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Abstract. The mutual gravitational potential between a pair of homogeneous polyhedra is
expressed using an infinite series. The nested volume integrals are evaluated analytically and
result in simple tensor expressions containing no special functions. However, complexity in-

creases as Oð6nÞ, where n is the term degree. An alternate formulation due to Liebenthal is also
presented.
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1. Introduction

We have been investigating the determination of the mutual gravitational
potential. Among other applications, such expressions are necessary for
investigating the coupled orbital and rotational dynamics of a binary asteroid
system.

To date, there have been no general, closed-form solutions for the mutual
potential. A series expansion formalism seems necessary.

For celestial bodies, the mutual potential has been expressed using
spherical harmonics. Borderies (1978) and Von Braun (1991) use spherical-
harmonic translation and rotation theorems to obtain an open-ended
expansion relative to an inertial reference frame. Maciejewski (1995) sim-
plifies the expansion by adopting a reference frame fixed in one body.
Hartmann et al. (1994) formulate spherical harmonics in terms of symmetric,
trace-free (STF) tensors. This formulation expresses in a very compact way
the potential and force expressions, as well as mutual potential.

As another approach for mutual potential, Paul (1988) expands 1=r in a
six-dimensional Taylor series. Components of attitude matrices relating
body-fixed and inertial coordinate systems appear explicitly. ‘Inertia inte-
grals’ resembling

R R R
M xiyjzkdm are evaluated once in body-fixed coordi-

nates, and can accommodate variable-density bodies. However, the
formulation concludes with a total of 15 nested summations, the first six of
which are infinite.
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In this paper we present a new series expansion for one special case, the
mutual potential of two homogeneous polyhedra. Eliminating density
variations simplifies the mathematics, at the expense of weakening the
applicability to idealized bodies. However, choosing polyhedra as subject
bodies increases the flexibility of the formalism over more specialized bodies
such as triaxial ellipsoids. Faces can be large and small, and can directly
represent important surface features such as deep clefts where contact
binaries meet.

In the 19th century, Liebenthal (1880) likewise addressed the mutual po-
tential of homogeneous polyhedra. This formalism, although incomplete, is
in closed form. We summarize Liebenthal’s pioneering work before pre-
senting our own.

Iterated volume integrals are converted to surface integrals using the
Gauss Divergence Theorem and a lesser-known companion, perhaps named
the Gradient Theorem (Riley et al., 2002, Section 11.9.1):
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Here, @A and @B represent the surfaces of bodies A and B, n̂ is a surface
normal vector, and r is the distance between differential surface elements d@A
and d@B. The minus sign appears because both ends of relative position
vector r � rB � rA have been differentiated by the rA and rB operators.

Next, the bodies are specialized to polyhedra. The whole-surface in-
tegrations are broken into summations of integrations over face pairs a and
b, where surface normal vectors are constant:
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One of the surface integrations is converted into a line integration around the
boundary of the face. Liebenthal writes r2 ¼ q2 þ p2 where q is the distance in
the face plane and p is the out-of-plane coordinate. Then the Divergence
Theorem is invoked using 2-D polar coordinates, where q is the radial
component of the vector field and there is no angular component:
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Next, the boundary integral is segmented into straight polygon edges in-
dexed by k. In-plane distance q is expressed in terms of coordinates sk along
the edge and constant qk normal to it:
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:

Thus Liebenthal has accomplished one of the surface integrations analyti-
cally.

The remaining surface integration is intractable. There are radicals within
the elementary functions, and a messy change of coordinates is involved as
focus shifts to the remaining face. This is unfortunate; Equation (1) is
appealing in its simplicity. What would Euler do?

One way to proceed is by numerical integration of the remaining surface
integration. There are ‘cubature’ algorithms designed specifically for trian-
gular integration domains (Berntsen and Espelid, 1992).
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In this paper, we evaluate mutual potential between homogeneous
polyhedra in the following way. Each polyhedron is segmented into a
collection of simplices (tetrahedra). The integrand 1=r is expanded in a
single infinite series of Legendre polynomials. Certain elementary values
are expressed profitably in terms of 6-dimensional tensors. Both volume
integrations over simplex pairs are accomplished directly using a result
from Dirichlet. The result is a straightforward infinite series for the mutual
potential.

2. Integration over Two Polyhedra

The problem is to evaluate a pair of iterated integrals over the volumes of
bodies A and B:

U �
ZZZ

A

ZZZ

B

1

r
dB dA; ð2Þ

where r is the distance between differential volume elements dA and dB. (We
have omitted cluttering factors such as the gravitational constant and the two
bodies’ individual densities.)

