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Abstract. Out-of-plane motion about libration points is studied within the framework of the elliptic 
restricted three-body problem. Nonlinear motion in the circular restricted problem is given to third 
order in the out-of-plane amplitude Az by Jacobi elliptic functions. Linear motion in the elliptic 
problem is studied using Mathieu's and Hill's equations. Additional terms needed for a complete 
third-order theory are found using Lindsted's method. This theory is constructed for the case of 
collinear libration points; for the case of triangular points, a third-order nonlinear solution is given 
separately in terms of Jacobi elliptic functions. 

1. Introduction 

In the restricted three-body problem, the topic of in-plane motion about libration 
points has received exhaustive attention. With the exceptions of Moulton (1920), 
and Farquhar and Kamel (1972), however, most investigators have paid only cursory 
attention to the out-of-plane motion, beyond noting that under the linearized equa- 
tions of the restricted three-body problem, this motion is simple harmonic. 

The present author (Heppenheimer, 1970), studying the prevention of occultation 
by the Moon of a libration-point satellite, found that the period of the out-of-plane 
motion must be accurately known for the occultation-prevention method not to cause 
a secular perturbation in the out-of-plane amplitude. There thus are practical reasons 
for studying the out-of-plane motion in detail. 

Accordingly, this paper first considers nonlinear motion in the circular restricted 
three-body problem, then linear motion in the elliptic problem. By combining these 
solutions, most of the necessary terms for a nonlinear-elliptic solution are at hand; 
the remaining terms are computed separately. Perturbation parameters are the out-of- 
plane amplitude Az and eccentricity e of the primaries; solutions are carried to third 
order in these quantities. These solutions are given for the case of collinear points; 
the case of triangular points is treated separately. 

Under the usual normalization of units in the circular restricted problem, the 
equations of motion are (Szebehely, 1967, pp. 558 and 594): 

2 -  2p = f2x 

f + 22 = O r (1) 

~ + z = f 2  z 
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and 

and 

1 - #  # 
f2 = 1 (x 2 + yZ + z 2) _~ ~ !- �89 (1 - #) (2) 

rl r2 

r 2 = (x --/ ,)2 + y2 + z2; r 2 = (x + 1 - /~)2 + y2 + z 2 (3) 

and p, (1 - #) are the normalized masses of the smaller and larger primaries respective- 
ly. In the circular problem, distances are normalized with respect to the constant 
distance between primaries, and their mean anomaly is used as the independent 
variable. In the elliptic restricted problem, distances are normalized with respect to 
the variable distance between primaries, and true anomaly is used as the independent 
variable. The equations of motion then show formal similarity to (1) and (3) but not 
to (2): 

l !  
X m 

and 

and 

2y' = ~x 

y" + 2x' = L)y 

Z'+ Z = ~ z 

(4) 

I 1 - #  # 1 = (1 + e cos 0) -1 �89 (x 2 + y2 + z 2) + t + �89 - p) (5) 
r l  r2 

= - + + r 2 = (x + 1 - I t )  a + y2 + z 2 (6) 

and 0 is true anomaly. Note that ( ) ' - d (  )/dO. 
It is a consequence of this formal similarity that the positions of the libration points, 

in the coordinate system, are not functions of e but remain, as in the circular problem, 
only functions of/~. This has important consequences for the construction of a third- 
order theory for out-of-plane motion about libration points. Such a theory will 
contain no terms of orders e, e 2, e 3, etc. The only terms that will appear are as follows: 
First order: Az 
Second order: A2~, eAz 
Third order: A~, eA2~, e2A~ 

A nonlinear-circular case solution will contribute terms of order Az, A~ 2, A~; a 
linear-elliptic case solution will contribute terms of order Az, eA~, e2A~. Thus only 
the terms of order eA2~ must be computed separately. 

To begin, consider the third of Equations (1). Let us consider a collinear libration 
point; the case of the triangular points will be noted separately. Linearizing about 
that point, considered to lie at (x=xo ,  y - 0 ,  z - 0 ) :  

where 
s  

A = (1 - #)(Xo - #)-3 

so the solution may be written, 

z -  A~ sin x/A ( t -  to) 

+ (Xo + 1 - 

(7) 

(8) 

(9) 
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2. Circular Problem-  Nonlinear Motion 

Consider the first two of Equations (1), in which the right-hand sides f2x, f2y are 
expanded about the point (Xo, 0, 0) as power series in x, y, z, the expansions being 
taken to terms of second order: 

5 / -  20 = (1 + 2A) x + ,}B ( -  2x 2 + y2 + z 2) + ... 

y + 2)? = (1 - A )  y + 3 B x y  + ... 
(10) 

Also, the third of Equations (1) is expanded out to third-order terms: 

2 + A z  = 3 B x z  + -}2C ( -  4X2Z + Y2Z + Z 3) + "'" (11) 

The term A is given by Equation (8); the terms B, C are 

B - ~ (1 - it)(Xo - # ) -4  + tt(Xo + 1 - i t ) -4  

C = (1 - p)(Xo - / ~ ) - 5  -t-/~ (Xo + 1 - p) -5  

(12) 

and in defining B, the upper, middle, or lower signs are used depending on whether 
the collinear libration point under consideration is L2, L1, or L3, respectively. 
[L1 lies between the primaries, L2 is near the mass #, L3 near the mass (1-/~).]  

