
O P T I M A L  L O W - T H R U S T  T A K E O F F  F R O M  

AN O B L A T E  P L A N E T *  

AN O R B I T  A B O U T  

R O B E R T  A. J A C O B S O N  

Senior Engineer, Mission Analysis Division, Jet Propulsion Laboratory, 
Pasadena, Calif. 91103, U.S.A. 

and 

W I L L I A M  F. P O W E R S  

Associate Professor, Department of Aerospace Engineering, The University of Michigan, 
Ann Arbor, Mich. 48104, U.S.A. 

(Received 19 August, 1975) 

Abstract. Future space missions to the outer planets may depend upon the use of low-thrust propul- 
sion systems. As these planets are decidedly oblate, the question of the effect of that oblateness on a 
low-thrust trajectory is of some interest. In this paper the problem of optimal energy increase is attacked 
under the assumption that the coefficients for the second zonal harmonic, i.e., J2, and the nondimen- 
sional thrust acceleration are the same order of magnitude. Using a two variable asymptotic expansion 
technique, a near optimal control program is generated and the first order uniformly valid approxima- 
tion for the corresponding trajectory is obtained. Tangential thrust is shown to be a good near-optimal 
thrust program even in the presence of oblateness effects. The optimal control program is found to 
be oscillatory and quite similar to the optimal control for energy increase in an inverse square gravita- 
tional field. 

Introduction 

The problem of takeoff from planetary orbit by a low thrust spacecraft has been the 
subject of numerous numerical and analytical studies. For the case of an inverse 
square gravity field, solutions have been generated for specified thrust programs, i.e., 
circumferential thrust (Tsien, 1953), tangential thrust (Benny, 1958), arbitrary con- 
stant angle thrust (Ting and Brofman, 1954), radial thrust (Dobrowolski, 1958 and 
Tsien, 1953), and for optimal thrust programs (Breakwell and Rausch, 1966; Jacobson 
and Powers, 1971, 1972; Lawden, 1958). For an oblate gravity field in which the non- 
dimensional thrust acceleration is of the same order as the oblateness coefficient for 
the second zonal harmonic, Zee has obtained solutions for the cases of tangential 
(Zee, 1968) and radial thrust (Zee, 1969). 

The problem considered here is that of optimal takeoff from an orbit about an 
oblate planet. The spacecraft is assumed to operate with a constant thrust acceleration 
of the same order as that assumed by Zee. Since the thrust acceleration is constant, 
the only control is thrust direction, and the fuel optimal and time optimal trajectories 
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coincide. The particular optimal takeoff trajectory to be studied is the one on which 
a specified terminal energy is acquired in minimum time (or equivalently, with mini- 
mum fuel expenditure). One example of such a trajectory is the optimal escape trajec- 
tory. However, the method of solution requires the gravitational force to remain 
dominant; and consequently, the results of the analysis are valid only for trajectories 
attaining final energies somewhat less than escape energy. This restriction on final 
energy is encountered on all analytical solutions to low thrust takeoff problems. 

1. Mathematical Formulation 

A. COORDINATE SYSTEM AND EQUATIONS OF MOTION 

The motion of the vehicle is described relative to a coordinate system which is rotating 
with an angular velocity and acceleration that are determined as part of the problem 
solution. Figure 1 shows the relation between this system and a planet centered 
inertial system. The angular velocity and acceleration vectors are aligned with the 
inertial Z axis, and the rotation is performed with the xy  plane inclined at a constant 
angle to the inertial X Y  plane. The angle of inclination is determined at the initial 
time by requiring the xy  plane to coincide with the osculating orbital plane. It should 
be emphasized, however, that after the initial time the xy plane and osculating orbital 
plane are not coincident. 

Within the rotating system the motion is expressed in cylindrical coordinates, and 
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the thrust acceleration vector is defined with respect to the unit vectors for those 
coordinates (Figure 2). 

a = a[(cos ~ sin e)~, + (cos ~t cos e)~o + (sin ~,)~=]. (1.1) 

Z 

ez~ ~ R 
i ! x 

L 

Y 
Fig. 2. 

Non-dimensionalizing the equations of motion with respect to an unperturbed 
cular orbit of radius Ro leads to the new independent variable 

cir- 

j / z  
- c = t  Ro 

and introduces the parameters 

a 
A 

a = ( I~ IR~) '  

where 

p =  gravitational constant of the planet, 

R| - planetary equatorial radius, 

J 2 -  oblateness coefficient, 

a-- thrust  acceleration magnitude. 

The parameter 6 is the nondimensional thrust acceleration and the parameter e 
scales the acceleration due to planetary oblateness. For the remainder of the paper it 
will be assumed that 6 and e are of the same order of magnitude, and the relation 

" (1 2) a - -  K e ~  

where tc =0(1) will be used to eliminate d from the equations of motion. Note that 
alternatively the relation e= k6 could be used, and e could be eliminated in lieu of 6. 
However (1.2) has been selected because, by setting K to zero, it permits the equations 
of motion to be reduced to those of a non-thrusting vehicle in an oblate gravity field. 

The complete non-dimensional set of equations of motion is then 
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d r  

d~ 
= V sin 7 (1.3) 

dO 
m 

d~ 

V 
cos  7 

r 
(1.4) 

d z  

d~ 
- - W  (1.5) 

d V  
N - - - -  

d~ 

r sin ? 3 e 
(r  2 + Z2)3/2 -}- Ke COS ~ff COS ~0 2 (r  2 + zZ) 5/2 • 

x [r(1 + sin 2 i) sin 7 + r sin 2 i s in (20 - 7) + 

+ z sin 2i cos  (0 - 7)] + 
15 er sin 7 
2 ( r  2 + Z2) 712 (r  s in i s in 0 + g COS i )2  + 

+ 2 ds 
dz  

w sin i sin (0 - 7) - ~ x 

x [z sin 2i cos  (0 - 7) + r s in 2 i sin (20 - 7) + 

+ r(1 + cos  2 i) sin 7] 
1 d 2 Q  

2 d 'c  2 
• 

x [r cos  i cos  7 - z s in i s in (0 - ~)],  (1.6) 

d7 

d~ 

V 
= - -  COS 7 - -  

r 

r cos  ~ Ke 
V(rZ + z2)a/2 + -~ cos  V sin r - 

3 
- -~ V(r2 + z2)5/2 [r(1 + s in 2 i ) c o s  7 -- r s in 2 i • 

x cos  (20 - 7) + z sin 2i s in (0 - 7)] + 

q ~ m 

15 er cos  7 
2 V( r  z + Z2) 712 (r sin i s in 0 + Z COS i)2 _ _  

2 dr2 

V dz  
[w sin i cos  (0 - 7) - V c o s  i] - 

[z sin 2i s in (0 - 7) - r ( 1  + cos  2 i ) c o s  7 - 

- r sin 2 i cos  (20 - 7)] q 
1 d2g2 
V dz "2 

• 

x [r cos  i sin 7 - z s in i cos  (0 - 7)],  (1.7) 
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d w  - -  Z 
J 

dr (r 2 + z2) 3/2 + xe sin 
3 
2 (r 2 + z2) 5/2 [z(1 + 2 cos 2 i ) +  

+ r sin 2i sin O] + 
15 
2 (r 2 

/3Z 
-~" Z2)7/2 (/" sin i sin 0 + 

+ z cos i)2 _ 
dg2 

2 
dr 

V sin  i s in  (0  - 7) - 

1 (dg'2) 2 d2g-2 (r sin i cos O) (1.8) 2 ~ (r sin 2i sin 0 - 2z sin 2 i) + d~--- 5- , 

where 

r =component  of position vector in xy  plane, 

0=angle  from x axis to r, 

z =  component of position vector normal to xy  plane, 

V= magnitude of component of velocity vector in xy  plane, 

7= angle between unit vector ~0 and component of velocity vector in xy  plane, 

w= component of velocity vector normal to xy  plane, 

i=  angle of inclination of xy  plane to X Y  plane, 

(2= angle of rotation of (oxyz) system measured from X axis to x axis, 

~b = e -  7 = angle defining direction of component of thrust acceleration vector in xy  

plane, 

~, = angle defining component of thrust acceleration vector normal to xy  plane. 

