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1.

Abstract. LetK, be the cone of positive semidefinitex n matrices and letl be an affine
subspace of the space of symmetric matrices such that the inters€gtiod is nonempty

and bounded. Suppose tmet 3 and that codimd = ('22) forsome 1<r <n—2.Then

there is a matriXX € K, N.A such that rankK < r. We give a short geometric proof of this
result, use it to improve a bound on realizability of weighted graphs as graphs of distances
between points in Euclidean space, and describe its relation to theorems of Bohnenblust,
Friedland and Loewy, and Au-Yeung and Poon.

Introduction

Let Sym be the space af x n symmetric matrices. ThuSym is a real vector space of
dimension(”gl). Let Ky, € Sym, be the convex cone of positive semidefinite matrices.
The following result is well known, see, for example, Barvinok (1995), Section 31.5 of
Deza and Laurent (1997), and Pataki (1996).

(1.1) Theorem. LetA C Sym be an affine subspace such that the intersedtipn.A

r+2

is nonempty andodimA < ( 5 ) — 1 for some nonnegative integer Then there is a
matrix X € K, N A such thatankX <r.

The bound in Theorem 1.1 is sharp, meaning that fomreawyd for any < n one can

construct an affine subspagesuch thatd N K, # @, codimA = (““2) and for every
X e KnNn Aone has rankK > r (see Section 2).
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The problem of finding a low-rank positive semidefinite matrix subject to affine
constraints has attracted some attention recently. For example, it turned out to be relevant
to problems of chemistry, statistics, archaeology, genetics, and geography (see Alfakih
and Wolkowicz (1998) for references and discussion) and to semidefinite programming
in general, currently a very active area of research (see, for example, Vandenberghe and
Boyd (1996) for a survey). Therefore, it is worth mentioning that in one particular case
the bound can be sharpened.

(1.2) Theorem. Suppose thatr> Oand n> r 4+ 2. Let A C Sym be an affine
subspace such thabdim.A = ("3?). Suppose that the intersectidi N A is nonempty
and boundedThen there is a matrix X K, N A such thatankX <.

Theorem 1.2 is equivalent to a host of known results in Matrix Theory (see Section 4),
yet it appears that it has not been stated explicitly. The purpose of this note is to provide
a direct proof of the theorem based solely on the convex geomefty, ¢Eection 3),
to compare Theorems 1.1 and 1.2 from the structural (this section) and algorithmic
points of view (Section 2), and to use Theorem 1.2 for a problem of Distance Geometry
(Section 2).

Polyhedral Analogy Theorem 1.1 is proved by pointing out that every extreme point

of the intersectioriC,, N A will have the desired rank (see Section 31.5 of Deza and
Laurent, 1997). The proof can also be obtained via complementarity conditions for
semidefinite programming (see Barvinok, 1995; Alizadeh et al., 1997), which constitute
a particular case of the complementary conditions for general linear programs (see
Anderson and Nash, 1987). Thus Theorem 1.1 is somewhat analogous to the statement
that the intersection of an affine subspace of codimensigith a nonnegative orthant

in R", if nonempty, will contain a point where sonme— r coordinates are zero (see,

for example, Pataki (1998) for a discussion of this “polyhedral analogy” and based on
it a semidefinite version of the simplex method). Furthermore, for a generic subspace
the boundh — r cannot be improved. In the context of Theorem 1.2, it is not true that
every extreme point of the intersection will have the desired rank, but rather that the
rank of some extreme point will satisfy the bound. Theorem 1.2 demonstrates a point
where the polyhedral analogy breaks down. Essentially, it asserts that there is no positive
semidefinite analogue of a simple bounded polyhedron (simple polytope) as there must
always be a degenerate vertex.