Now assume z >> x, y, an assumption justified by the nonlinear coupling of z to x, y. 
Then terms in x 2, xy ,  y2 are to be neglected in comparison with terms in z 2, and 
Equations (10) become a linear system with forcing function: 

2 -  2 ~ -  (1 + 2A) x = -}Bz z 

y + 2)? - (1 - A) y = 0 
(13) 

and z - z ( t )  is given by Equation (9). The forced motion corresponding to this input 
then is given as 

3 2 I  1 l + 3 A  1 
x = - ~BA~ 1 + 2A 1 - 7A + 18A 2 cos 2x /~  t 

sin 2x/A t 1 
Y = - 3 B x / A  A2 i - 7 A  + -18A2[ 

(14) 

Comparison with Equation (9) shows that the first of Equations (14) may be given 
explicitly in terms of z; 

- B I9A (A - 1) A~ 
X =  

1 -- 7A + 18A 2 1 ~22A 
+ ~r(1 + 3A) z21 (15) 

correct at least to order A 2. In fact, a continuation of the expansions of Equation (10) 
would give terms of order A~ 4 and higher; thus, Equation (15) is correct to order A~. 
Note that z = O (As), x = O (A2). 

Now consider Equation (11). The terms xz ,  z 3 are of order A~; the terms x2z,  yZz  
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are of order AS and are therefore to be neglected. Combining 
gives the third-order equation for z=  z(t)  

Equations (11, 15) then 

~ + u z - ~ z v z  3 _  0 (16) 
where 

and 
u - - A  + 3Bc~; v = C -  2Bfl 

9A B  (A - 1) A~ 

(1 + 2A)(1 - 7A + 18A2) ' 

3B (1 + 3A) 
2 (1 - 7A + 18A 1) 

(17) 

(18) 

Equation (16) possesses an integral, denoted I: 

22 + uz  2 -  � 88  I (19) 

so that / ,  A z are related by 

I uA  2 3 4 = - ~vA~ (20) 

since the maximum value of z is z-A~.  
Now we note that Equation (16) possesses solutions which are periodic in time; 

this follows from the fact that any one-dimensional system possessing a first integral 
will admit of periodic solutions (Goldstein, 1965, pp. 288-90). 

From (19), the differential equation to be solved is then given by a quadrature: 

dz  

dt  = x / I  _ uz  2 + �88 vz4 (21) 

which can be reduced to Legendre's normal form of the elliptic integral of the first 
kind (Mathews and Walker, 1964, pp. 73-75) through the transformation 

( =  z ~ n ,  k 2 =  m / n  (22) 
where 

U 

m - 2I [1 - x/1 - 3vI/u 2] , n - 21u [1 + x/1 - 3vI/u 23 (23) 

which is obtained from (21) by writing 

u 3v 
1 z 2 + - -  z 4 =  (1  - m z  2) (1  - nz  z) ( 2 4 )  

I 41 

Then (21) becomes 

1 d~ 
dt (25) 

x / i n  x/(1 _ (2) (1 - kZ(2) 

which is Legendre's normal form. Integrating and inverting the resultant elliptic 
integral to give an elliptic function, and making use of Equations (22, 23), gives 
z - z ( t ) :  

•/ 21 
Z - -  • 

u [1 + x /1  - 3vI/u 2] 



OUT-OF-PLANE MOTION ABOUT LIBRATION POINTS 181 

u 3vI 1 -- ~/1 - 3vI/u 
sn t ~. 1+  1-u~ 1, +~1 3~u (26) 

which is the solution to (16). The complex expressions given as the argument and 
modulus of the elliptic function may be simplified in view of the required third-order 
accuracy. Thus, using (20), 

z =  A~ sn [tx//-u [1 3vl] ~ i  vl 1 u-~ , ~ (27) 

or, for simplicity, 

z = A~ sn (wt, k) (28) 

It now is necessary to determine: (1) the effect of amplitude upon the period; (2) the 
formal expansion of (27) as a Fourier series. These results will be required for later 
solutions. 

