A Construction of \boldsymbol{H}_{4} without Miracles*

J. R. Stembridge
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA
jrs@umich.edu

Abstract

We present a new construction of the root system \mathcal{H}_{4}.

1. Introduction

The reflection group H_{4} is the symmetry group of two four-dimensional regular polytopes, the 600 -cell and its dual, the 120 -cell. It has a noncrystallographic root system \mathcal{H}_{4} consisting of 120 elements, the vertices of the 600 -cell. See Section 8.5 of [C].

In this note we present an explicit construction of \mathcal{H}_{4} that requires very little in the way of tedious checking, nor much in the way of miracles. It is analogous to constructing a crystallographic root system as the set of short vectors in a suitable lattice. The difference here is that no lattice is available, so as a substitute we use a finitely generated group that is not discrete. Our construction also has the benefit of demonstrating in an obvious way the fact (perhaps not widely known) that \mathcal{H}_{4} includes a copy of the root system \mathcal{D}_{4}, and hence that there is a corresponding inclusion of the Weyl group D_{4} as a subgroup of H_{4}.

Before proceeding, we briefly describe what is probably the "standard" construction, as found in Exercise VI.4.12 of [B] and Section 2.13 of [H]. In fact this construction is due to [W], although explicit coordinates for the 120 -cell and 600-cell go back at least to Schläfli in the 1850s and Schoute in the 1900s [C, Section 8.9]. One shows that every finite subgroup of \mathbf{H}^{*} (the multiplicative group of the quaternions) that includes -1 is a root system, and then one miraculously produces a suitable 120 -element subgroup that meets the requirements, the so-called icosian group [CS]. To verify that the icosians do form a group (or simply a root system) is rather tedious.

The icosian group can be rendered less mysterious by noting that the alternating group of degree five has a three-dimensional representation as rotational symmetries of the icosahedron. Lifting this from $S O$ (3) to $\operatorname{Spin}(3)$ yields a 120 -element group, a

[^0]double cover of the alternating group. However, $\operatorname{Spin}(3)$ is isomorphic to the unit-norm subgroup of \mathbf{H}^{*}, so the 120 -element group embeds in \mathbf{H}^{*}. Admittedly, this may make the standard construction seem more miraculous, not less, and in any case leaves aside the unpleasant task of identifying explicit coordinates.

2. A New Construction

Let A be a subring of \mathbf{R} (the real field), and L an A-submodule of the Euclidean space \mathbf{R}^{n} with inner product \langle,$\rangle .$

Proposition. If Φ is any finite subset of $L_{2}=\{\alpha \in L:\langle\alpha, \alpha\rangle=2\}$ that is maximal with respect to the property that $\langle\alpha, \beta\rangle \in A$ for all $\alpha, \beta \in \Phi$, then Φ is a root system.

Proof. Let $\alpha, \beta \in \Phi$. The reflection of α through the hyperplane orthogonal to β is $\gamma=\alpha-\langle\alpha, \beta\rangle \beta$. Hence $\gamma \in L_{2}$, since L is an A-module and reflections preserve length. Furthermore, the inner product of γ with any other member of Φ is clearly in A, since α and β have this property. Therefore $\gamma \in \Phi$ by maximality. Hence every reflection through a hyperplane orthogonal to a member of Φ permutes Φ, so Φ is a root system.

Now, to construct \mathcal{H}_{4}, let $a=2 \cos (\pi / 5)=(1+\sqrt{5}) / 2$ denote the golden ratio, $A=\mathbf{Z}[a]$, and $\varepsilon_{1}, \ldots, \varepsilon_{4}$ an orthonormal basis of \mathbf{R}^{4}. Let

$$
\begin{aligned}
L & =\left\{a_{1} \varepsilon_{1}+\ldots+a_{4} \varepsilon_{4}: a_{i} \pm a_{j} \in A \text { for all } i, j\right\} \\
& =\left\{\alpha \in \mathbf{R}^{4}:\langle\alpha, \beta\rangle \in A \text { for all } \beta \in \mathcal{D}_{4}\right\},
\end{aligned}
$$

where $\mathcal{D}_{4}=\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}: 1 \leq i<j \leq 4\right\}$ denotes the usual realization of the root system for the Weyl group D_{4}.