2. An Application to Distance Geometry

We fix an undirected weighted gragh = (V, E; p) with the setV = {1,...,n}

of vertices, a seE C (‘é) of edges and nonnegative weighig on the edges. Let

r be a positive integer. We say thét is r-realizableif G can be realized as the
graph of distances between points in Euclidean sglgethat is, if we can findn

(not necessarily distinct) points, ..., vy in R" such thatjjv; — v;|| = pi; whenever

{i, j} € E. The problem of finding such a realization is known as the Euclidean distance
matrix completion problem, see Laurent (1998) for a survey. We use two reformula-
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tions of the problem, the first one is more “straightforward” while the second is more
“economical.”

(2.1) First Reformulation. LetG = (V, E; p) be aweighted graph omodes and let
v1, ..., un € R" beits realization. We consider the Gram maifix= (&) of v1, ..., vn,
Soé&j = (ui, vj), where(., -) is the standard scalar productl. ThenX is a positive
semidefinite matrix such that rabk < r. Furthermore, the distance conditions

lvi —vill = pij for {i,j}eE
can be written a$E| affine constraints
Gi — 25 +& =pf for {i,j}eE. (2.1.1)

Conversely, ifX = (&j) is ann x n positive semidefinite matrix satisfying (2.1.1)
and such that ranX < r, then X can be written in the forn§; = (v, vj;), where
v1,...,uy € R is anr-realization ofG. Let A, C Sym be the affine subspace of
matrices satisfying (2.1.1). We conclude tkais r -realizable if and only if there exists
a matrixX € K, N A, such that ranK <.

(2.2) Second Reformulation. We observe that we can always translate the vertices
v1, ..., vp Of a realization ofG so thatv, = 0. LetX = (§j) be the(n — 1) x (n—1)
Gram matrix of the vectorsy, .. ., vn_1, S0&; = (v, vj). Then (2.1.1) can be replaced
by |E| affine constraints

& = ph if {i,nfeE and
Ei — 25 + & = pf if 1<i,j<n—-1 and {i,j}eE, (2.2.1)
so thatG isr-realizable if and only if there is am — 1) x (n — 1) positive semidefinite
matrix X satisfying (2.2.1) and such that ralkk< r. Let A,_; C Sym_, be the affine

subspace of matrices satisfying (2.2.1). We concludeGhat -realizable if and only if
there exists a matriX € Kn_1 N An_1 such thatrank <r.

The following result was proved in Barvinok (1995).
(2.3) Theorem. Suppose that the numbéE| of edges of a weighted graph &

(V, E; p) satisfies the inequalitye| < ("}?) — 1. Then G is realizable i®" if and only
if G is realizable in some Euclidean space

Proof. Follows by Reformulation 2.1 and Theorem 1.1. O

The following example shows that the bound in Theorem 2.3 and hence in Theorem 1.1
is indeed sharp.

(2.4) Example. Suppose thab consists of a complete graph on the first 2 vertices
(1-skeleton of arir + 1)-dimensional simplex) ana—r — 2 isolated vertices. We assign
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weight 1 to ever;(r“gz) edge ofG. Clearly, any realization o as a graph of distances
in some spac®&Y amounts to placing the first+ 2 vertices as the vertices of a regular
(r + 1)-dimensional simplex and then placing arbitrarily the remaining- r — 2)
vertices. Thuss is realized inR" ! but not realized iR" .

Theorem 1.2 allows us to prove that in the critical caseEgf= (";2), the graph from
Example 2.4 is the only graph that defies the conclusion of Theorem 2.3.