Amplitude effect on period: In consideration of Equation (28), the period is given by 
(Davis, 1962, p. 133) 

p ~ 
2n 

W 
[1 + �88 2 + O (k 4)] 

which is written, 

P = ~ - ~  1 - - -~I /u  2 1 4 i-6 

and, to third order, using (17, 18): 

(29) 

x/A/u = 1 -  
3B 

(30) 
2A 

so that, combining (29, 30), 

e 
[ (9v , /~ I+A~ 

2A 

and, to third order, 

2 n {  z. 9 I ( 1 - 3 A + 1 4 A  z )1} 
P = ~-~ 1 + A~ 1-6A C -  3BZ (1 + 2 A ) ( 1 - 7 A +  18A z) 

and Equation (32) has been given by Moulton (1920). 

(31) 

(32) 

Fourier-series expansion: Jacobi* has given an expansion of the elliptic function (see 
Whittaker and Watson (1963), p. 510): 

_q 1-qS n3x  , s, ,x 1 q ) sn(u, k)= (33) 

* In his 1836 work on elliptic functions, written in Latin and titled Fundamenta Nova Functionarum 
Ellipticarum, usually called the Fundamenta Nova. 
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where u, x are dummy variables. We have 

u = 2Kx/zc; -rcK'/K q = e  
and 

7[ 
K - - [1 + l k 2  --[-""] ; 

2 
K ' =  l n ( ~ ) +  �88 ( l n ( ~ )  - 1 ) + . . .  

(34) 

(35) 

so that (34) becomes, to third order, 

u = x(1 + �88 q = (k/4)2e 1/2k2 (36) 

so we have, x =  (27r/P)t, P given by 
together with (27, 28): 

3 
z = Az sin (2~/P) t -t 

64A 

Equation (32). Then, using Equations (33-36), 

3B2( 1 +3A)  1 
A 3 C -  - [sin 

1 7A + 18A23 
+ sin (2u/P) t] + O(ASz) 

3 (21r/P) t + 

(37) 

The solution due to Moulton involves initial conditions selected so that the amplitude 
Az is unchanged due to incorporation of the nonlinear terms in (37); the resulting 
solution gives for the terms in the second bracket, [sin 3(2~z /P) t -3  sin (2~/P)t  ]. The 
present solution involves no such special initial conditions. When this initial- 
conditions effect is allowed for, Equation (37) becomes identical with the solution 
of Moulton. 

Before leaving the topic of non-linear out-of-plane motion, it may be noted that 
the same type of elliptic-function solution may be found for the case of triangular 
libration points. For that case, Equations (8) and (12) are modified; thus, (Xo-#)  is 
replaced by [(Xo - #)2 + y211/2 and (Xo + 1 - #) by ([Xo + 1 - #)2 + yg-]l/2, the libration 
point being at (Xo, Yo, 0)= [ �89 p, _+ �89 0]. Equations of motion analogous to (10, 
11) have been given by Buck (1920), so the solution may proceed apace. It is given 
subsequently in this paper. 

3. Elliptic Problem- Linear Motion 

Having given the solution for nonlinear motion in the circular problem, we now 
consider linear motion in the elliptic problem. For the case of linear motion, the three 
equations of motion, Equations (4), uncouple so that only the third of Equations (4) 
need be considered. We have 

z "+  z(1 + e c o s 0 ) - l l e  cos0-t 
1 - #  

(38) 

Equation (38) is exact; it is linearized by considering rl, r z as constant. Thus, 
applying Equation (8) and expanding in powers of e, 

z" + z [A - (A - 1) (e cos 0 - e 2 cos 2 0 + e 3 cos 3 0 . . . .  )] = 0. (39) 

Equation (39) may be written as a Hill equation: see Whittaker and Watson (1963, 
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p. 406). Define a new independent variable, qS: q5 =0/2. Then, replacing the powers 
of cos0 by their finite Fourier-series equivalents, (39) becomes 

where 

d 2 z  

2 + z[a o + 2 ( a  2 cos  205 + a 4 COS 4~b + a 6 COS 6~b + 

a o = 4A + (A - 1) [2e 2 + 3e4 + 0 @6)]  

a2 = - 2(A - 1) [e + 3e3 + O(eS)] 
a 4 = (A - 1) [e  2 + e 4 + 0 (e6) ]  

a 6 = -- (A - 1) [�89 3 + 0 (e5) -1 

�9 . - ) ]  = 0 ( 4 0 )  

(41) 

The presence of the coefficients a2i  ( i= 1, 2, 3, ..., oe), each coefficient given as an 
infinite series in e, leads to an expression for the frequency involving a double infinity 
of terms, the celebrated Hill's infinite determinant. In accordance with known 
formulas (see McLachlan, 1947, pp. 127-9) the frequency, v, is found from 

where 

sin 2 (lrtv) = A sin 2 (�89 

1 2 [  rc cot (Ucao) a 2 
A -- 1 + aa~ 12 - a 0 

2 a26 1 
a4  + 32 +--" (42) 

+ 2 2 _ a o --  a o 

Equation (42) involves the first (and higher) powers of ao only; a2, a4, etc. appear 
squared�9 Thus, v can involve only even powers of e, i.e. the eccentricity effect upon the 
frequency (or period) is an even function of e. 