B. OPTIMIZATION PROBLEM FORMULATION 

The optimal control programs ~b(z) and ~(z) are found by application of the calculus 

of variations, with the performance index and Hamiltonian 

J = ~, - to, (1.9) 

dr dO dz dV d7 dw 
H = ~1 ~ ~ ~ ~ ~ ~ ~ ~ ~, ~ ~ ~ T~ ~ ~ d~" (1.10) 

The resulting optimal controls are 

25 /~4 V 
sin ~b = ~/22 + 2_V2,~ cos ~b = a/22 + 22V 2 (1.11) 

'~6 V ,V/252 qt_ /~42. V 2 
sin ~t = a/22 + 22V 2 + 22V2,  cos  ~ = V,22 + 2~V 5 + 2~V 2 (1.12) 
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and 

~ < ~ < ~  
7~ 7~ 

m ~ m o  

2 < ~ < 2  

The necessary conditions require the multipliers to satisfy the equations 

d21 8H d24 ~H 
~ JL 

& -- 0-7' a ~  - ~ v  

d2  2 8H d2s 8H 

dr 80 dr 87 
(1.13) 

d2a 8H d26 8H 
= - - , ,  ~ - - - ,  �9 

dr 8z '  dr 8w 

Due to the complexity of these equations, they will not be given explicitly in this 

paper. Their development, which follows from (1.10) and (1.3)-(1.8), however,  is 

straight-forward, though tedious. 

The specified boundary conditions on the problem are 

ro = O; 

ds 
r(O) = 1, V(O) = 1 dr cos i, 

o(o) = o ,  70) = o,  (1.14) 

dr2 
z(0) = 0, w(0) - d---z- sin i; 

1 
V sin 7 + z 

dO 

dr 

2 

sin i cos 0 + 

dO dO 
+ V cos 7 + r d--~ cos i -  z dr 

( )2] 
dO sin i cos 0 ~s + w - r d r  

2 

sin i sin 0 + 

1 
/~ [1 + �89 - 3 sin 2 d)]~f = E s, 

where 

R = a / r :  + z 2, 

sin d = 
r s in i s in 0 + z c o s  i 

i H i  

%/r 2 -!- Z 2 

E s = specified terminal energy level. 
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The initial conditions on V, 7, and w correspond to an inertial velocity 11(0)= 1~0. 
The initial 0 value places the vehicle in the equatorial plane; this position choice 
reduces the complexity of the analysis, although the solution procedures can be 
followed for any choice of initial 0. 

Since the twelfth order two-point boundary value problem posed by Equations 
(1.3)-(1.8) and (1.13), requires fourteen boundary conditions, the remaining six must 
be obtained from the transversality conditions. These conditions are 

- 

- 

= o  
'of T f  

~f \~z I ~f 

25 ("Cf) - -  

~ 6 ( ~ ' f )  - -  

24(Zs) (8~V)-~ (a.fi  -~ 
zf 

= 0  

: o  
zf ~f 

~E) = 1, 

where 

(1.15) 

d(2 
= V sin 7 + z dz sin i cos O)e~ + 

dr2 dr2 
+ Vcos 7 + r dz cos i -- z dz sin i sin 0)~0 + 

dO 
+ w - r d v  0) A sin i cos ez. 

The partial derivatives of the energy E are given in Appendix B. 
The specific problem of determining the optimal controls to take the vehicle to 

energy level E s in minimum time is now formulated as a two point boundary value 
problem with seven conditions at each boundary. 

2. Asymptotic Solution 

A. GENERAL METHOD 

Since the solution of the problem posed in I.B cannot be found analytically, it will be 
approximated with a general asymptotic expansion which is developed by a method of 
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multiple scales (Cole, 1968). The problem has two readily identifiable and distinct 
characteristic time constants 

= VR o/e , (2.1) 

= (2.2) 

where/'1 corresponds to the time scale on which the orbit deviates from the initial 
circular, and/ '2 corresponds to the time scale on which the vehicle moves along its 
orbit. As a consequence, two new independent variables for the problem can be 
defined 

1:1 = er, "c2 = f coo(eS) ds (2.3) 
0 

where O9o(.) is a function which is to be determined in the process of generating the 
expansions. 

The direct approach would now assume the state variables and multipliers to be 
represented by expansions of the form 

N 

q = q(rl, r2) = ~ e'q,(rl, r2) + O(e N+I) 
n = O  

(2.4) 

and these expansions would be substituted into Equations (1.3)-(1.8), (1.13), and the 
boundary conditions in order to generate equations and boundary conditions for 
the terms in the expansions. However, to be valid such an expansion must satisfy the 
equations for the case e=O, and in our problem the final transversality condition is 
degenerate at e=0. As a result, any solution satisfying that condition and found by 
direct application of (2.4) possesses a singularity. The source of this singularity is 
obvious for if e=0, then ~ce=d=0 and the optimal control problem does not exist, 
i.e., there is no control available for the vehicle. In order to develop a properly posed 
problem for solution by an asymptotic method, a simple scaling of the multipliers is 
employed 

1 
2 - 2 .  (2 .5 )  

K~ 

Since the multiplier Equations (1.13), control Equations (1.11)-(1.12), and first five 
transversality conditions are homogeneous in the multipliers, they remain unchanged. 
The troublesome final transversality condition, however, becomes 

24(~y) 0E - 1 a .R q = tce. (2.6) 
�9 f ~f 

Now a straight-forward substitution of expansions of the form (2.4) into the 
Equations (1.3)-(1.8), (1.11)-(1.12), (1.13), and boundary conditions (1.14), (1.15), 
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(2.6) may be used to form a system of equations for the expansion terms. Since we are 
assuming the expansions to be functions of z~ and %.2, the derivatives with respect to %. 
must  be replaced by 

d( . )  8 ( . )  d%.~ 8(-)  d%.2 8( . )  F- COo(%.~) ~'8(') (2.7) 
d%. - 8zl d%. ~ 8272 d%.-  e 8zl 8%.2 

In addition, in order to reduce the complexity of the equations, the expanded functions 
of the control angles will be represented by 

COS r --- ~O(T1, %.2) -~- e(~l(%.l, %.2) Jr- 82(X2(%.1, %.2) "Jr" "'" 

sin ~ = f10(%.1, %.2) 31- ~J~1(%.1, %.2) .qt_ e2f12(%.l, %.2) -~- . . .  
(2.8) 

COSEC "-- ~0(%.1, %'2) -[" e(~1(%.1, %.2) -['- ~21~2(%.1, %.2) -[-"*" 

sin ~u = Vo(Vi, z2) + eVl(V~, z2) + ~2V2(%.i, %.2) -k-"", 
where e~, fl~, g~, v~ are given in terms of the multipliers in Appendix A. 