(2.5) Theorem. Suppose thatE| = (”52) for some r> 0 and that G is not a union
of a complete graph with # 2 vertices and zero or more isolated verticgben G is

realizable inR" if and only if G is realizable in some Euclidean space

Proof. SinceG isr-realizable if and only if its connected components are realizable,
without loss of generality we may assume t&at connected. Sinc@ is not a complete
graph, for the numbenr of vertices we have > r + 3. We now use Reformulation 2.2

to conclude that the-realizability of G is equivalent to the existence of a matixe
Kn-1NAn_1 such thatran <r,whereA,_; C Sym,_, is the affine subspace defined
by (2.2.1). We prove that the intersectigih_; N K,_1 is necessarily bounded. Since
G is connected, each verte&of G can be connected to thnth vertex by a path in the
graph. Therefore, for any realization Gfwith v, = 0, the lengthjv; || is bounded by
the sum of the lengths of the edges of the path, so we can jufife< R, whereR is

the sum of all weightg;j. Hence|§;; | < R2. Now we observe that the set of positive
semidefinite matrices with a uniform bound on the diagonal entries is bounded and apply
Theorem 1.2. O

Example 2.4 provides evidence that both conditiiasn A # ¢ andn > r + 2 in
Theorem 1.2 are necessary. Indeed, consider Reformulation 2.2 ofrdaizability
problem for graphG of Example 2.4. Ifn = r + 2 (there are no isolated vertices),
then the condition on the size of the matrix is violated (remember that we pass to
(n—1) x (n— 1) matrices). Ifn > r + 2 and hence there are isolated vertices, then the
“realization spaceC,_1 N An_1 is not bounded, because an isolated vertex can move
freely.

Algorithmic Issues and Mechanical Analogiedt is relatively easy to find, at least ap-
proximately, a matrixX satisfying the conditions of Theorem 1.1. In Barvinok (1995),
the following approach was suggested. Choose a positive definite nratrnd find a
positive semidefinite matriX from the intersectioriC,, N A which minimizes t¢F X)

(this is a problem of semidefinite programming (see Vandenberghe and Boyd, 1996).
It is shown in Barvinok (1995) that if is sufficiently generic, then the matriX
satisfies the required rank condition. This method has an especially transparent interpre-
tation for realizability problems discussed in this section. Given a higher-dimensional
realization of a weighted graph, we attach “springs” (with generic elasticities) to all
pairs of vertices that are not connected by an edge. Then the graph will fold itself
down onto the minimal energy configuration of an appropriate dimension. In Alfakih
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and Wolkowicz (1998) it is shown how to avoid a nonconstructive genericity condition
on F. With any positive definitd=, we find a matrixX as above. IfX is an extreme
point of Iy N A, it satisfies the desired rank condition. Otherwise,Aebe a face

of K, N A containing X. Then Alfakih and Wolkowicz (1998) show how to deter-
mine a direction in which to move frorX in F until reaching a poinY of a smaller
rank on the boundary aof. Iterating this process, we get a matrix of the required
rank.

In Theorem 1.2 the situation seems to be quite different. Itis not clear how to construct
the desired matrixX efficiently. Neither the proof of this paper nor other approaches
deducing Theorem 1.2 from known results in matrix theory (see Section 4) are construc-
tive. For instance, it is not clear what would be the right “spring attachment” to obtain
ther -dimensional realization in Theorem 2.5.

We state the problem of finding matriX in Theorem 1.2 efficiently as an open
problem.

Finally, we mention that Theorems 1.1 and 1.2 can be applied in a similar way to
other problems of geometric realizability involving constraints on lengths and angles, as
long as those constraints can be recast as affine constraints on a Gram matrix.

(2.6) Example. Suppose we want to find a hexagoriihwith prescribed lengths of

its sides, prescribed angles between the three pairs of opposite sides, and prescribed
sum of the squared norms of the vertices. These constraints can be written as 10 affine
constraints on the & 6 Gram matrix of vectors, ..., vs € R". Theorem 1.2 implies

that such a hexagon existsliti if and only if it exists inR3.

3. Proof

Our proof uses the convex geometry of the céiieof positive semidefinite matrices.

Let K c RY be a convex set. An affine hyperplaheisolatesK if K lies in one of
the closed halfspaces bounded Hy A setF C K is called afaceof K if there is a
hyperplaneH which isolatesK and such thaF = K N H. In this caseH is called a
supporting hyperplanef F. We also agree tha& is a face of itself.

