	
1 1	c	Û•U	Ü • Ü	0.0	ů.U	0.0	0.01	0.01	0.0100	00.0	
2 C I	0.0	0.0	C • C	0.0	0.0	0.0	0.01	0.01	0.0100	0.0	
JUT	0.0	0.0	0	0.0	0.0	0.0	C-01	6.01	0.0100	C.0	
4 N	u•u	0.0	0.0	0.0	U.0	0.0	C.01	0.01	0.0100	0.0	
5 =	0.0	C.J	u.0	0.0	0.0	0.0	0.01	0.01	0.0100	0.0	
6 RUL	c. 0	0.0	G. C	Ú.U	0.0	0.0	6.01	0.01	0.0100	0.0	
7 RLL	0.0	C • C	с. с	0.0	0.0	0.0	0.01	0.01	0.0100	0.0	
8 R.F	u •0	C •0	· · ·	0.0	U. 0	0.0	0.01	C.01	0.0100	C•0	
9 L'UL	0.0	0.0	c.u	0.0	0.0	0.0	0.01	0.01	0.0100	0.0	
10 LLL	0.0	C.U	c	0.0	0.0	0.0	0.01	0.01	0.0100	0.0	
	0.0	(1.0	0.0	0.0	0.0	0.0	0.01	0.01	0.0100	0.0	
12 RUA	0.0	Ů.Ů	с. с	0.0	0.0	0.0	0.01	0.01	0.0100	0.0	
13 RLA	0.0	0.0	0.0	6. 0	0.0	0.0	0.01	0.01	0.0100	C. 0	
14 LUA	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.01	0.0100	0.0	
15 LLA	0.0	0.4	0.0	0.0	0.0	0.0	0.01	C.01	0.0100	0.0	

TABLE 4. Output of Baseline Input Data Set. Side Impact. (Page 4 of 12)

CARDS B.6

CARDS C

I NPUTS	
DECELERATION	
VEHLCLE.	

DIRECT LATERAL LAPACT FRUM RESI

YAW 0.0	P1 TCH U.O	8.04 L	0.U	(Y1PS) VF1ME U.U	21PS 0.0	x0(x) 0.0	X61Y) 0.0	0°C	NATAB ATO -21 0.0	AUT 0.05000
RUTATING VE	HICLE A INEAR	TIME ALL TURY	7						PAGE NU. 1	
EM 11	L I NFA	IR DECELERATIC	018 16.8	SI LINE	AR VELOC	ITIES (IN./	SEC.)	LINEAR	DESPLACEMENTS (IN. 1
(Sec.)	×	۶		κ 7		٢	7	×	۲	1
0.0	0.0	D •0		.0 0.	0	0.0	0°)	0.0	0.0	0.0
0.00500	0.0	-8-500	o	.0	0	3.204	0.0	0.0	0.014	0.0
0.01000	0.0	-8.500	0	.0 0.	0	24.613	0.0	0.0	0.096	0.0
0.01500	0.0	-8. 200	Ö	.0 0.	0	41.022	0.0	0.0	U • 260	0.0
C.02000	0.0	- 4.500	0	.0 0.	0	57.431	0.0	0.0	0.506	0.0
0.02500	0.0	UU4.9-	0	.0 0.	0	73.839	0.0	0.0	0.834	0.0
0.050.0	0.0	-3.500	0	·0	0	90.248	0.0	0.0	1.244	0.0
0.03500	0.0	-8.500	ວັ	.0 0.	0	106.657	0.0	0.0	1.737	0.0
0.04000	0.0	-8-500	ō	.0 0.	0	123.066	0.0	0.0	2.311	0
0 - 04 500	0.0	-8.500		.0 0.	0	139.474	0.0	0.0	2.967	0.0
0.05000	0.0	-8.500	Ō	•0 0•	0	155.883	0.0	0.0	3.706	0.0
0.05 50.0	0.0	-3.500	2	.0 0.	0	172.252	0.0	0.0	4.526	ე•ი
0.06000	0.0	-8.500	ō	.0 0.	0.	188.701	0.0	0.0	5.429	0.0
u.u6500	0.0	-8.500	0	.0 0.	0	205.110	د. 0	0.0	6.413	0.0
0.07000	0.0	-8.500	Ó	.0 0.	0	221.518	0.0	0.0	7.480	0.0
G.U7500	0.0	-8.500	0	.0 0.	0	237.927	0.0	0.0	8.62A	0.0
0.08000	0.0	-3.500	0	. 0 0.	0.	254.336	0.0	0.0	9.859	0.0
0.08500	0.0	- 3. 500	Ő	.0 0.	0	270.745	0.0	0.0	11.172	0.0
0.0000	0.0	-8.500	o	.0 0.	0.	287.153	c.0	0.0	12.566	د .
0.04500	0.0	UUG • P -	0	.0.0.	0	303.542	0°0	J.J	14.043	0.0
0.10000	0.0	0.0	2	.0 0.	0.	311.767	0.0	0.0	15.588	0.0

TABLE 4. Output of Baseline Input Data Set. Side Impact. (Page 5 of 12)

0.0

0.0

0.0

0.10000

TABLE 4. Output of Baseline Input Data Set. Side Impact. (Page 6 of 12)

33

PAGE NC.

23 -41.0000	גז 18.0700	0°0 73	23 -12.7500	23 0.0	رع 0.0	23 0.0 0.0	0°0 0°0 0°0
43 - 10, 5000	۲3 - 20• 2000	үз 12,0300	۲3 12.6010	Υ3 22,0000	43 - 15. 50CD	Υ3 -15,5000 -10,5000 -10,5000	Y3 -12.5000 -12.5000 -7.5000
нЕ А РЕК ХЗ 31.0000	h1NDCh X3 31.000C	5LAT BACK X3 9.0000	SEAT CLSHICN X3 25.0000	FLOUR X3 54.0000	DCOR SILL X3 54.0070	DOUR x3 31.0000 31.0000 31.0000	HIP PANEL x3 31.0000 31.0000 31.0000 31.0000
WITH NAME OF 22 -53.0000	MTTH NAME OF 22 -50.0000	WITH NAME OF 22 -50.0000	MITH NAME UF 22 -9.0000	МІТН NAME UF 22 ₽.0	WITH NAME OF 22 -26.0090	WITH NAME OF 22 -40.0000 -40.0000 -40.0000 -40.0000	WITH NAME OF 22 -40.0000 -40.0000 -40.0000 -40.0000 -40.0000
• ISCLAT= 6. Y2 0.6	, 1 SUL AT= 0, Y2 -9.0000	, ISULAT= Ŭ, Y 2 -22,∪000	, I SULA 1= 0, Y2 -22.0000	, ISULAT= 0, -22,0000	<pre>/ ISALAT= 0,</pre>	ISCLAT= 0. Y2 -15.5000 -10.5000 -10.5000	1 SULAT= 0. Y2 -12 5000 -7.5000 -7.5000
3, HINTRL= 16, x2 -12,0000	J, MINTRL= 16, x2 -12,0000	3, NINIRL= 16, x2 -8.5000	J. NINTRL= 16, x2 0.0	3, NINTRL= 16, x2 0.0	3, NINTRL= 16, x2 0.0	3. MINTRL= 16. X2 -12.0000 -12.0000 -12.0000 -12.0000	 3. NINTRL= 16. x2 -12.0000 -12.0000 -12.0000
1. LE UG SW= 21 -53.0000	6. LEDGSW= 21 -50.0000	4. LEUGSW= 21 0.0	4. LEDGSW= 21 -12.7500	3. LEDGSW= 21 0.J	1, LEUGSW= 21 -26.0000	5. LEDGSW= Z1 -40.0000 -40.0000 -40.0000 -40.0000	L. LEUGSW= Z1 -40.0000 -40.0000 -40.0000
• AMATKL= Y1 U.U	• NMATRL= 4	• NMATKL = Y 1 -22.0000	• HPATRL=	• AMATRL=	• NMATRL=	. 1484T KL= Y⊥ −15.5000 −10.5000 −10.5000	NIIATKL = Y 1 −12.5000 −12.5000 −1.2.5000 −1.2.5000 −1.2.5000
1. NUMTIN= 1 X1 31.000U	2. NUMTIM= 1 x1 31.0000	3. NUMTIM= 1 X1 9.UCOU	4. NUMTIM= 1 x1 25.0000	5. NUMTIM= 1. 54.0000	6. NUMTIM= 1. X1 54.0000	7. NUMTIM= 4. 21.0000 15 0000.15 0000.15 15 0000.15 15 0000.15 15 15 15 15 15 15 15 15 15	4. NUM IM= 4. XI 00000.16 31.0000 31.0000
PLANE NU. TIMEFF J.O	PLANL NU. IIMEFF 0.0	PLANE NU. TIMEFF U.O	PLANE NO. TIMEFE J.U	PLANE NU. TINEFF 0.0	PLANE NU. TIMEFF J.O	PLANE NU. TIMEFF U.U 0.0050 0.1000 0.1000	PLANE ND. TIMEFF 3.0 0.0050 0.1050 0.1000

TABLE 4. Output of Baseline Input Data Set. Side Impact. (Page 7 of 12)

;

34

PLANE INPUTS

• (14)	9. NUMTIM=	. HMALL	1.1.= 7.	LEUGSM	ء ک	11 INTRL = 16.	1 SOLA1= 0	. WITH NAME		12-11 LLAN		
465 F	x1 3.0000	-10 1	1 • 560 U	21 -41.0	0 n C	x2 -12.0000	Y 2 -10.5000	22 -41.000	þ	сх 0000-Е	Υ3 - 15 - 5000	23 -26.000 0
IUNAL	ELLIPSCID INPUT										C J	.RDS D.5
			SEMI	AXES	(. NI Y	2	OFFSET (X	[) Y	7	RCTATI(YAW	CN (DEG) Pitch	ROLL
ר ר	D LOWER I UK:	50	76 . 7	9	040	7.600	0.0	n J•0	0.0	0.0	ن• 0	0° J
,) , 2	D CENTER TOR	51	4.91	0 0	.350	7.630	0.0	0.0	000.	0.0	Ú•0	0.0
3	2 UPPER TUR.	110	4.41	0 6	.780	4.940	0.0	0.0	0.	0°0	0.0	0.0
4	D NECK		12.5	0 2	. 360	3.280	0.0	0.0	0.0	ر•0	0.0	0 . D
5	U HEAD		36.6	6 0	.100	4.590	0.0	0.0	0.	0.0	0.0	0.0
ר פ	D RIGHT UPPER	LEG	2.95	С	.740	12.400	0.0	0.0	. 600	(•) (•)	0.0	د . 0
2	D RIGHT LUWER	L E: G	2.36	2 0	.230	9.070	0.0	0.0	.450	0.0	0.0	0.0
8	D RIGHT FUU	-	1.52	0 0	.800	5.220	0.C	0	.950	0.0	0.0	0.0
) 6) LEFT UPPER	LEG	2.95	с С	. 7 4.0	12.400	0.0	0.0	.600	0.0	0.0	
2:	U LEFT LOWER	L F G	2.36 	، ج 0	.230	9.070		0.0	.450	0.0	0 0 0 0	
		-	1.56	1	. 800	022.6	1.		006.0	.		0.0
12	D RIGHT UPPER	ARM	2.01		. 640	6.880	0.0	0.0	ت ،	0.0	0 ° 0	0.0
13	D RIGHT LOWER	AKM VIII	1.30	0	.110	8.380	0.0	0.0	0	0.0	000	0.0
		AKM	10.2		040	0.880	0 • 0		، د			
15	J LEFT LUWER	аки	1.30	1 00	.110	8.380	0.0	٥ ٠ ٥	0	0.0		0
		-										
SEGMEN	VI STAMEIKT INFU	_				•					5	
ПИ И С Л	1 2 0 4 4	כ נ כ ר	30 C 0	6 D	n 0 0	12 13 14 0 0 0	S					
ATER1/	AL RORMAL FORCE	SPECIE	אסונסח								C	RU 0.9.A
-	V AME	H S I W	מעך דע ט	IFRIK	DC		υt	DF		F SA T	MCI	
P AL	JEL MATERIAL	T	! -	0	0.0	0	3	r • 50000	0 (1 E + () ()	0.0	0.0	
1 HI	VOAV MATLUTAN		-	-	c c			0.50031		< <		

CCEFFIC ILNES

CARUS F.5.A-E.5.C

TABLE 4. Output of Baseline Input Data Set. Side Impact. (Page 8 of 12)

NMATR L	N AME	MISHW	NUL TAB	IFRIK	DC	UE	DF	F SA T	WC
-	PANEL MATERIAL	T	[-	0	0.0	0.0	C • 5000000E + 0.0	0.0	0.0
2	THURAX MATERIAL	-1	1-	0	0.0	0.0	C. 5000CJUE+CU	0.0	0.0
~	FLCUR MATERIAL	۔ ب	- 1	0	0.0	0.0	0.5600000000000000000000000000000000000	0.0	0.0
4	SEAT MATERIAL	7-		0	0.0	0.0	C.5000009E+0 u	0.0	0.0
ۍ ۲	DODR MATERIAL	5 -	- 1	S	C•Û	0.0	- C • 5 C U0 D 0 D E + N N	ن•ن	0°0
9	GLASS MATERIAL	Ĵ, I	-	0	0.19JUCUCE-02	0.508E000E+00	C.6043030305+30	C.100000E+P4	0.1000000E+05
2	PILLAR MATERIAL	10		2	0.0	0.0	0.0	0°ú	0.0

BIVARIANT PELYNENIAL SPECIFICATIONS

NPUL Y

_	0.408606006404 6.6 0.0 0.0 0.0	2223 92039	00000	C 3 G 5	n e o e c o o d	0000 0000
	0.400000E +u2 0.0 0.0 0.0 0.0	20000	0000 0000 0000	5000	0 0 0 0 0 0 0 0 0 0 0 0	0000 0000
	0.86000000E+03 0.0 0.0 0.0 0.0		00000	0000	0000	0000°
	C.100000000+04 0.0 0.0 0.0 0.0	-U. 5625000E+C3 U. 0 U. C U. C U. C	0.10312540E+04 0.0 0.0 0.0 0.0	-4.5625000E+03 0.0 0.0	0.93750000E+02 0.0 0.0 0.0	
	TARLF 4	Outout of Baseli	ine Innut Data 6	set Cide Immo		101

(Page 9 of 12) side impact. Uutput or baseline input Data Set. IABLE 4.