The equations of motion also contain one unknown function O(~:), the rotation 
angle of the coordinate system. It will be assumed to be a function of the slow time 

variable %.~ only, and to possess the expansion 

~r~(%.) = ~'~(%.1) = ~r~0(%.1) -~- ~r~1(%.1) -~- ~2~"22(%.1) " [ - " ' ' "  (2.9) 

B. ZERO ORDER STATE AND MULTIPLIER SOLUTION 

The zero order state and multiplier equations are 

~ro 
= Yo sin 7o, (2.10) COo ~Zz 

c~Oo Vo 
= cos 70 (2.11) COo 8%.2 ro 

~Z o 
COo ~Zz = Wo, (2.12) 

a Vo _ ro sin 7o 
COo az2 - - (r 2 + z2) a/2, (2.13) 

8yo.__ 1 IV 2 ro 1 
COo 0z2 Vo ro (ro2 ~ 72/3/2 cos 7o, (2.14) 

~W o Z o 
= - (2.15) coo ~Zz (r 2 + Z2o) a/z '  

COo = c o s  - 

[ 2r~ - z 2 

k (r? ,  + 

[ 24 -- 
(r~ + z~) s/2 sin Yo - 

Vo 3roZo ] 
r2 ] c o s  Yo2so - [(r~ ~ ~)s/2J 26~ (2.16) 



170 ROBERT A. JACOBSON AND WILLIAM F. POWERS 

(D o 
t:q22o 
87r2 

= 0 ,  (2.17) 

09O 

0 9 0 ~  

(_DO m 

c~),3o 
~T 2 

8240 
~T 2 

~25o 
c~v2 

I 

m 

m 

3roZo sin 70 ] 
- [(r~ + ~o2)~-2J 2"~ - 

3roZo cos Yo ] 
Vo(r~, + z~) ~/2 ~ o -  

r 2zo2 ,, ] 
~ " -  -2"~ /2  260 

L(ro + Zo) J 
(2.18) 

3roZo sin 70 ] 

3roZo Cos 7o ] 
Vo-  r 

(2.19) 

- (Vo cos 7o)2~o + 
) [rocos o 

-~o sin 70 /~2o + .2 24o - (ro + zZ)3/zJ 

ro sin 70 
Vo(r?, + z~,) ~/2 VOro sin 70] 250 (2.20) 

~6o 
"-- ~ ~ 3 0  o90 ~z'2 (2.21) 

and the corresponding boundary conditions are 

ro(0, 0) = 1, 

Oo(O, o) = o, 

Zo(0, 0) = 0 ,  

Vo(0, 0) -- 1, 

~o(O, o) = o, 

Wo(0, 0) = 0; 

,ho(T~e, T@ - &o(~ : ,  Tze)COo(T~S) = 0, 

&o(T~e,  ~2e) = 0 ,  

&o(T~e, T~e) = 0, 

24o(Vls, Zzs) - 1, 

25o(V~e, Zzs) = 0, 

260(~i./" T2,F) "-" O. 

One possible solution to the zero order state equations is 

ro(~, ~ )  = COo2/~(~), 

Oo(~, ~2)= ~ + Oo(~#, 

Zo(~:~, ~2) = O, 

Vo(~, ~ )  = o4/~(TO, 

yo(~, ~:~) = O, 

Wo(~, ~ ) =  0. 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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The corresponding multiplier solution is 

,~10(T1 ,  T2 ) = C l l ( % . l ) C O o ( T 1  ) ~1_ 3coo2/a(zl)C2i(zi)T2 _ 

- CO2/a(zi)[Asi(Ti) sin Z 2 - -  Bsi(vl) cos T2], 

2~o(Z~, T~) = c ~ ( r ~ ) ,  

230(21, z2) = A31(zi) cos z2 + Bai('rl) sin z2, 

~'40(T1, %'2) - -  Cl l ( t l )  + 3COol/3(Ti)Czi( 'r l)T2 - -  

- 2o90 1/a(T1)[Asi(T1) sin z2 -- BSl(rl) cos z2], 

250('rl, z 2 ) =  -2C21(zi) + AsI(T1)cos Vz + Bsi(zl)sin tz, 

260(T1, "r2) = -coo  I(Ti)[Aal(T1) sin T2 -- B3i(zl) cos "r2]. 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

The boundary conditions impose the following conditions on the functions of the slow 
variable 

Coo(O) = 1, 

Oo(0) - 0 ,  

Aai( ' f ly )  -- Bal(zXs) = 0, (2.36) 

A~i (~A = B ~ ( ~ s )  = 0, 

C~l(*iA = 0, 

C i , (* lA  = 1. 

In order to have a uniformly valid solution, the functions of zl must be chosen in 
a manner which removes unbounded T2 terms from the expansions and yet permits 
satisfaction of the boundary conditions. It follows immediately, that 

C 2 1 ( z l )  - 0 .  

The first order equations must be used to determine the remaining functions of 21. 

C. FIRST ORDER STATE AND MULTIPLIER SOLUTION 

After the substitution of the zero order 
first order state equations, they reduce to 

state solution into the general expanded 

801 800 
= F c 0 2 / 3 V 1  - -  cooS/3rl, (2.39) coo 8t2 8z~ 

azi 8Zo 
= ~- w l ,  ( 2 . 4 0 )  COo 8v2 8zl 

Or~ ~ro 
= F co~/3 71, (2.38) 

(Do ~Z  2 ~'C 1 
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0 9  o - -  

~Z 2 

aFo 
(9TI 

_ 3 0 , ) 8 / 3  2 co~/371 + ~CC~o6o ~- o sin i sin 200, (2.41) 

a71 
COo c3z2 

m 

B 

07o 2og" V, + r + K(DO 1/3 ~0]~0 

3r.,7/3{1 3_.,...,7/3 sin 2 i cos 200 + - -  2t'vO k* - ~ - s i n 2  i ) +  2 ~ o  

+ �89 7/3 sin 2 i sin 2 00 df2o 
+ 2 - -  cos i, (2.42) 

Ow~ ~Wo 
COo ,3"c2 = 3 ,-...8/3 cO~Zl + tCVo + ~ , o  sin 2i sin 0o 

_ 209~/3 d#2o sin i sin 0o. (2.43) 

Before presenting the multiplier equations, we will make a preliminary analysis of 
the state equations which leads to considerable simplification. 

Equations (2.42), (2.38), and (2.41) may be combined into a single second order 

equation 71 

( bzy 1 
_ 3_..do/a sin 2 i sin 2cog/axeo b 71 -- 2~o 20o + 60 + 

C do . 
+ xco~/3 60 ~'c2 + flo "~z21 (2.44) 

Fourier series expansions of the control terms containing %, rio, and 60 on the right 
side of (2.44) contain a first harmonic which leads to unbounded z2 terms in the )'1 
solution. However, an analysis of the expansion coefficients shows that by setting 

Aa~(v~) = Bzl(z~) = As~(zl) = Bsl(z~) -- 0 (2.45) 

the unbounded v2 terms will disappear from the 71 solution and boundary conditions 
(2.36) will be satisfied. 