When the bodies are polyhedra, we begin by segmenting each into a
collection of simplices (tetrahedra). One vertex of each simplex is placed at
the polyhedron’s centroid. The other three simplex vertices are taken from
the face vertices. With no loss of generality, we assume faces are triangular.
Equation (2) becomes a summation of integrations over simplices a and b
from the two bodies.

U ¼
X

a2A

X

b2B

ZZZ

a

ZZZ

b

1

r
db da

Absolute position vectors are reckoned from an inertially fixed origin
(Figure 1). Let vector A ¼ ðxA; yA; zAÞ be the centroid of body A, and let
differential volume dA be located at absolute position a ¼ ðxa; ya; zaÞ and at
position a� A ¼ ðDxa;Dya;DzaÞ relative to the centroid. Similar definitions
hold for body B. (These D coordinates are expressed in the inertial coordinate
system common to both bodies, rather than in body-fixed coordinate sys-
tems.)

The distance r between differential volumes is

r2 ¼ðxa � xbÞ2 þ ðya � ybÞ2 þ ðza � zbÞ2

¼½ðxA � xBÞ þ ðDxa � DxbÞ�2 þ ½ðyA � yBÞ þ ðDya � DybÞ�2

þ ½ðzA � zBÞ þ ðDza � DzbÞ�2:
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To simplify the notation, we define vectors

R �ðxA � xB; yA � yB; zA � zBÞ; ð3Þ
h �ðDxa � Dxb; Dya � Dyb; Dza � DzbÞ;

and their norms

R2 ¼ R � R; h2 ¼ h � h:
Then r can be written as

r2 ¼ðRþ hÞ � ðRþ hÞ
¼R2 þ h2 þ 2R � h:

Vector R, of course, is the relative vector between the two centroids. Vector h
is somewhat unusual because it incorporates two independent excursions,
one on each end of vector R (Figure 2).

3. Series Expansion

We now use the traditional procedure to expand 1=r as a series involving
Legendre polynomials PnðÞ.

A

B

dA
dB

r

∆a
∆b

O

A

a b

B

R

Figure 1. Vectors A and B locate the centroids of two bodies separated by distance R. Vectors

a and b locate two differential volumes dA and dB separated by distance r.

A

B

r

∆a

R

h=∆a-∆b

R+h

–∆b
∆b

Figure 2. Vector R separates the bodies’ centroids. Vector h is the difference of the differential
volumes’ offsets from their respective centroids. The magnitude of their sum R + h is
equivalent to r, the distance separating the differential volumes.
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Individual terms in the series have been bracketed. Since R appears in
denominators, the two centroids cannot coincide, making R ¼ 0.

Convergence properties are dictated by h=R in Equation (4). The maxi-
mum possible value of h is the sum of the radii of the two bodies’ Brillouin
spheres. Hence, if the Brillouin spheres are disjoint, h=R < 1 and the series
converges.

When integrating Equation (5) in Equation (2), vector R and its norm R
remain constant. Only vector h and its norm h vary. By inspection, Equation
(5) contains no radicals involving these two. Hence, the Legendre expansion
leads to tractable, radical-free integrands.

4. Change of Variables

To prepare for integration, we change variables to a barycenter formulation
using ðua; va;waÞ for simplex a and similarly for b. Range limits are
0Oðua; va;wa; ua þ va þ waÞO1.

Given vertex coordinates

ðxa1; ya1; za1Þ ¼ðxA; yA; zAÞ þ ðDxa1;Dya1;Dza1Þ;
ðxa2; ya2; za2Þ ¼ðxA; yA; zAÞ þ ðDxa2;Dya2;Dza2Þ;
ðxa3; ya3; za3Þ ¼ðxA; yA; zAÞ þ ðDxa3;Dya3;Dza3Þ;

the coordinates of any point in simplex a are
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2
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zA

2

4

3

5þ ua

Dxa1
Dya1
Dza1

2

4

3

5þ va

Dxa2
Dya2
Dza2

2

4

3

5þ wa

Dxa3
Dya3
Dza3

2

4

3

5

¼
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5þ
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5
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3

5:
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Changing integration variables requires introducing the Jacobian deter-
minant of the transformation. It is simply

Ta �
@ðxa; ya; zaÞ
@ðua; va;waÞ

¼ det

Dxa1 Dxa2 Dxa3
Dya1 Dya2 Dya3
Dza1 Dza2 Dza3

2

6
4

3

7
5; ð6Þ

with a similar expression for Tb. This is independent of the integration
variables ua; . . . ;wb and can be moved outside of the integrations.

The change to barycenter variables transforms each simplex a and b into a
‘standard’ simplex a0 and b0 with vertex coordinates ð0; 0; 0Þ, ð1; 0; 0Þ, ð0; 1; 0Þ,
and ð0; 0; 1Þ.

