

A Construction of *H*⁴ without Miracles*

J. R. Stembridge

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA jrs@umich.edu

Abstract. We present a new construction of the root system \mathcal{H}_4 .

1. Introduction

The reflection group H_4 is the symmetry group of two four-dimensional regular polytopes, the 600-cell and its dual, the 120-cell. It has a noncrystallographic root system H_4 consisting of 120 elements, the vertices of the 600-cell. See Section 8.5 of [C].

In this note we present an explicit construction of \mathcal{H}_4 that requires very little in the way of tedious checking, nor much in the way of miracles. It is analogous to constructing a crystallographic root system as the set of short vectors in a suitable lattice. The difference here is that no lattice is available, so as a substitute we use a finitely generated group that is not discrete. Our construction also has the benefit of demonstrating in an obvious way the fact (perhaps not widely known) that \mathcal{H}_4 includes a copy of the root system \mathcal{D}_4 , and hence that there is a corresponding inclusion of the Weyl group D_4 as a subgroup of H_4 .

Before proceeding, we briefly describe what is probably the "standard" construction, as found in Exercise VI.4.12 of [B] and Section 2.13 of [H]. In fact this construction is due to [W], although explicit coordinates for the 120-cell and 600-cell go back at least to Schläfli in the 1850s and Schoute in the 1900s [C, Section 8.9]. One shows that every finite subgroup of \mathbf{H}^* (the multiplicative group of the quaternions) that includes -1 is a root system, and then one miraculously produces a suitable 120-element subgroup that meets the requirements, the so-called *icosian group* [CS]. To verify that the icosians do form a group (or simply a root system) is rather tedious.

The icosian group can be rendered less mysterious by noting that the alternating group of degree five has a three-dimensional representation as rotational symmetries of the icosahedron. Lifting this from SO(3) to Spin(3) yields a 120-element group, a

^{*} This research was partially supported by NSF Grant DMS-9700787.

double cover of the alternating group. However, Spin(3) is isomorphic to the unit-norm subgroup of \mathbf{H}^* , so the 120-element group embeds in \mathbf{H}^* . Admittedly, this may make the standard construction seem *more* miraculous, not less, and in any case leaves aside the unpleasant task of identifying explicit coordinates.

2. A New Construction

Let A be a subring of **R** (the real field), and L an A-submodule of the Euclidean space \mathbf{R}^n with inner product \langle , \rangle .

Proposition. If Φ is any finite subset of $L_2 = \{\alpha \in L : \langle \alpha, \alpha \rangle = 2\}$ that is maximal with respect to the property that $\langle \alpha, \beta \rangle \in A$ for all $\alpha, \beta \in \Phi$, then Φ is a root system.

Proof. Let $\alpha, \beta \in \Phi$. The reflection of α through the hyperplane orthogonal to β is $\gamma = \alpha - \langle \alpha, \beta \rangle \beta$. Hence $\gamma \in L_2$, since *L* is an *A*-module and reflections preserve length. Furthermore, the inner product of γ with any other member of Φ is clearly in *A*, since α and β have this property. Therefore $\gamma \in \Phi$ by maximality. Hence every reflection through a hyperplane orthogonal to a member of Φ permutes Φ , so Φ is a root system. \Box

Now, to construct \mathcal{H}_4 , let $a = 2\cos(\pi/5) = (1 + \sqrt{5})/2$ denote the golden ratio, $A = \mathbb{Z}[a]$, and $\varepsilon_1, \ldots, \varepsilon_4$ an orthonormal basis of \mathbb{R}^4 . Let

$$L = \{a_1\varepsilon_1 + \ldots + a_4\varepsilon_4 : a_i \pm a_j \in A \text{ for all } i, j\}$$
$$= \{\alpha \in \mathbf{R}^4 : \langle \alpha, \beta \rangle \in A \text{ for all } \beta \in \mathcal{D}_4\},\$$

where $D_4 = \{\pm \varepsilon_i \pm \varepsilon_j : 1 \le i < j \le 4\}$ denotes the usual realization of the root system for the Weyl group D_4 .