In view of (2.37) and (2.45), the zero order multipliers become 

~10(T1,  272) - -  C11(T1)(.DO(T1), ( 2 . 4 6 )  

22o(Zl, x2) = 0, (2.47) 

& o ( q ,  T:) = o,  (2.48) 

24o(T1, z2) = Cl1(T1), (2.49) 

2so(Z1, "r2) = O, (2.50) 

/~60(T1, "~'2) = 0 .  (2.51) 

Use of both the zero order state and multiplier solutions reduces the first order 
multiplier equations to the form 
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COo 

COo 

8211 021o 
&2 ST, + COg/ajt21 -- CO~/3~,sl -- 2co~Cll~'l -- 

- 6colo~ sin 2 i sin 200, 

~221 8220 

&:2 8Ti 

~231 823o 
COo 8"c2 8vl 

C O 0 ~  --" 
c%- 2 

02sx 
coo 8T2 - 

&:l 

n t- 3 C O s / a c i i  sin 2 i cos 200, 

3,..,10/3 sin 2i cos 0o, F coo2~,61 + -2-~,o Cii 

C~2so 

co~/ai21 - -  2co~/a~,si  - -  cooCilyl, 

eT1 
2 c o 2 C i l r l  Jr- 

3CO8/3 C r 1 3 _9,.,s/a s i n  2 i cos 200 + ~- o i1~, - ~-sin2 i) + 4tzJo 

3..,~/3c, sin 2i sin Oo 2u10 ~Jll 
8261 8/'L6o 

= 2ai + COO 87. 2 8~ 1 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

The first order boundary conditions are 

rl(0, 0) = 0, 

o1(o, o) = o, 

v , (o ,  o) = 

~,1(o, o) = o, 

d~oJ cos i, 
d 'c l  o 

z~(O, o) = o, w,(0, o) = df2o] sin i; 
dT1 o 

I dDo O9o&~ + co~)/3C~ [ 111 + COo 2/3 

d T i  \ 
cos i) - 

COo i/3Cll [ -  2CO~rl + COo 1/a df2o 

+ awo~"s/arlv: __~sinZisin20o)] } = 0  

-- ico~/a sin 2 i sin 20o} 9 = O, {&i 3Ci 

[ {/~31 -- Cl1(,Oo 1/3 -- 
df2o 

CO2Z 1 (_DO 1/3 
, dr 

3_co8/a sin 2i + 2  o 

{;tsl},s = O, 

f ~61 - -  

'(241 "k 

sin 0 o ] )  = 0 ,  
r$ 

sin i sin 0o + 

Cilcoo 1/a [wl - COo 2/a dOOdzi s i n / c o s  0o] } , f  

C l l  

/r 
COo 2/3 sin i dz~ j 9  = 0. 

= 0 ,  

(2.58) 

(2.59) 
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The solution to the first order equations is 

r l (z , ,  Zu) = Cl(zl)  + ~OoZ/3[Bl(z,) sin 0o - Ai(~:l)cos 0o] + 

i , . , z / a  s in  z i c o s  2 0 0 ,  "[- 4 t ~ 0  (2.60) 

01('el, zz) = Ol(zl) + 2[Al(zl) sin 0o + BI(Zl) cos 0o] 

+ 1...,4/3 sin z i sin 20o ~ t ~ 0  

zi(zi,  z2) = D4('rl) sin i sin 0o, 

+ 

(2.61) 

(2.62) 

W l ( ' ~ ' l ,  T2)  
3_.,...,5/3t'K -�89 + s,-o w - 7 sin z i) + 

+ o9~/3[Al(zl) cos 0o - B~(zl) sin 0o] + 

+ a,.,5/a sin z i cos 20o, ~-tzJ 0 (2.63) 

?l(Z'l, Z'z)-- 20904/3/(: -at- [Al(z'l)sin 0o + BI(z , )cos  0 o ] -  

1,.,,4/3 sin 2 i sin 200, - -  ~ w  0 

wi(zi, zz) = o9oD4(zl) sin i cos 0o, 

1,-,.,2/3(1 1 sin z i)] + /~ll('t 'i, "C2) = D2(T1) -- 3 6 0 5 / 3 C l i ( T 1 ) [ C l ( T 1 )  q- "~t,~O ~* 2 

-b 2o9oCii(z ' l ) [Ai(z ' i )  cos  0o - Bi ( ' r i )  sin 0o] + 

+ [0o 

(2.64) 

(2.65) 

(2.66) 

3co5/3C1 sin 2 i sin 200, 

23i(zl, z2) = Q(z i )  sin i sin [0o + az(zl)], 

(2.67) 

(2.68) 

~41('t'l, ~ '2)-"  Dz('t'1)09o 1 "at- 2 o g o l / 3 D l ( z l ) c o s  [0 0 --[-fl('t'l) ] -k 

+ Cll(z0[Ax(z0 cos 0o - Bl(~q) sin 0o] + 

+ �89 sin 2 i cos 200, 

251(rl, ~2)= -2Aa(zi)- Cii(Vl)KCOo i + Di(Ti) x 

x s in  [0o + f l (z~)] ,  

(2.69) 

(2.70) 

261(Zl, z2) = Ca(zx)COo 1 sin i cos [0o + aa(zl)] - 

3 4 /3  - ~COo Cla(zl) sin 2i cos 0o. (2.71) 

The boundary  conditions impose the following requirements on the functions of  the 

slow variable 
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AI(0) = - �89 - 2 sin z i), 

B l ( 0 )  = - - 2 K ,  

C1(0) - - ~ ( 1  __ 1__2 s in2  i), 

Ox(0) = 4x, 

(0)  3 D4 = - ~  c o s  i ,  

= 0 ,  

9..,713 C3(2"1f ) - -  [(_D5/3D4 -~- 2t.u0 COS i] , , ,  

DI(~lf ) "-- 60 0 1(Zlf)~(~ , 

.7/3 sin 2 i cos 200 + D2('q:) : [%!co~/3 sin 2i + -~,o 

(2.72) 

+ cooA1 cos 0o - cooB1 sin 0o]~1:,~2e, 

~(T15 ) = 2 -  T2f 
- 

= 0 .  

For  the first order solutions to assume the above forms without  unbounded z2 

terms, the following equations must be satisfied: 

d o . )  o 
~- 3xco~)/3 = 0, (2.73) 

dzl 

df2o 3,.,7/3 (2.74) t- z~'o cos i = 0, 
dr1 

dOo 
dzl 

~- ]-tz'jO3t"5/3t"~l-'l -- ~,o3""7/3ra~,, - 7 sin 2 i) = 0, (2.75) 

dC~a 
+ 3co~/3A3 = O. 

dva 
(2.76) 

Using (2.36) with (2.73) we find 

COo(V,) = (1 - tczl) 3. (2.77) 

It follows from (2.74) then that  

- 

3 
16tc [1 - (1 - tczl) 8] cos i, (2.78) 

where we have taken the X and x axes coincident at z = 0 ,  implying f2o(0)=0. The 

final two quadratures (2.75), (2.76) cannot  be carried out until C1 and A3 have been 

defined. 
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In view of (2.77) we may find the independent variable r 2 from (2.3) 

z2 = (1 - 3exz + ezxzr 2 - �88 (2.79) 

o r  

"r 2 = (1 3/(~1 + /f2~2 1 3 3 
- -  - -  g K  "~'1)~' ,  

which is of the form z2=09(Zx)Z. Consequently, we may interpret trigonometric terms 

of the form sin 0o = sin [z2 + Oo(z0] as oscillations with slowly varying frequency and 
phase. 