By theinterior int K of a convex seK we always mean its relative interior, that is
the interior with respect to the affine hull &f. The sett K = K\ intK is called the
boundaryof K. See Webster (1994) as a general reference.

Thus/Cy is a pointed convex closed cone. We need a description of the facial structure
of K, (see Section 31.5 of Deza and Laurent, 1997).

(3.1) The Facial Structure ofiC,,. The faces offC,, are parameterized by the sub-
spaces oR". For a subspacé c R", let

Fr={Xe€Kn: L NulXj},

where NulX is the null space oK consisting of vectory € R" such thatXy = 0. One
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has dimF, = (”;1), wherer = codim£. A matrix X € K, of rankr lies in the interior

of the ("}")-dimensional faceFui x.
The faceF “looks like” the cone of positive semidefinite matrices of sizevhere
r = codim£. Decomposin®" = £ @ £*, we see that in an appropriate basis, every

matrix X € F, has the structure

x — (On-nxa-n Om-rxr
0r><(n—|’) Yr><r ’

whereQis the zero matrix antf; ., is anr x r positive semidefinite matrix. In particular,
identifying R" with the orthogonal complement* of £, we identify 7, with ;. In
other words, there is a rank-preserving isoméfry— F., where codinC =r.

The boundary 7 is the union of all face$ ,,, whereM C R" is a subspace strictly
containing..

The following lemma provides the key ingredient of the proof of Theorem 1.2.

(3.2) Lemma. Letr > 1andlet4 C Sym,, be an affine subspace such tdah A =
r +2and socodimA = (”Zrz). Suppose that the intersectiohN K; ,» is nonempty and
boundedThen there is an X K, » N A such thatankX <r.

Proof. We observe that i Nint I, > = @, then the separation theorem (see Webster,
1994) implies that4 lies in the supporting hyperplane of a proper fa€eof K, ,».
Since there is a rank-preserving isometry betw&eand s for somes < r + 2 (see
Section 3.1), we deduce the result from Theorem 1.1.

Hence without loss of generality we can assume thabntains an interior point of
Kri2. LetB = AN K, 2. Suppose that rank > r for all X € B.

For everyX € a5 we also haveX € 9K 2 and so rank < r 4 2 (see Section 3.1).
Since we assumed that rakk> r for all X € B, we must have ranK = r + 1 for
eachX e 9B, so dim(Nul X) = 1. The correspondencé — Nul X defines a map
V: B — P(R'*2), whereP(R't2) = RP'*+!is the projective space of all lines through
the origin inR" 2. Clearly, the mapy is continuous.

Now we claim that there exist two distinct pointg, X, € 98 such that NuX; =
Nul X, = ¢ for some one-dimensional subspdce R'*2. Suppose that this is not the
case. Thens: 9B — RP'*+! is an embedding. We note that sinde (int K, ,») # ¢,
the sef3 is an(r +2)-dimensional convex body and the boundaBjis homeomorphic to
the spher& 1. HoweverS'+* cannot be embedded ini&¥P" +1 forr > 0. Indeed, since
S+ andRP' +* are equidimensional manifolds, ! is compact an®P' 1 is connected,
the Invariance of Domain Theorem (see, for example, Chapter Ill, Section 6 of Massey,
1980) implies that such an embedding would have been a homeomorphism bstiveen
andRP' 1, which is a contradiction, sinc® ™! andRP'*+* are not homeomorphic for
r>1.

