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Abstract. LetKn be the cone of positive semidefiniten×n matrices and letA be an affine
subspace of the space of symmetric matrices such that the intersectionKn∩A is nonempty
and bounded. Suppose thatn ≥ 3 and that codimA = (r+2

2

)
for some 1≤ r ≤ n− 2. Then

there is a matrixX ∈ Kn ∩A such that rankX ≤ r . We give a short geometric proof of this
result, use it to improve a bound on realizability of weighted graphs as graphs of distances
between points in Euclidean space, and describe its relation to theorems of Bohnenblust,
Friedland and Loewy, and Au-Yeung and Poon.

1. Introduction

Let Symn be the space ofn× n symmetric matrices. ThusSymn is a real vector space of
dimension

(n+1
2

)
. LetKn ⊂ Symn be the convex cone of positive semidefinite matrices.

The following result is well known, see, for example, Barvinok (1995), Section 31.5 of
Deza and Laurent (1997), and Pataki (1996).

(1.1) Theorem. LetA ⊂ Symn be an affine subspace such that the intersectionKn∩A
is nonempty andcodimA ≤ (r+2

2

) − 1 for some nonnegative integer r. Then there is a
matrix X ∈ Kn ∩A such thatrankX ≤ r .

The bound in Theorem 1.1 is sharp, meaning that for anyn and for anyr < n one can
construct an affine subspaceA such thatA ∩ Kn 6= ∅, codimA = (r+2

2

)
and for every

X ∈ Kn ∩A one has rankX > r (see Section 2).
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The problem of finding a low-rank positive semidefinite matrix subject to affine
constraints has attracted some attention recently. For example, it turned out to be relevant
to problems of chemistry, statistics, archaeology, genetics, and geography (see Alfakih
and Wolkowicz (1998) for references and discussion) and to semidefinite programming
in general, currently a very active area of research (see, for example, Vandenberghe and
Boyd (1996) for a survey). Therefore, it is worth mentioning that in one particular case
the bound can be sharpened.

(1.2) Theorem. Suppose that r> 0 and n ≥ r + 2. Let A ⊂ Symn be an affine
subspace such thatcodimA = (r+2

2

)
. Suppose that the intersectionKn ∩A is nonempty

and bounded. Then there is a matrix X∈ Kn ∩A such thatrankX ≤ r .

Theorem 1.2 is equivalent to a host of known results in Matrix Theory (see Section 4),
yet it appears that it has not been stated explicitly. The purpose of this note is to provide
a direct proof of the theorem based solely on the convex geometry ofKn (Section 3),
to compare Theorems 1.1 and 1.2 from the structural (this section) and algorithmic
points of view (Section 2), and to use Theorem 1.2 for a problem of Distance Geometry
(Section 2).

Polyhedral Analogy. Theorem 1.1 is proved by pointing out that every extreme point
of the intersectionKn ∩ A will have the desired rank (see Section 31.5 of Deza and
Laurent, 1997). The proof can also be obtained via complementarity conditions for
semidefinite programming (see Barvinok, 1995; Alizadeh et al., 1997), which constitute
a particular case of the complementary conditions for general linear programs (see
Anderson and Nash, 1987). Thus Theorem 1.1 is somewhat analogous to the statement
that the intersection of an affine subspace of codimensionr with a nonnegative orthant
in Rn, if nonempty, will contain a point where somen − r coordinates are zero (see,
for example, Pataki (1998) for a discussion of this “polyhedral analogy” and based on
it a semidefinite version of the simplex method). Furthermore, for a generic subspace
the boundn − r cannot be improved. In the context of Theorem 1.2, it is not true that
every extreme point of the intersection will have the desired rank, but rather that the
rank of some extreme point will satisfy the bound. Theorem 1.2 demonstrates a point
where the polyhedral analogy breaks down. Essentially, it asserts that there is no positive
semidefinite analogue of a simple bounded polyhedron (simple polytope) as there must
always be a degenerate vertex.