L Y 0+ 100Juucue +J5	ں • د		COEFFIC	C IENTS				LARIA F CLINAU	-E • 5 • (
0.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						ပ် • ပိ ပိ • ပိ		
0.0	0 0 0 0	0.0 0.0		0.3		0.0	0°0		
0 +4090000E+u4	0.0	0 • •		0.0		¢			
2 2 0 0 2 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2	0.000		0.00		0.00	0.0 0 0 0 0 0 0		
E SPECIFICATIONS))								
								CARDS E.5.D-1	E • 5 • F
RCE DEFL. FURGE	DEFL.	FORCE DEFL.	FORCE DI	EFL. FI	JRCE DEFI	- FORCE	DEFL. FORC	E DEFL C	200 C C C
0. 3.000 3000.	4.000	1 3000 .							
ECTE ILAT TUNS ECTTON G RATTU 0U U.O TUU00.00	0.0	- K RATIU - 1.0000		ć				C ARD	• •

TABLE 4. Output of Baseline Input Data Set. Side Impact. (Page 10 of 12)

13 RIGHT LUWER ARM LEFT LOPER LEG LEFT LOWER LEG LEFT FOOT INUEX NAME ELL PSUID 9 10 11 SEAT CLSHIUN HIP PAHEL DUCK SILL FLUCR SEAT BACK Seat Cushlun Hip Panel ð SEAT CUSPIDIA SEAT BACK Seat eack UOCR Header UUUR SILL 6-PILLAR WINDCW W-PILLAR FLUCR LIDEX NAME P ANIE L -**n** + ~ ~ ~ 10 - 20 1 S) 4 ສ ວ ທ ວ ຕ LUWER TORSU2CENTER TORSU3UPPER TORSU3UPPER TORSU5UPPER TORSU5HEAU6RIGHT UPPER LEG6RIGHT UPPER LEG6RIGHT UPPER LEG7RIGHT LOPER LEG8RIGHT FUOT8RIGHT FUOT9LEFT UPPER LEG9LEFT UPPER LEG ELLIPSUID CONTACTS LEFT UPPER LEG LEFT UPPER LEG LEFT LCWER LEG LEFT FOGT LEFT FOGT LOWER TOKSO LOWER TURSU LUWER TORSC LUWER TORSC CENTER TORSU UPPER TOKSO UPPER TOKSO INUEX NAME 2223 ---

ALLUMED CONTACTS AND ASSUCTATED FUNCTIONS

Side Impact. (Page 11 of 12) Output of Baseline Input Data Set. TABLE 4.

LEFT UPPER ARM

TABLE 4. Output of Baseline Input Data Set. Side Impact. (Page 12 of 12)

LINEAR AND ANGLEAR VELOCITIES HAVE BEEN SET EQUAL TO THE INITIAL VEHICLE VELOCITIES.

				: ;;	
	0.0	0.0	45.00000	0.0	13 RLA
c c c c • c o o o	0.0	0.0	u .0	0.0	12 RUA
0 C	0.0	0.0	140.00000	u. 0	11 LF
0.0	0.0	0.0	36.00000	0.0	10 LLL
	0.0	6.0	107.50000	C.U	3 LUL 6
0.0	0.0	C•0	141-00000	c.0	8 KF
0.0	0.0	0.0	10.00010	0.0	7 RLL
	0.0	0.0	1.17.500.10	۲.0	6 RUL
0.0	0.0	C•.J	12.00000	0.0	ა Ξ
0.0	0.0	0.0	12.00000	0.0	4 N
0.0	0.0	0.0	12.00000	0 - 0	JUT
	0.0	0.0	12.00000	0.0	2 CT
0.0	0.0	6.0	12.00000	0.0	1 17
, ,	×	RLLL	PIICH	YAW	NO. SEG
AR VELOCITY	ANGUL	(CEG)	IR RUTATION	ANGULA	SEGMENT
		ſŸ	LAND VELUCE	MGULAR RÜTATLUM	INITIAL A
0.0	0.0	-15.39631	- 7 . 00 000	11.41041	15 LLA
0.0	0.0	-25.41980	- 7.600000	4.85545	14 LUA
0.0	0.0	-19.39631	7.00.000	11.41041	13 RLA
0.0	0.0	-25.41980	7.60000	4.85545	12 RUA
0.0	0.0	-4.64004	-4-45 uuu	36.52826	LI LF
0.0	0.0	-11.67975	-4.450000	29.41793	10 LLL
0.0	0.0	-15.68940	-4-43600	18.54550	9 LUL 6
0.0	0.0	-4.64004	4.45044	36.52826	8 RF
0.0	0.Ú	-11.61915	4 - 4 U U U U	29.41793	7 RLL
0.0	0.0	-15.68940	4-45000	18.54556	6 RUL
0.0	0.0	-39.58322	0.0	3.58319	5
0.0	0.0	-34.95286	C.C	3.84283	4 N
0.0	0.0	-25.27109	0.0	5.97063	3 UT
0.0	0.0	-20-36995	с. с	7.86263	2 CT
0.0	0.0	-15.50000	0.0	9.00404	1 1
۲	×	7	۲	×	NU. SEG
W VELOCITY (LINEA	IN.)	PUS ITEGIE E	LINEAR	SEGMENT

68

CARDS G.3

CARD G.1

CARDS G.2

SUBRUUTINE INITAL IMPUT

INITIAL POSITIONS (INERTIAL ALLERENCE)

 ZPLT(X)
 ZPLT(Y)
 ZPLT(Z)
 II

 10.00
 30.00
 1.00
 0

e L

د ا ح

u ∿

0 ل ل

•10	1. 0.001	0.005 0.000	5 U.0	0.0	386.088	A.4
100	.025 00	. 1. 000000	1 21 00000000	.000	3000.	A.5 A.6.A
~	SLERRA 1.78	29 2-10 50- 2 1 - 14	004 1.71			A.6.8 B.1 B.2
<u>م</u>	0.325	0.314	0.149			2 8.2
	2.32	1.65	1.33			3 8.2 2 0 2
	0.259	0.311	0.200			5 B C
	0.727	0.703	0.154			6 8.2
-	0.44	0.442	010°N			7 8.2
~	0.0383	0.0434	0.0132			8 8.2
o 9	0.727	0.703	0.154			9 8.2
• •	0-0383	0-0434	0.0132			11 8.2
8	0.164	0.166	0.0141			12 8.2
4	0.255	0.259	u.0115			13 8.2
81 ,	0.164	0.166	0.0141			14 8.2
ן הייב	667•N	-2 5 -1 5	0.0110			2.8 CI
4 3		0.0 0.0	0.0 0.0			1 8.3.8
י - י ק		-2.3 -1.5	0. 6.8			2 8.3.4
0 - 0 - 0 -	0.0	-2-2 0-0	0.0 0.0			2 8.3.8 3 8.3.4
	0.0 0.0	0.0 0.0	0.0 0.0			3 8.3.8
2	0.0		0. 3.3			4 8.3.A
0	• 1 4 45	2.5 0.	07.3	F		5 8.3.4
- -	0.0	0.0 0.0	-66.50 5.7	2		5 8.3.8
	. 0.0		07.41 56.80 0.0	8		6 B.3.A 6 B.3.B
5	.0	8.69 1.5	4 01.2	8		7 8.3.4
	• 0 0 0 0	0.0 0.0	-81.00 0.0			7 8.3.8
2	0.0	0.0 0.0	-66.50 -5.7	- 2		8 8.3.8
1		6.79 0.	07.4	8	×	9 8.3.A
י י	0.0 0.0		0.0 08.0c	œ		
1		0.0 0.0	-81.00 0.0	,		10 8.3.8
	0.8 7.6 0.0	-1.6 0.	-5.2	<u>ب</u>		A. E. 8 11
ر د		5.45 0.	06.5	. 8		12 8.3.4
9	.0 0.0	0.0 0.0	-64.30 0.0			12 8.3.8
ם י א	.8 -7.6	-1.6 0.	05.2 -5.2	υ α		13 8.3.A
י ה		5.45 0.	06.51	. 80		14 B.3.A
J	0.0 0.0	0.0 0.0	-64.30 0.0			14 8.3.8
	- - - -	۳. ۵.0	4 3.8 3609.23 4 38360 923	0 1.0	5.0 15.0	1 0.4.A
20	1.0 2	5.0 8	011160 923		35.0	3 8.4.4
•	1.0 2	5.0 8	.01110.923	.0 1.0	35.0	4 B 4.A
••	1.0 8	5.5	.0 609.23	.0 1.0	55.5	5 B . 4 . A
.	U-1 U-1	U.J.	0°	 	0.0	6 B.4.A
?						< <

۰.

0

pace input unda Fill (Peur

ide

ł

eli

, o†,

ist

E 2

TABLE 5. Listing of Baseline Side Impact Input Data File (Page 2 of 6)

	100.00	•00 •
5.5 20.1 180.0 180.0	0.001	
0.000.0000.0000.00000.00000000000000000	00.0	
6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		0 0 0 · · · · · · · · · · · · · · · · ·
000000		•••••••••••••••••••••••••••••••••••••••
	12	
885. 522.50 52.55 55.35 55.35	шеника Марика Стана С С С С С С С С С С С С С С С С С С	••••••••••••••••••••••••••••••••••••••
0.0.00	РАСТ F	0 0 0 0 0 0 0 0 0 0 0 0 0 0
	I M Ral	° ° °
2229-00 105-754 609-23 609-23 11.697 600-07 600-07 11.697 11.697 11.697 11.697 11.697 11.697 11.697 11.697 11.697 10.000 10.000 198-00 198-00 185-00 185-00 185-00 185-00 185-00 185-00 198-00 185-00 185-00 185-00 198-000 198-000 198-0000000000000000000000	T LATE	
	DIREC	с
0 3 8 7 0 0 7 7 7 7 7 7 7 0 0 0 0 0 0 0 0 0	99999999999999999999999999999999999999	9 4 4 7 8 8 4 4 7 8 8 4 4 7 8 8 4 4 8 8 8 4 4 8 8 8 8