Finally substitution of the multiplier solutions into the control angle expansions 
yields 

V 0 - -  O,  

= 1, 

60 - 1, 

~1 -- O, 

fll = --2090 */3 A3 X09o4/3 + 09o,/3 D1. sin (0o + fl), (2.80) 
Cll Cll 

C3 
dl = 0, vl :- 

C l l  
090 1 sin i cos (0o + aa) - 3,.,,/3 sin 2i cos Oo 2tzJO 

From these expressions it is obvious that to second order the optimal control is 

oscillatory with slowly varying frequency, phase, and amplitude. 

D. DEVELOPMENT OF THE NEAR OPTIMAL SOLUTION 

Due to the extreme complexity introduced by the inclusion of oblateness, the genera- 
tion of the complete set of second-order equations was found to be impractical. 
Consequently, it is not possible to define the functions of ~1 appearing in the first-order 

solution in a manner which gives a second-order solution that is bounded in z2. 
Because of this difficulty, the uniformly valid expansions for the optimal control, and 
optimal trajectory have not been obtained. However, by using the terminal boundary 

conditions (2.72) as a guide, a near optimal control program can be defined, and the 

uniformly valid expansion for the corresponding near-optimal trajectory can be 
generated. This is accomplished by choosing the functions of Zl in the multiplier 

solution to be 

A a ( Z l )  - -  O, 

9_., . ,7/3{, . , .  "~ = + cos i, 

Da(zl) = tC09o 1(vl). 
1 "7/3 D2(Zl) - 241 co~/3(Zl) sin 2i + ~09o (z~) sin 2 i cos 0oj, + 

+ COo(Zl)Al(Zl) cos Oor - COo(rl)B10q) sin 0os, 

(2.81) 

7C 
/~(z,) = 2 0or 

aa(zD = O. 
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The result ing near  opt imal  control  is defined by 

~o(r~, r~) = 1, ~0('~'1,  "~'2) --- 0 ,  

fio(Va, "re) -- 1, 

~ ( ~ ,  T~) = O, 

(~1('~'1, 72) = 0 ,  

Vo(Zl, ~ )  = 0,  

f l l ( 'C l ,  "C2) = -K(Do4/3[1 - cos (0o - 0oy)], 

3_r.,4/3 sin 2i] cos 0o va(r~, Ze) = [(Dg/3D4 sin i + 4~,o 

(2.82) 

This control  has the same funct ional  fo rm as the opt imal  (2.80) and agrees with it at 

the final time. A near  opt imal  defined in the above m a n n e r  has previously been used 

for  the case of  a non-ob la te  p lanet  ( Jacobson and Powers,  1972), and  has been found  

for  tha t  case to be a good  app rox ima t ion  to the true opt imal ,  possessing all of  the 

ma jo r  characterist ics of  the opt imal .  It is expected, therefore,  that  for  the oblate  case 

such a near  opt imal  will also exhibit  the characterist ics of  the true opt imal .  

In order  to obta in  the expans ion  for  the near  opt imal  trajectory,  the second order  

state equat ions  are needed.  These, after the in t roduc t ion  of  the zero order  state 

solution,  take the fo rm  

~r 2 ~r~ 
]'-0")01/3~)2 "+- ~"1 V I ,  (2.83) (Do ~ = c~Z'~ 

~02 ~0~ 
o90 &~ - ~T~ ~- (D~/aVz - (DSo/3r2 + (D'~/ar 1V~ + 

�9 , ' , - ,7/31- 2 1 2 
+ ~-'0 "1 -- ~(DO~'I ,  (2.84) 

~Z 2 ~Z 1 
(Do ~ = c~Z. 1 ~- w2, (2.85) 

~G ~G 
(D O - -  

~z2 0zl 
o)4/372 + 2(D2r~7~ + tc(cq rio + % i l l ) -  

- -  (6o901~ s i n  2 i sin 20o)rl - (3o908/3 s i n  2 i c o s  20o)0~ + 

_IL. (__  2-tz't03"~8/3 + 4uj09 ~8/3 s i n  2 i _ 4t~o9"a8/3 s i n  2 i cos 20o)yl 

- ~2~,or3~"~~ sin 2i cos 0o)zl - ~2~,o'3-~"7/3 sin 2i sin Oo)wl - 

9 4 __ 21 (_D4/3/s - ~(Do cos 2 i sin 2 i sin 200 - -  , cos 2 i, (2.86) 

0 7 2  

(Do ~'T2 - -  c3-c ~ 
~- 2 ( D 2 / a V 2  + (D~/ar2 - -  ~-~-'o~ - -  3(D~/3r1 V1 - 

3r,~713,~2 
- coY~v~ + ~ , o  ~ + COo "~X(~xPo + P~ 60) + 

+ (6o903 - 9o903 sin 2 i + 9093 sin 2 i cos 20o)rl + 

r3~.,7/3 sin 2 i sin 20o)7~ + r9__,.,7/3 sin 2 i sin 20o)0~ + ~2~,o + ~ 2 ~ ' o  

(3(D2 + (6(D3o sin 2i sin Oo)z~ + ~ o sin 2i cos Oo)W~ + 

3 2 9 2 9 2 20o)Vi + + (~-(Do - ~(Do sin / i + ~(Do sin 2 i cos 
9,-..,11/3 + ~ , o  cos 2 i[(1 + cos 2 i) + sin 2 i cos 200] + 

ds 
+ 2 - ~  cos i, 

dv~ 
(2.87) 
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(DO 
OW2 ~Wl 

~722 0721 
C02z2 + 3(DS/aZlrl + tCVl + 

+ (__9,.,1o/a 2_4z(D~o/a ~_s(DloO/a 20o)zl + 2~o + sin z i - sin 2 i cos  

+ (609o a~ sin 2i sin Oo)rl r3_..,s/a sin 2i cos  Oo)Yl + \ 2 t x j  0 

r3_,.,7/a sin 2i sin 0o)V1 - (2(D~/a sin i sin 0o) -Jr- ~,2c~ 0 
d121 

dZl 

9 4 
- -  -gO.) 0 C O S  2 i sin 2i sin 0o + -Zg• sin 2i cos 0o. (2.88) 

A uniformly valid first order expansion for the near optimal trajectory may be 
found if a second-order solution, bounded in z2, can be generated. Such a solution is 

possible if the functions A1, B1, C1, D4,121, are defined by the following differential 
equations 

dA1 

dZl 
+ (KCOo' )A  - 

3 ,..,713['" ) 5 ~- sin 2 i)B1 -- �89 S/3tc sin 0os, 

dB1 

dZl 
3 ,-0,713/9 f" (K(Dol/3)B1 + ~-~'o ~,~"- 5 ~- sin z i)A1 = �89 5/3~c cos 0ojr, 

dC1 

dZl 
(31C(Dol/a)C1 = 9_,.,1/3,,.r2t~o ,~1 3 -- ~- sin 2 i ) ,  

(2.89) 

(2.90) 

(2.91) 

dD4 
dr1 (21r o 1 / 3 ) O  4 "-  3tc(Dlo/a cos i, (2.92) 

d121 

d721 
3 3D4 sin 2 i + - ~l-(DoaC 1 c o s / +  ~-(Do 

+ -1%(Doll/a(36 - 57 sin z i) cos i. (2.93) 

The equation for O1 is not given since it contains unknown functions of Zl from 
the second-order state solution and therefore cannot  be solved at this point. As a 
result, the first-order term in the polar angle expansion is not known completely, and 
the polar angle solution must be approximated by only its zero order term. 