U ¼
X

a2A

X

b2B
TaTb

ZZZ

a0

ZZZ

b0

1

r
db0 da0 ð7Þ

Either volume integration now resembles
Z 1

0

Z 1�u

0

Z 1�u�v

0

. . . dw dvdu;

which we subsequently abbreviate to
ZZZ

01

. . .dw dvdu:

5. Intermediate Expressions

Due to the infinite sequence of degrees appearing in Equation (5), vector or
matrix notations are inadequate. We adopt tensor notation and the Einstein
summation convention. No significance should be attributed to the distinc-
tion of superscript and subscript indices; we are not claiming covariant and
contravariant behavior. We use tensor notation in a very elementary way, as
a bookkeeping device for inner and outer products. Our space is six-
dimensional, three each from simplices a and b.

First we define three 6-vectors containing vertex coordinates relative to
each body’s centroid. In them, we give negative weight to simplex b:

xi � ½Dxa1;Dxa2;Dxa3;�Dxb1;�Dxb2;�Dxb3�;
yi � ½Dya1;Dya2;Dya3;�Dyb1;�Dyb2;�Dyb3�;
zi � ½Dza1;Dza2;Dza3;�Dzb1;�Dzb2;�Dzb3�:
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And then we stack all into a 3� 6 matrix.

vij �
Dxa1;Dx

a
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a
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2

4
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2
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3

5

j

: ð8Þ

The superscript index varies 1. . .6 and the subscript 1. . .3.
We also define a kernel 6-vector

qi � ½ua; va;wa; ub; vb;wb�
containing the barycenter variables.

Each term in Equation (5) consists of factors ðR � hÞ, ðh2Þ, and others that
are constant during integration. The two that vary can be expressed using the
kernel. First, the components of 3-vector h are

hj ¼ ½qixi; qiyi; qizi�j
¼ qiv

i
j:

Next,

R � h ¼ Rjhj

¼ Rjqiv
i
j
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¼ qi ðxA � xBÞxi þ ðyA � yBÞyi þ ðzA � zBÞzi
� �

ð9Þ
� qiw

i: ð10Þ
We have defined a 6-vector wi � Rjvij for convenience.

Finally,

h2 ¼ hkhk

¼ qiv
i
kqjv

j
k

¼ qiqjx
ixj þ qiqjy

iyj þ qiqjz
izj

¼ ðqiqjÞðxixj þ yiyj þ zizjÞ
� qijr

ij: ð11Þ
Here we define the rank-2 tensor qij � qiqj as the outer product of the kernel
with itself. We subsequently generalize this to rank-k tensors:

qi1i2...ik � qi1qi2 . . . qik :

We have also defined another rank-2 tensor (in this case, a 6� 6 matrix):

rij � xixj þ yiyj þ zizj

¼ vikv
j
k: ð12Þ
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Both rij and wi vary with any orientation change of the bodies. However, they
are constant during integration.

6. Termwise Integration of the Legendre Expansion

Terms in Equation (5) contain ðR � hÞ and ðh2Þ factors. We substitute the
corresponding expressions (Equations 10, 11) and group all kernel vectors
into one tensor qi1...ik of outer products. The integration variables ua; . . . ;wb

are completely isolated to it.
For example, ðh2ÞðR � hÞ appears in the third-degree term of Equation (5).

We determine the following.
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where exponents Ia; . . . ;Kb are nonnegative integers. An insight leads to a
straightforward way of determining exponents. In effect, we take the loga-
rithm of each component by bookkeeping only the exponents. That is, the
kernel vector
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is rewritten as

qi ¼

ð1 0 0 0 0 0Þ
ð0 1 0 0 0 0Þ
ð0 0 1 0 0 0Þ
ð0 0 0 1 0 0Þ
ð0 0 0 0 1 0Þ
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7
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:
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When forming a rank-k integrand, what was taking the outer product of the
kernels becomes taking the ‘outer sum’ of the exponents. For example, here
are exponents of the rank-2 integrand qij ¼ qiqj:

qij ¼

ð200000Þ ð110000Þ ð101000Þ ð100100Þ ð100010Þ ð100001Þ
ð110000Þ ð020000Þ ð011000Þ ð010100Þ ð010010Þ ð010001Þ
ð101000Þ ð011000Þ ð002000Þ ð001100Þ ð001010Þ ð001001Þ
ð100100Þ ð010100Þ ð001100Þ ð000200Þ ð000110Þ ð000101Þ
ð100010Þ ð010010Þ ð001010Þ ð000110Þ ð000020Þ ð000011Þ
ð100001Þ ð010001Þ ð001001Þ ð000101Þ ð000011Þ ð000002Þ
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4

3

7
7
7
7
7
7
5

:

Since variable sets ðua; va;waÞ and ðub; vb;wbÞ are independent, the iterated
volume integrations separate into a pair of factors, each resembling

Z 1

0

Z 1�u

0

Z 1�u�v

0

uI vJ wK dw dvdu ¼ I! J!K!