This result can be derived on physical grounds, since in the governing equations of 
motion, Equations (4-6), replacement of e by ( - e )  physically represents interchange 
of the apses of the orbit of the primaries; 0 is measured not from pericenter but from 
apocenter. This change, however, is purely formal and cannot affect the period of 
motion; consequently the period must be an even function of e. 

Thus, an expression for the period, correct to order e 3, will involve terms only of 
orders unity and e z. The latter term may be found in terms of a0, a2 only; thus 
Equation (40) may be truncated and replaced by a Mathieu equation (see McLachlan, 
1947, pp. 19-20 and 82-3). Thus, 

dZz  
t- z (ao + 2a2 cos 2~b) = 0 (43) 2 

and in accordance with the theory of the Mathieu function, the frequency is given as 

a o -  1 
~2 ~ a o  ~ ~ 

2(ao l i  2 a 2a2+ ' ' "  (44) 

whence the period becomes, using (41), 

1( 
P ~ 1 - e 2  

- 4 A  1 -  4--A + 0 (e 4) (45) 
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However, Equation (43) can give the motion, z = z ( O ,  e), correctly only to order 
eA~ and not to the required O(e2A~). It thus is necessary to solve Equation (39); 
Equation (45) then is a reference solution for comparison. 

The solution is accomplished by means of the method of Lindsted and Poincar6, 
(Cole, 1965), which is also used to solve Equation (43). The method is one of analytic 
continuation with respect to a parameter, the solution being given formally as a power 
series in the parameter. The independent variable also is multiplied by a power series 
in the parameter, this series having undetermined coefficients. The original differential 
equation then is exhibited as a set of linear differential equations, ordered according 
to the powers of the parameter, which may be solved recursively; the undetermined 
coefficients are given uniquely by the condition that no secular terms (such as t cos 
v/A t) appear in the solution. The resulting solution is bounded (not necessarily 
periodic). 

Thus, in Equation (39), we take 

z = Az [ z l  + ez2 + e2z3 "t-""] 
0 = z [1 + •2 e2 -k- O (e4)] 

(46) 
(47) 

so that, to third order, 

dZz Fd2z1 d2z2 
- A z  +-e d0 2 L ~-2~ 2 dl~ 2 1 k d-t "2 262 dz 2 ] j  + O (e3Az) 

and Equation (39) becomes 

d 2 

d.~2 [z1 + e z  2 -a t- e2z3] = Az~ + e [ A z z  - (A  - 1) z~ cos 0] + 

+ e 2 [Az3 - (A  - 1) Zz cos 0 + (A - 1) zl cos 2 0 + 2 6 z A z l ]  + 0 (e 3) 

which is written as a sequence: 

Order one: 

Order two: 

Order three: 

dZzl/dvZ+Azl=O 
d2z2/d 'c  2 -+- A z  2 = ( A -  1)z x cos0 

dZz3/d, 2 + A z  a = ( A -  1) [z 2 cos  O - - z  I cos  2 0 ] - 2 a 2 A z  1 

(48) 

(49) 

(5o) 

and the ordering is justified by the appearance of Az in (46). 
Equation (48) is identical with Equation (7), with the solution Equation (9), except 

that z, defined by Equation (47), replaces t. Equation (49) then is solved as a linear 
equation with forcing function; only the particular solution is needed. Thus, z2 is 
found: 

A -  1 fs_in[x/A _+_ 0/~) _z s_in_!v/A- 0/~) _z'~ 
z2 - -~ \ A  - ( x / A  + Oi'c) 2 + A  - ( x / A -  (51) 

or, to third order, 

A -  1 (sin (x/A- 0/z)-c sin (x/A + 01.) 
2x/A + 1 } (52) 
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The requirements of third-order accuracy imply that (0/r) must be retained in the 
argument of the sines, but, from Equation (47), (0/r) may be taken as unity when 
appearing as a coefficient, since z 2 is of order eAz. 