2. An Application to Distance Geometry

We fix an undirected weighted graphG = (V, E; ρ) with the setV = {1, . . . ,n}
of vertices, a setE ⊂ (V

2

)
of edges and nonnegative weightsρi j on the edges. Let

r be a positive integer. We say thatG is r -realizable if G can be realized as the
graph of distances between points in Euclidean spaceRr , that is, if we can findn
(not necessarily distinct) pointsv1, . . . , vn in Rr such that‖vi − vj ‖ = ρi j whenever
{i, j } ∈ E. The problem of finding such a realization is known as the Euclidean distance
matrix completion problem, see Laurent (1998) for a survey. We use two reformula-
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tions of the problem, the first one is more “straightforward” while the second is more
“economical.”

(2.1) First Reformulation. LetG = (V, E; ρ)be a weighted graph onn nodes and let
v1, . . . , vn ∈ Rr be its realization. We consider the Gram matrixX = (ξi j ) of v1, . . . , vn,
soξi j = 〈vi , vj 〉, where〈·, ·〉 is the standard scalar product inRn. ThenX is a positive
semidefinite matrix such that rankX ≤ r . Furthermore, the distance conditions

‖vi − vj ‖ = ρi j for {i, j } ∈ E

can be written as|E| affine constraints

ξi i − 2ξi j + ξj j = ρ2
i j for {i, j } ∈ E. (2.1.1)

Conversely, ifX = (ξi j ) is an n × n positive semidefinite matrix satisfying (2.1.1)
and such that rankX ≤ r , then X can be written in the formξi j = 〈vi , vj 〉, where
v1, . . . , vn ∈ Rr is an r -realization ofG. Let An ⊂ Symn be the affine subspace of
matrices satisfying (2.1.1). We conclude thatG is r -realizable if and only if there exists
a matrixX ∈ Kn ∩An such that rankX ≤ r .

(2.2) Second Reformulation. We observe that we can always translate the vertices
v1, . . . , vn of a realization ofG so thatvn = 0. Let X = (ξi j ) be the(n− 1)× (n− 1)
Gram matrix of the vectorsv1, . . . , vn−1, soξi j = 〈vi , vj 〉. Then (2.1.1) can be replaced
by |E| affine constraints

ξi i = ρ2
in if {i,n} ∈ E and

ξi i − 2ξi j + ξj j = ρ2
i j if 1 ≤ i, j ≤ n− 1 and {i, j } ∈ E, (2.2.1)

so thatG is r -realizable if and only if there is an(n− 1)× (n− 1) positive semidefinite
matrix X satisfying (2.2.1) and such that rankX ≤ r . LetAn−1 ⊂ Symn−1 be the affine
subspace of matrices satisfying (2.2.1). We conclude thatG is r -realizable if and only if
there exists a matrixX ∈ Kn−1 ∩An−1 such that rankX ≤ r .

The following result was proved in Barvinok (1995).

(2.3) Theorem. Suppose that the number|E| of edges of a weighted graph G=
(V, E; ρ) satisfies the inequality|E| ≤ (r+2

2

)− 1.Then G is realizable inRr if and only
if G is realizable in some Euclidean space.

Proof. Follows by Reformulation 2.1 and Theorem 1.1.

The following example shows that the bound in Theorem 2.3 and hence in Theorem 1.1
is indeed sharp.

(2.4) Example. Suppose thatG consists of a complete graph on the firstr +2 vertices
(1-skeleton of an(r +1)-dimensional simplex) andn−r −2 isolated vertices. We assign
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weight 1 to every
(r+2

2

)
edge ofG. Clearly, any realization ofG as a graph of distances

in some spaceRd amounts to placing the firstr + 2 vertices as the vertices of a regular
(r + 1)-dimensional simplex and then placing arbitrarily the remaining(n − r − 2)
vertices. ThusG is realized inRr+1 but not realized inRr .

Theorem 1.2 allows us to prove that in the critical case of|E| = (r+2
2

)
, the graph from

Example 2.4 is the only graph that defies the conclusion of Theorem 2.3.

(2.5) Theorem. Suppose that|E| = (r+2
2

)
for some r> 0 and that G is not a union

of a complete graph with r+ 2 vertices and zero or more isolated vertices. Then G is
realizable inRr if and only if G is realizable in some Euclidean space.