•			2.0	2 • A	2°8	2	A -2	2 • B	2.C	2 • D	Α.	9.9		0.0	Δ.	H		0	A		0	0.0	Α.	. 8.	.	0.	2.8	.	0	.8	ں • ں	0	.					0	8	J.	0.	• 8	ں	0.	.8	ں •	0.	Α.	8 •	ب	•		_		
6	A1 0.	Al D.	A1 D.	•	B1 D-			C1 D.	C1 D.	C1 0.	0	0 10	010	010	C	EI D	E	EL D.	0	F1 0.	FI D.	F1 0.	0	G1 D.	C1 D.	G1 D.	G2 D.	G2 D.	62 D•	C3 D•	63 0.	0 63	64 0.					HI 0.2	H2 D.2	H2 0.2	H2 D•2	H3 0.2	H3 0.2	H3 0.2	H4 D.2	H4 D.2	H4 D.2	0.2				- u - c		0-5	2
																																																			c	• c			•
																																																			c	• •	•••		•0
																																																			c	• •			•
																																																			0	• • •	0	•	•
																																																			- 0	 		••	•
	-53.	-53.	-41.	Ċ	- 50	-18.		•••	- 50 -	•••	ION	-12.71-	- 6-	-12.75		0.0	0.0	0.0		-26.	- 26 .	••		-40.	-40.	••	-40.	-40.	•	-40.	-40.	•••	- 40.		•	- 40 -	-40.	•••	-40.	-40.	••	-40.	-40.	•••	-40.	-40.	•••		• • • •	- 16-	- 20	-0 -0 -	.040.	.28 0.	.59 0.
HFADFR			5	MOONI			AT BACI				I CUSH.				LOOR				DR SILI				DOOR												PANEL													ILLAK			6.94 7		6. 78 4	2.38 3	3.1 4
-	0.0	0.0	- 10 -	3	0.6-	-20.0	SE	-22.0	-22.0	12.0	SEA	-22.0	-22.0	12.0		-22.0	-22.0	22.0	000	-15.5	-15.5	-15.5	-	-15.5	-15.5	-15.5	-15.5	-15.5		.	-10.5			-10-5	HIP (-12.5	-12.5	-12.5	-12.5	-12.5	-12.5	- 1.5	- 1 - 5	- - - 5		1. 	<u>.</u>			1 4 1 4 1 1	46.4	16.4	4.41	2.57	3.99
16 (16 (16 C				16 0				16 C				16 0				16 (16 0													0			TOR SO	TOR 50	r ur su	×	Ū.
1 3	.16	-12.	31.	ه ۲ ۲	-12.	31.0	4 3	. 6	-8.5	. 6	4 3	25.	•	25.	е 5	54.		54.0	1 3	54.0	0.0	54.	5 3	31.	-12.	.16	31.	-12.	• 1 6	.10	-12.	• 1 6	• • • •	31.	1 3	31.	-12.	31.	31.	-12.	31.	31.	-12.	34.	11.	-14.	.1c		• • •		LOWER	CENTER	UPPER	NEC	HEA
٦				-			7				1				-				1				4												4												-	-			0	• 0	~ ~	0	0
-			,	N			•								ŝ				9				~				ŝ								8													~			-	2	1	4	\$
	0			c				••			:	•				••			•	•				•			00.		50			-	•		-	••			.00			eo.		-	••		,	C	•		7	· 7	ŝ	4	ŝ
120	121	122	123	124	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	[43	144	145	146	141	147.1	14/•2	141.0	+••+1	141.00	2 2 7	147.8	6.7.9	148	149	150	151	52	[53	54	[55	8 2 2	1 5 1	50				40.4	60.8 A.0.8	61	62	63	164	.65

.

42

Thrir 5. 'sti of B line olde of the Ut Fi (Pag

of

• • •	7 7 2010	147 · 7460 · ·	. 2.2	- 23 6 0	~ _	0 ~	C	~ 5
14.0			2.45		• • •		ů.	0 5
108	8 8 0	KIGHI FUUT	1.52	1.8 2.220	• 0• • •	J U . U .	0.	0.5
169	9 9 O LE	FI UPPER LI	EG 2.99	3.74 12.4 0	. 02	.60. 0.	0.	0.5
170	10 10 0 LE	EFT LOWER L	EG 2.36	2.23 9.07 0	. 0	450. 0.	0.	0.5
171	11 11 0	LEFT FOOT	1.52	1.8 5.22 0	. 09	5 0. 0.	0.	0.5
172	12 12 ORIC	GHT UPPER AI	RM 2.07	1.64 6.88 0	. 0. 0.	0. 0.	0.	0.5
173	13 13 ORIG	GHT LOWER A	RM 1.3	1.11 8.38 0	. 0. 0.	0. 0.	0.	D.5
174	14 14 O LE	FT UPPER A	RM 2.07	1.64 6.88 0	. 0. 0.	0. 0.	0.	0.5
175	15 15 0 LE	EFT LOWER A	RM 1.3	1.11 8.38 0	. 0. 0.	0. 0.	0.	D.5
176	0 0 0	0 0	00	0 0 0	0 0 0	0 0		D.7
177	L PANEL M	ATERIAL	1 -1	00.0	5	0.	0.	D.9.A
178	2 THORAX	MATERIAL	-1 -1	00.0	5	0.	0.	0.9.A
179	3 EL 008	MATERIAL	-3 -1	0 0. 0	5	0.	0.	D.9.A
180	4 SFAT	MATERIAL	-2 -1		5	0.	0.	D.9.A
181	5 DOOR	MATERIAL	-4 -1	0 0. 0	5	0.	0.	0.9.4
182	22410 4	MATERIAL	-5 1	0.001	5 .A	1000.	10000.	0.9.4
182.5		MATERIAL	-6 -1		· · ·	0	0	D.9 A
192	5)	HATENTAL	-0 -1	00. 0	• ••	0.	0.	C 1
184	1 4090							
105	1 4000.							C.J.A
185	1							E.J.B
186	1							E • 5 • C
187	2 40.							E.5.A
188	2							E.5.B
189	2							E.5.C
190	3 860.							E.5.A
191	3							E.5.8
192	3							E.5.C
193	4 1000	562.5 1031	.25-562	.5 93.75				E.5.A
194	4							E.5.B
195	4							E.5.C
196	5 10000.							E.5.A
197	5							E.5.8
198	5							E.5.C
198.2	6 4000.							E.5.A
108 4	6							5 5 A
170.4	0							C • J • D
148.0	0							
199			-	2	•	•		E • J • A
200	1 -1.	0.	0.	.د	0.	0		E.5.0
201	0. 3.	4.						1 E.5.E
202	1. 0.	0.	3000.	13000.				1 E.5.F
20 3								E.5.D
204	10.	10000.	-1.					E.6
205								E.6
206	1 4							F.1.A
207	1 3							F.1.B
208	1 4							F.1.B
209	18							F.1.B
210	1 -13							F.1.B
21.1	2 1							F.1.4
212	2 3							E.1.8
213	3 2							F.1.A
214	3 3							F 1.0
215	2 2							T • L • D
212								
210	1 U							F • L • 4
211	2 3							F.1.A
218	5 1							F.1.B
219	5 2							F.1.B
219.5	5 9							F.1.8
220	ύ 2							F.1.A
221	64							F.1.B

TABLE 5. Listing of Baseline Side Impact Input Data File (Page 4 of 6)

43

,

TABLE 5. Listing of Baseline Side Impact Trout nata Fire (Pare 5 or c)

-

e

		С С С С С С С С С С С С С С
	- · · ·	
	•	
	- 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
	30.0 0.0 12.0 12.0 12.0 12.0 12.0 12.0 12	
0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0000000000000000000000000000000000000	
222 222 222 223 233 233 233 233 233 233	1 0 0 4 0 0 0 8 1 0 0 4 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0	222 222 222 222 222 222 222 222 222 22

44

•

TABLE 5. Listing of Baseline Side Impact Input Data File (Page 6 of 6)

.

۲ د	۲ 4 0
Н. 4. Н. 5.	н 6 Н 7
15	11
14	14
13	13
12	12 9
11	°11
6	6 8
8	a v
Q	Q 4
ŝ	1 4 m 5
m i	12 2
	113
10:	14
281 282	283 284 285 END OF FILE

.

`

5.3 PEDESTRIAN IMPACT INPUT DATA

This part of the report contains the numerical details of the baseline pedestrian impact data set. Table 7 contains the computergenerated output of the input data set. Table 6 is a summary of the contents of this table. Table 8 is a copy of the baseline data file which was constructed for this exercise.

Page in Table 7	Data Card I.D.	Input Quantities
1	А	Controls
2	B.2,B.3	Occupant mass and inertial properties.
		Joint definitions.
3	B.4,B.5	Joint torque characteristics.
4	B.6	Segment integration convergence test input.
5	С	Vehicle linear and angular time histories.
6	D.2	Location of contact planes.
7	D.5	Ellipsoid semiaxes and orientation
7	D.7	Symmetry input
7	D.9.A	Material normal force specifications.
7	D.9.B	Material tangential force specifications.
7,8	E.5.A-E.5.C	Bivariate polynomial specifications for force generation
9	F.1	Allowed contacts
10	G.1,G.2,G.3	Initial positions

TABLE 6. CONTENTS OF OUTPUT OF INPUT TABLE. PEDESTRIAN IMPACT.

The Tables 6-8 have described the pedestrian data set for the case of a simple hinge knee. Some modifications were necessary to simulate the hinge knee with the capability of breakage using the Euler joint option as was discussed in Part 3.2. Changes were necessary to the B.3, B.4, and B.5 cards. Table 9 contains the new or changed lines (marked with an asterisk) in the data listing surrounded by unchanged lines for comparison with Table 8.

	(V KD S V		0. 100000000F+01	HPIN =0.005000	0000000 E+0 3 0*00000000000000000000	
			0+1000000000000001	HMAX =0.005000	000000E+00 0*2000	
W 3-D CRASH VICTIM SIMULATION PROGRAM	51N= 0 IRSOUT= 0 PSTIME = 0.0		UNTIT = SEC. 0.100000000E+01 •0 • 386-0880}	= 200 DT =0.005000 H0 =0.0C5000	00000000E-02 0+100C000C0E+01 0+100000	
CAL SPA	LI APR 1980 0CT 1, 1980 TRS NPRI ARRAY 1 0 0 0 0 0 0	BASELINE PEDESTRIAN DATA SET	UNTITL ≈ IN. UNLIF ≈ LB. GRAVITY VECTOR = (0.0 , 0.	NDINT = 4 NSTEPS KHTLPR= 1 MAXLIN= 50L	EPSTLONS 0+10000000000000 0+1000	

TABLE 7. Output of Baseline Input Data Set. Pedestrian Impact. (Page 1 of 10)

.

CRASH VLCI	UOM MUD	IFIED SIERRA		IA SEGMEN	10f 11 S1	NIS						CARDS	R . 2
			SEGM	ENT MOMENT	OF INERTIA	-							
I SYM PLC	1 (19		. .	X 1 50.	- 36.0° • • • • • • • • •	Z Z							
1 LT		0.033		1.78000	1.14000	1.71000							
2 CT 4		0.024		0.32500	0.31400	0.14900							
E IN f	~	0.082		2. 32000	1.455000	00066.1							
4 11 2	•	0.008		0.04000	0-04000	0.00660							
5 i I	_	0.026		0.25900	0.31100	0.20000							
6 RUL 6		0.045		0.12100	0.1.1300	0.15400							
I URLE	-	0.004		0.00660	0.00663	01200.0							
8 LRLL	-	0.014		0.21430	0.21578	0.01490							
9 RF 6	~	0.007		0.93830	0.04340	0.01320							
10 1 01 5	~	0.045		0.12700	0.10300	0.15400							
וו ווו	-	0.018		0.44000	0.4.1200	0.61 900							
12 LF E	-	0.007		0.03830	0*0*0	0.01320							
13 RUA C	, •	0.014		0.16400	0.10600	01410.0							
14 RLA C		0.008		0.20000	0.24000	0.01000							
15 LUA E		0.014		0.16400	0.10600	0.01410							
16 LLA F		0.008		0.20000	0.2000	C. 01 000							
17 RHA C	, •	0.005		0.10000	0.1.000	0.010.0							
18 L HA		0.005		0.10000	0.00 1.0	0.01000							
					بہ								
												CARD	5 B.3
INIOF		LOCATION	- (-NI	SEGUANT)	L OC AT ION	IN.) - SEG	3(] • 1)	PRIN. AXI	S(DEG) ~ S	EG(JNL)	PRIN. AXIS	(030)	S EG (J+1)
J SYM PLC	NI J INF II	×	۲	7	×	>	7	A A W	PITCH	ROLL	1177	P I ICH	R011
- - -	1 - 2	-1.60	0.0	-2.50	-1.50	0.0	2.50	0.0	0.0	0.0	0.0	0.0	0.0
2 M	J 2 - 2	-1.50	0-0	-2.30	- 1. 50	0.0	6.80	0.0	0.0	0.0	0.0	0.0	0.0
3 NP D	N 3 - 2	-0.90	0.0	-2.20	0.0	0.0	3.80	0.0	0.0	0.0	0.0	0.0	0.0
4 HP 4	1 4 - 2	0.0	0.0	-1.20	-1.10	0.0	3.30	0.0	0.0	0.0	0.0	0.0	0.0
5 RH (0 1 0	0.0	2.80	1.50	0-0	0.0	- 7. 31	0.0	0.0	0-0	0.0	0.0	0.0
6 RK	۲ و ا	0.0	0.0	6.19	0.0	- 0.0	-1.75	0.0	0.0	0.0	0.0	- 60.00	0.0
7 RIF .	1 -2	0.0	0-0	1.75	0-0	- 0.0	-6.33	0.0	0.0	0-0	0.0	0.0	0.0
8 RA	5 8 -2	0.0	0.0	6.33	1.54	- 0.0	-1.28	0•0	0.0	0.0	0.0	00.06	0.0
6 LII 1	1 1 0	0.0	-2.80	1. 50	0.0	- 0.0	16.7-	0.0	0.0	0.0	0.0	0.0	0.0
10 I.K (1 10 1	0.0	0.0	6.19	0.0	- 0.0	- 7. 48	0•0	0.0	0.0	0.0	-60.00	0.0
11 FV -/	V 11 - 2	0.0	0.0	8.69	1.54	- 0.0	-1.28	0.0	0.0	0.0	0.0	11.50	0.0
12 RS 1	V 3-2	1.03	6.60	-1.60	0.0	- 0.0	-5.25	0.0	0.0	0.0	0•0	0.0	-45.00
13 RC 3	x 13 -1	0.0	0.0	5.45	0.0	- 0.0	-4.00	0.0	0.0	0.0	0.0	45.00	90.00
14 F S J	r 3-2	1.00	-6.60	-1.60	0.0	- 0.0	-5 • 25	0.0	0.0	0-0	0.0	0.0	45.00
15 LE	<u>1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -</u>	0.0	0.0	5.45	0.0	- 0.0	-4.00	0.0	0.0	0.0	0.0	45.00	- 70.06
16 RW F	(14 -1	0.0	0.0	4.00	0.0	- 0.0	-2.00	0.0	0.0	0.0	0-0	10.00	45.00
I / LW I	1 16 -1	0.0	0.0	4.00	0.0	- 0.0	-2.00	0.0	0.0	0.0	0.0	10.00	-45.00