Then, Equation (50) becomes 

8 2 2 3  dv 2 ~- Az3 (A - 1) 2 [sin (x/'A - 20/r) r sin (x/A. + 2o1 ) 

1 
+ sin,,/A -c 2x / ~ _ 1 

, )] A_, 
- 2x/A + 1 4 

X 

x [sin (x/A + 2 0 h ) � 9  + sin (. , , /A - 2 0 i ~ ) � 9  + 

+ 2 sin x/A. r] - 262A sin x / ~  r 

+ 

(53) 

The terms in sin x/Ar on the right-hand side of (53) are in resonance with the left- 
hand side; thus, their coefficients must sum to zero so as to avoid secular terms in 
the solution, and this requirement determines 62: 

A , [ A 1  ] 
' 52-  4A 4-A i 1 (54) 

in agreement with Equation (45). Equation (53) then is solved immediately: 

Z 3 --- 
x/A (A - 1) r ( x / A -  2) sin (x/A - 20/'c) -c 

L t75/ : i$ u) + 
+ (x/A. + 2)sin (x/A + 20h) 

(2,/? + ; 
(55) 

The solution to Equation (39) then is given by Equations (46, 47); 22, z 3 by Equations 
(52, 55) respectively; and 6 2 by Equation (54). This completes the third-order solution 
in the case of linear motion in the elliptic problem. 

4. Circular Problem- Nonlinear Motion 

In extending the results of the previous section to the case of finite amplitude, the 
pertinent equation is (38), which is to be treated as an extension of (11). Thus it is 
necessary to solve equations analogous to (13), which are found from (4): 

x " -  2 y ' =  (1 - e cos0) [(1 + 2A) x + azBz 23 

y" + 2 x ' =  (1 - e cos 0) (1 - A) y 
(56) 

The solution to Equation (56) is of importance in exhibiting the complete three- 
dimensional motion derived from the generating solution, Equation (9), but is not 
germane to the present discussion. It is therefore deferred to the Appendix; for this 
discussion, it is sufficient to note that the third-order solution will consist of two sets 
of terms, the first of order A 2 and the second of order eA2~. 
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Equation (38) may be written as an extension of (11): 

z" + z(1 + e c o s  0 )  - 1  [e cos 0 + A - 3Bx  +-} (4x z - y2 _ z z) + ...] (57) 

In (57), x need only be given to second order; thus, Equation (15) holds, and the 
notation of Equations (16-18) remains valid without change. Accordingly, Equation 
(57) becomes 

d2z/dO 2 + (1 + e cos 0) -1 [uz  - 3vz  3 + ze cos 0] = 0 (58) 

which will give the additional terms (of order eA 2) needed for a complete third-order 
theory. 

Again, Lindsted's method is employed. We assume an expansion of z precisely as 
in Equations (46). In developing the expansion of Equation (58), we have 

0 = z [1 + 61e + 52 e2 + 0 @3)] 

(1 + e cos 0)-1 = 1 - e cos 0 + e 2 cos z 0 - e 3 cos 3 0 + .-. 

z 3 = z 3 + e (3z2zz) + e 2 [3 ( z l z  2 + z3z2)] + O (e 3) 

Note that Equation (59) differs from Equation (47). 

(59) 

(60) 
(61) 

The solution to Equation (58) will involve terms of all orders in e and Az, but only 
terms up to order eA 2 are needed, the other terms needed for a third-order theory 
being already available. Thus (58) becomes 

or  

dZz/d'c 2 + [UZl 3 3 O) (u - - ~ v z  3) + uz2 -zvzl] + e [(251 - c o s  z 1 

- ~ v z Z z 2  + zl  cos O] + 0 (e 2) = 0 (62) 

dZzl/dz z + uz l  -~2vz~ = 0 (63) 

dZz2/dz 2 + (u -~vz~) z 2 - ( c o s O -  251)(uzl  - ~ v z  3) - z l  cos O (64) 

Equation (64) is simply Equation (16), with solution given by Equation (27), with 
t replaced by ~. 

However, this is not the end of the matter; for the solution zl must be written in a 
form suitable for use in Equation (64). This may be done using the Fourier-series 
solution of Equation (16), which is Equation (37). Making use of Equations (30, 31) 
gives 

sinI(1 16 u Az + O (A~) (65) 

Now define a new independent variable, ~: 

~ = z  1 A 
16u 

(66) 
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so Equation (65) becomes 

z,  = sin x / u  ~ + O (A 2) (67) 

The importance of this transformation is that use of ( instead of z will give true 
resonance of certain of the forcing terms on the righthand side of Equation (64) with 
the natural frequency associated with the left-hand side, i.e. the resonance will not 
merely be 'approximate' (correct to within a term of order A~Z). This is required by 
the Lindsted method. 

In (64), perform a change of independent variable: z is replaced by ~. Then, 

(9v) 
- A 2 ( u  - ~ v z  2) z z  d 2zz/d~ z + 1 4 -8 u 

- A 2 [(cos 0 - 2(51) ( u z l  - ~2vza~) - = 1 4 - 8 u  z 1 cos 0-1 (68) 

Again we apply Lindsted's method, but now the perturbation parameter is Az and 
not e, so that the independent variable has been scaled twice: once with e, then again 
with A~, as the perturbation parameter. 