Proof. SinceG is r -realizable if and only if its connected components are realizable,
without loss of generality we may assume thatG is connected. SinceG is not a complete
graph, for the numbern of vertices we haven ≥ r + 3. We now use Reformulation 2.2
to conclude that ther -realizability ofG is equivalent to the existence of a matrixX ∈
Kn−1∩An−1 such that rankX ≤ r , whereAn−1 ⊂ Symn−1 is the affine subspace defined
by (2.2.1). We prove that the intersectionAn−1 ∩ Kn−1 is necessarily bounded. Since
G is connected, each vertexi of G can be connected to thenth vertex by a path in the
graph. Therefore, for any realization ofG with vn = 0, the length‖vi ‖ is bounded by
the sum of the lengths of the edges of the path, so we can write‖vi ‖ ≤ R, whereR is
the sum of all weightsρi j . Hence|ξi i | ≤ R2. Now we observe that the set of positive
semidefinite matrices with a uniform bound on the diagonal entries is bounded and apply
Theorem 1.2.

Example 2.4 provides evidence that both conditionsKn ∩ A 6= ∅ andn ≥ r + 2 in
Theorem 1.2 are necessary. Indeed, consider Reformulation 2.2 of ther -realizability
problem for graphG of Example 2.4. Ifn = r + 2 (there are no isolated vertices),
then the condition on the size of the matrix is violated (remember that we pass to
(n− 1)× (n− 1)matrices). Ifn > r + 2 and hence there are isolated vertices, then the
“realization space”Kn−1 ∩ An−1 is not bounded, because an isolated vertex can move
freely.

Algorithmic Issues and Mechanical Analogies. It is relatively easy to find, at least ap-
proximately, a matrixX satisfying the conditions of Theorem 1.1. In Barvinok (1995),
the following approach was suggested. Choose a positive definite matrixF and find a
positive semidefinite matrixX from the intersectionKn ∩ A which minimizes tr(F X)
(this is a problem of semidefinite programming (see Vandenberghe and Boyd, 1996).
It is shown in Barvinok (1995) that ifF is sufficiently generic, then the matrixX
satisfies the required rank condition. This method has an especially transparent interpre-
tation for realizability problems discussed in this section. Given a higher-dimensional
realization of a weighted graph, we attach “springs” (with generic elasticities) to all
pairs of vertices that are not connected by an edge. Then the graph will fold itself
down onto the minimal energy configuration of an appropriate dimension. In Alfakih
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and Wolkowicz (1998) it is shown how to avoid a nonconstructive genericity condition
on F . With any positive definiteF , we find a matrixX as above. IfX is an extreme
point of Kn ∩ A, it satisfies the desired rank condition. Otherwise, letF be a face
of Kn ∩ A containing X. Then Alfakih and Wolkowicz (1998) show how to deter-
mine a direction in which to move fromX in F until reaching a pointY of a smaller
rank on the boundary ofF . Iterating this process, we get a matrix of the required
rank.

In Theorem 1.2 the situation seems to be quite different. It is not clear how to construct
the desired matrixX efficiently. Neither the proof of this paper nor other approaches
deducing Theorem 1.2 from known results in matrix theory (see Section 4) are construc-
tive. For instance, it is not clear what would be the right “spring attachment” to obtain
ther -dimensional realization in Theorem 2.5.

We state the problem of finding matrixX in Theorem 1.2 efficiently as an open
problem.

Finally, we mention that Theorems 1.1 and 1.2 can be applied in a similar way to
other problems of geometric realizability involving constraints on lengths and angles, as
long as those constraints can be recast as affine constraints on a Gram matrix.

(2.6) Example. Suppose we want to find a hexagon inRr with prescribed lengths of
its sides, prescribed angles between the three pairs of opposite sides, and prescribed
sum of the squared norms of the vertices. These constraints can be written as 10 affine
constraints on the 6× 6 Gram matrix of vectorsv1, . . . , v6 ∈ Rr . Theorem 1.2 implies
that such a hexagon exists inRr if and only if it exists inR3.

3. Proof

Our proof uses the convex geometry of the coneKn of positive semidefinite matrices.
Let K ⊂ Rd be a convex set. An affine hyperplaneH isolatesK if K lies in one of

the closed halfspaces bounded byH . A set F ⊂ K is called afaceof K if there is a
hyperplaneH which isolatesK and such thatF = K ∩ H . In this case,H is called a
supporting hyperplaneof F . We also agree thatK is a face of itself.

By the interior int K of a convex setK we always mean its relative interior, that is
the interior with respect to the affine hull affK . The set∂K = K\ int K is called the
boundaryof K . See Webster (1994) as a general reference.