There are only finitely many members of L_2 . Indeed, every member of L has the form

$$\alpha = \frac{1}{2}(m_1 + an_1)\varepsilon_1 + \ldots + \frac{1}{2}(m_4 + an_4)\varepsilon_4,$$

with m_i , $n_i \in \mathbb{Z}$, $m_1 = \ldots = m_4 \mod 2$ and $n_1 = \ldots = n_4 \mod 2$, and the Diophantine equation $\langle \alpha, \alpha \rangle = 2$ involves a positive definite quadratic form in the variables m_i , n_i . In fact, it is easy to check that the members of L_2 consist of all signed permutations of

$$\begin{aligned} \alpha_1 &= \varepsilon_1 + \varepsilon_2, \\ \alpha_2 &= \frac{1}{2}(1-a)(\varepsilon_1 + \varepsilon_2 + \varepsilon_3) + \frac{1}{2}(1+a)\varepsilon_4, \\ \alpha_3 &= \frac{1}{2}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3) + (a - \frac{1}{2})\varepsilon_4, \\ \alpha_4 &= \frac{1}{2}a(\varepsilon_1 + \varepsilon_2 + \varepsilon_3) + (\frac{1}{2}a - 1)\varepsilon_4, \end{aligned}$$

for a total of 24 + 64 + 64 + 64 = 216 vectors.

We cannot fit all of L_2 into a single root system of the sort described by the proposition, since it is not true that $\langle \alpha, \beta \rangle \in A$ for all $\alpha, \beta \in L_2$. For if $\alpha = a_1\varepsilon_1 + \ldots + a_4\varepsilon_4$ is any member of L_2 , then the result of negating the coordinate ε_1 yields $\alpha' = \alpha - 2a_1\varepsilon_1 \in L_2$. Hence $\langle \alpha, \alpha' \rangle = 2 - 2a_1^2$, and therefore $\langle \alpha, \alpha' \rangle \in A$ if and only if $a_1^2 \in A/2$. However, one can easily check that the coordinates of α_2 , α_3 , α_4 do not have this property, so any subset of L_2 whose pairwise inner products belong to A can contain at most half of the signed permutations of α_2 , α_3 , and α_4 , leaving a maximum size of 24 + 32 + 32 + 32 = 120.

On the other hand, the inner product of every $\alpha \in D_4$ with every $\beta \in L_2$ belongs to *A*, by construction of *L*. Hence every subset Φ of L_2 that is maximal with respect to *A*-valued inner products must necessarily include all of D_4 , and must also form a root system, by the proposition. It follows that the root system Φ must be a union of D_4 -orbits, with D_4 acting as an index-two subgroup of the group of all signed permutations of the coordinates. Therefore, by checking that the pairwise inner products of α_2 , α_3 , α_4 belong to *A*, we may immediately conclude that

$$\mathcal{H}_4 := \mathcal{D}_4 \cup D_4 \alpha_2 \cup D_4 \alpha_3 \cup D_4 \alpha_4$$

is a root system of order 120. A set of simple roots is given by $\varepsilon_2 - \varepsilon_1$, $\varepsilon_3 - \varepsilon_2$, $\varepsilon_4 - \varepsilon_3$, and $\frac{1}{2}(a+1)\varepsilon_1 - \frac{1}{2}(a-1)(\varepsilon_2 + \varepsilon_3 + \varepsilon_4)$, as can be verified by checking that the matrix of inner products is consistent with the geometry implied by the Coxeter diagram of H_4 .

References

- [B] N. Bourbaki, Groupes et Algèbres de Lie, Chapters IV-VI, Masson, Paris, 1981.
- [CS] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 2nd edn., Springer-Verlag, New York, 1993.
- [C] H. S. M. Coxeter, Regular Polytopes, 3rd edn., Dover, New York, 1974.
- [H] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
- [W] E. Witt, Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe, Abh. Math. Sem. Univ. Hamburg 14 (1941), 289–322.

Received January 28, 1998, and in revised form March 23, 1998.