To solve (68), we have 

2 
zl = Zo 1 + A zZo3 +""  

z 2 = z l l  + A ~ . z l z  + . . .  

(51 = (51o + A : , f i l l  + "'" 

(69) 

where the subscript convention serves to fix the position of each term in a power 
series expansion of z=z(~)  in the parameters e, Az. The first subscript gives the order 
of e, the second of Az; thus, z12 is of order e A  if, andzl, z2 were defined in Equation (46). 
Note that zt is given by Equation (67) and that from (47), (51o=0. Then, expanding (68) 
and ordering the terms, we have 

d zz 11/dC 2 + u z l l  = (u - 1) cos 0 sin x / u  

d 2 z 1 2 / d ~  2 -a t- U Z 1 2  - - -  - -  2 6 1 1 u  �9 s inx/u~ 
(70) 

Equation (70) is simply Equation (49), with u replacing A and ( replacing z. The 
solution, Equation (52), has been given. 

Equation (71) is even simpler; the avoidance of secularity requires 611 =0. Then 

Z12 = 0 .  

The remarkable conclusion is that the study of nonlinear motion in the elliptic 
problem contributes no new terms to the formal third-order expressions for the 
motion. The terms representing nonlinearity and eccentricity effects may be computed 
separately and added; the effects on the period of motion may be computed separately 
and multiplied. 
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5. Summary 

The third-order out-of-plane motion is given by 
in accordance with Equation (62): 

Equations (27), (52), (55) as modified 

4( z = A = s n  cj u 1 + 1 6 u  Az~), �89 ] 

+ eA=" 
A - 1  

2 
sin (x/u - 0/~) ~" 

2 x / A -  1 

sin (x//u + 0/{) {] 

2 x / A +  1 + 

+ eaAz " x/A (A - 
4 

1) r(x/A - 2)sin (x/u - 20/~) 

[. ( -2 -~  - 1) (4x/A - 4) 

+ (a/(2x/A2) sin (a/u + 20/~) ~ 1 
+ 1) (4x//A + ~ ' (72) 

where, from Equations (66, 54, 47), 

( 0 = ~  1 - ~ 4 - -  A - i e2 1 + 16A (73) 

and in Equations (72, 73) there is taken u=A, ~ =0 where such simplifications will 
not detract from third-order accuracy. Since A > 1 (see Szebehely (1967), pp. 214-5), 
Equation (73) shows that eccentricity acts to decrease the period, nonlinearity to 
increase it. However, the motion is not periodic, since Equation (72) contains terms 
which are not of period x/u or its multiples. The motion, neglecting eccentricity, is 
periodic, however, and the eccentricity may be considered to add additional terms of 
noncommensurable periodicity. 

The third-order in-plane motion is given in the Appendix, as the solution of 
Equation (56). 

6. Triangular Points 

Having derived a third-order theory for the collinear points, we now turn our atten- 
tion to the triangular points. The case of the triangular points, is studied in the 
same manner as is the case of the collinear points. Equations of motion, 
analogous to (10, 11), are given by expansions of Equations (1) about (Xo, Y0, 0)= 
=(�89 ___ 2xx/3, 0). We restrict ourselves to the case of the L 4 point, with the under- 
standing that results for the L5 point may be obtained by changing the sign of x/3 
wherever it appears. Accordingly, 

~ -  23) = �88 
3x/3 

4 
( 1 -  2#)y + 

"+ -1"-6"2 1 (1 - -  2#) x 2 3X/3xy 1633( 1 - 

8 
2#) y2 + �88 (1 - 2#) z 2 + 

+. . .  (74) 
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9 -  2 2 -  
3x/3 

4 
( 1 -  2#) x + 9y  _ 

343  

16 

9x/3 y2 
X2 3 3 (1 - 2#) x y  -~ 

8 16 
3x/3 z 2 + 

4 
Q Q Q 

2" + z = -~ (1 - 2 # ) x z  q 
343  

2 
y z - -  

_ kx z %.a.y2 Z + }Z 3 
15x/3 

-4 ( 1 -  2#) x y z  + 

0 0 0  

(75) 

(76) 

The linearized solution for out-of-plane mot ion  is given: 

z --- A~ sin t (77) 

and, since z>>x, y, 
Equat ion  (13): 

Equat ions (74, 75) may  be simplified to 

5~-  2 ~ -  �88 
343  

4 
(1 - 2#)  y = �88 (1 - 2#)  z 2 

3x/3 3x/3 z 2 
y + 22 (1 - 2#) x 49-y - 

4 4 

and 

yield an analog to 

(78) 

z z = �89 (1 - cos 2t) A 2 (79) 

and since Equat ions (78) are linear and inhomogeneous with forcing functions of 
frequency 0 and 2, f rom Equat ion (79), it follows that  the part icular  solution of (78) 
has the forms, 