The solution to (2.91)-(2.93) is straightforward 

D4(721) = -�88 - K~:I) -z + (1 - xz~) 2] cos i, (2.94) 

3 C1(721) = -@~(1 ~-sin 2 i)(1 - tCrl) 2 - ~(1 + sin 2 i)(1 - tCZl) -a (2.95) 

= - -1-~(1 -t- sin 2 i) cos i [1 -- (1 ir -- 

- - ~ 4  sin2 i cos  i [ 1 - (1 - t c z l ) s ] ~ :  

- (1~% - -} sin z i ) c o s / [ 1  - (1 to- (2.96) 
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where the initial conditions for D4 and C1 are taken from (2.72) and it is assumed 

~21(0 )=0 .  W i t h  C1 k n o w n  we  m a y  also  n o w  obta in  Oo f r o m  (2.75)  and (2 .36)  

Oo(zi)  =-1~-6(1 + sin 2 i ) [  .1 - (1 - tel:i)3] 
3x + 

__1_~(1 2 31 I1 -- (1 --  /(7271) 8] + - -~- sin 2 i) 8x " (2.97) 

The solution to (2.89), (2.90) is rather complicated, and the details are presented in 

Appendix C; the final result is given below 

Al(~:l) = (1 - ~cTi){-�89 - 2 sin 2 i ) cos  P[(1 - x~:i) s - 1] + 

+ 2tc sin P [ (1  - ~czl) s - 1]} - 

- �89 - t cr i ) s in  [P(1  - tCZl) s - P - O o s ] I c  - 

- �89 - KZl)cos [P(1 - xzi) 8 - P - 0oy]Is, (2.98) 

B~(T1) = (1 - Ir189 - 2 sin 2 i ) s in  P[(1 - KT~) 8 -- 1] -- 

-- 2tC cos P[(1 -- tcvl) 8 -- 1]} + 

+ �89 - Kzl)cos [P(1 - xzl) s - P - Ooy]Ic  - 

�89 - x~l)s in  [P(1  - x r i )  - P -  OoAIs, (2.99) 

where 

3 (2 
P = 16x 

5 -- ~- sin 2 i), 

1 { c o s P [ 1  - (1 - tc~l)s] ) 
I c  = ~ -(1 -~r -~  s - 1 - 

1 -- r ~ l  

_ 8 / ,  f x 2 sin P (1  - x s) dx  

1 

1 ( s i n P [ 1 - ( 1 -  ~czl)s]) 
= _ + 

I -- m~ i 

+ 8/o f x 2 cos P (1 - x s) dx.  

1 

( 2 . 1 o o )  

The integrals appearing in I c  and I s  cannot be obtained in closed form, but may be 

approximated by a rapidly convergent series given in Appendix C. 

At this point we have the uniformly valid first order asymptotic expansion descrip- 

tion of a near optimal energy increase trajectory of a low constant thrust acceleration 

vehicle. Moreover,  since the near optimal is a first-order modification of the true 

optimal, we also have the uniformly valid zero order expansion for the optimal trajec- 
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tory. The only unknown parameter is the final time re which is defined implicitly by 
the terminal energy boundary condition. 

3. Discussion of the Solutions 

To zero order the expansions describe the solution to the optimal energy increase 
problem. The resulting trajectory is a spiral which maintains circular orbit conditions 
at each point, and which remains in the xy  plane of the rotating coordinate system. 
That plane, which slowly regresses about the inertialZ axis, is then the osculating orbital 
plane to zero order. The optimal thrust direction is along the zero order velocity 
vector in the xy  plane, implying that to zero order, tangential thrust is optimal as in 
the non-oblate case (Jacobson and Powers, 1972). 

Because of its similarity to the optimal, the trajectory generated by the near- 
optimal control is of some interest. The first-order expansion solution exhibits an 
oscillatory character about the zero order circular spiral; all of the state variables 
oscillate with slowly varying amplitude, frequency, and phase. The near-optimal 
thrusting program is also oscillatory with the out of plane thrust following the out of 
plane velocity component and the in plane thrust remaining near the in plane velocity 
component. The effect of these programs on the trajectory appears to be a form of 
modulation of the trajectory oscillations similar to that which appears in the non- 
oblate case (Jacobson and Powers, 1972). In that case, it was shown that such a 
modulation was an important characteristic of the optimal control program; and here 
we see that the addition of oblateness does not change that basic characteristic. 

4. Concluding Remarks 

In this paper we have developed a general asymptotic expansion solution for the 
problem of near-optimal energy increase by a low thrust vehicle from an orbit about 
an oblate planet. The thrust acceleration of the vehicle was assumed constant and of 
the same order of magnitude as the initial oblateness gravitational acceleration. The 
resulting expansions are uniformly valid as long as the inverse square gravitational 
force remains dominant. 

The solution is actually correct to zero order for the optimal, but the complexity 
of the equations prevented the development of the first order optimal as has been 
done for the non-oblate case. However, it is possible to generate the complete first- 
order optimal for the special case of equatorial orbits and the thrust oblateness ratio, 
K - 1 .  This solution is presented in Appendix D. 

Since the near-optimal control is closely related to the true optimal, the resultant 
near-optimal trajectory can be expected to have the same general characteristics as the 
actual optimal. The oscillatory behavior of the near-optimal control and its effect 
on the trajectory, therefore, give an indication as to the effect of an optimal control 
program on a trajectory. 
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5. Appendix 

A. C O N T R O L  A N G L E  EXPANSIONS 

In the solution of the systems of equations, expansions for the control angle functions 

were employed. The relations between the terms of those expansions and the multi- 

pliers are given below. Recall 

tan r = V24" 

This may be expanded to form 

where 

tan ~ = r/o + er/1 + e2/72 4- " " ,  

~0 -- 
'~50 

Vo24o 

/71 - -  
1 [ 

Vo24o 2s l -  

r/2 
1[  

= Vo~,o ~ ~ ~ ~ ~ ,o1 
+ 

+ ~o \~,oVo ,~o vg ~,o 

For the other control angle we have 

~,6 V 16  
t a n  ~ = = - -  c o s  q~. 

~ / ~  + ~Iv 2 ~, 

Since cos ~ =  [1 + tan 2 ~]-1/2 we may write 

cos ~ = eo + eex + e2e2 + . . . ,  

where 

1 
~Xo = ~ 1  4- r/2' 

- r/orb 

C t a = ~  (14 -  

It follows then that 

r/2 4- 2r/or/2] . 