TABLE 7. Output of Baseline Input Data Set. Pedestrian Impact. (Page 2 of 10)

CAPUS R.4		JCINT N 510P (DEG)		000°02	35.000	35.000	35.000	10.000	90.000	0.0	10.100	10.500	90.000	90.700	190.000	90.000	190.000	90.000	000-06	000.06	CARDS B.5	EMPULSE RESTITUTION COEFFICITIN	0.0	0.0	0.0	0.0	0.0	0.0	ŋ . ŋ	. 0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	ER LSTICS	ENERGY DI SS IPATIO CCEF.		000.1	1.000	000.1	1.000	1.000	000-1	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1 - 000		 VFLOCTTY CKED_JOINT /SEC.) 	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	NG CHARACT	/DEG**J) CURIC [J=3]		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0		MIN. ANG For Unlg (rad)																	
	ORSTONAL SPRI	EF. I IN. LB. Quadratic (J=2)		604.230	60.923	60.923	60.923	609.230	1000.000	0.0	94.431	609.230	1000.000	94.431	609.230	1 000-000	609.230	1000.000	600-000	600.000		TORQUE FOR Ocked Joint IN. LB.)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1	SPRING COU LINEAR (J=L)		10.000	34.383	8.011	8.011	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	L DCK-HNL DCK	FOR MIN UINT UNL							~										
		JO INT ST OP (DE G)		20.000	35.000	25.000	25.000	85.500	50.000	0.0	000.06	85.500	000.00	5C. 000	15.500	80.000	15.500	80.000	45.000	45.000	UNE STIES	MAX TORQUE A LOCKED J I IN. LB	0-0	0-0	0.0	0.0	0.0	0.0	505 .5(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	1 5 1 1 C S	ENERGY DISSIPATION COLF.		1.000	1.000	1.400	1.000	1.000	1.400	1.000	1.000	1.000	1.000	1.000	1.000	000-1	1.000	1-400	1 - 400		DUS CHARACTER	FRICTION R VELOLITY /SEC.)	.00	00	00	.00	• 00	.00	• 00	. 00	•00	• 00	.00	. 00.	• 00	• 00	• 00	.00	.00
	HARAC TER	(0.0	0.0	0.0	0.0	c•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0			FULL ANGULA (DEG	90	30	00	30	30	30	٦	96	30	05	30	30	9	30	30	06	30
CS	URAL SPRING C	{ N. LB./DE UAURATIC (J=2)	Ţ	609.230	60.923	60.923	60.923	609.230	16.754	0.0	627.510	609.230	16.754	627.510	609.230	11.691	609.230	11-697	6 00 - 000		UT.	C OULOMD FRICTION COEF (IN- LA-)	10-00	1 9- 00	10.00	10.00	10.00	10.00	0.0	10.00	10.00	10.00	10.00	0.0	10.00	0.6	5.0.00	100.001	100.00
CUE CHARACTER IST I	FLEX	SPRING COEF. Linear q (J=1)		1 0.000	20.944	11.174	21.293	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0-0			V I SCUUS COEFFICIENT IN- LB-SEC-ZDEG)	10.000	10.472	1.745	1.745	100.6	1.000	0.0	0.436	3.997	1.000	0.436	0.0	0.200	0.0	0.300	1.000	1.000
JOLAL TURG		INIOF		-	7 N	3 NP	4 HP	5 RH	6 RK	1 RIF	8 R A	9 1.11	10 L.K	11 1.4	12 RS	LJ RE	14 LS	15 1 E	16 RW			1) 1110f	d 1	M	3 110	4 HP	5 RH	6 RK	I RIF	R RA	9 LH	10 LK	11 FV	12 RS	1.3 R.C	14 15	15 (6	16 RM	17 LU

TABLE 7. Output of Baseline Input Data Set. Pedestrian Impact. (Page 3 of 10)

			51111	1146	JUL VI AV	5111	AN CLU A	R ACCH FR	AT INNS	A I NE A	R ACCELER	ALLONS
	ANCOL	LAR VELOC			IN. / SEC.		¥	AU/SEC.**	±2)	•	IN-/SEC.*	•21
SECON MT	HAG.	A35-	RÉL.	MAG.	. Sub.	REL.	MAG.	ABS.	REL.	MAG.	ABS.	RLL.
ND. SYM	TEST	EKRUR	ERRUR	16.51	EKNUR	ERRUR	T F S T	ERRUR	EKROK	TESI	ERROR	ERRUK
1 1 1	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0-0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0-0	0.0
W 7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0
5 II II	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0-0
6 RUI	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0
7 URLI	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H KI I	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9 RF	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10 1 11	0.0	0.0	0.0	0-0	0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0
11 111	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12 LF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I A RUA	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14 KI A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
15 1 UA	0.0	0.0	0.0	0.0	0.0	0 . 0	0.0	0-0	0.0	0.0	0.0	0.0
	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
I / RHA	0.0	0.0	0.0	0.0	0.0	0-0	0-0	0.0	0.0	0.0	0.0	0.0
18 1114	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

TABLE 7. Output of Baseline Input Data Set. Pedestrian Impact. (Page 4 of 10)

, ,	ں م	VDI	0.1000 4.0				-	
		~	-	[N-)	0.0		S LDFG ROLL	0.0
		NATAB ATO	DAGE AC	SPLACEMENTS (0.0	166 AC. 1	R DISPLACEMENTS PITCH	0.0
		x 0 [Z] 0 - 0		L INEAR DT: X	0.0	Ы	ANGUL AR YAW	0*0
		0-0)	./SEC.) 2	0.0		(DEG/SEC .) Z	0.0
		XC(X) 0-0		ICLITES C IN Y	0.0		VELOCT TES Y	0.0
		2.1PS 0.0		AR VELC	00		NGULAR	
		(Y I PS) VI IME 0.0		LI NF X	0.		*2) AI	0.0
	11 10 MbH	XIPS 0.0	۲.	UNS (6•5) Z	0.0	7	DEG / SEC • • • Z	0.0
PUTS	EL S MOVING A	R011 0.0	TIME HISTOR	R DECELERATI Y	0.0	TIME HISTOR	LERATIONS C	0.0
ELERATION IN	T REST - PANI	PT TCH 0.0	HICLE LINEAR	L I NEAL X	0.0	ICLE ANGULAR	ANGULAR ACCE X	0.0
VEHICLE DEC	VEHICLE A	0°0 MV X	ROTATING VE	TIME (SEC.)	0.0 U. 50000	CULATING VEHI	TIME (SEC.)	0.0 0.50000

•

TABLE 7. Output of Baseline Input Data Set. Pedestrian Impact. (Page 5 of 10)

	S
	-
	>
	۵.
	z
	_
1	=
	-
	_
	1

CARDS 0.2

PLANE NO.	ι.	= WI IWNN	2. NM	A TRL =	ι, ι	E DG SW=	3. NINTRL= 0	1 I SOLAT= 0	. WITH NAME OF	ROOF		
I I MEF F 0.0 1.0000		X1 71.6700 -104.3300		Y1 3.0 0.0		Z1 - 49. 8300 -49.8300	x 2 74.9000 - 101.1000	Y2 36.0000 36.0000	2 2 -49.8300 -49.8300	X3 100.0000 - 76.0000	Y3 0.0	23 -49.8300 -49.8300
PLANE ND. TIMEFF 0.0 1.0000	2,	NUMT IM= XI 51.0300 -124.9700	2. 111	ATRL= Y 1 0.0	 -	EDG SW= Zt - 37.1700 - 37.1700	3, NINIRL= 0 X2 55.8400 -120.1600	• I SnL A 1= 0. Y 2 36.0000	• WITH NAME OF 72 -37.1700 -37.1700	W I NDSHJEL () X3 71.6700 -104.3300	۲3 0-0	23 -45,8300 -49,8300
PLANE ND. 11MEFF 0.0 1.0000	е	NUMT IM= X1 6.5700 -169.4300	2. NM	ATRL= 71 0.0		EDG SW= ZL - 31.7400 - 31.7400	3, NINTRL= 0 x2 9.3400 -166.6600	• I SOLA 1= 0, Y2 36.0000 36.0000	• WITH NAME DF 22 -31.7400 -31.7400	HOGU X3 51.0300 -124.9700	Y3 0.0	23 -37.1700 -37.1700
PLAHE ND. 11MEFF 0.0 1.0000	4	NUMT IM= X1 3. 5200 -1 /2.4800	2. MM	AFRL= V1 0.0 0.0	- -	EDG SW= 21 0.0	3, IIINTRL= 0 x2 6.4500 -169.5500	, I SGLA 1= 0, Y 2 36.0000 36.0000	• HITH NAME UF 22 0.0 0.0	GRILL X3 4.5100 -171.4900	۲3 0.0	23.5000 -29.5000 -29.5000
PL AME NN . TI MEF F 0 . 0 1 . 3000	5	NUMT I M= XL 00.1700 -175.8300	2. NM	ATRL= Y1 0.0 0.0	L • L	EDG SW= 21 0.0	3. NINTRL= 0 X2 2.1200 -173.8800	• ISOLAT= 0. Y2 36.0000	, WITH NAME UF 22 0.0 0.0	BUMPER X3 0.0 -176.0000	۲3 0.0	Z3 -26.0000 -26.0000
PLAHE NO. TIMEFF n.o	6,	NUMTIM= X1 - 100.0000	1, NM/ 16	ATRL= Y1 33.0000	2 • L	EDG SW= 2 2 L 0.0	3, HINIRL= 0 x2 10.0000	, [50LAT= 0, Y2 100.0000	, WITH NAME DF 22 0.0	GROUND X3 -100,0000	۲3 100 -0000	2.9 0.0
PLANE NG. TIMEFF 0.0 1.000	:	0064-171- 0064-171- 17 - 171-	2 , NMA	ATRL= Y1 0.0	- '' •	EDGSW= 7 ZL -29.5000 -29.5000	3, NINTRL= 7, x2 7,2900 -168,7100	• I SOLAT= 0. Y 2 36.0000 36.0000	MITH NAME DF Z2 -29.5000 -29.5000	GRILL 10P X3 6.5730 -169.4300	۲۶ 0.0 0.0	23 -31.7400 -31.7400

TABLE 7. Output of Baseline Input Data Set. Pedestrian Impact. (Page 6 of 10)