ThusKn is a pointed convex closed cone. We need a description of the facial structure
of Kn (see Section 31.5 of Deza and Laurent, 1997).

(3.1) The Facial Structure ofKn. The faces ofKn are parameterized by the sub-
spaces ofRn. For a subspaceL ⊂ Rn, let

FL = {X ∈ Kn: L ⊂ Nul X},

where NulX is the null space ofX consisting of vectorsy ∈ Rn such thatXy= 0. One
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has dimFL =
(r+1

2

)
, wherer = codimL. A matrix X ∈ Kn of rankr lies in the interior

of the
(r+1

2

)
-dimensional faceFNul X.

The faceFL “looks like” the cone of positive semidefinite matrices of sizer , where
r = codimL. DecomposingRn = L ⊕ L⊥, we see that in an appropriate basis, every
matrix X ∈ FL has the structure

X =
(

0(n−r )×(n−r ) 0(n−r )×r

0r×(n−r ) Yr×r

)
,

where0 is the zero matrix andYr×r is anr × r positive semidefinite matrix. In particular,
identifyingRr with the orthogonal complementL⊥ of L, we identifyFL with Kr . In
other words, there is a rank-preserving isometryKr −→ FL, where codimL = r .

The boundary∂FL is the union of all facesFM, whereM ⊂ Rn is a subspace strictly
containingL.

The following lemma provides the key ingredient of the proof of Theorem 1.2.

(3.2) Lemma. Let r ≥ 1and letA ⊂ Symr+2 be an affine subspace such thatdimA =
r + 2 and socodimA = (r+2

2

)
. Suppose that the intersectionA∩Kr+2 is nonempty and

bounded. Then there is an X∈ Kr+2 ∩A such thatrankX ≤ r .

Proof. We observe that ifA∩ intKr+2 = ∅, then the separation theorem (see Webster,
1994) implies thatA lies in the supporting hyperplane of a proper faceF of Kr+2.
Since there is a rank-preserving isometry betweenF andKs for somes < r + 2 (see
Section 3.1), we deduce the result from Theorem 1.1.

Hence without loss of generality we can assume thatA contains an interior point of
Kr+2. LetB = A ∩Kr+2. Suppose that rankX > r for all X ∈ B.

For everyX ∈ ∂B we also haveX ∈ ∂Kr+2 and so rankX < r + 2 (see Section 3.1).
Since we assumed that rankX > r for all X ∈ B, we must have rankX = r + 1 for
eachX ∈ ∂B, so dim(Nul X) = 1. The correspondenceX 7−→ Nul X defines a map
ψ : ∂B −→ P(Rr+2), whereP(Rr+2) = RPr+1 is the projective space of all lines through
the origin inRr+2. Clearly, the mapψ is continuous.

Now we claim that there exist two distinct pointsX1, X2 ∈ ∂B such that NulX1 =
Nul X2 = ` for some one-dimensional subspace` ⊂ Rr+2. Suppose that this is not the
case. Thenψ : ∂B −→ RPr+1 is an embedding. We note that sinceA∩ (intKr+2) 6= ∅,
the setB is an(r+2)-dimensional convex body and the boundary∂B is homeomorphic to
the sphereSr+1. However,Sr+1 cannot be embedded intoRPr+1 for r > 0. Indeed, since
Sr+1 andRPr+1 are equidimensional manifolds,Sr+1 is compact andRPr+1 is connected,
the Invariance of Domain Theorem (see, for example, Chapter III, Section 6 of Massey,
1980) implies that such an embedding would have been a homeomorphism betweenSr+1

andRPr+1, which is a contradiction, sinceSr+1 andRPr+1 are not homeomorphic for
r ≥ 1.

So, we proved that there exist two distinct pointsX1, X2 ∈ ∂B such that NulX1 =
Nul X2 = ` for some one-dimensional subspace` ⊂ Rr+2. Therefore,X1, X2 ∈
F` for the faceF` of Kr+2 (see Section 3.1). The intersection of the straight line
{τX1 + (1 − τ)X2: τ ∈ R} passing throughX1 and X2 with the faceF` is an
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interval [Y1,Y2] with Y1,Y2 ∈ ∂F`. Hence rankY1,Y2 ≤ r (see Section 3.1) and
Y1,Y2 ∈ A ∩ Kr+2. The obtained contradiction shows that rankX ≤ r for someX ∈
Kr+2 ∩A.