X --" C 0 -[- C 2 c o s  2 t  + S; s i n  2 t  

t t 

Y = Co + $2 sin 2t + C2 cos 2t 
(80) 

where the coefficients are given by 

Co = 16Az 2 

Co_[ 27 [(1 - 2#) 2 - 1-1 

• 

• 

9 3 , ]3  
(1 - 2# )  

4 

- C 2 -  

sl 
SE 
cl 

u 
m 

3x/3 (1 - 2#) �88 
4 

4A 2 

3 [9 (1 - 2#) 2 - 73] 
X 

(1 - 

3 /3 
8 
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X 

X 

25 
0 

- 1 6  
_ -  3x/3 (1 - 2#) 

- ~ ( 1  - 2 /~) -  
0 
0 

3,/3 
8 

0 - 16 - 3x/3 (1 - 2 # ) -  
25 - 3x/3 (1 - 2/~) 16 

- 3x/'3 (1 - 2/~) 19 0 
16 0 19 

X 

as may be seen by directly substituting Equations (79, 80) into (78) and solving for the 

coefficients. Thus, Equations (80) become 

x = 73 - 9 (1 - 2/,) 2 [(1 - 2#)cos 2t + x/3 sin 2t] (81) 

y = - " / ?  + 

6 7 3 - 9 ( 1 - 2 # )  z 
• 

x [19 - 3 (1 - 21.0 2] c o s  2 t -  8 (1 - 2~) sin 2t (82) 

Now, in (76), we retain terms only up to order Az 3 and obtain 

e + z - -} [(1 - 2r + x/3-y] z - ~2 z3 = 0  (83) 

and from (81, 82), 

(1 - 2 # ) x  + 
_ [ 5 7  + 7 (1 - 2/z) 2 

x/3 Y = �89 ~ - 9 (1 - 2/~) z cos 2t - 11 A 2 (84) 

Note that in (84), there is cancellation of terms in sin 2 t. It is this cancellation which 
permits the expression of (84) in the form of Equat ion (16), permitt ing solution by 

elliptic functions. Thus, from (77), 

sin t = z/Az 
sin t cos 2t = z / A z  - 2 z 3 / A  3 

so that (83) becomes 

o r  

[  z3[ 1 5 +  z 1 + 7 3 ~ . ~  ] ~-#) 7 3 _ 9 ( 1 _ ~ ) 2  - = 0  (8s) 

+ u z  - azVZ 3 = 0 (86) 

where (86, 16) are identical. The solution then follows immediately from the equations 
given for the collinear-point solutions. In particular, there is: 

The first integral, Equations (19, 20) 
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The formal solution, Equations (27, 28) 
The period of motion, Equation (29) 
The Fourier-series expansion, Equations (33-37) 
To write these explicitly, define 

16#(1 - # )  

Y - 7 3  - 9 (1 - 2 # )  2 

Then we have: 

The first integral: 

/ - Az 2 

The formal solution: 

z = A~ sn (t, A~x/~) 

The period of motion: 

P = 27r (1 + �88 2) 

The Fourier-series expansion: 

where 

3 3(sin + sin 3z) + 0 (ASz) z = A~ sin z + T a~A~ z 

_3_ 2 t =  "c(1 + 4yAz) 

(87) 

(88) 

(89) 

(90) 

(91) 

and Az is given by Equation (88). The solution due to Buck (1920) involves initial 
conditions selected so that the amplitude Az is unchanged due to incorporation of non- 
linear terms in Equation (91); the resulting solution gives for the terms in A 3 in 
Equation (91), ( s in3v-3  sin v). The present solution involves no such special initial 
conditions. When this initial-conditions effect is allowed for, Equation (91) becomes 
identical with the solution of Buck. 

It is clear that y is a monotone increasing function of/~, reaching its maximum value 
of y=4/73 at # = �89 For the small values of # which are of practical interest, 

# 
~, ~ - -  (16 - 25/0 (92) 

64 

which is accurate to order #3. 

7. Relation to Existing Solutions 

References to existing work on out-of-plane motion include Moulton (1920), Farquhar 
and Kamel (1972) for the collinear points, and Buck (1920) for the triangular points. 
Farquhar and Kamel (1972) gives general third-order expansions for three-dimensional 
motion about the Earth-Moon Lz point. In principle, the coefficients of Equation 
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(72) may be evaluated for this case, and the result should be equivalent to a special 
case of Farquhar and Kamel. However, the expansions of Farquhar and Kamel are 
given with independent variable t (not 0). Thus, these coefficients will be entirely 
different from those of Farquhar and Kamel, so that no useful comparison can be 
made. 