TANUT TUUAL	ELLIPSOID INPUT										5	ARD \$ D.5
• 00			SEM TAXE X	s (IN.)	2	011 X	ESET (1	(· ·)	2	RNTAT I Vaw	CN (DEG) PTTCH	RULL
1 1 0	LOWER TURS		4.940	5.500	1.600	0.0	0	0.0	0-0	0.0	0-0	0.0
	CENTER TORS	<u>,</u>	4.910	5.750	1.030	0.0		. 0.0	-2.000	0.0	0.0	0.0
			012.6	008.0	4.940			0.0	0.0	0.0	0.0	0.0
 	HLAD		000.0		002 7				0.0	0.0	0.0	0.0
6 6 0	RIGHT UPPER L	50	2 990	2.500	002-11				1.500		0.0	0.0
1 1 0	RIGHT KNFE		2.360	2.230	1.750	0.0		0.0	0.0	0.0		
6 8 6	RIGHT SHIN		2.360	2.230	4.340	0.0	0	0.0	0.0	0.0	0.0	0.0
0 6 6 6 7			1. 5 20	1.800	5.220	0.0	•	0-0	0.950	0.0	0.0	0.0
	LEFT LOVER L	و بر	056.2	2.500	002 -11	5		-	·1.500	0.0	0.0	0.0
12 12 0	LEFT FOUT		1.520	1 - 800	5 220			-	0.450	0.0	0.0	0.0
13 13 0	RIGHT UPPER A	IR II	1.870	1 - 440	6.880				0-0-0		•••	
14 14 0	R IGHT LOWER A	RM	1. 400	1.400	5.150	0.0			0.0	0.0	0.0	0.0
	LEFT UPPER A	NR M	2.070	1.640	6.880	0.0	0	.0	0.0	0.0	0.0	0.0
1 2 1 2 0	DICHI LUMEK A	KK4	1.400	1.400	5.750	0.0	0	0	0.0	0.0	c. o	0.0
18 18 C	LEFT HAIN		1.200	1.200	3. 700 3. 700		•••	0	0.0	c.o	0.0	0.0
						,	,			•		
NUDY SECMEN)	T SYMMETRY INDUF											
											0	ARD D. 7
SEG NO. NSY4(J)	1 2 3 4 0 0 0 0	0 0 0 0	7 8 7 0 0 0	0 0	12 13 1 0 0	15 16 0 0 0	17 18 0 0	_				
NATE RI AI	NORM AL FORCE S	P EC 1F IC	NU LUN								0	A. 0 . 0 . A
NMA FR L NA	AME	MSTU	ACREAR IFE	UC UC		90		5	L		:	
						70		5	-	1 1 2	MC	
I PANE 2 (3 GRII	EL MATERIAL SROUND L TOP MATL.		0 -	0.0 0.0		0°0 0°0		0.0		e c o	0.0	
FRIKC I 0	AL FURCE SPECIF MUO U. LOUOUUOE+0I	16AT 10N Mut 0.0		RUZ 0. 0	-0 -	0	A2 0.0		FTMAX 0.1000	VEL RAMP 1 0006+04	.FNGTH. C.1 000006	CARD D.9.8 +90
BT VART ANT P.C	LYACMIAL SPECIF	L CAT LONS										ر بر بر ح
	-										LAKUN E.).4-E.J.C
NPOLY 1	0.1000000	16-04	0.0	o	0 00	EFFICIENTS 0.0				0 0		
	0.0		0.0	Ċ	o c	0.0				0.0		
	0.0		0.0	ć c	0.0	0.0		0.0		0.0		
									_	.		
TABLE	7. Output e	of Bas	eline In	put Dat	ta Set.	Pedestr	ian In	npact.	(Page 7	of 10)		

53

-

c o o o o o o o	0000
0000 0000	0000 000
0.0	0000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000
00000	
0.47000030E+01 0.0 0.0 0.0	40+ 10000005.20 0.0 0.0 0.0

TABLE 7. Output of Baseline Input Data Set. Pedestrian Impact. (Page 8 of 10)

N

.....

.

ALLOWED CONTACTS AND ASSUCTATED FUNCTIONS

1 LOWER TORSO 2 MINDSHIELD 1 LOWER TORSO 3 HOUD 1 UPPER TORSO 3 HOUD 1 UPPER TORSO 2 MINDSHIELD 1 UPPER TORSO 3 HOUD 1 UPPER TORSO 3 HOUD 1 HEAD 2 MINDSHIELD 1 HEAD 2 MINDSHIELD 1 HEAD 2 MUD 1 RIGHT UPPER LEG 3 GRILL 1 RIGHT UPPER LEG 3 GRILL 1 RIGHT UPPER LEG 5 GUMPER 1 RIGHT UPPER LEG 5 GRUND 1 RIGHT UPPER LEG 5 GRUND 1 LEFT UPPER LEG 5	LEEP SOLID CONTACTS	V V d	4EL OR MAME
LOWER TORSO 2 MINOSHIELD LOWER TORSO 3 HOUD LOWER TORSO 7 CRILL TOP UPPER TORSO 7 CRILL TOP UPPER TORSO 1 KNO5 UPPER TORSO 2 MINOSHIELD UPPER TORSO 2 MINOSHIELD HEAD 2 MINOSHIELD HOD 2 MINOSHIELD HOD 2 MINOSHIELD HEAD 2 MINOSHIELD HOD 2 MINOSHIELD HEAD 2 MINOSHIELD HOD 2 MINOSHIELD HEAD 2 MINOSHIELD HOD 2 MINOSHIELD HEAD 2 MINOSHIELD HOD 2 MINOSHIELD HOD 2 MINOSHIELD HEAD 2 MINOSHIELD HOD 2 MIN		I NUE A	NAME
LOWER TORSO3HOUDLOWER TORSO7GRILL TOPUPPER TORSO7GRILL TOPUPPER TORSO2MINDSHIELCUPPER TORSO3HOUDUPPER TORSO3HOODUPPER TORSO3HOODNGHI UPPER LEG3HOODRIGHI UPPER LEG3HOODRIGHI UPPER LEG3HOODRIGHI UPPER LEG3HOODRIGHI UPPER LEG5BUMPERRIGHI UPPER LEG5BUMPERRIGHI VPPER LEG5BUMPERRIGHI VPPER LEG5BUMPERRIGHI UPPER LEG5BUMPERRIGHI VPPER LEG5BUMPERRIGHI VPPER LEG5BUMPERRIGHI UPPER LEG5BUMPERRIGHI UPPER LEG5BUMPERRIGHI UPPER LEG5BUMPERLEFT UPPER LEG5BUMPERLEFT UPPER LEG5BUMPERLEFT UPPER REG5BUMPERLEFT UPPER ARM3HOODLEFT UPPER ARM3HOOD	LOWER TORSO	2	MINDSHIELD
LOWER TORSOTGRILL TOPUPPER TORSO1 ROF ROF UPPER TORSO2 $HINDSHIELC$ UPPER TORSO2 $HINDSHIELC$ UPPER TORSO3 $HOOD$ HEAD2 $AIOSHIELD$ HEAD3 $HOOD$ RIGHT UPPER LEG3 $HOOD$ RIGHT UPPER LEG3 $HOOD$ RIGHT UPPER LEG3 $HOOD$ RIGHT UPPER LEG5 $BUMPER$ RIGHT VPPER LEG5 $BUMPER$ RIGHT VPPER LEG5 $BUMPER$ RIGHT VPPER LEG5 $BUMPER$ RIGHT FOOT6 $GRULL$ LEFT UPPER LEG5 $BUMPER$ LEFT UPPER LEG5 $BUMPER$ LEFT UPPER LEG5 $BUMPER$ LEFT UPPER REG5 $BUMPER$ LEFT UPPER REG5 $BUMPER$ LEFT UPPER REG5 $BUMPER$ LEFT UPPER ARM3 $HOOD$ LEFT UPPER ARM3 $HOOD$ LEFT UPPER ARM3 $HOOD$	LOWER TORSO	m	000H
UPPER TORSOIKOFUPPER TORSO2MINDSHIELDUPPER TORSO3HOODHEAD1ROFHEAD2MINDSHIELDHEAD3HOODRIGHT UPPER LEG3HOODRIGHT UPPER LEG3HOODRIGHT UPPER LEG3HOODRIGHT UPPER LEG3HOODRIGHT UPPER LEG3HOODRIGHT UPPER LEG5BUMPERRIGHT FOOT6GRILL TOPRIGHT FOOT6GRILL TOPLEFT UPPER LEG5BUMPERLEFT UPPER LEG5BUMPERLEFT UPPER LEG5BUMPERLEFT UPPER LEG5BUMPERLEFT UPPER LEG5BUMPERLEFT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT LOMER ARM3HOODLEFT LOMER ARM3HOOD	LOWER TORSO	~	GRILL TOP
UPPER TORSO2MINDSHIELEUPPER TORSO3 $H000$ HEADHEAD2HEAD2 $AINDSHIELD$ HEAD3 $H000$ RIGHTUPPER LEG3RIGHTUPPER LEG3RIGHTUPPER LEG3RIGHTUPPER LEG3RIGHTUPPER LEG3RIGHTUPPER LEG3RIGHTUPPER LEG5RIGHTUPPER LEG5RIGHTNPPER LEG5RIGHTNPPER LEG5RIGHTNPPER LEG5RIGHTNPPER LEG5RIGHTNPPER LEG5LEFTUPPER LEG5LEFTUPPER LEG5LEFTUPPER REG5RIGHTUPPER REG5LEFTUPPER ARM3HODDLEFTUPPER ARMLEFTUPPER ARM3HODDLEFTUPPER ARMLEFTUPPER ARM3HODDLEFTUPPER ARMLEFTLOPER ARM3HODDLEFTLOPER ARMLEFTLOPER ARM3HODDLEFTLOPER ARMLEFTLOPER ARM3HODDLEFTLEFTLOPER ARM3HODDLEFTLEFTLOPER ARM3HODDLEFTLEFTLOPER ARM3HODDLEFTLEFTLOPER ARM3HOD	UPPER TORSO	-	R00F
UPPER TURSOJH000HEADHEADIR00EHEADIEADZAINDSHIELDHEADZJINDSHIELDRIGHTUPPERLEGJH000RIGHTUPPERLEGJR101RIGHTUPPERLEGJGRILLRIGHTUPPERLEGJGRILLRIGHTUPPERLEGJGRILLRIGHTNHPERLEGJGRILLRIGHTSHINSBUMPERRIGHTSHINSGRILLRIGHTSHINSGRILLRIGHTSGRILLTOPLEFTUPPERLEGJGRILLLEFTUPPERLEGSGRUNDLEFTUPPERLEGSGRUNDLEFTUPPERARMJH000LEFTUPPERARMJH000LEFTUPPERARMJH000LEFTUPPERARMJH000LEFTUPPERARMJH000LEFTLOPERARMJH000LEFTLOPERARMJH000LEFTLOPERARMJH000LEFTLOPERARMJH000LEFTLOPERARMJH000LEFTLOPERARMJH000LEFTLOPERARMJH000LEFTLOPERARMJH000 </td <td>UPPER TORSO</td> <td>2</td> <td>M INDSHIELD</td>	UPPER TORSO	2	M INDSHIELD
IIE AUIIE AUIIE AUIIE AU $HEAU$ $HEAU$ Z $AINOSHIELD$ $HEAU$ $REAU$ Z $AINOSHIELD$ $RIGHI$ UPPER LEG A $RUDD$ $RIGHI$ UPPER LEG A $GRILL$ $RIGHI$ UPPER LEG A $GRILL$ $RIGHI$ UPPER LEG A $GRILL$ $RIGHI$ UPPER LEG $BUMPER$ $RIGHI$ SHIN 5 $BUMPER$ $LEFI$ UPPER LEG 5 $BUMPER$ $LEFI$ UPPER RRM 3 $HODD$	UPPER TURSO	~	0000
HEAD2 $4INOSHIELD$ HEADHEAD3 $HOOD$ RIGHT UPPER LEG3 $HOOD$ RIGHT UPPER LEG4 $GRILL$ RIGHT UPPER LEG7 $GRILL$ RIGHT NPPER LEG5 $BUMPER$ RIGHT NPPER LEG5 $BUMPER$ RIGHT FOOT6 $GROUND$ LEFT UPPER LEG7 $GRILL$ LEFT UPPER LEG6 $GRILL$ LEFT UPPER LEG7 $GRILL$ LEFT UPPER LEG6 $GROUND$ RIGHT UPPER LEG7 $GRILL$ LEFT UPPER LEG6 $HOOD$ RIGHT UPPER ARM3 $HOOD$ LEFT UPPER ARM3 $HOOD$ LEFT UPPER ARM3 $HOOD$ LEFT UPPER ARM3 $HOOD$	HE AD	-	R 0.0F
HEAD $HEAD$ $HEAD$ $HODD$ RIGHT UPPER LEG 3 $HODD$ RIGHT UPPER LEG 3 $HODD$ RIGHT UPPER LEG 7 $GRILL$ RIGHT NPFER LEG 7 $GRILL$ RIGHT SHIN 5 $BUMPER$ RIGHT SHIN 5 $BUMPER$ RIGHT FOOT 6 $GROUND$ LEFT UPPER LEG 3 $HODD$ LEFT UPPER LEG 7 $GRILL$ LEFT UPPER LEG 5 $BUMPER$ LEFT UPPER LEG 5 $BUMPER$ LEFT UPPER LEG 5 $BUMPER$ LEFT UPPER ARM 3 $HODD$	HEAD	2	#INDSHIELD
RIGHT UPPER LEGHODDRIGHT UPPER LEGARIGHT UPPER LEGARIGHT UPPER LEGARIGHT KNEFEGRIGHT SHIN5BUMPEREGRIGHT FOOT6CRUNDLEFT UPPER LEG3LEFT UPPER LEG5CHILL TOPLEFT UPPER LEG5CRUNDLEFT UPPER LEG5CHILL TOPLEFT UPPER LEG5CHILL UPPER LEG5CHILL TOPLEFT UPPER LEG5RIGHT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT LOMER ARM3HOODLEFT LOMER ARM3HOODLEFT LOMER ARM3	HEAD	•	0 OOH
RIGHT UPPER LEGA GRILLRIGHT UPPER LEG7GRILLRIGHT UPPER LEG7GRILLRIGHT SHIN5BUMPERRIGHT FOOT5BUMPERRIGHT FOOT5BUMPERRIGHT FOOT5BUMPERRIGHT FOOT6GRUNNOLEFT UPPER LEG3HOODLEFT UPPER LEG5BUMPERLEFT UPPER LEG5BUMPERLEFT UPPER LEG5BUMPERLEFT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT LOMER ARM3HOODLEFT LOMER ARM3HOODLEFT LOMER ARM3HOOD	RIGHT UPPER LEG	Ŧ	00011
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RIGHT UPPER LEG	*	OR ILL
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RIGHT UPPER LEG	1	GRILL TOP
RIGHT KNEF 5 BUMPER RIGHT SHIN 5 BUMPER RIGHT SHIN 5 BUMPER RIGHT SHIN 5 BUMPER RIGHT FOOT 6 GROUND LEFT UPPER LEG 3 HIOOD LEFT UPPER LEG 6 GRILL LEFT UPPER LEG 5 BUMPER LEFT UPPER LEG 5 BUMPER RIGHT UPPER ARM 3 HOOD RIGHT LOMER ARM 3 HOOD LEFT UPPER ARM 3 HOOD LEFT UPPER ARM 3 HOOD	RIGHT UPPER LEG		
RIGHT SHIN5BUMPERRIGHT FOOT6GROUNDLEFT UPPER LEG3HIOODLEFT UPPER LEG7GRILLLEFT UPPER LEG5BUMPERLEFT UPPER LEG5BUMPERRIGHT UPPER ARM3HOODRIGHT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT UPPER ARM3HOODLEFT UPPER ARM3HOOD	RIGHT KNEF	ŝ	BUMPER
RIGHT FOOT6GROUNDLEFT UPPER LEG3HOMDLEFT UPPER LEG4GRILLLEFT UPPER LEG5GRULLLEFT UPPER LEG5GRUNDRIGHT UPPER ARM3HOMDRIGHT UPPER ARM3HOMDLEFT UPPER ARM3HOMDLEFT UPPER ARM3HOMDLEFT UPPER ARM3HOMDLEFT UPPER ARM3HOMD	RIGHT SHIN	ſ	BUMPE R
LEFT UPPER LEG 3 HOMD LEFT UPPER LEG 4 GRILL LEFT UPPER LEG 7 GRILL TOP LEFT UPPER LEG 5 GRILL TOP LEFT LCHER LEG 5 GRUND RIGHT UPPER ARM 3 HOOD RIGHT UPPER ARM 3 HOOD LEFT UPPER ARM 3 HOOD	RIGHT FOOT	9	GROUND
LEFT UPPER LEG 4 GRILL LEFT UPPER LEG 7 GRILL TOP LEFT LCWER LEG 5 BUMPER LEFT LCWER LEG 5 BUMPER LEFT LOPER ARM 3 HOOD RIGHT UPPER ARM 3 HOOD LEFT UPPER ARM 3 HOOD LEFT LOWER ARM 3 HOOD	LEFT UPPER LEG	~	00011
LEFT UPPER LEG 7 GRILL TOP LEFT LCHER LEG 5 GRUMPER LEFT LCHER LEG 5 GROUND RIGHT UPPER ARH 3 HOOD RIGHT UPPER ARH 3 HOOD LEFT UPPER ARM 3 HOOD LEFT LOHER ARM 3 HOOD	LEFT UPPER LEG	.*	GRILL
LEFT LCMER Left FCUT 5 BUMPER LEFT FCOT 6 GROUND RIGHT UPPER ARM 3 HOUD RIGHT UPPER ARM 3 HOUD RIGHT UPPER ARM 3 HOUD LEFT UPPER ARM 3 HOUD LEFT UPPER ARM 3 HOUD	LEFT UPPER LEG	7	GRILL TOP
Left foot 6 Ground RIGHT UPPER ARM 3 H000 RIGHT LOWER ARM 3 H000 Left Upper Arm 3 H000	LEFT LCWER LEG	ſ	RUMPER
RIGHT UPPER ARM 3 HOUD RIGHT LOWER ARM 3 HOUD Left upper Arm 3 houd Left Lower Arm 3 houd	LEFT FOOT	9	GROUND
RTGHT LOHER ARM 3 HOOD Left upper Arm 3 hood Left Loher Arm 3 hood	RIGHT UPPER ARM	Ē	00011
LEFT UPPER ARM 3 HOUD Left Lomer Arm 3 Houd	RIGHT LOWER ARM	ſ	COOH
LEFT LOWER ARM 3 HOGD	LEFT UPPER ARM	ſ	HOOD
	LEFT LOWER ARM	٣	000 H