Proof of Theorem1.2. As in Section 31.5 of Deza and Laurent (1997), the intersection
Kn ∩ A has an extreme pointY and the rank of every such point is at mostr + 1, so
codim NulY ≤ r+1. We choose a subspaceL such thatL ⊂ Nul Y and codimL = r+2.
LetFL be the corresponding face ofKn. HenceY ∈ FL andFL ∩A 6= ∅. Since there is
a rank-preserving isometry betweenKr+2 andFL, by Lemma 3.2, it follows that there
is anX ∈ FL ∩A such that rankX ≤ r .

Remark. Our proof exploited in a simple minded way the fact that, as described in
Section 3.1, the poset of faces ofKn is isomorphic to the poset of all subspaces ofRn.
It is our belief, however, that this fundamental fact will lead to deeper consequences in
the future.

4. Related Results from Matrix Theory

Theorem 1.2 is equivalent to some results known in the literature. One can show that
Theorem 1.2 is equivalent to the following result from Au-Yeung and Poon (1979) and
Poon (1994).

(4.1) Theorem. Fix a number r≥ 1, a number k≤ (r+2
2

) − 1, and a number n≥
r + 2. Let q1, . . . ,qk: Rn −→ R be quadratic forms and letϕ: Rn −→ Rk be the
corresponding quadratic map, ϕ(x) = (q1(x), . . . ,qk(x)).
LetSn−1 = {x ∈ Rn: ‖x‖ = 1} be the unit sphere. Then every point fromconvϕ(Sn−1)

can be represented as a convex combination of r(not necessarily distinct) points from
ϕ(Sn−1).

In turn, it is shown in Au-Yeung and Poon (1979) that Theorem 4.1 is equivalent to
the following (unpublished) result of Bohnenblust:

(4.2) Theorem. Suppose that r> 0 and n≥ r + 2. Let U ⊂ Symn be a subspace
such thatdimU <

(r+2
2

)− 1. Suppose, further, that the following condition is satisfied:
whenever for some vectors x1, . . . , xr ∈ Rn one has

r∑
i=1

xt
i Axi = 0 for all A ∈ U,

one must have xi = 0 for i = 1, . . . , r . ThenU contains a positive definite matrix.

Finally, Friedland and Loewy (1976) proved that Theorem 4.2 is equivalent to the
following result.
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(4.3) Theorem. Suppose that2 ≤ r ≤ n − 1. LetW ⊂ Symn be a subspace such
thatdimW ≥ (r − 1)(2n− r + 2)/2. Then W contains a nonzero matrix whose largest
eigenvalue is at least of multiplicity r.

To complete the circle, we sketch the proof of equivalence of Theorems 1.2 and 4.1.
Theorem 1.2H⇒ Theorem 4.1.
In the context of Theorem 4.1, lety = (η1, . . . , ηk) be a point from the convex hull

of ϕ(Sn−1). Hencey = α1ϕ(x1)+ · · · + αmϕ(xm) for some vectorsx1, . . . , xm ∈ Sn−1

and some nonnegativeα1, . . . , αm such thatα1+ · · · + αm = 1. Let Q1, . . . , Qk be the
matrices of the formsq1, . . . ,qk so thatqi (x) = xt Qi x. Let X = α1x1xt

1+· · ·+αmxmxt
m.

ThenX is a positive semidefinite matrix satisfyingk affine constraints tr(Qi X) = ηi for
i = 1, . . . , k and one additional constraint tr(X) = 1, which makes the set of all feasible
positive semidefinite matrices bounded. Applying Theorem 1.2, we conclude that there
exists a positive semidefinite matrixX′ satisfying the same set of constraints and such
that rankX′ ≤ r . Such a matrix can be decomposedX′ = α1x′1x′1

t + · · · + αr x′r x′r
t ,

which gives rise to a representation ofy as a convex combination ofϕ(x′i ), i = 1, . . . , r .
Theorem 4.1H⇒ Theorem 1.2.
Reversing the above reasoning, one can show that Theorem 1.2 holds provided the

subspaceA lies in the affine hyperplane tr(X) = 1. A straightforward, but lengthy,
argument deduces the general case of Theorem 1.2 from there.
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