So, we proved that there exist two distinct poiXtg X, € 98 such that NuX; =
Nul X, = ¢ for some one-dimensional subspatec R'*2. Therefore, X1, X, €
Fe for the faceF, of K, (see Section 3.1). The intersection of the straight line
{tX1+ (1 — t)Xy: © € R} passing throughX; and X, with the faceF, is an
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interval [Y1, Y2] with Y1,Y> € 9F,. Hence rankfy, Y < r (see Section 3.1) and
Y1, Yo € AN K;,2. The obtained contradiction shows that ratiks r for someX <
ICrJrz N A D

Proof of Theoreni.2. Asin Section 31.5 of Deza and Laurent (1997), the intersection
Kn N A has an extreme poird and the rank of every such point is at most 1, so
codimNulY < r+1. We choose asubspa€suchthatl ¢ NulY and codimZ =r +2.
Let . be the corresponding face &f,. HenceY € F, andF, N.A # @. Since there is

a rank-preserving isometry betweki, , and ¥, by Lemma 3.2, it follows that there
isanX € Fr N Asuchthatrank <r.

Remark. Our proof exploited in a simple minded way the fact that, as described in
Section 3.1, the poset of faces/of is isomorphic to the poset of all subspace®R6f

It is our belief, however, that this fundamental fact will lead to deeper consequences in
the future.

4. Related Results from Matrix Theory

Theorem 1.2 is equivalent to some results known in the literature. One can show that
Theorem 1.2 is equivalent to the following result from Au-Yeung and Poon (1979) and
Poon (1994).

(4.1) Theorem. Fix a number r> 1, a number k< ("% — 1, and a number r>
r+2. Letq,...,q R" — R be quadratic forms and lgp: R" — Rk be the
corresponding quadratic magp(x) = (qu(X), .. ., gk(X)).

LetS"™! = {x € R": ||X|| = 1} be the unit sphetélhen every point fromonve (S"1)
can be represented as a convex combination @fat necessarily distingipoints from
@(S"Y).

In turn, it is shown in Au-Yeung and Poon (1979) that Theorem 4.1 is equivalent to
the following (unpublished) result of Bohnenblust:

(4.2) Theorem. Suppose thatr- 0and n>r + 2. Letl{ C Sym be a subspace
such thadimi < (”ZFZ) — 1. Supposegfurther, that the following condition is satisfied
whenever for some vectorg, x. ., X, € R" one has

r
Y xAx =0 foral Ael,
i=1

one must havejx= 0fori =1, ...,r. Thenl{ contains a positive definite matrix

Finally, Friedland and Loewy (1976) proved that Theorem 4.2 is equivalent to the
following result.
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(4.3) Theorem. Supposetha2 <r < n— 1. LetW C Sym be a subspace such
thatdimW > (r —1)(2n—r + 2)/2. Then W contains a nonzero matrix whose largest
eigenvalue is at least of multiplicity r

To complete the circle, we sketch the proof of equivalence of Theorems 1.2 and 4.1.
Theorem 1.2—= Theorem 4.1.
In the context of Theorem 4.1, l§t= (11, ..., nk) be a point from the convex hull
of o(S"1). Hencey = a1¢(X1) + - - - 4+ ame(Xm) for some vectorsy, . .., Xy € S"*
and some nonnegativg, ..., om such thatv; + - - - + oy = 1. LetQg, ..., Qk be the
matrices of the forme, .. ., gk sothat (x) = X' Qi X. Let X = agXg X} +- - - +otmXmX5,.
ThenX is a positive semidefinite matrix satisfyikagffine constraints tQ; X) = »; for
i =1,..., kand one additional constraint¥) = 1, which makes the set of all feasible
positive semidefinite matrices bounded. Applying Theorem 1.2, we conclude that there
exists a positive semidefinite matri satisfying the same set of constraints and such
that rankX’ < r. Such a matrix can be decomposkt = a1x;x}" + --- + arx/x/",
which gives rise to a representationyodis a convex combination gf(x/),i = 1,...,r.
Theorem 4.12= Theorem 1.2.
Reversing the above reasoning, one can show that Theorem 1.2 holds provided the
subspaceA lies in the affine hyperplane(X) = 1. A straightforward, but lengthy,
argument deduces the general case of Theorem 1.2 from there.
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