ELLIPSOID Index name 10 LEFT UPPER LEG

TABLE 7. Output of Baseline Input Data Set. Pedestrian Impact. (Page 9 of 10)

		IN./SEC.)	0-0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0-0	0.0		0.0 0	0.0	0.0	0.0	0.0	0.0		DEG/SEC.)	7	0.0	0-0	0.0	0.0	0.0	0.0	0-0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0.0	0.0
		VELOCITY (0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		VELOCITY	>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0° C	0.0	0.0	0.0
13 0		LINEAR	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0-0	0.0	0.0	0.0	0.0	0.0		ANGUL AR	×	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2 f 0																																									
1 12 0 0		- 1	د 13 . 72000	8.57551	1.36544	3.39393	61.45589	22.31889	7.12080	-5.08009	1.23980	11210.5	1.60614	CB/CA-1-	0.04440	01296.91	13-60811	15.54758	28. 73838	11.45510		()	TOLL	5.00000	5.00000	5.00000	5.00000	15.00000	8.00000	00000.9	6.00000	00000.00	0.00000	25.00000	8,00000	.6.00000	.6.00000	· č. 00000	13.00000	-6.00000	.3.00000
	NCE)	(IN.	1	.	4	5	1	~ .	ī	'	•	1						1	1	1	ΥL	1 (DE C	æ	7	-	1	7	1	_			~	ī	2		1	-	'	4	'	4
0 00.	AL REFERE	PUS 111 ON	15.00000	13.80250	11.44124	10.76366	8.53646	18951.61	10.84816	10.00.00	3.06086	16.65760	20.99189		26609 • 01	11.57020	10.97.62.01	8.51251	12.1602	4 .69 622	AND VELOC	ROLATION S	PT TCH	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12,00000	-12.00000	-15.00000	15.00000	-30.00000	30.0000
PLT(Y) ZPL 30.00 1	IONS (INERTI	LINEAR	-7.50000	- 7. 50000	-7.50000	-1-50300	-7.50000	-4.10000	-4.70000	-4.70000	-4.70000	-10.30000	-10.30000	- 10. 30 100	0.19194	10665.0	-15.45800	-15.83409	-1.33864	-13.79881	AR RUTATION	ARGULAF	HVA	-90.00.06-	-90.00000	-90,00000	-90.00000	- 90,000,06	-90.000.06-	-90.00000	-90.00.00-	-90.00000	- 90.00.00	-90.000.06-	-90.00000	-90.0000	-90.00000	- 90.000.06	-90.00.000	-90.00.00-	-90.00000
10.000 12 (X)112	ITIAL POSIT	GAL NT	• 200	1.7	UT	W	=	RUL	URL	LRLL	5 E	- FUL			RUA	KLA	LUA L		RHA	L HA	ILLI AL ANGUL.	GMENT	. SEC		C T	. 10	2	-	RUL	URLL	I LRLL	R	- F. CH.	ורר	LF LF	RUA I	LLA	i LUA	, I.LA	- F.HA	I LHA
	2	SE	5	1.54		4	67	9		الم	ر · ا			-	-			Ξ.	-	رت =	4	SE	N	-	1.1	-1	×.	د ۱	С	-	نب		-	_	-	-	2		ĭ	_	3

CARDS G.3

CARDS G.2

CARD G.1

SUBROUTINE INITAL INPUT

LINEAR AND ANGULAR VELOCITIES HAVE BEEN SET EQUAL TO THE INITIAL VEHICLE VELOCITIES.

TABLE 7. Output of Baseline Input Data Set. Pedestrian Impact. (Page 10 of 10)

56

-

												•	4 • 1 • 1
	L B. S. 200	EC.1.	0.0	ا۔ 50	0.005	l. .005		c	0•0	386	•• 088		e • •
	90	000000	0 1.	-		-		500.		6 00 .		•	1.5 1.6.A
	18	17		4001E1	ED STE	R A							A.6.8
	5.09	25953	ι.	7.8	-	14		71				-	2.2
	4-024	42949	••	325	.	314	.	149				~	1.2
	3.005	22.35 81.064	~ c	25		20		33 0066				n 4	2•2 ~ ~
	1.026	52375	0	259	0	311		200				5	1.2
	6.04	60713	0.	121	0	103	· `	154				3	3.2
	1.00	39075		0066	0.0	00663	5	0041				~	3.2
	1.01	1453	•	2148	0	21578	- - -	0149				8	5.2
	00.00.0	17711		5850		1434	5 -	UL 32 156					2.2
	A-01	80528			0	442		610					3.2
	B.00	11221	0	0383	0.0	0434		0132				12	2.0
-	C.01	36.2.38	. 0	164	0.1	166	0	1410				13	1.2
~	D.00	11102	0.	2	0	~	5	01				- +1	3.2
~	E.01.	36238	°.	164	- -	166	2	1410				15 6	1.2
-	F.00	20111	0.	2	0	2	5	10				16	3.2
	00.00	51801	.	-	• •		• • •	10				17	2•5
-			· ·	-	- 2 5	ט - ו		11 2 G				<u> </u>	<
	•		0.0	0.0	0.0	0.0	0.0	0.0					8.0.0
	0	2 - 2	-1.5	•0	-2.3	-1.5	0.	6.8				2	1.3.A
	:	1	0.0	0.0	0.0	0.0	0-0	0-0				2	1-3-R
	z	3 - 2	-0-9	• •	-2.2	0.0		3.8				~ 1	۸. ٤. ۱
	W	-		0.0		0.0	.	0.0			-	- u - v	3-5-8 ^
	:	i	0.0	0.0	0.0	0.0	0.0	0-0					5. J. S
	3	0	0.0	2.8	1.5	•0	.0	16.1-				5	A.3.4
			0.0	0.0	0.0	0.0	0.0	0.0				5	8.3. B
	8			•••	6.19	• •	• • •	-1.75				ی د د د	۰.3 ۵۸
	<u>ر</u>	7- 1	0.0	••••	1.15	0.0	n•09-	0.0 -6.335				0~	1.3.A
			0.0	0.0	0.0	0.0	0.0	0.0				~	J.3.B
	s	1 - 2	••	0.	6.335	1.54	••	-1.28				8	1.3.4
	-	Ċ	0.0	0.0	0.0	0.0	90.00	0.0				80	3.3.B
	-											 	E . C . C
	ח	-		.0	6.19			-7.48				0	A
			0.0	0.0	0.0	0.0	00-09-	0.0				10	1.3.B
	<pre>11 </pre>	2		0. 0	8.69	1.54	0.	-1.28				1	1.3.A
	-	-	0.0	0.0	0.0	0•0	11-50	0.0					
	3	2	0-0	0-0	• • • •	.0		-45,0				2 2	1. 3. A
	×	1- 1		0.	5. 45	0.	.0	-4.0				1	A.S.V
		4	0.0	0.0	0.0	0.0	45.0	90.0				61	1.3.R
	>		1.0	-0 -0	0. -	•••	•••	-5.25					
	•		•	>	;		2.0					-	

TABLE 8. Listing of Baseline Pedestrian Impact Input Data File. (Page 1 of 6)

<u>5</u>7

.

. . .

. .