The elliptic-function solutions were shown to be equivalent to the solutions of 
Moulton (1920) and Buck (1920). Thus, for plots or diagrams of these solutions, see 
respectively Moulton (1920), p. 176, and Buck (1920), p. 323. The collinear-point 
solutions are also depicted in Szebehely (1967), p. 575. 

Appendix:  Solut ion to Equation (56) 

A solution to Equation (56) is required to give the third-order expressions for the 
in-plane motion associated with the out-of-plane solution for the collinear points. 
Because of the linearity of the equations, it is not necessary to apply Lindsted's 
method; the solution involves merely the solution of inhomogeneous linear differential 
equations. 

Such solutions involve equations of the form 

x" - 2y' -- (1 + 2A)x  = ao~ cos co0 

y" + 2x' - (1 - A ) y  = b,o sin coO 

with solution 

(93) 

X -- Co~ COS coO, y = do sin o)0 (94) 
and 

[ c~ ] + 

do, 
liar] [~ - 2o) co 2 + (1 + 2A)  = 

o~ 4 - [ 4 -  (1 + 2 A ) -  (1 - A)] co 2 + (1 - A)(1 + 2A) bo 
(95) 

Equation (95) is derived from (93, 94). The use of the subscript ( )o, indicates the 
term under discussion; thus, a2 would refer to a forcing term in cos20, d/-~ would 
refer to a solution term in sin x/A 0. Also, the matrix of coefficients in (95) is denoted 
M,o; thus, (95) is written, 

[% do~] r + M~o [cz~ bo~] r = [0 0] r (96) 

where [ -I T indicates the transpose. 
Consider Equation (56). The solution will have the form 

X - -  X 2 "Jl- e x  3 ; Y = Y2 + eY3 (97) 

where the subscript indicates the order of the term. In addition, a second-order 
expression for z is required, and is found from (67, 72): 

A - 1  

2 

sin ( x / u  - 0 / ( )  

2x/A - 1 
z = A  

sin (x/u + 0/()~-] 

2x/A + 1 J 
z sin x/u  ( + eA~" 

(98) 
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o r  

Z -  Z 1 q'- e z  2 (99) 

Combining Equations (97, 99) with (56) and separating terms gives the equations 
for the in-plane motion: 

Order A 2 z: x~ - 2y2 - (1 + 2A)Xe = azBzZl 

Y2 + 2x2 - (1 - A)Y2 = 0 
(100) 

OrdereA2: x; - 2y 3 - (1 + 2A)x3 = - (1 + 2A)x2 cos 0 + 
+ -32B (2zlz2 - z 2 cos 0) 

y;' + 2x 3 -- (1 - A)Y3 = - (1 - A)Y2 cos 0 

(lol) 

and there are no terms of order Aze z. Equation (100) is simply Equation (13); the 
solution is (14), except that the trigonometric terms are of argument 2x/u ~ instead of 
2x/A t. 

Thus, the terms zl, z2, x2, Y2 are known, and the right-hand sides of Equation (101) 
may be constructed. Denoted, respectively, R H S x  and RHSy,  they are 

I ( cos 0 - R H S x =  � 8 9 1 8 8  4--A--] t l ~ 2 A  

I ((1 + 2A)(1 + 3A) 

�88 + �88 2(1 - 7A + 18A 2) 

1 )] 
2 ~  - 1 

cos (2x/u + 0/~){ - 

[ ((1_ _ + 2 A ) ( l + 3 A )  A - 1  ) l c o s ( 2 w / u _ O / ~ ) ~  
�88 + �88 \2(1 - 7A + 1-8A-5i + 2 ~  -- 1 

RHS r _ _ 3  _ B x / A ( 1 -  A ) [ c o s ( 2 x / u  
2 1 - 7A + 18A z 

0/~) ~ - cos (2x/u + 0/~) {] 

(102) 

There are thus three frequencies: co=l,  co=x/u_+0/~. However, for third-order 
accuracy the last two frequencies may be taken as co=x/A +_ 1. The solution then 
proceeds: From (102), the terms al, bl; a/~+a, b4-~+1; a/-ff_l, b4-~_ 1 are read off by 
comparison with (93); the matrices M1, M,/~+I, M,/~-I are computed respectively 
from (95, 96); and the coefficients cl, dl; c/~+1, dye+l; eva_l, d/~_~ are computed 
directly from (95). Note that b l=0.  

Then z3, Y3 are written 

~ = c~ cos 0 + c ~ + 1  cos ( ~ / ~  + 0/~) ;" + r cos ( ~ / ~ -  0 /~ ) ;  

Ya = dl sin 0 + d,/74+~ sin (x/'u + 0/~)~ + d,/74-~ sin (x /u  + 0/~) 
(103) 

Note that the c's and d's are all of order Aft. The solution to third order in e and Az for 
out-of-plane motion about collinear points is thus complete. 
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