(1 + ~g)~/~J 

where 

t anv  - ~ o  4- e~l 4- 82'~2 4 - "  , 
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1 
~o = ~o26o, 240 

_1[ 
2,o] 

1[ 
~2 "-  /]'40 ~0/~62 -1- (X1/~61 + ~2/~60 -at- ~oZ6o l ~  Z,o/ 

14o (~0;t61 + ~,26o)]" 

Finally we may write 

cos ~u = [1 + tan 2 ~,]-t/2, 

sin N = cos ~ tan ~,  

sin r = cos r tan r 

and use the above expansions to get 

COS Ifir - - 6 0  -}- e61 -]'- ~262 -}- . . ' :~  

sin ~ = Vo + ev ,  + g2V 2 - { - " " ,  

sin q~ = ,13o + r  + e2f12 + "", 

where 

(~0 "-" 
1 

d l  "--- 9 

"V'I +r  

3r 
1 (1 g ~-~s/2 (~2 --'- 

~ + 2r 
(1 + ~ ]  

V0 - -  
~0 

1) 1 - -  
"V'I + g o  2 (1 + ~)a/2' 

V 2 ~--- 
~2 

V'I + ~  

1 2~2~2 3~o~ 2 3 3 2 
- ~O~~o~)~/~ 2 (1 7-" 7~2~3/2,~o, + 2 (1 + 

+ 

_ ._  

1~1 - -  

1~2 "-  

~0 
I1 

V'I +~/(~ 

*/2 
V'I +J/o 2 

,71r/~ 
(1 "t" /Tg) 3/2 

1 2Vo=V~ - 3Vo~ 3 ~o~V~ 
2 (1 + 772) a/2 + 2 (1 + ,/g)5/2" 
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B. PARTIAL DERIVATIVES OF THE ENERGY 

The  par t ia l  der ivat ives  of  the vehicle 's  energy which were requ i red  for  the t e rmina l  

b o u n d a r y  condi t ions  are  given below. 

dO ds [ds z 
OEor V dz cos i cos ~ w d r  sin i cos 0 - z \-d-~z] cos i sin i sin 0 + 

+ r -d-~- v 

2 
( cos  2 i + sin 2 i co s  2 0) + r(r 2 + ze) -3/2 + 

+ 3e(r 2 + z2) - s/2[�89 + r sin e i sin 2 0 + z cos i sin i sin 0] - 

- -  ~s - -er ( r2  + z2) - 7/2(r  sin i sin 0 + z cos i)2, 

a E  

00 
m 

( d O )  (d~r2~ 2 
- V z  - ~ z  sin i cos  (0 - ?) - rz \ dv ] s in i co s  i co s  0 + 

(ds (~__d_~zz) s i n Z i c o s O s i n O +  + r w  ~ sin i s in 0 - re. ds z 

+ 3e(r 2 + z2) - 5/2(re sin 2 i sin 0 cos 0 + rz sin i cos i cos 0),  

0E 

0z 
m - V ~ sin i sin (0 - ~) 

~ d ~ ~  2 
- r \ d r  ] sin i cos i sin 0 + 

(dff~) 2 
+ z ~ s i n 2 i  + z ( r  2 + z2) -a /2  + 3e(r 2 + z 2 ) -  5/2 x 

• [�89 + z c o s  2 i + r s in i co s  i co s  0] - 

- -  lS-gz(r2 + z2)-7/2(r sin i sin 0 + z cos i)z, 

OE 

OV 
r cos i cos ~ - z ~ sin i sin (0 - 7) 

~E 
ay 

m - r V  cos i sin 7 + zV  ~ sin i cos (0 - Y) 

0 E  

aw 
= w - r sin i cos 0, 

OE 
ar  

ds Z2 sin2 i cos 2 0 + Vz sin 7 sin i cos 0 + Vr cos y sin i -- 

- Vz sin i sin 0 cos 7 + ~ (r cos i - z sin i sin 0) 2 --  

- wr sin i cos 0 + 
] {d2s 

r 2 sin 2 i cos 2 0 \.~z2 ] -  
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C. SOLUTION OF THE EQUATIONS FOR AI( 'g ' I )  , Bt(rl) 

The equations form a system of linear first-order differential equations with variable 
coefficients. 

- d A ~  

d'rl 

dB1 

Ld~:~ _ 

-XCOo'~(T0 

- 3 o g , ' ( ~ 0 ( 2  

123-0.)W3['Co ~, 1)~,ar2 - { s in2  i) 
1 
1 
1 

s sin 2 i) I -- Kcoff 1/a(.Q) 

X 

x + 

1 

�89 5/30:1)Isin Oos] 

l_cos OosJ 

which has a solution given by 

~(~)J 
r 0){ 1 + e(0, s) 

to  _B~(o)J o 

-FI(s)] ds} 
_Fz(s)J 

where ~(~, %) is the fundamental matrix of the system and 

F1(s) l  = �89 
.F~(s)J 

~cs)-5[sin 0os ] .  
Lcos 0o~J 

By straightforward means it may be shown that 

where 

= X 

[cos, (l 
x sin P [(1 - KT) s -- (1 tCTo) s] I COS P [(1 -- m)  s -- (1 - XZo) 8] 

3 (2  
P = 1Oc 

5 - -  ~- s i n  2 i ) .  

Using this fundamental matrix and the initial conditions given in (2.72) we may 
form the solutions given in (2.98) and (2.99). The integrals l c  and I s  appearing in 
those solutions are 

z~= f(1 
0 

I~= f(1 
0 

- tcs) - 6  cos P [1 - (1 - Ks) s] ds, 

- -  K S )  - 6  sin P [1 - (1 - Ks) s] ds, 
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which may be 
integrals 

integrated by parts to obtain form (2.100). We have remaining the 

I -- Kz 1 

1 

x z sin P(1 x 8) dx = sin P 

I - -  K ~  I 

f 
1 

x 2 cos P x  8 dx  - 

1 - -  ~ :Z l  

cos P f X 2 sin P x  8 dx ,  

1 

1 -- K t  1 

f x 2 cos P(1 

1 

x 8) dx 

1 - -  K~: 1 

= cos P x z cos P x  8 dx  

1 

+ 

i -- K~ 1 

+ sin P f x 2 sin P x  8 d x .  

1 

Using a change of variable we may write 

1 --K~ 1 

f x 2 cos P x  8 dx  

1 

O0 

= ~ P - a / 8 [ f  z - s / S  cos Z d Z  

P 

1 - -  r ~  1 

1 

x 2 sin P x  8 dx  

o0 

z-5,8 cosZd , 
P(1 -- tCZl) 8 

O0 

= { P - a i s [ f z - s / a s i n Z d Z  

P 

oO 

.I 
P ( 1  -- Ir 

The new integrals on the right-hand side are Generalized Fresnel Integrals which have 

the general form 

00 

fZ.-lcosZdZ- cos 
Y 

( - 1)my2m + a 

Y o  (2m)t(2m + a)' 

oo 

fz._l sin z dZ-S, y, a)-  a)sin 
Y 

( _  1)~y2~+l+. 

~o (2m .~ 1-S'.(-~ 7 / +  a)" 
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For  our problem it can be shown that IP] < 1 since we are only interested in tc~ 1, 
and that 0 < ( 1 - x z 0 ~ < l .  Therefore, we must evaluate the Generalized Fresnel 
Integrals S ( y ,  3),  C ( y ,  3) where y = P  or P(1 -KT1) 8. Since y will always be less than 1, 

only a few terms of the series are needed for a good approximation to the integrals. 