,

15 8.3.4	15 9.3.8	16 B.J.A	10 1. J.B	17 8-3-8	1 8.4.4	2 B.4.A	3 B.4.A	4 B.4.A	5 0.4.4	6 B.4.A	N-4-N				12 8 4 4	A-7-4 FI	14 B.4.A	15 8.4.4	16 8.4.4	L7 8.4.A	1 8-5-1		2 12 - 2 - 4 2 13 - 5 A	5 B. S. A	6 B.5.A	7 B-5.A	A.5.A	9 8.5.4	10 8.5.A	17 A.5.A	13 A.5.A	14 8-5-4	15 8.5.4	16 B.5.A	17 B.5.A	1 8.6	2 0 4	4 B.6	5 8.6	6 8.6	7 B.6	9 11-6	10 9.6	11 A.6	12 8.6	13 8.6	14 8.6	0.1 01	11 0.6	18 0.5	1. 0
					20.0	35.0	35.0	35.0	0.01	0.06	0.0	1.02	2.07 20.02			0.001	1 80. 0	0.06	90.0	0.06																0.0 0.0															
					1.0	1.0	1.0	I . 0		1.0	1. 0						1-0	1.0	1.0	1.0																0.0															
-4.0	0.0	- 2•0	0.0-	, ,	. 23 .0	0. 626	0. 629	923 .0	. 23 .0	0.0.0	•••	• 16 • 0	0. (2.		0.10+		. 53 . 0	0.0.0	0.0.0	0.0.0																0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
•••	45.U -1	•		10-1	0 00.09	38340.	11160.	11140.	60 ⁿ	100			0.00			1001	609	100	69	90																0°0			0.0	0-0	с•л		0.0	0.0	0.0	0.0	0.0			0-11	PH H
••	0.0	•••	.	0-0	10.	34.	8.0	8.0	•	••	0.0	••	9					••	••	••																0.0		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0			0.0	AT 10 M
5 . 45	0.0	4 °0	0.0	0-0	20.02	35.0	25.0	\$2 • 0	35.5	0.0	0.0	40. 0	c. c.	0.04	.	0.08	75.5	80.0	45.0	15.0																															ON ING
0.	0.0	••		0.0	0		0	0	0	0	•	2	0,0			2			0	0.						15.5																									VITELS
L 0.	0.0			- 0-0 - 0	.0 .1.	-0-	• 0 • 1 ·	.0 1.	.0.	•0	• 0 • •	••••••••••••••••••••••••••••••••••••••		 			0	.0.	.0.	•0 1	30.0	30-0		0.05	30.0	1.0 50	30.0	30.0	30.0			30.0	30.0	30.0	30.0																- L - L - L
- 51		- 51			09.23	.0. 923	60.923	50° J23	509.23	16.754	0.0	16-120	504-23	+01.01		109-10	12-60	1.697	0.008	0.005	10.0	10.00	10.00	10.01	10.0	0.0	10.0	10.0	10.0	0.01		0.0	50.0	100.0	0.001																E AT RE
LE 2		RL K			10.0 6	20.9446	17-1746	21.293(•••	•	0.			•				0	0.	• 0 •	10.0	10.472	1. 745	1997	1-0	0.0	0. 4 36	166.1	1.0	0.000		0-0	0.3	1.0	1.0																VEH1CI.
95	15	5.8	50	2	62	63	44	65	66	67	68	69	2;		7			16	11	18	61	80	18	20	7 B	05	96	87	88	6.8		26	59	94	95	96 53	7.6	66	100	101	102	104	105	106	107	108	601				114

TABLE 8. Listing of Baseline Pedestrian Impact Input Data File. (Page 2 of 6)

...

911			-	.0	0.	e	•	. 0		••		0.		-	C.4
111			-	o.	С	¢	,	• 0		••		. c		2	ر • • ر
a c 2 2		-	ç	0 6 -	18	ა "	0 100	•	~	-	.002				0.1
120	Ċ	-	v	11 67		× ح	100	10 07-							0.2.A
121				14.9				10 - C							
122				100-		0.0		-49-83						2	0.2.0
123	-			-104-3	-	0-0	,	- 4 9 . 8 3							D. 2. A
124	•			1-101-		36.0	1	-49.83						A 2	0.2.5
125				- 16.		0.0	I	-44.83						22	0.2.0
126		5	2	1 3	0 0	SO MI M	HIELD								D.2.A
121	0.			51.03		0.0	ļ	-37.17						81	0.2.0
128				55.84		36.0	,	- 37.17						81	0.2.C
129	-			1.6/		0.0	•	-49.83						10	0.2.0
	•						,	11.16-						22	0.2.8
143				01-021-			•	11.16-) · Z · C
133		-	2		0	=	000							20	0-2-0
134	•		ı	6.51	:	0.0		-31.74						10	0.2.8
135				9.34		36.0	,	-31.74						5	D.2.C
136				51.03		0.0		-37.17						с 1	0.2.0
137	-			-167.43	_	0.0	'	-31.74						C 2	0.2.8
861				-166.66		36.0		- 31 - 74						23	0-2-C
091	•	ۍ	~		0	2. N. N.								L N	
141	0.		J	3.52	>	0.0		0.0							N. 2. B
142				6.45		36.0		0-0						5	0-2-0
143				4.51		0.0		- 29.5						10	0-2-0
144				-172.48	_	0.0		0.0						02	0.2.0
145				- 169 - 55		36.0		0.0						02	0.2.C
146				-171-43	-	0.0		-29.5						D2	0.2.0
147		ŝ	z	1 3	0 0	Ð	MPER								0.2.0
148	•0			.17		0.0		0.0						Ш,	0.2.8
				21.2		 		0.0							D.2.C
151	-			1.0			į	. 7 0 0							0-2-0
152	•			88.611-										2 2	
153				-176.		0.0	'	-26-0						1	0.2.0
154	Ĩ	<u>د</u>	-	2 3	0 0	GR	ONNO							1	0.2.A
155	••			-100.		100.		0.0						F.L	0.2.8
156				10.		100.		0.0						Ξ	0.2.C
101	F		~	-100	' : :	-100-		0.0						-	0.2.0
011	ċ		4					205						Ĵ	4 • 7• 11
160				7.29		36.0	I	29.5						5 5	0-2-0
161				6.51		0.0	1	-31.74						55	0.2.0
162	-			-111-49	_	0.0	I	-29.5						62	0.2.8
163				-168.71		36.0	1	29.5						62	0.2.C
501	-	-	ç	-169.43		0.0	' ·	-31.74	¢	¢		d	(62	0.2.0
771			> <					••••	;	5		•			~
167	~ -	. 7	5 0	LENIER I		0 1 0 V	 	.03 0. 04 0.		• 7 - 4					
168	· .•	ب (NFCK				-0 - 10							
169		د	. 0	HEAD		1.99		59.05							
170	9	و	0.0	GHI UPPE	R LEG	2.99.2	- 2 -	.2 0.		-1.5					5.0
171	-	~	0 R I	GHT KNEE		2.36 2	.23 1.	75 0.	••	•••	.0	•••	0.		0.5
11.2	∞ (-	ð	ICHT SHIN		2.36 2	.23 6.	34 0.	••	••	c	•••	.0		0.5
1 7 5	2 2	2 2			001	1.52.1	ت د د	22 0.	••	5. •	•••		.		
175	22	20	20	LET UPTE		2 46.7 7 46.0				-1-	•				
	-	-	2	.[.r.] LIML	2	2.01.02				0.000		ļ			•••

Listing of Baseline Pedestrian Impact Input Data File. (Page 3 of 6) TABLE 8.

176	0 21 21	11111	1.52	1.0	5.22	•	с	• 95		•••	.0	D.5	
1/1	13 13 0RI	GHL UPPER	NKM 1.8	7 1.64	6.88	.			•••	•	•••	5 - C	
179		FFT HPPER	RM 2.0	7 1.64	61.64								
1 80	10 10 1	EFT LOWER	NRM 1.4	I	5.15					•••	••	0.5	
181	17 17 0	RIGHT HAN	1.2	1.2	3.7	. .			•••		•0	0.5	
281	18 18 0 0 0	LEFT HAW	· · · ·		0	ہ ۔ م	•••		- 		••	5•0 1-2	
184	L PANEL	MATERIAL) - I -	0.0	,	•••	, 0		•		0.	0.9	•
185	2 GRI	UND		10.			0		••		•••	0.9.	< '
186				• •		•••	2	1000.	-	_	••		< 4
180	51			-	•	;			•			E.1	•
189	1 1000.											E • 5 • 1	•
061												л. С. С. С.	æ (
191	2 410-												2 4
193	2											E.5.1	
194	7											E.S.	ى
195	3 2000.												< c
197	ا س											E.5.	ں ہ
861												E.5.	•
199	-											ш. 	ο.
201	 												• =
20.2												F.L.	c
2.03	1 7											F.L.	-
204	0 v 2 v												< •
202	 -												2 0
207	• ~												c @
208													æ
209	4 0											F.1.	<
210													< (
211	 												r c
212	• •												
214	4											F. L.	
215	6 3											F.1.1	£
216	4 " 2 •												c
112	01 - 9												c =
219													-
220	75											F.L.I	=
221													< 0
222	n -												• <
224	9 6											F. L.	-
225	10 3											F.L.	~
226	6 ·												= -
122	1 4												
224													. <
230													-
112	12 1											F.L.	<
232	12 6												~ •
2.34 2.34													
235	14 1											F - L - /	

п. 		7 6.9 9 6 6.9 1 1 2 6.9 1 2 6.9 1 2 6.9 1 4 6 6.9 1 4 7 6 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7	A 1.1. A	10 H-1-0 12 H-1-0 13 H-1-0 15 H-1-0 16 H-1-0 16 H-1-0 14 2.A 14 1.A 14 1	6 H.J.B 7 H.J.B 7 H.J.B 9 H.J.B 9 H.J.B 10 H.J.B 11 H.J.B
		·	0.000 C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0
	C		0.0 0.0 0.0 0	o ocoo o ocoo	0.0
	L. 0 - 13. 72 - 15. - 15. - 15. - 15. - 15. - 16.	6 . 0 9 . 0 9 . 0 9 . 1 9 . 1	•••• •••• ••••	o ooooo	0.0
	5.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		N248928 -8892	8 ° 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.0 -7.5 -90. -90. -90.	.061 .061 .061 .061 .061 .061	 	<u>ه</u> د	
22222222222222222222222222222222222222	2550 2550 2550 2550 2550 2550	252 255 255 255 255 255 255 255 255 255	266 265 265 268 268 268 268 279 271 271 271	2773 2775 2775 2775 2775 2775 2885 2885 2885	286 281 281 281 293 294 293 293 295 295

TABLE 8. Listing of Baseline Pedestrian Impact Input Data File. (Page 6 of 6)

Н. ч. В	11.4 . A	H.5.A	H.5.A	N.7.H	11.7.0	•								
16				11	•									
	12		12	10										
	11		11	1										
	(; 		10	6										
	6		6	9										
	8		8	æ										
	1		7	5										
	ç		ç	4										
	5		5	m	14									
	ſ		e	2	12									
18	-		-	٦	13									
	10	9	10	14										
296	297	29 H	299	30 C	301	FND OF FILE								
609.23 0 1.0 85.5 .0 1.0 70.0 5 8.4.A 10000.0 0 1.0 90.0 0 16.754 0 1.0 90.0 6 8.4.A 10000.0 0 1.0 90.0 0 16.754 0 1.0 90.0 6 8.4.B 10000.0 0 1.0 0.0 1.0 90.0 7 8.4.B 0.0 1.0 0.0 1.0 0.0 1.0 1.0 7 8.4.B 0.0 1.0 0.0 1.0 0.0 1.0 1.0 7 8.4.B 0.0 1.0 0.0 1.0 0.0 1.0 1.0 7 8.4.B 10.0 1.0 0.0 1.0 0.0 1.0 0.0 7 8.4.B 6 8.5.C 10.0 1.0 505.5 505.5 505.5 7 8.5.C 7 8.5.C 7 8.5.C	X X X	ا و	000 9	0 0	0.0	0.0 6.79 0.0	0•0 0•0	3 3	0.0 -1.75 0.0				ちらら	8.3.8 8.3.A 8.3.6
--	-------------	----------------------------	-------------	-------	---	--------------------	------------	-----------	---------------------	----	--------------	--------------	----------	-------------------------
0.0 1.0 505.5 10.0 30.0 1.0 505.5 10.0 1.0 505.5 0.0 1.0 505.5 0.0 1.0 505.5 0.0 1.0 505.5 7 8.5.6 7 8.5.0	~ ~ ~	609.23 1000.0 1000.0	000	1.0	8 9 0 0 0 0 0 0 0	5 O C	•••	609 16	. 23 .	00	1.0	0°04 0°06	، و ب	8.4.A 8.4.A
0.0 1.0 505.5 10.0 30.0 0.0 1.0 505.5 0.0 1.0 505.5 0.0 1.0 505.5 7 8.5.A		0.0	0.	1.0	0		••	0•	6	0	1 • 0	0*0	9 m	₿•4•₿ ₿•4•Å
0.0 1.0 505.5 0.0 1.0 505.5 7 8.5.A	- 1	0.0	1.0 30.0	505	2								\$ \$	8.5.A
7 B.5.A		0.0	1.0	505.	ίΩ μ								ه ه	8.5.8 8.5.C
			•	• 606	n								2	B.5.A

TABLE 9. Changes to Baseline Pedestrian for Euler Joint Knee.

