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Abstract. We present a new construction of the root systemH4.

1. Introduction

The reflection groupH4 is the symmetry group of two four-dimensional regular poly-
topes, the 600-cell and its dual, the 120-cell. It has a noncrystallographic root system
H4 consisting of 120 elements, the vertices of the 600-cell. See Section 8.5 of [C].

In this note we present an explicit construction ofH4 that requires very little in the way
of tedious checking, nor much in the way of miracles. It is analogous to constructing a
crystallographic root system as the set of short vectors in a suitable lattice. The difference
here is that no lattice is available, so as a substitute we use a finitely generated group that
is not discrete. Our construction also has the benefit of demonstrating in an obvious way
the fact (perhaps not widely known) thatH4 includes a copy of the root systemD4, and
hence that there is a corresponding inclusion of the Weyl groupD4 as a subgroup ofH4.

Before proceeding, we briefly describe what is probably the “standard” construction,
as found in Exercise VI.4.12 of [B] and Section 2.13 of [H]. In fact this construction is
due to [W], although explicit coordinates for the 120-cell and 600-cell go back at least
to Schläfli in the 1850s and Schoute in the 1900s [C, Section 8.9]. One shows that every
finite subgroup ofH∗ (the multiplicative group of the quaternions) that includes−1 is a
root system, and then one miraculously produces a suitable 120-element subgroup that
meets the requirements, the so-calledicosian group[CS]. To verify that the icosians do
form a group (or simply a root system) is rather tedious.

The icosian group can be rendered less mysterious by noting that the alternating
group of degree five has a three-dimensional representation as rotational symmetries
of the icosahedron. Lifting this fromSO(3) to Spin(3) yields a 120-element group, a
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double cover of the alternating group. However, Spin(3) is isomorphic to the unit-norm
subgroup ofH∗, so the 120-element group embeds inH∗. Admittedly, this may make
the standard construction seemmoremiraculous, not less, and in any case leaves aside
the unpleasant task of identifying explicit coordinates.

2. A New Construction

Let A be a subring ofR (the real field), andL an A-submodule of the Euclidean space
Rn with inner product〈 , 〉.

Proposition. If 8 is any finite subset of L2 = {α ∈ L : 〈α, α〉 = 2} that is maximal
with respect to the property that〈α, β〉 ∈ A for all α, β ∈ 8, then8 is a root system.

Proof. Let α, β ∈ 8. The reflection ofα through the hyperplane orthogonal toβ is
γ = α−〈α, β〉β. Henceγ ∈ L2, sinceL is anA-module and reflections preserve length.
Furthermore, the inner product ofγ with any other member of8 is clearly in A, since
α andβ have this property. Thereforeγ ∈ 8 by maximality. Hence every reflection
through a hyperplane orthogonal to a member of8 permutes8, so8 is a root system.

Now, to constructH4, let a = 2 cos(π/5) = (1+ √5)/2 denote the golden ratio,
A = Z[a], andε1, . . . , ε4 an orthonormal basis ofR4. Let

L = {a1ε1+ . . .+ a4ε4 : ai ± aj ∈ A for all i, j }
= {α ∈ R4 : 〈α, β〉 ∈ A for all β ∈ D4},

whereD4 = {±εi ± εj : 1≤ i < j ≤ 4} denotes the usual realization of the root system
for the Weyl groupD4.

There are only finitely many members ofL2. Indeed, every member ofL has the form

α = 1
2(m1+ an1)ε1+ . . .+ 1

2(m4+ an4)ε4,

with mi ,ni ∈ Z, m1 = . . . = m4 mod 2 andn1 = . . . = n4 mod 2, and the Diophantine
equation〈α, α〉 = 2 involves a positive definite quadratic form in the variablesmi ,ni .
In fact, it is easy to check that the members ofL2 consist of all signed permutations of

α1 = ε1+ ε2,

α2 = 1
2(1− a)(ε1+ ε2+ ε3)+ 1

2(1+ a)ε4,

α3 = 1
2(ε1+ ε2+ ε3)+ (a− 1

2)ε4,

α4 = 1
2a(ε1+ ε2+ ε3)+ ( 1

2a− 1)ε4,

for a total of 24+ 64+ 64+ 64= 216 vectors.
We cannot fit all ofL2 into a single root system of the sort described by the proposition,

since it is not true that〈α, β〉 ∈ A for all α, β ∈ L2. For if α = a1ε1+ . . .+ a4ε4 is any
member ofL2, then the result of negating the coordinateε1 yieldsα′ = α−2a1ε1 ∈ L2.
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Hence〈α, α′〉 = 2−2a2
1, and therefore〈α, α′〉 ∈ A if and only ifa2

1 ∈ A/2. However, one
can easily check that the coordinates ofα2, α3, α4 do not have this property, so any subset
of L2 whose pairwise inner products belong toA can contain at most half of the signed
permutations ofα2, α3, andα4, leaving a maximum size of 24+ 32+ 32+ 32= 120.

On the other hand, the inner product of everyα ∈ D4 with everyβ ∈ L2 belongs
to A, by construction ofL. Hence every subset8 of L2 that is maximal with respect to
A-valued inner products must necessarily include all ofD4, and must also form a root
system, by the proposition. It follows that the root system8must be a union ofD4-orbits,
with D4 acting as an index-two subgroup of the group of all signed permutations of the
coordinates. Therefore, by checking that the pairwise inner products ofα2, α3, α4 belong
to A, we may immediately conclude that

H4 := D4 ∪ D4α2 ∪ D4α3 ∪ D4α4

is a root system of order 120. A set of simple roots is given byε2− ε1, ε3− ε2, ε4− ε3,
and 1

2(a+ 1)ε1− 1
2(a− 1)(ε2+ ε3+ ε4), as can be verified by checking that the matrix

of inner products is consistent with the geometry implied by the Coxeter diagram ofH4.

References

[B] N. Bourbaki,Groupes et Alg̀ebres de Lie, Chapters IV–VI, Masson, Paris, 1981.
[CS] J. H. Conway and N. J. A. Sloane,Sphere Packings, Lattices and Groups, 2nd edn., Springer-Verlag,

New York, 1993.
[C] H. S. M. Coxeter,Regular Polytopes, 3rd edn., Dover, New York, 1974.
[H] J. E. Humphreys,Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
[W] E. Witt, Spiegelungsgruppen und Aufz¨ahlung halbeinfacher Liescher Ringe,Abh. Math. Sem. Univ.

Hamburg14 (1941), 289–322.

Received January28, 1998,and in revised form March23, 1998.