ðIþ Jþ Kþ 3Þ! ;

an instance of the Dirichlet integral (Macmillan, 1930, Section 50).
We denote the result with a capital letter:

Qi1...ik �
ZZ Z

01

ZZ Z

01

qi1...ik db
0 da0 ð13Þ

Each is a rank-k tensor of rational numbers, symmetric in all index pairs.
Here are the first four Qi1...ik tensors.
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7. Simplifications

We gather intermediate results and display the iterated volume integrals:
ZZ Z

01

ZZ Z

01

1

r
db0 da0 ¼ Q

R

� �

þ �Qiw
i

R3

� �

þ �
Qijr

ij

2R3
þ
3Qijw

iwj

2R5

� �

þ
3Qijkr

ijwk

2R5
�
5Qijkw

iwjwk

2R7

� �

þ � � � :

This is ready to substitute into Equation (7), where it is understood that rij

and wi depend on the simplices a and b.
When accumulated over all simplices, the leading term Q=R becomes the

Keplerian term U0 of the potential expansion:

U0 ¼
X

a

X

b

Q

R
TaTb

¼ 1

R

X

a

1

6
Ta

 !
X

b

1

6
Tb

 !

¼ 1

R
VAVB;

where VA and VB are the volumes of the polyhedra.
The first-degree term �Qiw

i=R3 vanishes when the expansion centers A

and B are the respective body centroids. To show this, we expand Qiw
i upon

summation over the two bodies.
X

a

X

b

TaTbQiw
i¼ 1
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X

a
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b

TaTb
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þðyA�yBÞðDya1þDya2þDya3�Dyb1�Dyb2�Dyb3Þ

þðzA�zBÞðDza1þDza2þDza3�Dzb1�Dzb2�Dzb3Þ

8
>><

>>:

9
>>=

>>;

¼ 1

6
ðxA�xBÞ

X

b

Tb

X

a

1

24
ðDxa1þDxa2þDxa3ÞTa

" #

�1

6
ðxA�xBÞ

X

a

Ta

X

b

1

24
ðDxb1þDxb2þDxb3ÞTb

" #

þ�� � :
The bracketed factors are the bodies’ first moments which vanish when the
expansion centers are body centroids.
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8. Conclusion

The mutual potential U between two homogeneous polyhedra A and B has
been evaluated analytically. The resulting infinite series begins

U ¼ VAVB

R
þ
X

a2A

X

a2B
TaTb �

Qijr
ij

2R3
þ
3Qijw

iwj

2R5

� �	

þ
3Qijkr

ijwk

2R5
�
5Qijkw

iwjwk

2R7

� �

þ � � �



: ð14Þ

(The gravitational constant G and the two bodies’ individual densities have
been omitted.) R is the distance separating the centroids, and VA and VB

represent the volumes. The degree-1 term has vanished because polyhedra
centroids were used as expansion centers for the series.

Within the summations, a and b represent simplices comprising the two
polyhedra, and Ta and Tb are Jacobian determinants given in Equation (6).

The Q are multi-rank, symmetric tensors containing constant rational
expressions. See Equation (13) and vicinity. They represent generic results of
the iterated volume integrations.

Intermediate vector wi ¼ Rjvij and matrix rij ¼ vikv
j
k (Equations 9, 12) both

depend on simplices a and b, even though the notation does not show this.
Vector Rj in Equation (3) contains the centroid separation coordinates, and
matrix vij in Equation (8) contains vertex coordinates relative to centroids,
with body B having negative weight.

Note the absence of special functions in our final Equation (14). By
contrast, spherical-harmonic formulations involve Legendre polynomials and
associated Legendre functions, while Liebenthal’s result contains log and
arctan functions. This simplicity can speed computer evaluation.

There are drawbacks to our formulation. At the onset we assume
homogenous bodies without density variations. The result is not in closed
form, being derived from an infinite series expansion. There is no mention
of attitude matrices relating body-fixed and inertial coordinates; summa-
tions over the simplices must be reevaluated with any orientation change.
Without taking advantage of symmetries and constant subexpressions, the
work to evaluate the nth degree term in Equation (14) is Oð6nÞ, increasing
steeply with n.

The procedures for computing force and torque in Maciejewski (1995) are
appropriate for our formulation. Forces are computed by differentiating the
mutual potential with respect to the centroid coordinates of each body. In
Equation (14), this means differentiating R and wi: Torques involve differ-
entiating xi, yi, and zi, i.e. both rij and wi:
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