,

5.4 REPRESENTATIVE SIDE IMPACT OUTPUT

Figures 14 and 15 are a graphical presentation of some of the important kinematic variables produced by the computer exercise using the baseline side impact data. Figure 14 shows the major contact with the side structures at approximately 70 ms. By this time the space between the occupant and the side structures are used up. An additional major contact is noted at approximately 30 ms for the lower torso. This is caused by the intrusion of the lower door contact panel into the occupant compartment. This intrusion uses up the "slack" between the occupant and the side structures at an earlier point in time indicating the sensitivity of phasing of occupant contact with side structures to intrusion.

Figure 15 shows a trace of the motions of several body segments during the simulation. Lower torso excursion is relatively small due to the early interaction with side structures. The head pitches to the side but interacts only with the side header and B-pillar in this simulation. The fact that lower torso motion is limited prohibits the head from moving too far to the side.

Table 10 is a summary of all occupant/vehicle contact interactions. The time, deflection, and force are given for initiation of contact, peak force, and the final time of a contact event. In some cases it is seen that the peak force occurs at the end of the simulation. For a further study of the output, including cases of multiple peaks such as occurs for the lower torso, it is necessary to review the complete simulation output.

Fig. 14 Body Segment Accelerations. Side Impact

(nr) slac2

TABLE 10. Side Impact Occupant Vehicle Contact History

		I	nitial Cont	act		Peak Conta	ct		Final Conts	+,	
llipsoid Name	Contact Name	Time (ms)	Deflection (in)	Force (1b)	Time (ms)	Deflection (in)	Force (1b)	Time (ms)	Deflection (in)	Force (1b)	
-OWER TORSO	SEAT BACK	88	0.0	.	100	0.1	4	100	0.1	4	
LOWER TORSO	SEAT CUSHION	0	2.5	100	100	4.1	162	100	4.1	.162	
LOWER TORSO	HIP PANEL	28	0.1	93	39	0.9	929	57	0.0	12	
UPPER TORSO	DOOR	60	0.1	66	12	0.9	668	81	0.0	14	
HEAD	HEADER	62	0.1	119	70	1.0	965	78	0 2	149	
HEAD	B-PILLAR	65	0.2	738	17	0.9	3579	78	0.1	274	
RIGHT UPPER LEG	SEAT CUSHION	0	0.1	e	28		4	36	0.0		
		92	0.1	2	100	0.8	32	100	0.8	32	
LEFT UPPER LEG	SEAT CUSHION	0	0.1	3	100	2.5	101	100	2.5	101	
LEFT UPPER LEG	HIP PANEL	24	0.3	252	36	2.0	2002	100	0.7	675	
EFT FOOT	FLOOR	17	0.1	52	80	0.5	421	89	0.0	13	
RIGHT UPPER LEG	LEFT UPPER LEG	50	0.0	40	60	0.8	783	100	0.0	47	
RIGHT LOWER LEG	LEFT LOWER LEG	84	0.0	20	06	0.3	302	97	0.0	33	

5.5 REPRESENTATIVE PEDESTRIAN IMPACT OUTPUT

Figure 16 includes a series of frames showing pedestrian kinematics at various time points during the exercise. The initial bumper contact with the lower right leg segments starts at 20 milliseconds and is over by 30 milliseconds. The grille, grille top and hood contact with the right upper leg and lower torso starts at 55 milliseconds and is over by 70 milliseconds. The pedestrian remains essentially upright throughout the time of initial contact involvement with the vehicle and for a long time thereafter.

Table 11 is a summary of all pedestrian/vehicle exterior contacts. As in Table 10, the time, deflection and force are given for initiation of contact, peak force and the final time of each contact event. Peak loads on the lower leg are somewhat in excess of human tolerance values for leg fracture. It is not known how the values compare with forces necessary to fracture the leg of a Part 572.

Figures 17-22 are plots of the G-levels predicted in several of the body segments. Generally the phasing of peak accelerations progresses from the initial leg contacts up through the head.

It should be noted that the torso segments, the head, and the neck operate as a single mass unit. The joints connecting these masses were locked with no unlocking torque provided. This contributes to the continuing upright position of the torso during much of the run. The addition of realistic flexibility to the spine would decrease this effect.

It should also be noted that the force-deflection curves used to govern the interactions between the vehicle and pedestrian are hypothetical and do not account for absorption of energy. This tends to increase the energy input to the lower extremities beyond what would normally be expected in a more realistic simulation.

In conclusion, the data set for simulation of a pedestrian interacting with the front of a vehicle is complete and functional. The location and shape of vehicle surfaces represents probably the most advanced information available. Likewise, position is based on human walking posture and a typical impact site both from the viewpoint of the vehicle

and the pedestrian. The leg fracture model is totally new. The two shortcomings in the data set relate to vehicle deformation properties and specification of joint properties in the pedestrian. Within the data framework already established it should not be difficult to improve these quantities when application to real vehicle problems is required.

Fig. 16. Pedestrian Kinematics. (1 of 3; 0, 20, 40 ms)

Fig. 16. Pedestrian Kinematics. (2 of 3; 60, 80, 100 ms)

HISTORY
CONTACT
'VEHICLE
PEDESTRIAN/
].
TABLE

			nitial Cont	act		Peak Cont	act		Final Conta	act
Fllinsoid Name	Contact Namo	Time	Deflection	Force	Time	Deflectio	n Force	Time	Deflection	Force
			77	////	/ <==1	1111			1111	/10/
Lower Torso	Ноод	65.	.03	35.	65.	.03	35.	65.	.03	35.
	Grille Top	55.	.31	611.	60.	.56	1127.	70.	00.	10.
Right Upper Leg	Grille Top	55.	.19	381.	65.	.85	1705.	70.	.28	567.
	Grille	55.	.12	122.	65.	.79	786.	70.	.24	244.
Right Knee	Bumper	20.	.45	454.	25.	77.	738.	30.	.07	70.
		60.	.73	732.	65.	.92	922.	70.	.05	53.
Right Shin	Bumper	20.	.41	410.	25.	06.	896.	30.	.47	474.
Right Foot	Ground	· ·	.28	132.	0.	.28	132.	30.	.03	13.
Left Foot	Ground	0	.08	38.	40.	.17	80.	45.	F.	53.
Right Lower Arm	Ноод	40.	1.35	1352.	50.	3.01	3011.	70.	.52	518.
Right Upper Leg	Left Upper Leg	35.	.14	69.	80.	1.35	600.	295.	00.	2.

6.0 THE HSRI VERSION OF THE CALSPAN CVS

The HSRI version of the Calspan CVS has been and is being developed under NHTSA Contract No. DOT-HS-7-01659, "Occupant Side Impact Simulations Using CVS Program." The two sections of Part 6 describe the changes which have been made and the status of the code.

6.1 MODIFICATIONS TO ORIGINAL CALSPAN CVS PROGRAM

Several major and minor changes have been made to the original Calspan CVS program, Version 18-A, with some corrections being added from later Calspan issues. The most important changes have to do with the addition of mutual force-deformation properties for two contacting elements (ellipsoid/panel or ellipsoid/ellipsoid) and dynamic forcedeflection relations. The concept of mutual deformation of contacting elements is drawn from earlier two- and three-dimensional modeling efforts at HSRI such as the MVMA 2-D model.

Figure 23 illustrates the means which has been coded for handling multiple dynamic force-deflection curves in the new CVS. It is first presumed that the rate of force application and deformation during a dynamic event (or computer simulation) is unknown ahead of time. In order to cope with this problem, it is necessary to have a description of material response under a range of dynamic loading conditions included as data with the operating program. A series of curves for different specimen loading and unloading rates may be available from an experimental program. Bivariate loading and unloading tables are the mechanism used to accomplish this. For the case of loading $(+\delta)$ a series of curves are input at various loading rates. A similar series is shown for material unloading $(-\delta)$. The software interpolates through this load-unload space to select that force-deformation curve which actually occurs based on the space of known material response data. Crosses on the curves hint at our recommendation for manual intervention or simplification of experimental curves. The software has been tested and is functioning properly for trial cases. It remains to validate it with real experimental data.

F

Load

Unload

Input data from structural material tests.

Figure 23.

Force discontinuities at the edge of contact surfaces received considerable attention in order to include features of the MVMA 2-D software such as a transition zone as an ellipsoid slides off the edge and a penetration limit to avoid large forces when an ellipsoid starts out behind a contact surface. Figure 24 illustrates the means by which corner intersections of surfaces are handled in the new simulation. In the Calspan CVS all contact surfaces were independent of one another. As a result it was very easy for an ellipsoid to go "behind" a surface. This is particularly true for the case of pedestrian impact. British Leyland modified the CVS to avoid this problem and generated forces as shown in the upper of the two sketches. The MVMA 2-D model had a further capability of adjusting the force direction for a corner impact. Aspects of the British Leyland and HSRI concepts were combined for a new 3-D corner simulation for use with the HSRI version of the CVS.

Several additional changes should also be mentioned. As has been described earlier in this report, moving contact surfaces with respect to a vehicle (or inertial) coordinate system have been added to facilitate the study of intrusion. Code corrections have been made to the ellipsoid versus ellipsoid contact interaction so that one may not "pass through" the other. To facilitate studies of side, oblique, and general six-dimensional deceleration events the software was modified to ease the burden of the user in setting up vehicle geometry in strange coordinate systems. Finally more output categories were provided for useful physical quantities and for kinematics in inertial coordinates.

Table 12 briefly summarizes the quantity of code which is new to the HSRI version of the Calspan CVS. There are 24 new routines. Most of these deal with the contact between surfaces and ellipsoids, the generation of mutual deformation of surfaces, and the inclusion of dynamic deflection rate terms. Major changes refer to changes of approximately two-thirds of the code while minor changes involve one-third. "No" changes indicates that the only changes were in dimension size and array names. It is estimated that approximately one third of the code is new.

TABLE 12. CVS CODE CHANGES

-	New routines	-	24
-	Major changes	-	6
-	Some changes	-	10
-	"No" changes	-	72

6.2 STATUS OF SOFTWARE

The software which has been used in this project is functional and appears to operate correctly on the baseline data sets. Formal documentation of the algorithms will be initiated in early 1981. Only a summary input description for the various data cards has been delivered to the sponsor. The original contract on which this software was developed was scheduled for completion, including development of documentation and delivery of tapes, at the end of 1979. That schedule was in effect as we initiated this MVMA project. However, the sponsor requested modifications of HSRI work efforts in order to concentrate on development of a side impact dummy thorax. This has delayed completion of the documentation to the current estimate of mid-1981.

7.0 REFERENCES

- Fleck, J. T., et al, "An Improved Three Dimensional Computer Simulation of Vehicle Crash Victims," 4 volume report on Contract No. DOT-HS-053-2-485, NTIS Nos. PB241692,3,4,5, April 1975.
- Hubbard, R. P. and McLeod, D. G., "Geometric, Inertial, and Joint Characteristics of Two Part 572 Dummies for Occupant Modeling," SAE Paper No. 770937, Proc. 21st Stapp Car Crash Conf., pp. 933-972, October 1977.
- Karnes, R. N., "CAL3D Crash Victim Simulation Computer Program User Manual," Report on MVMA Contract No. BCS 7501-C4.16, Boeing Computer Services, March 1975.
- 4. Viano, D. C. and Culver, C. C., "Performance of a Shoulder Belt and Knee Restraint in Barrier Crash Simulations," SAE Paper No. 791006, Proc. 23rd Stapp Car Crash Conf., pp. 105-132, October 1979.
- 5. Kramer, M., "Pedestrian Vehicle Accident Simulation Through Dummy Tests," SAE Paper No. 751165, Proc. 19th Stapp Car Crash Conf., pp. 705-724, November 1975.
- Padgaonkar, A. J. and Prasad, P., "Simulation of Side Impact Using the CAL3D Occupant Simulation Model," SAE Paper No. 791007, Proc. 23rd Stapp Car Crash Conf., pp. 133-158, November 1979.
- Siemonsen, H. D. and Bruckner, F., "Impacts on Plates, Particularly Glass Plates," SAE Paper No. 670924, Proc. 11th Stapp Car Crash Conf., pp. 293-298, November 1967.
- Twigg, D. W. and Tocher, J. L., "Pedestrian Model Parametric Studies," 2 vol. report under Contract No. DOT-HS-356-3-719, NTIS Nos. DOT-HS-802419, 20, June 1977.