D. OPTIMAL EQUATORIAL SOLUTION 

Consider the special case where i = 0  and K= 1, this implies all motion is confined to 

the equatorial plane, and the thrust acceleration is equal to the initial oblateness 

gravitational acceleration. The second order state and multiplier equations reduce to 

c3r2 0rl 
(-D01/3~2 -[- ~1 V1 ,  (D. 1) 

O~o bT2 = e T i  

600 2 ~0 1 

600 ~V 2 - -  ~T 1 
. . , 7 / 3 . 2  1 2 ( D . 2 )  ~- o32/3V2 - o35/3r2 -Jr- O34/3rllZ1 -a t- ~ 0  "1 - -  gOg0Yl ,  

8z2 8z~ 
600 872 -"  C~71 11- W2, (D.3) 

COO ~T 2 = ~71 o9~/3y2 + 2o9~riYi i , . , s / 3o ,  _ ~ ! o g { / a  - -  2uJO /1 (D.4) 

aY2 OYi 
090 ~z2 - c~z~ ~- 2092/3 V2 q- co~13r2 0,. .f l /3~.2 3co~/3rl V1 _ - -  a t ~ j 0  t 1 - -  

3_,. ,7/3,= 1/3fl l  6 co ~r l  - -  (-DO 1 / 3 V  2 71- 2tzJO z, 1 + (.Off + + 

3 2 9..,11/3 dOl + ~cooV1 + 4~,o + 2 , 
dzi 

(D.5) 

~W 2 
090 8T2 

~ w  1 _ 9 , . j o / 3 . ,  0.)2Z2 _If.. 3co8/3zlri -t- Vi 2tz*O ~'I, (D.6) 

O 9 0 ~  

O 9 0 ~  

~212 
c~72 

~'~22 
&2 

m 

m 

&'l 
+ o9~/32= - og~/a252 - (2og~/arl - o/6 /av0221  - 

- 2o0{7i24, - (6o9~ - 3co~/3V1 - 4cooT/3rl)2sl - 

d212o~ 

~ 2 1  (D.8) 

( D o  m 
6~232 

cqT 2 

~24= 

~Z2 
m 
m 

60/~31 
(3T~ 

Jr- (-D2/~62 - -  (3co8/3rl 9 , . . j 0 / 3 ~ ]  
- -  ~ - t o  0 1 1 ~ 6 1 ,  

(3Zl 
(D~/3~22  - -  2COo2/Z2sz - 71211 + og~/3rx~,2x -- 

3 2 - (~O9o - 2o9~/3V~ - 3og~/ar~)2sl - COo72Cll, 

(D.9) 

(D.10) 
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0).52 0).51 
COo OT2 = - Ozi (.D01/3212 + 6 0 ~ / 3 ~ 4 2  - -  VI~II -Jr- gOoTi)-2i - -  

- (2o)~rl 3608/3~ V2Cll 2 0 ) 4 1  ~ (-DO 

( 2) 
- 2co~r2 q,.,8/3~.2 - ~,o  -1 + 6COo l~ _ COo 2/3 {df2o~ (D.11) 

0 ~ 6  2 

co~ c~T2 -- 
0J~6i 

2 3 2 .  ( D . 1 2 )  

From (2.67), (2.72), 
we find 

(D. 8) and the boundedness condition on the expansion terms 

)-21(T1 272) - -  A 3 ( T 1 )  "-- A a ( T l y  ) - -  0 (D.13) 

The boundedness conditions on 252 combined with Equations 
(D. 11) lead to the equations 

(D.7), (D.10) and 

d 

d'q 
(D1 cos fl) - COo l/a(D1 cos fl) - 3co~/3(D1 sin fl) - 

-- � 8 9  i = 0 ,  (D.14) 

d 
dzl (D1 sin fl) + 3607o/3(D1 cos fl) - COo 1/a(D1 sin fl) - 

-- 1CIiB i -- O. (D.15) 

Using the true optimal control program (2.80) in the state equations instead of the 
near optimal program (2.82) causes Equations (2.89) and (2.90) to be replaced by 

dA1 
dT1 t- CoollaA1 - -  3 o 9 ~ 1 3 B 1  --160o 2/3 D1 C~--~ cos fl = 0, (D.16) 

dB1 ~- 3co~13A1 + 6Oo113B1 
dTi 

- �89  
D 1  

sin 77 = 0. (D.17) 
C l l  

With i-O, x - 1 ,  Equation (2.91) becomes 

dC1 

dT1 
(3gOol /3)C 1 9~.~1/3 

- -  2 t~0  �9 (D.18) 

From (2.76), (2.36), and (D.13) we find that 

G I ( t D  = 1. (D.19) 
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The solut ion of  (D.14)-(D.18) ,  satisfying bounda ry  condi t ions  (2.72) is given below 

cos  fl 

s in  fl 

- (1  - zl)kl  + i COS Z 

(1 -- r l ) h  + i s in  Z 

- 2 k l ( 1 - r l ) ~ + 2  x 
x cos  Z 

- 2 k i ( 1 - z i ) h + 2  x 
_ x s in  X 

I ( l _ z i ) k 2 +  1 COS Z 
I 
! (1 - r~)~2 + ~ s in Z 

1 _ 2k2(1 - vl)k2 + 2 • 
1 
1 x cos  Z 

I - - 2 k z ( 1 - - v i ) k 2  +z x 
, x s in  Z 

I - ( 1  - v 0 h  + 1 s in  X 
1 
1 ( 1 - r 0 h  + l  cos  Z 
1 
i 2k l (1 - -T1 )~ l+2  x 
1 x s in  Z 
I 
I - -  2 k i ( 1  - z ' l )k l  +2  x 

I x cos  Z 

1 
1 - (1 - z i )  k'- + 1 s in  X 

1 1 - zl)k2 + 1 cos  X 

I 2 k 2 ( 1  - z i ) k 2 + 2  x 

I • s in  X 
i 
I - 2k2(1 - z l )  k2 + 2 x 

1 x cos  Z 

a i  

a2 

a3  

a#  

(D.20) 

where  

X = ~[(1 - zi) 8 - 11, 

k l  = - } [ 3  + ~/101, 

k2 = - �89  - V ' I O ] ,  

a l  .-- 
3k2(1 - zlj,)k2 +3 

2(1 
+ ( 1  - zis) -2 sin [Z(zlf) + 0o(Vs)] 

- zls)a[kl(1 - zls) kl - k2(1 - zls) k2] 

3ki(1  - z l l )  kl+a + (1 - z l s )  -2  sin [Z(zls)  + 0o(Zj)] 
a2  = 2(1 - "c1$)3[k2(1 - "cij,) k2 -- kl(1 - zis) k~] ' 

4 k 2 ( 1  - Z i s )  k2+3 + (1 - v l s )  - 2  c o s  [ Z ( Z l s )  + 0o (Zs ) ]  

a3 = 2(1  - "Cis)a[ki(1  - Z i s )  ~1 - k 2 ( 1  - "ris) k2] ' 

4ki(1 - zls) kl+3 + (1 - vlf)  -2 cos [g(zi~-) + 0o(Zf)] 

a ,  = 2(1 - Zly)a[k2(1 - zis) k'~ - ki(1 - ziy) kl] ' 

O0(zs) = "c2s + 3 1 1  - (1 - vis) 31 + 2-9-ff[1 - (1 - "qs)8], 

Cl ( r l )  - - 9 ( 1  - vl) 2 - 3(1 - vl) -3. (D.21) 

We now have defined all of  the necessary funct ions for a uni formly valid first-order 

represen ta t ion  of  r, v, 7, and the contro l  angle for an opt imal  energy increase t ra jectory 

in the equa tor ia l  plane of  an oblate planet.  As in the general  case, the polar  angle 

first-order representa t ion  canno t  be fo rmed  since it depends on u n k n o w n  funct ions 

in t roduced  by the second-order  state solution. C o m p a r i s o n  of  the opt imal  and near-  

op t imal  cont ro l  p rog rams  brings out  no ma jo r  differences. The op t imal  has a slowly 

varying phase  shift which the near  opt imal  does not  possess, and the ampl i tude  var ia t ion 

of  the op t imal  differs slightly f rom the near  opt imal .  
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