There are only finitely many members of L_{2}. Indeed, every member of L has the form

$$
\alpha=\frac{1}{2}\left(m_{1}+a n_{1}\right) \varepsilon_{1}+\ldots+\frac{1}{2}\left(m_{4}+a n_{4}\right) \varepsilon_{4},
$$

with $m_{i}, n_{i} \in \mathbf{Z}, m_{1}=\ldots=m_{4} \bmod 2$ and $n_{1}=\ldots=n_{4} \bmod 2$, and the Diophantine equation $\langle\alpha, \alpha\rangle=2$ involves a positive definite quadratic form in the variables m_{i}, n_{i}. In fact, it is easy to check that the members of L_{2} consist of all signed permutations of

$$
\begin{aligned}
& \alpha_{1}=\varepsilon_{1}+\varepsilon_{2}, \\
& \alpha_{2}=\frac{1}{2}(1-a)\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right)+\frac{1}{2}(1+a) \varepsilon_{4}, \\
& \alpha_{3}=\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right)+\left(a-\frac{1}{2}\right) \varepsilon_{4}, \\
& \alpha_{4}=\frac{1}{2} a\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right)+\left(\frac{1}{2} a-1\right) \varepsilon_{4},
\end{aligned}
$$

for a total of $24+64+64+64=216$ vectors.
We cannot fit all of L_{2} into a single root system of the sort described by the proposition, since it is not true that $\langle\alpha, \beta\rangle \in A$ for all $\alpha, \beta \in L_{2}$. For if $\alpha=a_{1} \varepsilon_{1}+\ldots+a_{4} \varepsilon_{4}$ is any member of L_{2}, then the result of negating the coordinate ε_{1} yields $\alpha^{\prime}=\alpha-2 a_{1} \varepsilon_{1} \in L_{2}$.

Hence $\left\langle\alpha, \alpha^{\prime}\right\rangle=2-2 a_{1}^{2}$, and therefore $\left\langle\alpha, \alpha^{\prime}\right\rangle \in A$ if and only if $a_{1}^{2} \in A / 2$. However, one can easily check that the coordinates of $\alpha_{2}, \alpha_{3}, \alpha_{4}$ do not have this property, so any subset of L_{2} whose pairwise inner products belong to A can contain at most half of the signed permutations of α_{2}, α_{3}, and α_{4}, leaving a maximum size of $24+32+32+32=120$.

On the other hand, the inner product of every $\alpha \in \mathcal{D}_{4}$ with every $\beta \in L_{2}$ belongs to A, by construction of L. Hence every subset Φ of L_{2} that is maximal with respect to A-valued inner products must necessarily include all of \mathcal{D}_{4}, and must also form a root system, by the proposition. It follows that the root system Φ must be a union of D_{4}-orbits, with D_{4} acting as an index-two subgroup of the group of all signed permutations of the coordinates. Therefore, by checking that the pairwise inner products of $\alpha_{2}, \alpha_{3}, \alpha_{4}$ belong to A, we may immediately conclude that

$$
\mathcal{H}_{4}:=\mathcal{D}_{4} \cup D_{4} \alpha_{2} \cup D_{4} \alpha_{3} \cup D_{4} \alpha_{4}
$$

is a root system of order 120 . A set of simple roots is given by $\varepsilon_{2}-\varepsilon_{1}, \varepsilon_{3}-\varepsilon_{2}, \varepsilon_{4}-\varepsilon_{3}$, and $\frac{1}{2}(a+1) \varepsilon_{1}-\frac{1}{2}(a-1)\left(\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}\right)$, as can be verified by checking that the matrix of inner products is consistent with the geometry implied by the Coxeter diagram of H_{4}.

References

[B] N. Bourbaki, Groupes et Algèbres de Lie, Chapters IV-VI, Masson, Paris, 1981.
[CS] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 2nd edn., Springer-Verlag, New York, 1993.
[C] H. S. M. Coxeter, Regular Polytopes, 3rd edn., Dover, New York, 1974.
[H] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
[W] E. Witt, Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe, Abh. Math. Sem. Univ. Hamburg 14 (1941), 289-322.

Received January 28, 1998, and in revised form March 23, 1998.

[^0]: * This research was partially supported by NSF Grant DMS-9700787.

